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1 Introduction

In this contribution, we present an argumentation-based temporal defeasible logic,
called t-DeLP, mainly inspired by DeLP [23] but with a focus on causal temporal
reasoning. The language is defined by a set of temporal literals -representing facts-,
and (strict or defeasible) durative rules. A temporal logic program consists of tempo-
ral facts and rules, which combine into arguments for further derivable facts. The
main motivation for t-DeLP is to reason about interacting processes (modeled as
arguments), and then decide which arguments (conclusions) are to prevail. An ar-
gument expresses some delay between each premise (cause) and the conclusion (ef-
fect), thus suggesting how a process might evolve. Since different arguments (process
descriptions) might conflict, a dialectical procedure is proposed that decides which
arguments prevail based on their conflicts. The conclusions of undefeated arguments
define the set of warranted effects (defeasible logical consequences) of a t-DeLP pro-
gram. These consequences thus describe the actual states that will turn up, according
to the available information about the initial state(s) and the temporal rules.

A motivation for defeasible logics (like for the family of non-monotonic logics) is
the descriptive parsimony it allows for knowledge bases. This parsimony is in accor-
dance with everyday causal reasoning, where it is standard practice to list only those
causes that are uncommon or just specific to the process: e.g. a spark caused a fire.
Causes that usually hold, like oxygen, are not mentioned in the explanation (or rules)
unless they are false and this explains the non-occurrence of the effect: the spark did
not start a fire because no-oxygen. Thus, we aim to describe a general-purpose logic
to reason about temporal or causal processes, leaving to the user the particular level-
of-detail of explanations. Besides these questions of what is to occur afterwards, e.g.
whether fire or no-fire, another motivation exists for a specialized study of temporal
aspects within this non-monotonic stance. Namely, the question whether fire will start
at some future time t or instead at t + 1 or t + 2, etc. This is important in scenarios
where the start and duration of a process depends on the initial context (e.g com-
bustible, fire-retardant), or on the existence of other processes that are also occurring
in parallel (rain, wind).

A well-known contribution among argumentation-based defeasible logics is that
of Garcı́a and Simari’s [23]. The authors present DeLP, a logic programming formal-
ism based on defeasible argumentation. The question of how to define the defeat or
preference relation between arguments is also discussed at length in this work. In-
spired by Poole [42], the authors of [49] focus on a formal criteria called generalized
specificity, which gives preference to arguments with more premises or more direct
rules. 1 But the latter seems at odds with causal reasoning in a temporal setting: we
would rather prefer less direct rules, i.e. more detailed temporal inferences. 2 Thus,
we adapt this and other aspects of DeLP to the temporal case in order to intuitively
meet basic intuitions about causal explanations. Some of these differences arise from

1 This criterion captures the preference for e.g. {penguins do not fly} over {penguins are birds, birds
fly} in evidence-based reasoning, not considered here.

2 More direct rules can fail to detect interactions. Consider, for instance, two moving objects that are
directed against each other. Under non-detailed rules, these objects would magically not collide but reach
their destinations untroubled.
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the temporal asymmetry (past vs. future) of causation: persistence, the attack rela-
tion and defeat deserve special attention for the temporal case. As a consequence,
the notion of warrant for (temporal) literals is slightly different from that of DeLP as
presented in [23].

1.1 Structure of the paper

The paper is structured as follows. After Section 2 on related work, some prelimi-
naries on notation and knowledge representation are presented in Section 3. Then,
we present in Section 4 the t-DeLP logic programming framework. In Section 5 we
show the basic argumentation-theoretic properties of warrant for t-DeLP programs:
direct consistency and closure under sub-arguments. Finally, in Section 6, we present
a modification of the t-DeLP algorithm for warrant, in order to deal with programs
whose strict rules encode binary mutex constraints. For this extended framework,
we prove that the notion of warrant satisfies direct consistency, indirect consistency
and closure. The paper ends with Section 7, where t-DeLP is compared with Dung
semantics [21], with DeLP regarding the defeat criteria (other elements being com-
pared throughout the paper) and finally with the closely related logic programming
framework TDR [5]. After the Conclusions section, we add an Appendix containing
the proofs of the auxiliary results needed in this paper.

2 Related Work

There is a vast literature on logics for reasoning about events, roughly dividing into
three areas: temporal logics, causal or conditional logics, and logics for actions. The
former two put the focus on the temporal aspects of change, and resp. the causal
relationships between state conditions. This is sometimes done by focusing on states
and leaving events (transitions between states) without an explicit representation in
the object language, as in the planning tradition. Logics for actions, on the other hand,
aim to capture the effects of complex actions by making action events explicit. In
comparison to temporal approaches, this is usually done under quite abstract notions
of time (before vs. after this action).

Modal logic [15], [8] is one of the most central areas within logic in computer
science, and has been used in particular for the study of actions and events (among
many other topics). For example, studies in applied modal logic include modalities
for time in linear time LTL [29], or branching time CTL, CTL∗ [22]; or modalities
for the execution of programs PDL [31]. The rather comprehensive knowledge on the
area of modal logic has turned an advantage to the corresponding studies in these and
many other topics.

In practice, though, the early discovery of some knowledge engineering prob-
lems (conditionals, incomplete knowledge, the frame problem) motivated a switch
from (classical) implication-based logics to non-monotonic rule-based systems (e.g.
default logic [40]). Let us briefly recall these problems:
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– conditionals cannot be faithfully modeled in monotonic (modal) logic due to the
failure of antecedent strengthening (e.g. if I became rich, you would be happy; if
I became rich and greedy, you would not be happy.)

– incomplete knowledge, i.e. a substantial lack of knowledge, does not prevent com-
monsense reasoners to extract (possibly false) information by way of (possibly
unsound) inferences, e.g. using default rules. These maneuvers also make sense
for economic reasons: we can eliminate conditions for an event from its descrip-
tion, if these are usually known to hold; and so we can forget about checking
these default conditions.

The first works addressing these problems are rather old, see e.g. [36] and [47]. Both
problems are about the existence of some sort of priority among the set of contin-
gently false states and, resp., unknown facts. Thus, while standard approaches to
conditionals are based on a preference for more similar worlds (among those satisfy-
ing the antecedent), default logics assign more plausibility to default rules or normal
facts than to their contraries (in case of ignorance).

Another motivation for the study of non-monotonic reasoning was the recognition
of the frame problem. In the broad sense, this denotes a family of problems related to
the description of actions: their effects, non-effects, or preconditions. Among them,
we find:

– the frame problem -in the original, narrow sense- is the problem of finding (ef-
ficient) representations for the persistence of facts through time or action execu-
tions. Since an action will only change a small part of a scenario, it is unpractical
to make an explicit list of which facts persist under which actions, to be used
during inference.

– the ramification problem is the problem of efficiently deriving the indirect effects
of an action from a list of direct effects (e.g. possibly using laws). Otherwise, one
must explicitly list all the effects of an action as direct effects.

– the qualification problem is that of finding efficient representations for the pre-
conditions of an action. We would also like to prune many of the preconditions
that one would not bother to check before the action (unless one positively knows
about their failure). Among these three problems, this is the only one apparently
requiring a non-monotonic approach [14].

The original frame problem plagued the initial classical logic based approaches
[38], etc. and also many (monotonic) temporal logic programming works [1]. De-
spite considerable efforts were made to solve the frame problem, solutions were not
completely satisfactory w.r.t. all the variations of this problem. More recently, some
efforts have been devoted to solve the frame problem within monotonic modal log-
ics. For example, some of the issues related to the frame problem in PDL have been
successfully dealt with in [45], [26], [51], [14]. Other research areas, instead, have
found natural ways to avoid the frame problem (as in the area of automated planning
[25]) or address it in natural ways. Among the latter we find non-monotonic logics
(see below). These logics have found more natural expressions to capture common
sense reasoning and avoid knowledge representation issues.

The present work belongs to the area of non-monotonic temporal logics, where
non-monotonicity here is built upon the recent area of computational argumentation
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[21], [43], [46] and more specifically under the form of logic programming [12],
[23]. In t-DeLP we do not represent events or actions explicitly, so a t-DeLP notion
of update (computing the results of executing a program) would rather be similar to
that of planning: a state-transition system, with some incorporated notion of t-DeLP
consequence. Though this topic falls out of the scope of the paper, we present an
example for this, based on the Yale shooting scenario. On the other hand, we hope
to make clear that the above representation problems can be addressed when actions
are considered: the (narrow) frame problem can be solved by means of persistence
rules; the issue of conditionals and the ramification problem can be addressed by
introducing rules that encode appropriate laws; and the qualification problem can
be solved by the argumentation procedure, since arguments about preconditions can
qualify whether an action is executable.

Let us then briefly survey different non-monotonic logics frameworks, and more
specifically those addressing reasoning about events, action or time. Non-monotonic
reasoning (see [10]) became, for the reasons exposed, another important area of re-
search on the present topics. Inspired by common sense reasoning, these logics are
based on the existence of priorities between inferences [44], [3], [39]. Thus, while
all inferences separately make sense, some of them might be preferred to (and can-
cel) others. This is useful in case a logical conflict exists between inferences; e.g.
typically birds fly, and penguins are birds are in conflict with penguins do not fly. In
this line, for example, one can find early approaches to counterfactual reasoning [36],
and default reasoning [47]. Non-monotonic logics, though, have evolved into a rather
disperse variety of logical approaches, including some modal approaches [34], [27].
This makes it difficult to reduce non-monotonic systems to each other or to modal
logics, though some correspondences or reductions are known. For example: default
logics into autoepistemic logics [34] or into DeLP [20], DeLP into answer set pro-
gramming ASP [50], the relation between DeLP and normal logic programing [16],
defeasible logic and definite logic programming [2]. Among non-monotonic modal
approaches, we find [27],[11]. Other logics of action and causation include C/C+
[28], [19], A [24], event calculus [35] and others. These have been studied from the
standpoint of PDL in [51].

Further motivations for the present, argumentation-based approach are precisely
questions on these priorities between conflicting inferences [48], [23]: how are they
defined, but also how can they be automatically generated, etc. In most approaches,
answers to the second question have been traditionally assumed as given. In particu-
lar, this is the case of abstract argumentation frameworks [21], and its extension with
preferences [4]. These questions are certainly pertinent when one does consider the
internal structure of inferences: in default logics [47] or in logic-based argumentation
[12], [43]. For example, this internal structure of arguments would permit to decom-
pose the preference between arguments into an aggregation of preferences between
their components, as proposed in [23].

Yet another approach for priorities consists in comparing the information con-
tained in two arguments to decide between these two. Inspired by the notion of speci-
ficity [42], Chesñevar et al. [49] explored the idea of a formal, general-purpose pref-
erence relation for priorities. This led to the defeasible argumentation-based DeLP
logic programming framework Garcı́a and Simari [23]. The proposed framework
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t-DeLP consists, roughly, in extending the language of DeLP with temporal infor-
mation, and adaptating the preference relation to causal temporal reasoning. This
contrasts with a focus on evidence-based reasoning, which traditionally motivated
many non-monotonic logical systems. For a comparison between DeLP and t-DeLP
in this respect, see Section 7.

