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Abstract

Possibilistic Defeasible Logic Programming (P-DeLP) is a logic programming lan-
guage which combines features from argumentation theory and logic programming,
incorporating the treatment of possibilistic uncertainty at the object-language level.
In spite of its expressive power, an important limitation in P-DeLP is that impre-
cise, fuzzy information cannot be expressed in the object language. One interesting
alternative for solving this limitation is the use of PGL+, a possibilistic logic over
Gödel logic extended with fuzzy constants. Fuzzy constants in PGL+ allow express-
ing disjunctive information about the unknown value of a variable, in the sense of a
magnitude, modeled as a (unary) predicate. The aim of this article is twofold: firstly,
we formalize DePGL+, a possibilistic defeasible logic programming language that
extends P-DeLP through the use of PGL+ in order to incorporate fuzzy constants
and a fuzzy unification mechanism for them. Secondly, we propose a way to handle
conflicting arguments in the context of the extended framework.
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1 Introduction

In the last decade, defeasible argumentation has emerged as a very pow-
erful paradigm to model commonsense reasoning in the presence of incom-
plete and potentially inconsistent information [14]. Recent developments have
been oriented towards integrating argumentation as part of logic program-
ming languages. In this context, Possibilistic Defeasible Logic Programming
(P-DeLP) [18] is a logic programming language which combines features from
argumentation theory and logic programming, incorporating the treatment
of possibilistic uncertainty at object-language level. Roughly speaking, in P-
DeLP degrees of uncertainty help in determining which arguments prevail in
case of conflict.

In spite of its expressive power, an important limitation in P-DeLP (as de-
fined in [18]) is that the explicit treatment of imprecise, fuzzy information
was not actually performed. Such a possibility is indeed very important to
properly represent qualitative, symbolic information about continuous numer-
ical magnitudes. To remedy this problem, in this paper we propose the use
of PGL+, a possibilistic logic over Gödel fuzzy logic extended with fuzzy con-
stants. Fuzzy constants in PGL+ provide a suitable means for expressing such
a symbolic/numerical interface between (finite) scales of labels and continu-
ous scales of magnitudes represented by (unary) predicates. Indeed, a fuzzy
constant is mapped, under a given PGL+ interpretation, to a fuzzy subset
of a (possibly continuous) domain of elements, in contradistinction to single
elements in the case of usual object constants in predicate logics. For instance,
an imprecise statement like “John’s salary is low” can be expressed PGL+ by
the formula John salary(low) where John salary is a predicate and low a
fuzzy object constant, which will be mapped to a fuzzy set of the (numerical)
domain of the variable John’s salary. Notice that this kind of statements ex-
presses disjunctive knowledge (mutually exclusive), in the sense that in each
interpretation it is natural to require that the predicate John salary(x) be
true for one and only one variable assignment to x, say u0. Then, in such an
interpretation it is also natural to evaluate to what extent John salary(low)
is true as the degree in which the salary u0 is considered to be low. Hence,
allowing fuzzy constants in the language leads to treat formulas in a many-
valued logical setting (that of Gödel many-valued logic in our framework), as
opposed to the bivalued setting within classical possibilistic logic, with the
unit interval [0, 1] as a set of truth-values.

The aim of this paper is twofold: first to define DePGL+, a possibilistic de-
feasible logic programming language that extends P-DeLP through the use of
PGL+, instead of (classical) possibilistic logic, in order to incorporate fuzzy
constants and fuzzy unification, and second to propose a way to handle con-
flicting arguments in the context of the extended framework. The rest of the
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article is structured as follows. First, in Section 2 we present an overview of
PGL+ and discuss the fundamentals of defeasible argumentation. Then in
Section 3 we define the DePGL+ programming language. Sections 4 and 5
focus on the characterization of arguments in DePGL+ and the analysis of the
notion of conflict among arguments in the context of our proposal. In Section 6
we discuss some problematic situations that may arise when trying to define
the notion of warranted arguments in DePGL+, and propose some solutions.
Finally in Sections 7 and 8 we discuss some related work and present the main
conclusions we have obtained.