Within the area of defeasible logics, rule-based systems were initially proposed
(see Billington [7] and Nute [40]). These were recently extended to reason with tem-
poral literals in Governatori and Terenziani [30]. Indeed, our language is mainly in-
spired by this latter work. Rule-based systems, though, lack the simplicity and power
of argumentation-based logical frameworks. First, rule-based systems are based on
rules and defeaters, resp. to promote and prevent derivations. In contrast, argumen-
tative frameworks only consist of rules, in a way that mirrors a deliberating human
agent pondering reasons for and against candidate conclusions. Also, argumentation-
based logics are more powerful than rule-based systems: while priority relations be-
tween rules establish local comparisons or preferences, preference relations between
arguments can be defined globally. Thus, arguments can be judged according to how
much information they make use of, even if at the level of rules, they cannot be so
compared. The latter question applies to other frameworks for reasoning with tem-
poral information, either defeasible or based on belief change operators, e.g. Hunter
[32], [33].

Finally, several frameworks have been proposed in the more recent area of logical
models of argumentation. The initial approach of Dung [21] is based on abstract rela-
tions of attack between arguments. This has been extended with temporal parameters
describing for which time intervals an argument is available or can be legitimately
stated, Cobo et al. [18], [17]. As we mentioned, Dung’s work [21] was also extended
in the sense of considering arguments as structured by logical elements, e.g. Cami-
nada and Amgoud [12], and Prakken [43] (or Besnard and Hunter [6] for classical
logic). This internal logical structure explains both the relation of attack (logical con-
flict), and the comparison-based relation of preference (that would turn an attack
into a defeat). Several works in this area address temporal argumentation as well,
but most of them do so by associating time intervals to literals and arguments, see
for instance Augusto and Simari [5], Mann and Hunter [37]. Our approach differs
from these works in that the interval where the conclusion of an argument holds,
rather than being a primitive notion, obtains from different arguments (one for each
time-point). In this sense, while these works are slightly more expressive than the
present proposal, t-DeLP can be seen in some respects as a more faithful (and sim-
pler) formalization of non-monotonic reasoning about temporal events. Concerning
expressivity, our discrete time-point based approach in fact accommodates most of
the interesting features from temporal rule-based systems and interval-valued argu-
mentation frameworks [30], [5] (expiring literals, persistence).

3 Knowledge Representation

Concerning notation, throughout the paper we make use of the following conventions:
strong negation is denoted ∼p, for a propositional variable p ∈ Var. Given two sets
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X,Y we denote the set-theoretic difference as X r Y and the Cartesian product of
X and Y as X × Y . Sequences are denoted 〈x0, . . . , xn〉 or [x0, . . . , xn]. Given a
sequence x = 〈x0, . . . , xn〉 and an element x, we denote by x∩〈x〉 the concatenation
of x with x, i.e. the sequence 〈x0, . . . , xn, x〉 or [x0, . . . , xn, x]. If f is a function
f : X → Y and X ′ ⊆ X , we define f [X ′] = {f(a) ∈ Y | a ∈ X ′}. Given a family
of sets M, its union is denoted

⋃
M.

After fixing the symbols used in this paper, let us describe with more detail the
language of our object of study t-DeLP and some representational issues related to
the argumentation-theoretic properties [12].

Our language builds upon a set of temporal literals, consisting of a pair 〈literal,
time〉. Literals are expressions of the form p or ∼p from a given set of variables
p ∈ Var. Strong negation ∼ cannot be nested, so we will use the following notation
over literals: if ` = p then ∼` will denote ∼p, and if ` = ∼p then ∼` will denote p.
These literals, though, might rather be seen as ground predicates, of the form literal
= (object, property) or also literal = (object, parameter, value).

Temporal parameters will take discrete values and will be denoted with t (possi-
bly with subindexes). Thus, a temporal literal is of the form 〈`, t〉. Time is relevant
to determine whether a pair of temporal literals contradict each other: for this con-
tradiction to exist, the literals expressed must be the negation of each other and they
must be claimed to hold at the same time: 〈`, t〉 and 〈∼`, t〉 are contradictory. A tem-
poral or causal statement (possibly an instance of some general law) is represented as
a rule: a set of temporal literals 〈`1, t1〉, . . . , 〈`n, tn〉 imply a temporal literal 〈`, t〉.
In particular, rules with no duration, i.e. with no delay between their head and body,
describe static constraints. Namely, rules 〈`, t〉 −�〈`1, t1〉, . . . , 〈`n, tn〉, or with ←,
such that t = t1 = · · · = tn describe static defeasible or strict constraints within this
t.

In any case, literals of the form 〈(object, parameter, value), time〉 tacitly require
some “logical” constraints to be satisfied: an object cannot have different values of
a given parameter at a given time (or, in some cases, two objects cannot have the
same value; e.g. for spatial location). These absolute constraints, represented by strict
rules, can also be seen as induced by a family of sets of pairwise incompatible literals
X = {(o, p, v), (o, p, v′), . . .}, for fixed p and o (or for fixed p and v); these literals
are also called mutex in the literature, for mutual exclusion.

Example 1 LetO and L be the sets of objects o and locations l; and let @(o, l) ∈ Var
denote: o is at l;

– the at most one location per object policy is defined by a set {o} × L for each
o ∈ O; this set corresponds to the set of rules 〈∼@(o, l), t〉 ← 〈@(o, l′), t〉, for
each l 6= l′.

– the at most one object per location policy is defined by a set O × {l} for each
l ∈ L; this set corresponds to the set of rules 〈∼@(o, l), t〉 ← 〈@(o′, l), t〉, for
each o 6= o′.

Specific results for t-DeLP programs containing such static strict rules are ad-
dressed later in Section 6, though this will be actually done under the form of mutex
constraints, rather than as static strict rules like in Example 1.
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4 t-DeLP: defeasible logic with (discrete) time.

In a sketch, argumentation-based logic programming formalisms work as follows: we
start with a knowledge base (Π,∆) with temporal facts and rules, and a query 〈`, t〉;
we combine facts and rules in (Π,∆) into an argument A, i.e. a set A ⊆ Π ∪ ∆
that entails the (presumable) fact 〈`, t〉 by applying modus ponens from A. Once
some such argumentA for 〈`, t〉 is fixed, an argumentative process generates counter-
arguments B ⊆ Π∪∆ defeatingA; that is, with B concluding the contrary of 〈`, t〉 or
of some intermediate step in A. Then arguments C defending A by way of attacking
some suchB are considered; and so on, until all the relevant arguments for and against
are generated. These arguments can be arranged in the form of a tree that hasA as its
root, arcs are the defeat relation, and hence terminal nodes are unattacked arguments.
At this point,A is assigned a label (undefeated, or defeated), according to a recursive
labeling procedure in this tree of arguments. The procedure determines whether A is
undefeated, i.e. whether it constitutes a solid justification or explanation for the truth
of 〈`, t〉. In case it is, we say 〈`, t〉 is warranted in the knowledge base (Π,∆).

For the temporal component, we take the set of natural numbersN as our working
set of discrete time points. The logic t-DeLP is based on temporal literals 〈`, t〉, where
` is a literal and t ∈ N, denoting ` holds at time t. In order to solve conflicts between
arguments, the preference (or defeat) relation between arguments will be based on: a
preference for arguments with more premises and more recent information. The latter
notion of preference allows an argumentA to defeat the persistence of previous steps
in A that are not to persist according to A itself. In addition, since arguments must
be consistent with strict information, strict arguments cannot be attacked. A further
criterion, less durative rules, is not addressed here.3

Definition 1 (Literal, Rule) Given a finite set of propositional variables Var, we
define Lit = Var ∪ {∼p | p ∈ Var}. The set of temporal literals is defined as TLit =
{〈`, t〉 | ` ∈ Lit, t ∈ N}. A temporal defeasible (resp. strict) rule is an expression δ
relating temporal literals of the form

〈`, t〉 −� 〈`0, t0〉, . . . , 〈`n, tn〉 (resp. 〈`, t〉 ← 〈`0, t0〉, . . . , 〈`n, tn〉),

where t ≥ max{t0, . . . tn}. We write body(δ) = {〈`0, t0〉, . . . , 〈`n, tn〉}, head(δ) =
〈`, t〉 and literals(δ) = {head(δ)} ∪ body(δ).

A strict rule with an empty body, e.g. 〈`, t〉 ←, also denoted 〈`, t〉, represents a
basic fact that holds at time t. As in most of the DeLP literature -see [23], [13]- basic
defeasible facts, or presumptions, of the form 〈`, t〉−�, are not considered. A strict rule
δ ∈ Π preserves the truth from body(δ) to head(δ). A defeasible rule δ ∈ ∆ states a
weaker claim: if the premises are true, this is in principle a reason for believing that
the conclusion is also true. This conclusion, though, may be later withdrawn when
other reasons are considered.

3 This is important, since rules with long duration might fail to detect conflicts, (so, e.g. the program
might fail to predict that two balls running into each will collide). Instead, we will assume rules are precise
enough for the problem at hand.
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A special subset of (defeasible) rules is that of persistence rules, of the form
〈`, t + 1〉 −�〈`, t〉 and stating that, unless there exist reasons to the contrary, ` is
preserved from t to t+ 1 (if true at t). The set of defeasible persistence rules will be
denoted ∆p.

Strict persistence rules and strict durative rules carry a strong commitment on
the preservation of a literal, and they will not in general be considered, examples as
follows notwithstanding.

Example 2 〈∼tuesday, t + 24〉 ← 〈tuesday, t〉 and 〈wednesday, t + 24〉 ←
〈tuesday, t〉, where time units are hours, are examples of strict durative rules about
facts that are true by linguistic convention. Since literals as above will not contra-
dicted by contingent rules, the previous rules can safely be modeled as defeasible
rules, with −� replacing←.

Definition 2 (Derivability, Consistent Set) Given a set of rules and strict facts Γ ,
we say a literal 〈`, t〉 derives from Γ , denoted Γ ` 〈`, t〉 or also 〈`, t〉 ∈ Cn(Γ ) iff

– 〈`, t〉 ∈ Γ , or
– there exists δ ∈ Γ with head(δ) = 〈`, t〉, and such that body(δ) is a set of literals

that derive from Γ .

We say Γ is consistent iff the set Cn(Γ ) contains no pair of literals of the form 〈`, t〉
and 〈∼`, t〉. In particular, a set of literals is consistent iff it does not contain such a
contradictory pair of literals 〈`, t〉, 〈∼`, t〉.

Note that derivability is monotonic: Cn(Γ ) ⊆ Cn(Γ ′) whenever Γ ⊆ Γ ′.

Definition 3 (Program) A t-DeLP program, or t-de.l.p., is a pair (Π,∆) whereΠ =
Πf ∪Πr is a consistent set of temporal strict facts and rules, and ∆ a set of temporal
defeasible rules.

Temporal rules as above can be seen as instances of general rules δ∗ of the form

` −� (`0, d0), . . . , (`n, dn)

-and similarly for strict rules with ← -, where each di expresses how much time in
advance must `i hold for the rule to apply and produce a derivation of `. Such a
general rule is to be understood as a shorthand for the set of rules

{〈`, t〉 −� 〈`0, t− d0〉, . . . , 〈`n, t− dn〉 | t ∈ N, t ≥ max{d0, . . . , dn}}.

For example, the rule

〈p, 4〉 −� 〈q, 3〉 would be an instance of p −� (q, 1).

Persistence rules can therefore be expressed as general rules of the form ` −� (`, 1);
this defeasible general persistence rule for `will be denoted δ`, and an instance 〈`, t+
1〉 −� 〈`, t〉 of δ` will also be denoted by δ`(t); similarly, a set of instances of δ` given
by an interval [t, . . . , t+ k] will be denoted {δ`(t′)}t≤t′≤t+k.

Though the general rules notation becomes handy at some points through the
paper, the formal definitions below do make use only of temporal rules, i.e. instances
of the above. Unless stated otherwise, in the remaining of the paper we will mean by
rule an expression as in Definition 1 that is not a fact (i.e. with non-empty body).
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Example 3 Consider the situation described next and formalized in Figure 3. Lars, a
tourist visiting the Snake Forest, has just been bitten by a venomous snake (denoted
@forest(Lars), and bitten∗(Lars). 4 The poison of this type of snake does kill a person
in 3 hours (δ1). But since our subject, Lars, is experienced (it has been bitten and
cured a few times before), denoted exp(Lars), he may resist up to 5 hours (δ2, δ3).
We decide to take him to the nearest hospital. In normal conditions this would take
2 hours (δ4), but since today is sunday, the traffic jam (δ7) makes it impossible to
reach the hospital in less than 4 hours (δ5, δ6). The antidote takes less than an hour
to become effective (δ8), and is given to persons that are at the hospital, have been
recently bitten (denoted bitten(·)) and are alive (denoted∼dead(·)). We prove below
in t-DeLP that Lars survives the snake attack.

Π{
〈@forest(Lars), 0〉, 〈bitten∗(Lars), 0〉, 〈exp(Lars), 0〉,
〈∼dead(Lars), 0〉, 〈sunday, 0〉

}

∆

bitten(Lars) −� 〈bitten∗(Lars), 0〉 δ0
dead(Lars) −� (bitten∗(Lars), 3) δ1
∼dead(Lars) −� (bitten∗(Lars), 3), (exp(Lars), 3), (∼dead(Lars), 3) δ2

dead(Lars) −� (bitten∗(Lars), 5), (exp(Lars), 5), (∼dead(Lars), 5) δ3
@hospital(Lars) −� (bitten∗(Lars), 2), (@forest(Lars), 2), (∼dead(Lars), 2) δ4

∼@hospital(Lars) −�
{

(traffic.jam, 2), (bitten∗(Lars), 2),
(∼dead(Lars), 2), (@forest(Lars), 2)

}
δ5

@hospital(Lars) −�
{

(traffic.jam, 4), (bitten∗(Lars), 4),
(∼dead(Lars), 4), (@forest(Lars), 4)

}
δ6

traffic.jam −� (sunday, 0) δ7
∼dead(Lars) −� (@hospital(Lars), 1), (bitten(Lars), 1), (∼dead(Lars), 1) δ8

plus δ` ∈ ∆p for each ` /∈ {bitten∗(Lars),∼@loc(Lars)} δ`

Fig. 1 The list of strict facts, defeasible rules δ1-δ8 and persistence rules δ` for Example 3.

As it happens in DeLP, the set of derivable literals in (Π,∆) will not in general
be consistent. The first step to enforce consistency is to focus on those derivations
that have the form of an argument.

Definition 4 (Argument) Given a t-de.l.p. (Π,∆), an argument for 〈`, t〉 is a set
A = AΠ ∪ A∆, with AΠ ⊆ Π and A∆ ⊆ ∆, such that:

(1) A∆ ∪Π ` 〈`, t〉,
(2) Π ∪ A∆ is consistent,
(3) A∆ is ⊆-minimal satisfying (1) and (2).
(4) AΠ is ⊆-minimal satisfying A∆ ∪ AΠ ` 〈`, t〉
4 We use two literals bitten∗(·) and bitten(·). The literal with an asterisk is used to track the (unique)

time where the snake bite occurred, and hence will not be allowed to persist (i.e. no persistence rules for
this literal will exist in the program). The second literal bitten(·) just denotes the fact of having been
(recently) bitten and persistence rules for it are assumed.
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Thus, arguments are consistent minimal derivations (i.e. without redundant infor-
mation) and using minimal defeasible information. In particular, if a strict argument
exists for some literal, then no defeasible derivation for the same literal constitutes an
argument. In Example 3, each possible argument consists of facts in Πf and rules in
∆. Observe that, althoughΠ and∆may be infinite (due to the coding of general rules
as an infinite set of temporal rules), an argument for a t-de.l.p. (Π,∆) will always be
a finite subset of Π ∪∆. Given an argument A for 〈`, t〉, we also define:

concl(A) = 〈`, t〉 base(A) = body[A]r head[A]
‖A‖ = t− t(A) literals(A) = (

⋃
body[A]) ∪ head[A]

where t(A) = min{t′ ∈ N | 〈·, t′〉 ∈ base(A)}.

Fig. 2 The internal structure of an argument A, as a set of facts (rectangles) and rules (small triangles).
The dotted triangle represents the sub-argument A(head(δ2)) of A determined by the literal head(δ2).
The maximum difference between time-points of literals inA, i.e. t− t′, defines the delay ofA.

In DeLP, arguments are defined as sets of defeasible rules A ⊆ ∆, leaving open
how these are to be completed by Π to obtain a (minimal, consistent) derivation of
some literal 〈`, t〉; since different completions allow for different conclusions, one
must make explicit which is the intended conclusion (e.g. 〈A, `〉). In contrast, we
explicitly fix in an argument A which are its strict rules, hence making the conclu-
sion concl(A) uniquely determined by A. This definition simplifies the detection of
inconsistencies with intermediate steps in the strict part ofA. With more detail, there
can be several ways to complete defeasible rules in A into a derivation for concl(A),
and each of them can be attacked by different arguments. For example, the sets〈p, 4〉 ← 〈q, 2〉〈q, 2〉 ← 〈r, 1〉

〈r′, 0〉

 and

〈p, 4〉 ← 〈s, 3〉〈s, 3〉 ← 〈r, 1〉
〈r′, 0〉


may both complete the set of defeasible rules {〈p′, 5〉 −�〈p, 4〉, 〈r, 1〉 −�〈r′, 0〉} ⊆ ∆
into an argument (derivation) for 〈p′, 5〉, but only the latter is attacked by an argument
concluding 〈∼s, 3〉.
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Now we define a sub-argument of an argument A. A sub-argument will be the
actual target of an attack by another argument.

Definition 5 (Sub-argument) Let (Π,∆) be a t-de.l.p. and letA be an argument for
〈`, t〉 in (Π,∆). Given some 〈`0, t0〉 ∈ literals(A), a sub-argument for 〈`0, t0〉 is a
subset B ⊆ A such that B is an argument for 〈`0, t0〉.

The inductive definition for computing the sub-argument induced by some literal
is straightforward (see the Appendix).

Proposition 1 Given some argument A and a literal 〈`, t〉 ∈ literals(A), then the
sub-argument of A for 〈`, t〉 is unique.

From here on, this unique sub-argument of A induced by 〈`0, t0〉 will be denoted
A(〈`0, t0〉). For example, in Figure 2, A(head(δ2)) = {δ2, δ3, δ4, 〈`′, t′〉, . . .}.

Fig. 3 The Snake Bites Lars scenario. Arguments are depicted as triangles, with arrows denoting conflicts
among them. Arguments for which defeaters exist are depicted in grey.

Definition 6 (Attack) Given a t-de.l.p. (Π,∆), let A0 and A1 be arguments. We
say A1 attacks A0 iff ∼concl(A1) ∈ literals[A0], where we use the notation ∼〈`, t〉
to denote 〈∼`, t〉. In this case, we also say that A1 attacks A0 at the sub-argument
A0(∼concl(A1)).

Notice that an argument A1 cannot attack another A0 at a sub-argument consist-
ing of strict information only (i.e. if A0(∼concl(A1)) ⊆ Π), since in this case A1

would not be consistent with Π , and hence A1 would not even be an argument.
As in DeLP, one refines the relation of attack relation into a defeat relation to de-

cide which argument prevails in case of an attack. This relation could be in principle
specified by the user5, but in this paper we adopt a formal criterion in order to meet
the intuitive preferences exemplified next.

5 See [23] for a procedure based on a preference relation between rules. From this relation, one can
induce a preference between any two arguments, by comparing each rule δ ∈ A with each rule δ′ ∈ B.
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Example 4 See Figure 3 for an illustration of Example 3. The arguments are defined
by the following rules (facts are not listed here):

A ⊇ {δ1(0)} B0 ⊇ {δ2(0)} B1 ⊇ {δ3(0)} C0 ⊇ {δ4(0)}
C1 ⊇ {δ4(0), δ8(2)} ∪ {δ0(t), δbitten(Lars)(t), δ∼dead(Lars)(t)}0≤t<2

D0 ⊇ {δ7(0), δ5(0)} D1 ⊇ B0 ∪ {δ∼dead(Lars)(3), δ7(0), δ6(0)}
D2 ⊇ D1 ∪ {δ0(0), δ8(4)} ∪ {δbitten(Lars)(t)}0≤t≤3

The arguments related by an arrow attack each other: C1, B0 attack A and viceversa.
But there are asymmetries in the quantity of information supporting each argument.
Intuitively, in this example we have:

(1) B0 should prevail overA since it is based on more information (the premises ofA
are a proper subset of those in B0); such an asymmetry between B0 and A makes
the latter not to count as a reason against B0. (See also Figure 3.)

To illustrate another kind of asymmetry in the amount of information, consider a new
example:

(2) Suppose you hold an object o at some distance d0 from the floor, and drop it at
t = 0. It is expected to crash into the floor at, say, t = 3. This is modeled by an
argument A having base(A) = {〈@(o, d0), 0〉}, intermediate steps 〈@(o, d1), 1〉
and 〈@(o, d2), 2〉 (i.e. both in literals(A) given by appropriate rules), and conclu-
sion concl(A) = 〈@(o, 0), 3〉; this latter literal @(o, 0) denotes o is at the floor.
Now, admitting (as we do) persistence rules for positive facts like @(o, ·), an argu-
ment B can be constructed for the conclusion that the object will remain floating
over the floor, e.g. at d1. Namely, let B = A(〈@(o, d1), 1〉)∪{δ(t)@(o,d1)}1≤t<3.
Note that while the asymmetry for case (1) above is missing base(B) = base(A),
the argument B should not be a defeater for A. The idea is that the existence of
some reason for a change (like gravity w.r.t. the position of o) should override the
use of persistence. Note that, after this change ceases to apply (e.g. when o lies at
the floor), it is reasonable to use persistence to keep inferring that the position of
o is the same, so far no further changes are known.