2 Possibilistic logic and argumentation: an overview

In order to make this article self-contained, this Section discusses the funda-
mentals of possibilistic logic and defeasible argumentation, with special em-
phasis on PGL+ and P-DeLP.

2.1 Possibilistic logic and PGL+

Possibilistic logic [19] is a logic of uncertainty where a certainty degree between
0 and 1, interpreted as a lower bound of a necessity measure, is attached to each
classical formula. In the propositional version, possibilistic formulas are pairs
(ϕ, α) where ϕ is a proposition of classical logic and interpreted as specifying
a constraint N(ϕ) ≥ α on the necessity measure of ϕ. Possibilistic models
are possibility distributions π : Ω → [0, 1] on the set of classical (bivalued)
interpretations Ω which rank them in terms of plausibility: w is at least as
plausible as w′ when π(w) ≥ π(w′). If π(w) = 1 then w is considered as
fully plausible, while if π(w) = 0 then w is considered as totally impossible.
A possibilistic formula (ϕ, α) is satisfied by π, written π |= (ϕ, α) whenever
Nπ(ϕ) ≥ α, where Nπ(ϕ) = inf{1− π(w) | w(ϕ) = 0}.

In [3,4] the authors introduce PGL+, an extension of possibilistic logic al-
lowing to deal with some form of fuzzy knowledge and with an efficient and
complete proof procedure for atomic deduction when clauses fulfill two kinds
of constraints. Technically speaking, PGL+ is a possibilistic logic defined on
top of (a fragment of) Gödel infinitely-valued logic, allowing uncertainty qual-
ification of predicates with imprecise, fuzzy constants, and allowing as well a
form of graded unification between them. Next we provide some details.

The basic components of PGL+ formulas are: a set of primitive propositions
(fuzzy propositional variables) Var ; a set S of sorts of constants; a set C of
object constants, each having its sort; a set Pred of unary regular predicates,
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each one having a type; and connectives ∧, →. An atomic formula is either
a primitive proposition from Var or of the form p(A), where p is a predicate
symbol from Pred , A is an object constant from C and the sort of A corresponds
to the type of p. Formulas are Horn-rules of the form p1 ∧ · · · ∧ pk → q with
k ≥ 0, where p1, . . . , pk, q are atomic formulas. A (weighted) clause is a pair
of the form (ϕ, α), where ϕ is a Horn-rule and α ∈ [0, 1].

Remark Since variables, quantifiers and function symbols are not allowed, the
language of PGL+ so defined remains in fact propositional. This allows us to con-
sider only unary predicates since statements involving multiple (fuzzy) properties
can be always represented in PGL+ as a conjunction of atomic formulas. For in-
stance, the statement “Mary is young and tall” can be represented in PGL+ as
age Mary(young) ∧ height Mary(tall) instead of using a binary predicate involv-
ing two fuzzy constants like age & height Mary(young, tall).

A many-valued interpretation for the language is a structure w = (U, i, m),
where: U = ∪σ∈SUσ is a collection of non-empty domains Uσ, one for each
basic sort σ ∈ S; i = (iprop, ipred), where iprop : V ar → [0, 1] maps each
primitive proposition q into a value iprop(q) ∈ [0, 1] and ipred : Pred → U
maps a predicate p of type (σ) into a value ipred(p) ∈ Uσ; and m : C → [0, 1]U

maps an object constant A of sort σ into a normalized fuzzy set m(A) on Uσ,
with membership function µm(A) : Uσ → [0, 1]. Note that for each predicate
symbol p, ipred(p) is the one and only value of the domain which satisfies p
in that interpretation and that m prescribes for each constant A at least one
value u0 of the domain Uσ as fully compatible, i.e. such that µm(A)(u0) = 1.