Finally, to illustrate blocking defeaters, rephrase Example 3 with these rules: black-
spotted snakes are generally poisonous, while green snakes are generally harmless.

(3) If a green black-spotted snake bites Lars, we are not able to decide whether he
has been poisoned, since reasons for and against do not dominate each other.

Definition 7 (Defeat) Let A1 attack A0 at B, where concl(A1) = 〈∼`, t〉. We say
A1 is a proper defeater for A0, denoted A1 � A0, iff

– base(A1) ! base(B), or
– B = A1(〈`, t′〉) ∪ {δ`(t′′)}t′≤t′′<t, for some t′ < t.

We say A1 is a blocking defeater for A0 when A1 attacks A0 but A1 6� A0 and
A0 6� A1. Blocking defeat relations are denoted A1 ≺� A0. Finally, a defeater is a
proper or a blocking defeater.
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Fig. 4 An illustration of the second condition forA1 is a proper defeater for A0. The argumentA0 (left)
is obtained by extending a sub-argument A1(〈`, t′〉) of A1 (right) just with persistence rules δq from t′

to t.

That, intuitively, the two criteria for proper defeat in Def. 7 suit the purposes of
this paper is shown, resp., by Examples 3 (1)-(2). Example 3 (3) illustrates one of the
cases of blocking defeat. In Definition 7, we adapt the formal criterion of generalized
specificity [49] (widely used in DeLP) to causal reasoning with temporal literals so
that the amount of information in an argument is measured by its initial causes6 and
by its use of substantive vs persistence rules (see Section 7.2 for more details on this
issue).

Note that if we have A1 � A0 due to the second possibility, namely A0 ⊇ B =
A1(〈`, t′〉)∪{δ`(t′′)}t′≤t′′<t, then base(B) = base(A1(〈`, t′〉)). In this second case,
we will also say that A1 is (informationally) longer than B.

As a result of this definition, any temporal change in truth-values, say from
〈∼p, 2〉 to 〈p, 5〉, must accommodate an explanation for the non-persistence of the
earlier∼p, as occurring between 3 and 5 (if such persistence rules exist for∼p). This
accommodation may consist in the first criteria on bases of the arguments for 〈p, 5〉
and 〈∼p, 2〉; or that the persistence of ∼p is the only reason for 〈p, 5〉, given 〈p, 2〉;
see B in Fig. 5 (Top). Otherwise, it can be easily defeated; seeA1 in Fig. 5 (Bottom).

Proposition 2 The following hold for any t-DeLP program:

(1) If A1 is a proper defeater for an argument A0 at B, then B is not a defeater for
A1.

(2) If A,B attack each other, and B is not a proper defeater for A, then A is a
defeater for B.

An argument B defeating A can in its turn have its own defeaters C, . . . and
so on. (This is the case of A,B0, C0 in Figure 3.) This gives rise to argumenta-
tion lines where each argument defeats its predecessor. Argumentation lines, though,

6 Using the terminology of DeLP, the only activation sets of literals considered for comparing argu-
ments are their respective bases.
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Fig. 5 Explanations of p that accommodate (Top), or not (Bottom) a previous instance of a ∼p fact.

are not simply the composition of the defeat relation: again we refine this composi-
tion by imposing some further constraints. These constraints are needed to enforce
desirable properties: finite length, acyclicity, and intuitive defense relations (coun-
terattacks). For instance, in an argumentation line [. . . ,A,B, C, . . .] we exclude the
case where C is a blocking defeater for B, provided that B is already blocking de-
feater for A. This prevents the case [. . . ,A,B,A, . . .]. Other forms of cyclic defeats
[. . . ,A,B, . . . ,A,B, . . .] are also excluded in the definition. The following definition
is adapted from [23] to the present framework.

Fig. 6 (Right) An argumentation line Λ = [A1, . . . ,A4], with defeated sub-arguments depicted in grey.
Notice that the time of these attacks is decreasing, and that condition (iii) from Def. 8 is satisfied. (Left)
The same argumentation line Λ is depicted as part of the dialectical tree T(Π,∆)(A1).
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Definition 8 (Argumentation Line, Dialectical Tree) Let A1 be an argument in
(Π,∆). An argumentation line for A1 is a sequence Λ = [A1,A2, . . .] where

(i) supporting arguments, i.e. those in odd positionsA2i+1 ∈ Λ are jointly consistent
with Π , and similarly for interfering arguments A2i ∈ Λ

(ii) a supporting (interfering) argument is different from the attacked sub-arguments
of previous supporting (interfering) arguments: Ai+2k 6= Ai(∼concl(Ai+1)).

(iii) Ai+1 is a proper defeater for Ai if Ai is a blocking defeater for Ai−1
An argumentation line [A1, . . . ,An] for A1 is maximal if there is no other argument
An+1 such that [A1, . . . ,An,An+1] is an arg. line for A1.

It is clear that the set of maximal argumentation lines for A1 can be arranged in the
form of a tree, where all paths from the root A1 to the leaf nodes exactly correspond
to all the possible maximal argumentation lines for A1. This tree is called dialectical
tree for A1, and is denoted T(Π,∆)(A1) (see [23] for more details). We will also
express that a sequence of arguments Λ = [A1, . . .] is a (non-necessarily maximal)
argumentation line for A1 by Λ ∈ T(Π,∆)(A1).

Remark 1 While (i) and (iii) are exactly as in DeLP, the above condition (ii) is less
restrictive than its counterpart in [23]. In this work, a sub-argument ofAi cannot (in-
directly) defend this argument. That is, a sub-argument of Ai cannot occur as Ai+2j

in the same argumentation line. In our temporal case, we adopt a more liberal view
concerning defenses based on sub-arguments: for instance, a sub-argument talking
about a previous time might offer legitimate reasons to the defense of Ai. If its only
available defense was in this sense a proper part of the attacked argument, then it
should be admitted. (See the next example.)

Example 5 We expand the arguments of Example 4 (2) as follows: suppose an object
o will fall from height or distance d0 into the floor, denoted by distance 0. That is, a
transition from 〈@(o, d0), ·〉 to 〈@(o, 0), ·〉 will happen. Moreover, assume that o is
an egg, and also that a boiling pot of water is awaiting at the floor. The temperature
at d1 is cold (i.e. not hot). Thus, we have

Πf = {〈@(o, d0), 0〉, 〈hot(0), 0〉, 〈∼hot(d1), 0〉, 〈∼boils(o), 0〉}

The set ∆ is as before in Example 4 (2), plus persistence rules for local heat or
coldness: δhot(0), δ∼hot(d1), and also the heat-transfer rules

δ1(t): 〈boils(o), t+ 1〉 −� 〈hot(0), t〉, 〈@(o, 0), t〉
δ2(t): 〈∼boils(o), t+ 1〉 −� 〈∼hot(d1), t〉, 〈@(o, d1), t〉

The arguments to conclude that the egg will (A+) or will not (B+, among others) boil
at t = 4 are defined as

A+ = A ∪ {〈hot(0), 0〉} ∪ {δ(t)hot(0)}0≤t<3 ∪ {δ1(3)}
B+ = B ∪ {〈∼hot(d1), 0〉} ∪ {δ(t)∼hot(d1)}0≤t<3 ∪ {δ2(3)}

where A and B are as in Example 4 (2). We have concl(A+) = 〈boils(o), 4〉 and
concl(B+) = 〈∼boils(o), 4〉, so A+ and B+ attack each other, just like A and B.
But now, theseA+ and B+ express: the expected fall-and-boiling of the egg (A) and,
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respectively, that the egg keeps floating in air and stays unboiled (B). A more relevant
difference with the pair A,B is that A+ is not longer than B+. In fact, we need A
to defeat B+ at B. Thus, Definition 8 allows for [A+,B+,A] to be an arg. line, so A
can defendA+. If these defending sub-arguments were not allowed (see Definition 9
below), we could not conclude that the egg becomes hot at t = 4.

Lemma 1 For any t-de.l.p. (Π,∆),

(1) If [A1, . . . ,Am, . . . ,An] is an argumentation line for A1, then [Am, . . . ,An] is
an argumentation line for Am.

(2) Each argumentation line Λ = [A1, . . .] ∈ T(Π,∆)(A1) is finite. The dialectical
tree T(Π,∆)(A1) is finite.

The following definitions of the marking procedure of dialectical trees and the
notion of warrant exactly follow those of DeLP.

Definition 9 (Marking) Let T = T(Π,∆)(A1) be the dialectical tree for A1. Then,

(1) mark all terminal nodes of T with a U (for undefeated);
(2) mark a node B with a D (for defeated) if it has a children node marked U ;
(3) mark B with U if all its children nodes are marked D .

Initially all the arguments in the dialectical tree T(Π,∆)(A1) are unmarked (grey)
as in Figure 6 (Left). To illustrate the marking procedure, see Figure 7, where argu-
ments marked U are represented white, and those marked D are represented black.

Fig. 7 The marking procedure in the dialectical tree for an argument A1: (Left) terminal nodes, e.g. A4,
are marked undefeated (white) first. (All) If a node, e.g.A3, has an undefeated child it is marked defeated
(black). If, otherwise, all their children are marked defeated this node is marked undefeated, e.g. A1.
(Right) The procedure ends with the root argumentA1 being marked, undefeated in this case.

Note that in a dialectical tree T(Π,∆)(A1), an argument A can occur in different
positions of several (maximal) argumentation lines in Λ,Λ′, . . . ∈ T(Π,∆)(A1). In
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this case, the marking of A in Λ can be different from the marking of A in Λ′. Given
an argumentation line Λ = [A1,A2,A3, . . . ,An] ∈ T(Π,∆)(A1), we will express
the evaluation of its arguments along Λ according to the marking procedure by a
corresponding sequence of D’s and U ’s , e.g. [D,D,U, . . . , U ].

Definition 10 (Warrant) Given a t-de.l.p. (Π,∆), we say 〈`, t〉 is warranted in
(Π,∆) iff there exists an argument A1 for 〈`, t〉 in (Π,∆) such that A1 is unde-
feated, i.e. marked U , in T(Π,∆)(A1). We will denote by warr(Π,∆) the set of war-
ranted literals in (Π,∆).

In the particular case of strict arguments A ⊆ Π , we will have that T(Π,∆)(A)
only contains the argumentation line [A], so each strictly derivable fact is warranted.
For any other argument B, the strict argument A cannot occur in any argumentation
line in T(Π,∆)(B).