The truth value of an atomic formula ϕ under an interpretation w = (U, i, m),
denoted by w(ϕ) ∈ [0, 1], is defined as w(q) = iprop(q) for primitive proposi-
tions, and w(p(A)) = µm(A)(ipred(p)) for atomic predicates. The truth evalu-
ation is extended to rules by means of interpreting the ∧ connective by the
min-conjunction and the → connective by the so-called Gödel’s many-valued
implication: w(p1 ∧ · · · ∧ pk → q) = 1 if min(w(p1), . . . , w(pk)) ≤ w(q), and
w(p1 ∧ · · · ∧ pk → q) = w(q) otherwise.

Note that the truth value w(ϕ) will depend not only on the interpretation
ipred of predicate symbols that ϕ may contain, but also on the fuzzy sets
assigned to fuzzy constants by m. Then, in order to define the possibilistic
semantics, we need to fix a meaning for the fuzzy constants and to consider
some extension of the standard notion of necessity measure for fuzzy events.
The first is achieved by fixing a context . Basically, a context is the set of
interpretations sharing a common domain U and an interpretation of object
constants m. So, given U and m, its associated context is just the set of
interpretations IU,m = {w | w = (U, i, m)} and, once fixed the context, [ϕ]
denotes the fuzzy set of models for a formula ϕ defining µ[ϕ](w) = w(ϕ), for
all w ∈ IU,m.
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Now, in a fixed context IU,m, a belief state (or possibilistic model) is modeled
by a normalized possibility distribution on IU,m, π : IU,m → [0, 1] which
provides a ranking of interpretations according to their possibility degree.
Then, we say that π satisfies a clause (ϕ, α), written π |= (ϕ, α), iff the
(suitable) necessity measure of the fuzzy set of models of ϕ with respect to
π, denoted N([ϕ] | π), is indeed at least α. Due to different technical reasons
(see e.g. [1,5]), the necessity measure adopted for PGL+ is defined as follows:

N([ϕ] | π) = inf
w∈IU,m

π(w)⇒ µ[ϕ](w),

where⇒ is the reciprocal of Gödel’s many-valued implication, defined as x⇒
y = 1 if x ≤ y and x⇒ y = 1−x, otherwise. This necessity measure for fuzzy
sets was proposed and discussed by Dubois and Prade (cf. [19]). According to
this semantics, given a context IU,m a formula like

(age Peter(about 35), 0.9)

is to be interpreted in PGL+ as the set of the following clauses with imprecise
but non-fuzzy constants

{(age Peter([about 35]β),min(0.9, 1− β)) : β ∈ [0, 1]},

where [about 35]β denotes the β-cut of the fuzzy set m(about 35).

As usual, a set of clauses P is said to entail another clause (ϕ, α), written
P |= (ϕ, α), iff every possibilistic model π satisfying all the clauses in P also
satisfies (ϕ, α), and we say that a set of clauses P is satisfiable in the context
determined by U and m if there exists a normalized possibility distribution
π : IU,m → [0, 1] that satisfies all the clauses in P . Satisfiable clauses enjoy
the following result [1]: If P is satisfiable and P |= (ϕ, α), with α > 0, there
exists at least an interpretation w ∈ IU,m such that w(ϕ) = 1.

Finally, always in a given context IU,m, the degree of possibilistic entailment
of an atomic formula (or goal) ϕ by a set of clauses P , denoted by ‖ϕ‖P , is
the greatest α ∈ [0, 1] such that P |= (ϕ, α). In [1], it is proved that ‖ϕ‖P =
inf{N([ϕ] | π) | π |= P}.

A calculus for PGL+ in a given context IU,m is defined by the following set of
inference rules:

Generalized resolution:

(s→ q(A), α),

(q(B) ∧ t→ r, β)

(s ∧ t→ r, min(α, β))
[GR], if m(A) ⊆ m(B)
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Fusion:

(p(A) ∧ s→ q(D), α),

(p(B) ∧ t→ q(E), β)

(p(A ∪B) ∧ s ∧ t→ q(D ∪ E), min(α, β))
[FU]

Intersection:
(p(A), α), (p(B), β)

(p(A ∩B), min(α, β))
[IN]

Resolving uncertainty:

(p(A), α)

(p(A′), 1)
[UN], where m(A′) = max(1− α, m(A))

Semantic unification:

(p(A), α)

(p(B), min(α, β))
[SU], where β = N(m(B) | m(A))

In the description of the GR and FU rules, we have used s and t to denote
an arbitrary conjunction of literals, possibly empty. We have also used above
several notation conventions regarding fuzzy constants. Namely, A∪B denotes
a fuzzy constant such that m(A ∪ B) = max(m(A), m(B)), A ∩ B denotes
a fuzzy constant such that m(A ∩ B) = min(m(A), m(B)), where min and
max are applied point-wisely (also the max in the UN inference rule), and
the necessity measure N(m(B) | m(A)) is defined as above, i.e. N(m(B) |
m(A)) = infu∈Uσ µm(A)(u) ⇒ µm(B)(u), where A and B are fuzzy constants
of sort σ and ⇒ is the reciprocal of Gödel implication function. Remarkable
properties of this measure are N(m(A) | m(A)) = 1 and N(m(B) | max(1 −
α, m(B)) = min(α, N(m(A) | m(B)). In the rest of the paper we will also write
all these expressions without the explicit reference to the context mapping m
when no confusion is possible.

For each context IU,m, the above GR, FU, SU, IN and UN inference rules can
be proved to be sound with respect to the possibilistic entailment of clauses.
Moreover we shall also refer to the following weighted modus ponens rule,
which can be seen as a particular case of the GR rule

(p1 ∧ ... ∧ pn → q, α),

(p1, β1), . . . , (pn, βn)

(q, min(α, β1, . . . , βn))
[MP]

The notion of proof in PGL+, denoted by `, is that of deduction by means
of the triviality axiom, (ϕ, 0), and the PGL+ inference rules. Given a context
IU,m, the degree of deduction of a goal ϕ from a set of clauses P , denoted |ϕ|P , is
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the greatest α ∈ [0, 1] for which P ` (ϕ, α). In [4,1] it is shown that this notion
of proof is complete for determining the degree of possibilistic entailment of
a goal, i.e. |ϕ|P = ‖ϕ‖P , for non-recursive and satisfiable programs P , called
PGL+ programs, that satisfy two further constraints, called modularity and
context constraints. Actually, the modularity constraint can be achieved by
a pre-processing of the program which extends the original PGL+ program
with valid clauses by means of the GR and FU inference rules. For instance,
if the original program contains clauses like (p(A)→ q, α) and (p(B)→ q, β),
then the new clause (p(A ∪ B) → q, min(α, β)) would be added in this pre-
processing step. This is indeed the first step of an efficient and complete proof
procedure for PGL+ programs satisfying what we call context constraint. The
idea is that in a PGL+ program satisfying the context constraint, the use of
the SU and MP inference rules is enough to attain a degree of deduction equal
to the degree of possibilistic entailment. Then, the second step of the proof
procedure is based on the MP, SU, UN and IN rules and translates a PGL+

program satisfying the modularity constraint into a semantically equivalent
set of 1-weighted facts, whenever the program satisfies the context constraint.
The final step is a deduction step, based on the SU rule, which computes the
maximum degree of possibilistic entailment of a goal from the equivalent set
of 1-weighted facts.