Example 6 (Cont’d) Recall Example 3. The arguments in Fig. 3 related by an arrow
stand in the relation of proper defeat, e.g. A ← B0 denotes B0 is a proper defeater
for A. Thus we have the dialectical trees for each argument consist of the following
argumentation lines (with the corresponding evaluations):

T(Π,∆)(A) =

{
[A,B0],
[A, C1,D0]

}
[D,U ],
[D,D,U ]

T(Π,∆)(B0) = {[B0]} [U ]

T(Π,∆)(B1) = {[B1,D2]} [D,U ]

T(Π,∆)(Ci) = {[Ci,D0]} [D,U ], for each i ∈ {0, 1}
T(Π,∆)(Dj) = {[Dj ]} [U ], for each j ∈ {0, 1, 2}

Since D2 is undefeated, we (defeasibly) conclude that Lars will be alive at t = 5.
Let us now solve scenario (2) from Example 4. Recall the argument A conclud-

ing that dropping the object will indeed cause it to crash into the floor (distance
0) at t = 3. A is a proper defeater for the rival arguments stating that the object
will keep floating in the air once it reaches distance d0, d1 or d2. Call these argu-
ments B0,B1 and B2, resp. (Incidentally, B1 properly defeats B0 and so does B2 with
B0,B1.) If these arguments capture all the relevant phenomena in this scenario, then
T(Π,∆)(A) = [A] so A is undefeated; on the other hand, for any 0 ≤ i < 3 the di-
alectical tree T(Π,∆)(Bi) contains a maximal argumentation line Λ = [Bi,A], among
possibly others. This can only be evaluated as [D,U ], so each Bi is defeated.

For another example more in line with the AI tradition, consider the well-known
Yale shooting scenario, where a turkey is expected to be killed, after someone loads
a gun and shoots at it, possibly with some waiting actions taking place before or
between these two actions. Early logical formalisms were able to prove that the turkey
dies if shot just after loading the gun, while failed to prove the same if some waiting
occurred between load and shoot. This prompted the use of frame axioms to describe
what persists after some change. In t-DeLP, we proposed instead formal criteria to
decide about particular uses of persistence.
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Example 7 (Yale Shooting Scenario) In t-DeLP, we can solve this scenario by repre-
senting:

action shoot (at t) by rules: δ0(t) = 〈∼loaded, t+ 1〉 −� 〈loaded, t〉,
δ1(t) = 〈∼alive, t+ 1〉 −� 〈loaded, t〉;

action load (at t) by rule: δ(t) = 〈loaded, t+ 1〉 −� 〈∼loaded, t〉.

Instead of having an explicit wait action, we just let persistence rules δ` apply for any
literal, i.e. any ` ∈ {loaded,∼loaded, alive,∼alive}. In the t-de.l.p. (Πf , ∆) defined
by

Πf = {〈∼loaded, 0〉},
∆ = {δ(3), δ0(8), δ1(8)} ∪ {δ`}`∈{loaded,∼loaded,alive,∼alive}

the literal 〈∼alive, 9〉 is warranted.

5 Logical properties of t-DeLP

After presenting the procedure for computing warrant in t-DeLP, we proceed to show
the logical properties of the proposed argumentation framework. These properties,
called Rationality Postulates, were proposed by Caminada and Amgoud in [12] (see
also [43]) to grant that certain types of counter-intuitive results do not occur in a given
argumentation framework.

Definition 11 (Rationality Postulates) The Rationality Postulates, adapted to
t-DeLP programs (Π,∆), read as follows:

Sub-arguments: if A is undefeated in T(Π,∆)(A), then any sub-argument
A′ of A is also undefeated in T(Π,∆)(A′).

Direct Consistency: warr(Π,∆) is consistent.
Indirect Consistency: warr(Π,∆) ∪Π is consistent.

Closure: Cn(warr(Π,∆) ∪Π) ⊆ warr(Π,∆),
i.e. strict consequences of warranted literals are warranted.

These postulates were discussed in [12] for the case of argumentation frameworks
defined on top of general defeasible rule-based systems, and using any of the accept-
ability semantics proposed by Dung for abstract argumentation systems [21]. Given
a defeasible rule-based system, these semantics are indeed applied to the abstract
argumentation framework (A, R) generated by such a system: A being the set of ar-
guments that can be constructed in the rule-based language, and the relation R(A,B)
consisting of a general notion of attack, including rebuts (our notion of attack) and
undercuts (not considered in t-DeLP). Then they provide several conditions under
which the postulates hold in such sytems. Let us remark that t-DeLP does not exactly
fall into the class of systems considered in [12]. Namely, while our arguments easily
translate to rule-based systems in [12], our relation of defeat is different from theirs,
in particular, our relation of defeat is local, relative to a dialectical tree, and varies
across these trees for a given pair of arguments. Moreover, the t-DeLP notion of un-
defeated argument does not correspond to any of the well-known Dung acceptability
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semantics, and in consequence, t-DeLP warrant is also different from its equivalent
notion in [12] of justified conclusions under any such semantics. See Section 7.1 for
a discussion on the relationship between t-DeLP and Dung semantics.

For this reason, we provide in this section direct proofs for the Sub-arguments
and Direct Consistency postulates in t-DeLP. Neither Indirect Consistency nor Clo-
sure hold for general t-DeLP programs, as it happens in DeLP. However, in the next
section we will show that these postulates do hold for a class of programs whose strict
rules, roughly speaking, encode mutex constraints.

We first observe that being marked defeated in a dialectical tree can be expressed
in the following more convenient form.

Remark 2 An argument B is marked defeated in an argumentation line [A, . . . ,B] ∈
T(Π,∆)(A) iff there is an argument C marked undefeated in the argumentation line
[A, . . . ,B, C] ∈ T(Π,∆)(A).

Lemma 2 Given a t-d.l.p. (Π,∆), let A1 be an argument for 〈`, t〉, and let A2 be
an argument for 〈∼`, t〉, with A2 being a defeater for A1 (at A1). If A2 is marked
defeated along the argumentation line [A1,A2] in the dialectical tree T(Π,∆)(A1),
then A2 is marked defeated in the dialectical tree T(Π,∆)(A2).

Proof Let A2 be a defeater for A1 at A1 and assume A2 is defeated in T(Π,∆)(A1)
and that A2 is undefeated in T(Π,∆)(A2). Clearly [A1,A2] is an argumentation line
in T(Π,∆)(A1), hence there is A3 such that [A1,A2,A3] is an argumentation line
T(Π,∆)(A1) withA3 marked undefeated. (See Fig. 8 for an illustration of this proof.)

Now, sinceA2 is undefeated in T(Π,∆)(A2), [A2,A3] is an argumentation line in
T(Π,∆)(A2) andA3 is marked defeated. Therefore, there isA4 such that [A2,A3,A4]
is an argumentation line in T(Π,∆)(A2) with A4 marked undefeated.

It is easy to check that if some condition (i)-(iii) from Def. 8 fails at the se-
quence [A1,A2,A3,A4], then the same condition already fails either at [A1,A2,A3]
or at [A2,A3,A4], contradicting that these two are argumentation line. Thus we have
that [A1,A2,A3,A4] is an argumentation line in T(Π,∆)(A1), with A4 necessarily
marked defeated, and hence there must exist A5 such that [A1,A2,A3,A4,A5] is
an argumentation line in the dialectical tree T(Π,∆)(A1) with A5 necessarily marked
undefeated.

Iterating this process, one can construct argumentation lines of any finite length
[A1,A2,A3, . . . ,An,An+1] in T(Π,∆)(A1), in contradiction with Lemma 1 (2). 2

Theorem 1 Given a t-de.l.p. (Π,∆), the set of literals warr(Π,∆) is consistent.

Proof Let 〈`, t〉 ∈ warr(Π,∆). Thus, some argument A for 〈`, t〉 in (Π,∆) exists
that is undefeated in T(Π,∆)(A). Let then B be an arbitrary argument for 〈∼`, t〉 in
(Π,∆). Assume, towards a contradiction, that B is undefeated in T(Π,∆)(B).

(Case: A is a proper defeater for B) Consider the argumentation line [B,A] ∈
T(Π,∆)(B). Since A is undefeated in T(Π,∆)(A), by Lemma 2, we have A is
undefeated in T(Π,∆)(B). Hence B is marked defeated in T(Π,∆)(B). Since B
was arbitrary, 〈∼`, t〉 /∈ warr(Π,∆).
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Fig. 8 Constructing an infinite sequence of increasing argumentation lines: white and black triangles rep-
resent, respectively, undefeated and defeated arguments in the corresponding dialectical trees.

(Case: A is not a proper defeater for B). By Proposition 2 (ii), B is a defeater for
A, so [A,B] is an arg. line in T(Π,∆)(A). Since A is undefeated in this tree, B
must be defeated in this tree. Then again by Lemma 2, we have B is also defeated
in T(Π,∆)(B). Since B was arbitrary, 〈∼`, t〉 /∈ warr(Π,∆). 2

The previous results, with appropriate modifications, remain valid for other ar-
gumentative frameworks in the DeLP family, like ODeLP [13]. Theorem 1 can be
seen as a generalization of their Direct Consistency result when de.l.p.s are allowed
strict rules. Similar results to those of Lemma 2 and Theorem 1 are made for the case
of DeLP in [50, Props 1 and 2]. Also, the later results in Section 6 are in line with
[12] for defeasible logics. However, t-DeLP does not seem to reduce to the logical
frameworks considered in these two contributions.

In Lemma 2, we showed the property of being defeated for A2 is downward pre-
served from [A1,A2] to [A2]. (Or, conversely, being undefeated is upward preserved
from [A2] to any existing line of the form [A1,A2].) This downward property can be
generalized to defeated arguments in arbitrary interfering positions. Another upward
preservation result holds for undefeated arguments in supporting positions.

Corollary 1 Let Λ = [A1,A2, . . . ,A] be an argumentation line in T(Π,∆)(A1).
Then

(1) ifA = A2n+1 is undefeated in Λ, then in the corresponding arg. line [A2, . . . ,A]
the (now interfering) argument A is undefeated;

(2) if A = A2n is defeated in Λ, then in the corresponding arg. line [A2, . . . ,A] the
(now supporting) A is defeated.

Finally, we address the postulate of Sub-arguments for general t-DeLP programs.

Lemma 3 If Λ = [A1, . . . ,An] is an arg. line for A1 and A′1 ⊇ A1(∼concl(A2)),
then

Λ′ = [A′1, . . . ,An] is an argumentation line
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Proof Note first that A2 is a defeater for A′1. It remains to be checked that Λ′ =
[A′1, . . . ,An] satisfies (i)-(iii) from Def. 8. Condition (i) is obvious: if a contradiction
exists from the supporting elements of Λ′, then, since their union is included in the
union of supporting elements inΛ, the same contradiction would occur inΛ; similarly
for interfering arguments. Condition (ii). If A2k+1 = A′1(∼concl(A2)), then the fact
A′1(∼concl(A2)) = A1(∼concl(A2)) implies the same violation of (ii) would occur
inΛ; the remaining cases are direct. Condition (iii). The interesting case are the triples
[A1,A2,A3] and [A′1,A2,A3]. But being a blocking or proper defeater only depends
on the attacked sub-argument. Thus, if A3 is blocking for A2 and this is blocking for
A′1, then the same occurs for the other triple [A1,A2,A3], contradicting that Λ is an
arg. line. 2

Note that this Lemma implies the validity of the Sub-arguments postulate for
arbitrary t-de.l.p. programs (Π,∆).

Corollary 2 Given a t-de.l.p. (Π,∆), if A1 is undefeated in T(Π,∆)(A1) and A′1 ⊆
A1 is an argument, then A′1 is undefeated in T(Π,∆)(A′1).

Proof Using Lemma 3, we have that if A′1 ⊆ A1 is an argument, then the dialectical
tree T(Π,∆)(A′1) is a sub-tree of T(Π,∆)(A1), containing those maximal argumenta-
tion lines [A′1,A2, . . .] with ∼concl(A2) ∈ literals[A′1]. But, since A2 is defeated in
T(Π,∆)(A1) so is A2 in T(Π,∆)(A′1). Thus, A′1 is undefeated in T(Π,∆)(A′1). 2.

6 t-DeLP with mutex constraints

In the previous section, we have seen in Example 4 (2) and Example 5 programs
(Π,∆) whose set of strict rules Πr ⊆ Π exclusively consists of mutex rules of the
form 〈∼q, t〉 ← 〈p, t〉. Although in those particular examples the expected outputs
warr(Π,∆) are properly captured by the procedure for warrant, the Indirect Con-
sistency and Closure postulates do not seem provable in the general case of t-DeLP
programs with mutex rules. However, in this section we show that by slightly mod-
ifying the procedure for warrant we are able to guarantee the fulfillment of these
postulates. The modification essentially consists in strengthening the notion of con-
sistency: instead of using a strict rule 〈∼q, t〉 ← 〈p, t〉 to detect a conflict (in the usual
way) between arguments for literals p and q in a mutex set, we extend the notion of
inconsistency (attacks, etc) to hold among pair of mutex literals. Recall from Section
3 that the intended representation of logical constraints is by a family M of mutex
sets. A mutex set X is a set of positive literals X = {p, q, r, . . .} ⊆ Var expressing
that they are pairwise incompatible. Hence each mutex set X induces a set of non-
durative strict rules ΠX = {〈∼q, t〉 ← 〈p, t〉 | p, q ∈ X, t ∈ N}. Given a family of
mutex sets M we will denote by ΠM the union of the sets of strict rules ΠX for each
X ∈M.

Given a mutex family M, one can naturally strengthen the notion of consistency
for a set of literals by taking into account the mutex constraints.

Definition 12 (M-consistency) Given a mutex family M and a set of literals Γ , we
say that Γ is M-consistent iff Γ is consistent and moreover there are no 〈p, t〉, 〈q, t〉 ∈
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Γ and X ∈M such that p, q ∈ X . For a set of literals Γ and rules Π , we say Γ ∪Π
is M-consistent iff the set of literals Cn(Γ ∪Π) is M-consistent.

In what follows, we extend a t-DeLP program (Π,∆) together with a family of
mutex constraints M = {X1, X2, . . . }. The notion of M-consistency refines the
notion of argument, attack and defeat and spreads to other related definitions like
argumentation line, dialectical tree and warrant from Section 4.

Definition 13 (M-argument, M-attack, M-defeat) Let (Π,∆) be a t-de.l.p. and
M a mutex family. An M-argument in (Π,∆) is defined as in Definition 4 replacing
condition (2) by

(2’) Π ∪ A∆ is M-consistent

Let A1, A0 be M-arguments in (Π,∆), with concl(A1) = 〈`, t〉. Then:

– We say A1 M-attacks A0 if there exists 〈`′, t〉 ∈ literals[A0] such that either
`′ = ∼` or {`, `′} ⊆ X for some X ∈M. In this case we say A1 M-attacks A0

at the sub-argument A0(〈`′, t〉).
– Let A1 M-attack A0 at the sub-argument A0(〈`′, t〉). We say A1 is a proper

M-defeater for A0, denoted A1 � A0, iff
– base(A1) ! base(A0), or
– there is t′ < t such that A0 = A1(〈`′, t′〉) ∪ {δ`′(t′′)}t′≤t′′<t

If A1 6� A0 and A0 6� A1 then we say that A1 are A0 are blocking M-defeaters.

From there, the notions of M-argumentation line, M-dialectical tree TM
(Π,∆)(·)

and the corresponding notion of warrant warrM(Π,∆) are defined in the natural way
from T(Πf ,∆)(·) and warr(Πf , ∆) using now the latter notions of M-argument, M-
attack and M-defeater. It is routine to check that all of the previous results remain
valid for warrM(Π,∆).

As a consequence, we have the next result about Direct Consistency.

Corollary 3 Let (Π,∆) be a t-de.l.p. and M a mutex family such that Π is M-
consistent. Then, warrM(Π,∆) is M-consistent.

Next we define the output of a t-DeLP program with an associated mutex family
M as the closure of warrM(Π,∆) with the set of strict rules ΠM induced by M.

Definition 14 (M-output) Let (Π,∆) be a t-de.l.p. with an associated mutex family
M, such that Π ∪ΠM is consistent. Then we define:

OutputM(Π,∆) = Cn(warrM(Π,∆) ∪ΠM).

Given the previous definitions, we can prove some results for the Rationality pos-
tulates for the outputs of t-DeLP programs (Π,∆) with an associated mutex familty
M in the particular case when Π only contains strict facts, i.e. when Π = Πf , or
equivalently when Πr = ∅. Note that it does not make actually sense to ask whether
the Sub-arguments postulate holds for OutputM(Π,∆), since besides the arguments
from (Π,∆), this notion relies on the logical closure with ΠM. On the other hand,
it is easy to show that any derivation of a literal in OutputM(Π,∆) still corresponds
to the conclusion of an extended argument, namely, an argument in (Π,∆) extended
with at most a rule in ΠM.
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Lemma 4 Given a set of literals Γ , for any 〈`, t〉 ∈ Cn(Γ ∪ΠM), we have 〈`, t〉 ∈
Cn(Γ ∪ {δ}), for some δ ∈ ΠM.

Proof Let A ⊆ Γ ∪ ΠM be such that A ` 〈`, t〉. In case 〈`, t〉 ∈ Γ , just select any
rule from ΠM. Otherwise, if 〈`, t〉 /∈ Γ , then there must exist a rule δ ∈ ΠM such
that head(δ) = 〈∼q, t〉 and 〈`, t〉 = 〈∼q, t〉. Then, since body(δ) is a set of positive
atoms, head(δ) ∩ body[ΠM] = ∅, so it must be body(δ) ⊆ Γ . Thus, 〈∼q, t〉 =
〈`, t〉 ∈ Cn(Γ ∪ {δ}). 2

Theorem 2 Let consider the class of t-DeLP programs (Π,∆) with an associated
mutex family M, such that Πr = ∅ and Π is M-consistent. Then Direct Consistency,
Indirect Consistency and Closure are satisfied by the OutputM inference procedure.

Proof We show the three properties for any t-DeLP program (Π,∆) with an associ-
ated mutex family M, such that Πr = ∅ and Π is M-consistent.

(i) Direct Consistency. Assume the contrary, so there exists a pair 〈p, t〉, 〈∼p, t〉 of
contradictory elements in OutputM(Π,∆) = Cn(warrM(Π,∆) ∪ ΠM). Con-
sider the cases:
– Case 〈p, t〉, 〈∼p, t〉 ∈ warrM(Π,∆): impossible, since warrM(Π,∆) is con-

sistent by Corollary 3.
– Case 〈p, t〉 ∈ warrM(Π,∆), 〈∼p, t〉 /∈ warrM(Π,∆). In this case we

have 〈∼p, t〉 ∈ Cn(warrM(Π,∆) ∪ ΠM). Applying Lemma 4 with Γ =
warrM(Π,∆), let δ ∈ ΠM be such that 〈∼p, t〉 ∈ Cn(warrM(Π,∆) ∪ {δ}).
Thus, body(δ) = {〈q, t〉} ⊆ warrM(Π,∆), for some p, q ∈ X ∈ M. But
this and the initial assumption 〈p, t〉 ∈ warrM(Π,∆), contradict the fact that
warrM(Π,∆) is M-consistent.

– Case 〈p, t〉 /∈ warrM(Πf , ∆). By Lemma 4, this is impossible: head[ΠM]
is a set of negated atoms, so 〈p, t〉 /∈ warrM(Π,∆) would imply 〈p, t〉 /∈
warrM(Π,∆).

Thus, in either case we reach a contradiction.
(ii) Closure. Let 〈`, t〉 ∈ Cn(OutputM(Π,∆) ∪ Π). We show 〈`, t〉 ∈

OutputM(Π,∆). The cases 〈`, t〉 ∈ Πf and 〈`, t〉 ∈ OutputM(Π,∆) are imme-
diate, so we can assume that 〈`, t〉 /∈ OutputM(Π,∆). By Lemma 4 with Γ =
OutputM(Π,∆), let δ ∈ ΠM be such that 〈`, t〉 ∈ Cn(OutputM(Πf , ∆)∪{δ}).
Thus, body(δ) ∈ OutputM(Π,∆), but since body(δ) consists of a positive atom,
and hence not an atom in head[ΠM], we must have body(δ) ⊆ warrM(Πf , ∆).
Thus,

〈`, t〉 ∈ Cn(warrM(Πf , ∆) ∪ΠM) = OutputM(Π,∆).

(iii) Indirect Consistency. This follows from the previous results on closure and direct
consistency for OutputM(Π,∆). 2

Finally, let us compare this proposal OutputM(·, ·) with a more straightforward
approach based on t-DeLP warrant alone, where the program directly contains mutex
strict rules Π ∪ΠM. 7 The two approaches are compared to each other with the help
of an example, showing that the latter approach warr(Π ∪ΠM, ∆) might not satisfy
indirect consistency or closure w.r.t. these mutex rules ΠM.