2.2 Defeasible Argumentation and P-DeLP

Defeasible argumentation [14,30] has evolved in the last decade as a success-
ful approach to formalize commonsense reasoning. When a rule supporting
a conclusion may be defeated by new information, it is said that such rea-
soning is defeasible [26,27]. When defeasible reasons or rules are chained to
reach a conclusion, we have arguments instead of proofs. Arguments may
compete, rebutting each other, so a process of argumentation is a natural re-
sult of the search for arguments. Adjudication of competing arguments must
be performed, comparing arguments in order to determine what beliefs are
ultimately accepted as warranted or justified. Preference among conflicting
arguments is defined in terms of a preference criterion which establishes a
partial order “ � ” among possible arguments; thus, for two arguments A and
B in conflict, it may be the case that A is strictly preferred over B (A � B),
that A and B are equally preferable (A � B and A � B) or that A and B
are not comparable with each other. Arguments may be defeated by other
arguments, which on their turn may be defeated by other arguments, and so
on. This prompts a recursive analysis, which is usually modelled by means of
a tree structure called dialectical tree or argument tree. When an argument is
ultimately accepted after considering all possible defeaters, the argument is
said to be warranted or justified.
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In the last few years the argumentation community has given particular at-
tention to several extensions of logic programming which have turned out
to be computationally manageable for formalizing knowledge representation
and argumentative inference. Several approaches have been developed, some
of them based on normal logic programming [24], extended logic program-
ming [29], and defeasible logic programming or DeLP [21], among others. The
DeLP approach has been particularly attractive in the context of real-world
applications, such as recommender systems [17], knowledge management [12]
and natural language processing [15]. Possibilistic Defeasible Logic Program-
ming (P-DeLP) is a logic programming framework based on DeLP, and hence
combining features from argumentation theory and logic programming which
incorporates a treatment of possibilistic uncertainty at the object-language
level (see [18] for a full description of P-DeLP).

The language L of P-DeLP is inherited from the language of logic program-
ming, including the usual notions of atom, literal, rule and fact. In particular,
the symbol ∼ stands for (strong) negation. A literal L ∈ L is a ground (fuzzy)
atom q or a negated ground (fuzzy) atom ∼q, where q is a ground (fuzzy)
propositional variable. A goal in P-DeLP is any literal L ∈ L. A program P in
P-DeLP is a set of weighted clauses, where every weighted clause is a pair of
the form (ϕ, α), where ϕ is a rule p ← q1 , q2 , . . . , qk or fact p ← (i.e., a rule
with empty antecedent), where p, q1, q2, . . . , qk are literals, and α ∈ [0, 1] ex-
presses a lower bound for the necessity degree of ϕ. The subset ΠP of weighted
clauses in P whose necessity degree is 1 corresponds to certain clauses, and is
assumed to be non-contradictory. A set of clauses Γ will be deemed as contra-
dictory, denoted Γ ` ⊥, if Γ ` (q, α) and Γ ` (∼q, β), with α > 0 and β > 0,
for some atom q in L.

As in most argument-based logic programming frameworks, in P-DeLP solving
a goal Q accounts for finding an argument supporting Q which is ultimately
accepted or warranted. Given a P-DeLP program P , the notion of an argument
A supporting a literal Q with a necessity degree α (denoted 〈A, Q, α〉) is based
inferring (Q, α) from P using Generalized Modus Ponens as a possibilistic
resolution rule. The set A accounts for the set of weighted clauses from P
with necessity degree in [α, 1) used to derive (Q,α).

The set of uncertain clauses in a given P-DeLP program P account for ten-
tative and incomplete information. Hence conflicting arguments may arise.
An argument 〈A, Q, α〉 may be defeated by another argument 〈B, R, β〉. The
notion of defeat in P-DeLP is associated with determining a sub-argument
(sub-proof) 〈A′, Q′, α′〉 in the attacked argument 〈A, Q, α〉 such that ΠP ∪
{(Q′, α′), (R, β)} is contradictory and β ≥ α′. In this case, the argument
〈B, R, β〉 is called a defeater for 〈A, Q, α〉. As defeaters are arguments, they
may be in turn defeated by other arguments. This prompts a recursive anal-
ysis, associated with solving a goal Q in P-DeLP.
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Given a P-DeLP program P , solving a goal Q0 accounts for first finding an
argument 〈A0, Q0, α0〉 supporting (Q0, α0), and then performing an exhaus-
tive analysis of possible defeaters for 〈A0, Q0, α0〉, defeaters for such defeaters,
and so on. Every one of such sequences λ = [ 〈A0, Q0, α0〉, 〈A1, Q1, α1〉, . . . ,
〈An, Qn, αn〉, . . . ] is called an argumentation line, standing for a dialogue be-
tween two parties (a proponent who advances the even-level arguments, start-
ing with the original argument at issue, and an opponent who attacks the
proponent’s arguments, by advancing odd-level arguments). If all possible ar-
gumentation lines rooted in 〈A0, Q0, α0〉 are of odd length, this implies that
every possible dialogue on the basis of the program P was won by the propo-
nent, and hence the original argument 〈A0, Q0, α0〉 is warranted.

3 The DePGL+ programming language

As already pointed out our objective is to extend the P-DeLP programming
language through the use of PGL+ in order to incorporate fuzzy constants
and fuzzy propositional variables; we will refer to this extension as Defeasible
PGL+, DePGL+ for short. To this end, the base language of P-DeLP [18]
will be extended with fuzzy constants and fuzzy propositional variables, while
arguments will keep an attached necessity measure associated with the sup-
ported conclusion.

The DePGL+ language L is defined over PGL+ atomic formulas together with
the connectives {∼,∧,← }. The symbol ∼ stands for negation. A literal L ∈ L
is a PGL+ atomic formula or its negation. A rule in L is a formula of the form
Q ← L1 ∧ . . . ∧ Ln, where Q, L1, . . . , Ln are literals in L. When n = 0, the
formula Q← is called a fact and simply written as Q. In the following, capital
and lower case letters will denote literals and atoms in L, respectively.

In argumentation frameworks, the negation connective allows to represent
conflicts among pieces of information. In the frame of DePGL+, the handling
of negation deserves some explanation. In what regards negated propositional
variables ∼ p, the negation connective ∼ will not be considered as a proper
Gödel negation. Rather, ∼p will be treated as another propositional variable
p′, with a particular status with respect to p, since it will be only used to
detect contradictions at the syntactical level. On the other hand, negated
literals of the form ∼ p(A), where A is a fuzzy constant, will be handled in
the following way. As previously mentioned, fuzzy constants are disjunctively
interpreted in PGL+. For instance, consider the formula speed(low). In each
interpretation I = (U, i, m), the predicate speed is assigned a unique element
i(speed) of the corresponding domain. If low is interpreted by a crisp interval
of rpm’s, say [0, 2000], then speed(low) will be true in I iff such element
i(speed) belongs to this interval, i.e. iff i(speed) ∈ [0, 2000]. Now, the negated
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formula ∼ speed(low) is to be interpreted as “not[∃x ∈ low such that the
engine speed is x]”. Since the elements in low are disjunctive, under PGL+

interpretations, it amounts to “[∃x 6∈ low such that the engine speed is x]”,
and thus ∼ speed(low) is true iff speed(¬low) is true, where ¬low denotes
the complement of the interval [0, 2000] in the corresponding domain. Then,
given a context IU,m, this leads us to understand a negated literal ∼ p(A)
as another positive literal p(¬A), where the fuzzy constant ¬A denotes the
(fuzzy) complement of A, that is, where µm(¬A)(u) = n(µm(A)(u)), for some
suitable negation function n. One usually takes n(x) = 1−x, but any other is
also allowed. Indeed, we shall consider that the negation function n is implicitly
determined by each context IU,m, i.e. the function m will interpret both fuzzy
constants A and their complement (negation) ¬A.

Therefore, given a context IU,m, using the above interpretations of the nega-
tion, and interpreting the DePGL+ arrow ← as the PGL+ implication →, we
can actually transform a DePGL+ program P into a PGL+ program, denoted
as τ(P ), and then, we can apply the deduction machinery of PGL+ on τ(P )
for automated proof purposes. From now on and for the sake of a simpler
notation, we shall write Γ `τ (ϕ, α) to denote τ(Γ) ` τ((ϕ, α)), where the
elements in Γ and (ϕ, α) are DePGL+ clauses.

4 Arguments in DePGL+

In Section 2.1 we have formalized the many-valued and the possibilistic seman-
tics of PGL+, the underlying logic of DePGL+. In this section we formalize
the procedural mechanism for building arguments in DePGL+.