7 We are thankful to a reviewer for pointing out this question.
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Example 8 Let (Π,∆) and M, ΠM be defined by

Π = {〈r, 0〉}

∆ =


〈∼p, 1〉 −� 〈r, 0〉,
〈q, 1〉 −� 〈r, 0〉,

〈p, t+ 100〉 −� 〈∼p, t〉,
〈q, t+ 1〉 −� 〈q, t〉


= δ0
= δ1
= δ2(t)
= δq(t)

M = { {p, q} }

ΠM =

{
〈∼p, t〉 ← 〈q, t〉,

〈∼q, t〉 ← 〈p, t〉

}
= δMp (t)

= δMq (t)

Then consider the next arguments. Those on the right are only available in the
program (Π ∪ΠM, ∆).

both in (Π,∆) and only in
(Π ∪ΠM, ∆) (Π ∪ΠM, ∆)

A = {〈r, 0〉, δ0, δ2(1)} A+ = A ∪ {δMp (101)}
concl(A) = 〈p, 101〉 concl(A+) = 〈∼q, 101〉

B = {〈r, 0〉, δ1} ∪ {δq(t)}1≤t≤100 B+ = B ∪ {δMq (101)}
concl(B) = 〈q, 101〉 concl(B+) = 〈∼p, 101〉

The direct approach warr(Π ∪ ΠM, ∆), on the one hand makes the arguments
A+,B+ available. Observe that while A+ defeats B as expected, because the pres-
ence of persistence rules {δMq (101)} in the argument B makes it weaker than ar-
gument A+, so we have A+ � B. However this does not apply to the other pair of
arguments A and B+, so we have A ≺� B+. For the same reason, A+ ≺� B+.
Hence, the dialectical trees become

T(Π∪ΠM,∆)(A) = {[A,B+,A+]}
T(Π∪ΠM,∆)(A+) = {[A+,B+]} adding [A] is against (ii)
T(Π∪ΠM,∆)(B) = {[B,A+,B+]} idem
T(Π∪ΠM,∆)(B+) = {[B+,A+]}

so we conclude 〈p, 101〉, 〈q, 101〉 ∈ warr(Π∪ΠM, ∆) while 〈∼q, 101〉, 〈∼p, 101〉 /∈
warr(Π ∪ΠM, ∆); in other words, the strict rules ΠM are not enforced, and the set
of warranted literals is not M-consistent, hence not consistent with ΠM.

On the other hand, we have in (Π,∆) that A and B M-attack each other, and
moreover A is a proper M-defeater for B, so A � B. An easy computation shows
that T(Π,∆)(A) = [A] and T(Π,∆)(B) = [B,A]. As a result, 〈p, 101〉 ∈ warrM(Π,∆)

and 〈q, 101〉 /∈ warrM(Π,∆). In the last step to compute OutputM(·, ·), we obtain
〈p, 2〉, 〈∼q, 2〉 ∈ Cn(warrM(Π,∆) ∪ΠM) = OutputM(Π,∆).
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7 Some further remarks on the comparison of t-DeLP with Dung semantics,
DeLP and the TDR system

In this section, we first discuss the relationship between the dialectical tree based-
semantics of t-DeLP and Dung acceptability semantics for abstract argumentation
frameworks. Then we report on the comparison of some particular aspects of t-DeLP
with DeLP [23] and also with another temporal extension of DeLP in the literature
called Temporal Defeasible Reasoning (TDR) [5].

7.1 t-DeLP and Dung acceptability semantics

Let us briefly review the semantics from [21] proposed for abstract argumentation
frameworks. The latter simply consists of a relation R, called attack, on a set of
(unstructured) elements A = {A, . . .}, called arguments, i.e. a pair (A, R). The so-
called acceptability semantics try to capture different intuitions about which subsets
E ⊆ A are collectively acceptable (called extensions), given the attack relation. For
example,

E is conflict-free iff no A,B ∈ E exist with R(A,B).
Other intuitive conditions upon extensions are defined from the notion of defense: a
subset E defends A iff

for each B attacking A, there exists C ∈ E that attacks B.

By denoting F(E) = {B | E defends B}, we say a conflict-free extension E is

admissible iff E defends its arguments (E ⊆ F(E))
complete iff F(E) = E
grounded iff E is the ⊆-minimal complete extension
preferred iff E is a ⊆-maximal complete extension

stable iff E is a preferred extension attacking each argument in Ar E
For each semantics X = {admissible, . . .}, the (skeptical) justified or acceptable
arguments according to X are defined as the set of arguments in the intersection of
all the X -extensions:

⋂
{E | E is an X−extension}.

If we directly rephrase the acceptability semantics from [21] and the related def-
initions above, there is still a mismatch between Dung’s acceptability and accept-
ability in t-DeLP (i.e. undefeated arguments). To see this, first note that the abstract
notion of attackR corresponds to our notion of defeat relative to some dialectical tree
T(Π,∆)(A). Correspondingly, the (relevant) defense of an argumentA will take place
only in its own dialectical tree T(Π,∆)(A), so the F function would be expressed by

F(E) = {A | ∀B ∈ A ∃C ∈ E ([A,B] ∈ T(Π,∆)(A) ⇒ [A,B, C] ∈ T(Π,∆)(A)}8

Also, note that in a t-de.l.p. (Π,∆) there is a unique notion of extension, or set of “ac-
ceptable” arguments; namely, those arguments A that are undefeated in T(Π,∆)(A).

8 Stronger definitions of the defense of an argument A and of the F function exist; e.g. where A is
“defended” in all its occurrences in dialectical trees of arbitrary arguments T(Π,∆)(D), not just in its own
tree T(Π,∆)(A). But these are also prey to the counter-example below.
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That the t-DeLP procedure for undefeated arguments can define a non-admissible
extension E * F(E) is shown next.

Example 9 Let A,B, C be the arguments for, resp., 〈s, 1〉, 〈∼s, 1〉 and 〈s, 1〉 con-
sisting of: (1) a single rule each 〈s, 1〉 −� 〈p, 0〉 and 〈∼s, 1〉 −� 〈p, 0〉, 〈q, 0〉 and
〈s, 1〉 −� 〈r, 0〉, resp., and (2) the facts given by the body of the corresponding rule.
Moreover, let (Π,∆) be the program defined just by these strict facts and defeasible
rules from (1) and (2). Then,

T(Π,∆)(A) = {[A,B, C]} T(Π,∆)(B) = {[B, C]} T(Π,∆)(C) = {[C,B]}

so A is undefeated and B, C are defeated; but there is only C to defend A (from B).
As a result, E = {A} * ∅ = F(E), and thus extension E is not admissible.

Since complete extensions are defined by strengthening the condition for admis-
sible extensions, namely E = F(E), this counter-example also shows that the t-DeLP
extensions do not correspond to the semantics based on (subsets of) the complete ex-
tensions. This includes the remaining four semantics: complete, grounded, preferred
and stable.

7.2 Defeat criteria in DeLP and t-DeLP.

Both DeLP and t-DeLP are defeasible argumentation-based logic programming
frameworks. The former is defined by criteria of defeasibility expressing a preference
for arguments with more direct inference steps. This is the reason to prefer {penguins
do not fly} over {penguins are birds, birds fly}. In [23], the authors use the so-called
generalized specificity to formalize this idea of defeat as described next. (Recall, ar-
guments in [23] are of the form 〈A, `〉 for some conclusion `. Moreover, in this work
arguments are identified only in terms of the defeasible information they make use
of, while abstracting from strict information.)

Definition 15 (DeLP-specificity) Let (Π,∆) be a de.l.p., and let Πr be the set of all
strict rules from Π (without including facts.) Let F be the set of all literals that are
derivable from (Π,∆). Let 〈A1, `1〉 and 〈A2, `2〉 be two arguments obtained from
(Π,∆). 〈A1, `1〉 is strictly more specific than 〈A2, `2〉 if the following conditions
hold:

1. for all H ⊆ F : if Πr ∪H ∪ A1 ` `1 and
Πr ∪H 0 `1,

then Πr ∪H ∪ A2 ` `2, and
2. there exists H ′ ⊆ F such that: Πr ∪H ′ ∪ A2 ` `2 and

Πr ∪H ′ 0 `2 and
Πr ∪H ′ ∪ A1 0 `1.

When the conditions for 1 are met, i.e. Πr ∪ H ∪ A ` ` and Πr ∪ H 0 `1, we say
H is an activation set for 〈A, `〉. The idea of DeLP-specificity is to prefer arguments
with fewer activation sets (in the sense of inclusion). In other words, to prefer the
existence of less combinations of intermediate steps sufficing for the conclusion.
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Turning back to t-DeLP, when activation sets are instead defined from strict facts
inΠf , this specificity criterion in Definition 7 turns into our first criterion for t-DeLP-
preference based on a comparison between base(A1) and base(A2). Notice this ma-
neuver is possible only if we fix the strict information in the arguments. On the other
hand, the second criterion in Def. 7, based on the use of persistence rules, is also
inspired by the notion of activation set, but with a preference for more activation sets.
In this sense we have the following equivalence:

A1 is longer than A2 iff there is a subset ∆′p ⊆ ∆p such that in (Π,∆r∆′p)
the activation sets for A1 strictly contain those for A2.

7.3 t-DeLP and the framework of Temporal Defeasible Reasoning (TDR)

In the TDR framework [5], literals (hence conclusions) of arguments are primitively
associated with both discrete intervals and time-points. For instance, (using our own
notation) head(δ) = 〈`, [t+ 1, t+ 3]〉 expresses that if δ ∈ ∆ applies we defeasibly
conclude that ` holds from t + 1 to t + 3. In TDR, conflicts between two interval-
valued arguments, e.g. (A, 〈`, [t + 1, t + 4]〉) and (B, 〈∼`, [t + 2, t + 5]〉) attacking
each other do so at the intersection of these intervals [t+ 2, t+ 4].

Another significant difference between TDR and t-DeLP lies again in the defeat
criteria. In particular, when persistence rules are involved in the comparison between
two contending arguments. In TDR, an argument that contains persistence rules is
less preferred than an argument which does not. In contrast, in t-DeLP (Def. 7 above)
the comparison is made locally (at the level of sub-arguments), giving a more refined
persistence-based defeat criteria. Thus, an argument A using persistence is not nec-
essarily defeated if attacked by a persistence-free argument B; for example, if the
persistent literals 〈`, t〉, . . . , 〈`, t+k〉 inA are not part of the explanation of the other
argument (e.g. if none these literals is in the sub-argument of A directly attacked by
B).

In contrast to the TDR system in (as well as other temporal argumentation systems
[37] [17]), in t-DeLP we let the notion of an interval where some conclusion holds
to be a notion deriving from the set of time-points for which this conclusion holds.
In this sense, TDR is more expressive than t-DeLP, though for most applications, it
seems possible to translate a TDR-proof for the warrant of 〈`, [t, t′]〉 in a given TDR
program, into a t-DeLP-proof for the warrant of each 〈`, t0〉 with t ≤ t0 ≤ t′ in a
corresponding t-DeLP program. Figure 9 summarizes the differences between DeLP,
t-DeLP and TDR.

Conclusions and Future Work

In this paper we have defined t-DeLP, a temporal version of DeLP where logic pro-
grams contain temporal literals and rules with duration. The proposed framework
modifies features of DeLP in order to deal with specific issues related to tempo-
ral reasoning, like persistence and the past/future asymmetry in causal statements.
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Features DeLP t-DeLP TDR
literals p or ∼p 〈p, t〉 or 〈∼p, t〉 (¬)Holdsat(p, t)

(¬)Holdsin(p, [t, t
′])

rules literal −� set of literals literal −� set of literals literal −� set of literals
derivability modus ponens modus ponens modus ponens
argumentA A ⊆ ∆ A ⊆ Π ∪∆ A ⊆ ∆

A ∪Π ` ` A ` ` A ∪Π ` `
〈A, `〉 attacks 〈B, `′〉 ∼concl(A) ∈ Holdsin(p, I) vs.

A attacks B iff {`, `′} ∪Π literals[B] ¬Holdsin(p, I
′),

is inconsistent with I ∩ I′ 6= ∅
specificity generalized spec. Definition 7 pointwise gen. spec.

(activation sets) (base = act. set, (pointwise
less persistence) activation sets)

more direct rules by specificity no by specificity
more premises if more specific always if more specific

less use of persistence n/a local comparison global comparison
computing warrant dialectical tree dialectical tree algorithm in [5]

Fig. 9 A comparison of DeLP, t-DeLP and TDR.

Besides this differences at the definition of defeat, t-DeLP is essentially based on
the same argumentation-based procedure that defines the notion of defeasible logical
consequence, or warrant. This notion of the set of warranted literals of a program has
been shown to satisfy the postulates of Direct Consistency and Sub-arguments. In ad-
dition, we have extended the basic framework to deal with programs with a class of
mutex constraints, and we have shown that the modified notion of warrant allows us
to extend the previous resuts to Direct Consistency, Indirect Consistency and Closure
as well.

For future work, we would like to study a preference relation which takes into
account the criterion for temporally more precise information. Another interesting
extension might aim for evidence-based reasoning, from the presently observable
effects to its presumable past causes. Other technical improvements, like generalizing
the Indirect Consistency and Closure from mutex sets to arbitrary strict rules, seem
also of interest.

Appendix: proofs for auxiliary results.

The proofs for the auxiliary results mentioned in the previous sections are presented
here. We start giving an inductive definition for the notion of sub-argument (Def. 5).
Given an argument A in some t-de.l.p. (Π,∆) and a literal 〈`, t〉 ∈ literals(A), the
sub-argument of A for 〈`, t〉, denoted A(〈`, t〉), is the set obtained by the following
inductive construction:

if δ ∈ A exists with head(δ) = 〈`, t〉, then δ ∈ A(〈`, t〉)
if δ ∈ A(〈`, t〉) and δ′ ∈ A exists with head(δ′) ∈ body(δ), then δ′ ∈ A(〈`, t〉)

Proposition 1 Given some argument A and a literal 〈`, t〉 ∈ literals(A), then
A(〈`, t〉) is unique.
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Proof By induction on the complexity of A.
(Base Case) Suppose that A is a strict fact A = {〈`, t〉} ⊆ Πf . Then,

literals(A) = A so A(〈`, t〉) = A and it is the only sub-argument of A deriving
〈`, t〉. Hence it is unique.

(Ind. Case) Assume (Ind. Hyp.) that for any argument A with some δ ∈ A such
that head(δ) = concl(A)(= 〈`, t〉), we have A(〈`′, t′〉) is unique for each 〈`′, t′〉 ∈
literals(A). We check the unicity of the remaining case A(concl(A)) = A. Suppose
another sub-argument B ⊆ A exists for 〈`, t〉. From B ⊆ A and B 6= A, we infer
the existence of some rule or literal δ′ ∈ A r B. (Case δ′ ∈ Π) If this δ′ is a literal
or a strict rule, then such δ′ ∈ AΠ shows that A does not satisfy, in a ⊆-minimal
way, that A∆ ∪ AΠ ` 〈`, t〉; hence A violates condition (4) from Def. 4, so A is not
an argument (contradiction). (Case δ′ ∈ ∆) Then δ′ shows that A∆ does not satisfy
Π ∪A∆ ` 〈`, t〉 in a⊆-minimal way; soA does not satisfy condition (3) from Def.4.
Again, A cannot be an argument (contradiction). 2

Proposition 2 The following hold for any t-DeLP program:

(1) If A1 is a proper defeater for an argument A0 at B, then B is not a defeater for
A1.

(2) IfA,B attack each other, and B is not a proper defeater forA, thenA is a defeater
for B.

Proof For (1). Let A1 attack A0 at B = A0(∼concl(A1)). Say concl(A1)) = 〈`, t〉,
so we must have 〈∼`, t〉 = concl(B). By definition, it cannot be the case that B ≺�
A1. So we must only check that B � A1.
(Case base(A1) ! base(B)). First consider the condition: base(B) ! base(A1).
This cannot be the case since otherwise, jointly with the case assumption
base(A1) ! base(B) we would infer that base(A1) ! base(A1), which is im-
possible. The remaining condition to be ruled out is that B is longer than A1. But
this cannot be the case either. To see this, assume the contrary: for some t0 < t,
A1 = B(〈`, t0〉) ∪ {δ`(t′′)}t0≤t′′<t. Then, we have base(A1) = base(B(〈`, t0〉));
this jointly with the fact that base(B(〈`, t0〉)) ⊆ base(B) gives base(A1) ⊆ base(B),
which contradicts the case assumption. Thus, in either case B cannot be a proper
defeater for A1.

(Case B = A1(〈∼`, t′〉) ∪ {δ∼`(t′′)}t′≤t′′<t ). Thus, base(B) = base(A1(〈`, t′〉).
The first case for B � A1 is that base(B) ! base(A1). Since this and the lat-
ter fact would imply base(A1) ⊇ base(A1(〈∼`, t′〉)) ! base(A1), thus conclud-
ing that base(A1) ! base(A1), which is impossible. The other possibility for
B � A1 to be ruled out is that B is longer than A1; this and the case assumption
imply both B and A1 are longer than each other. Since A1 is longer than B, some
A1 r A1(〈∼`, t′〉) contains a non-persistence rule δ. On the other hand, B being
longer than A1 implies that the latter is of the form B(〈`, t0〉) ∪ {δ`(t′′′)}t0≤t′′′<t.
(Case t0 < t′) This is incompatible with the previous existence of a non-persistence
rule δ ∈ A1 r A1(〈∼`, t′〉). (Case t0 > t′) Then concl(A1) = 〈`, t〉 rather than
〈∼`, t〉. (Case t0 = t′) Then both 〈`, t0〉 and 〈∼`, t0 are derivable from A1 contra-
dicting that this is an argument.
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Claim (2) is straightforward. LetA,B be arguments attacking each other, and suppose
B � A. (Case A � B) Then by definition, we have A ≺� B so A is a defeater for
B. (Case A � B) Since a proper defeater is a defeater, we are also done. 2

Lemma 1 For any t-de.l.p. (Π,∆),

(1) If [A1, . . . ,Ak, . . . ,An] is an argumentation line for A1, then [Am, . . . ,An] is
an argumentation line for Am.

(2) Each argumentation line Λ = [A1, . . .] ∈ T(Π,∆)(A1) is finite. The dialectical
tree T(Π,∆)(A1) is finite.

Proof For (1), let Λ1 = [A1, . . . ,Am, . . . ,An] be an argumentation line for A1.
Notice that the first element of Λm isAm. We check that each condition (i)-(iii) from
Definition 8 holds for the sequence Λm = [Am, . . . ,An].
(i) supporting (resp. interfering) arguments are jointly consistent.

The joint consistency of supporting (resp. interfering) arguments is satisfied by
Λm, since otherwise if Am ∪ . . . ∪ An ∪ Π was inconsistent, then so would be
A1 ∪ . . . ∪ An ∪Π , contradicting that Λ1 is an arg. line.

(ii) If this condition failed for Λm at the pair Am+k =
Am+k+2j(∼concl(Am+k+2j+1)), then it would already fail for Λ1 at the
same pair.

(iii) The condition that Ai+1 is a proper defeater for Ai if Ai is a blocking defeater
for Ai−1 must hold for Λk since otherwise it would also fail for Λ1 at the same
triple Ai−1,Ai,Ai+1.

For (2), let concl(A1) = 〈`, t〉. Recall that t < ω and the set Lit is also finite,
so the set of literals 〈`′, t′〉 with t′ ≤ t is finite. In consequence, the set of rules δ
whose head is some 〈`′, t′〉 is also finite. Since arguments are finite sets of rules and
literals, the set of arguments A2n+1 whose conclusion is some 〈`′, t′〉 with t′ ≤ t is
also finite. Hence each argumentation line for A1 is finite. Finally, there are a finite
number of argumentation lines for A1 (again because the number of arguments for
t′ ≤ t are finite). The latter two facts imply that the dialectical tree T(Π,∆)(A1) is
finite. 2

Corollary 1 Let Λ = [A1,A2, . . . ,A] be an argumentation line in T(Π,∆)(A1). Then

(1) ifA = A2n+1 is undefeated in Λ, then in the corresponding arg. line [A2, . . . ,A]
the (now interfering) argument A is undefeated;

(2) if A = A2n is defeated in Λ, then in the corresponding arg. line [A2, . . . ,A] the
(now supporting) A defeated.

Proof (1) Given Λ2n+1 = [A1,A2, . . . ,A2n+1], by Lemma 1 (1) we have Λ′2n+1 =
[A2, . . . ,A2n+1] is an arg. line. IfA2n+1 is undefeated in Λ′ we are done. Otherwise
some A2n+2 exists with Λ′2n+2 = [A2, . . . ,A2n+1,A2n+2] and A2n+2 evaluated as
undefeated in Λ′2n+2. Then Λ2n+2 = Λ2n+1

∩[A2n+2] is an arg. line, and A2n+2

must be defeated there, since A2n+1 is undefeated. So some A2n+3 exists such that
Λ2n+3 = Λ2n+2

∩[A2n+3] is an arg. line and A2n+3 is undefeated there. This pro-
cedure can be repeated, as before generating an infinite sequence of increasing argu-
mentation lines, which is impossible.
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(2) The proof is analogous: let Λ2n = [A1, . . . ,A2n] be an arg. line withA2n de-
feated. Then someA2n+1 exists with Λ2n+1 = Λ2n

∩[A2n+1] andA2n+1 undefeated
there. On the other hand, clearly Λ′2n = [A2, . . . ,A2n] is an arg. line, so ifA2n is de-
feated there we are done. Otherwise, someA2n+1 exists withΛ′2n+1 = Λ′2n

∩[A2n+1]
and A2n+1 defeated there. Then some A2n+2 exists with Λ′2n+2 = Λ′2n+1

∩[A2n+2]
and A2n+2 undefeated there. Then, A2n+2 = Λ2n+1

∩[A2n+2] is an arg. line. Since
we had A2n+1 is undefeated, A2n+2 is defeated. This procedure can be repeated,
again giving an infinite sequence of increasing arg. lines, which was shown to be
impossible. 2
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49. F. Stolzenburg, A. Garcı́a, C. Chesñevar and G. Simari. Computing Generalized Specificity. Journal

of Applied Non-Classical Logics, 12(1):1–27 (2002)
50. M. Thimm and G. Kern-Isberner, On the Relationship of Defeasible Argumentation and Answer Set

Programming. Proc. of Computer Models of Argumentation (COMMA’08) P. Besnard, S. Doutre, and A.
Hunter (eds.) pp. 393–404. IOS Press, 2008.

51. D. Zhang and N. Foo. Frame problem in dynamic logic. Journal of Applied Non-Classical Logics
15(2)215–239 (2005)