We distinguish between certain and uncertain DePGL+ clauses. A DePGL+

clause (ϕ, α) will be referred as certain when α = 1 and uncertain, other-
wise. Given a context IU,m, a set of DePGL+ clauses Γ will be deemed as
contradictory, denoted Γ `τ ⊥, when

(i) either Γ `τ (q, α) and Γ `τ (∼ q, β), with α > 0 and β > 0, for some
atom q in L,

(ii) or Γ `τ (p(A), α) with α > 0, for some predicate p and some fuzzy
constant A such that m(A) is non-normalized.

Notice that in the latter case, τ(Γ) is not satisfiable and there exist Γ1 ⊂ τ(Γ)
and Γ2 ⊂ τ(Γ) such that Γ1 and Γ2 are satisfiable and |p(B)|Γ1 > 0 and
|p(C)|Γ2 > 0, for some fuzzy constants B and C such that A = B ∩ C.

Example 1 Consider the set of clauses Γ = {(q, 0.8), (r, 1), (p(A)← q , 0.5),
(p(B)← q ∧ r , 0.3)}. Then, Γ `τ (p(A), 0.5) and Γ `τ (p(B), 0.3), and, by
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the IN inference rule, Γ `τ (p(A ∩ B), 0.3). Hence, in a particular context
IU,m, Γ is contradictory as soon as m(A) ∩ m(B) is a non-normalized fuzzy
set whereas, for instance, Γ\{(r, 1)} is satisfiable.

A DePGL+ program is a set of clauses in L in which we distinguish certain
from uncertain information. As additional requirement, certain knowledge is
required to be non-contradictory and the corresponding PGL+ program (by
means of the transformation τ) is required to satisfy the modularity con-
straint [4,1]. This is formally stated as follows.

Definition 2 (DePGL+ program) Given a context IU,m, a DePGL+ pro-
gram P is a pair (Π, ∆), where Π is a non-contradictory finite set of certain
clauses, ∆ is a finite set of uncertain clauses, and τ(Π∪∆) satisfies the mod-
ularity constraint.

The requirement of the modularity constraint of a DePGL+ program ensures
that all (explicit and hidden) program clauses are considered. Indeed, since
fuzzy constants are interpreted as (flexible) restrictions on an existential quan-
tifier, atomic formulas clearly express disjunctive information. For instance,
within a context IU,m, when m(A) = {a1, . . . , an}, p(A) is semantically equiv-
alent to the disjunction p(a1)∨ · · · ∨ p(an). Then, when parts of this (hidden)
disjunctive information occur in the body of several program clauses we also
have to consider all those new clauses that can be obtained through a com-
pletion process of the program which is based on the GR and FU inference
rules.

Example 3 (Adapted from [18]) Consider an intelligent agent controlling an
engine with three switches sw1, sw2 and sw3. These switches regulate different
features of the engine, such as pumping system, speed, etc. The agent’s generic
(and incomplete) knowledge about how this engine works is the following:

– If the pump is clogged, then the engine gets no fuel.
– When sw1 is on, apparently fuel is pumped properly.
– When fuel is pumped, fuel seems to work ok.
– When sw2 is on, usually oil is pumped.
– When oil is pumped, usually it works ok.
– When there is oil and fuel, normally the engine is ok.
– When there is heat, the engine is almost sure not ok.
– When there is heat, normally there are oil problems.
– When fuel is pumped and speed is very low, there are

reasons to believe that the pump is clogged.
– When sw2 is on, usually speed is low.
– When sw2 and sw3 are on, usually speed is not low.
– When sw3 is on, normally fuel is ok.

Suppose also that the agent knows some particular facts about the current state

11



(1) (∼fuel ok ← pump clog , 1)
(2) (pump fuel ← sw1 , 0.6)
(3) (fuel ok ← pump fuel , 0.85)
(4) (pump oil ← sw2 , 0.8)
(5) (oil ok ← pump oil , 0.8)
(6) (engine ok ← fuel ok ∧ oil ok , 0.6)
(7) (∼engine ok ← temp(high), 0.95)
(8) (∼oil ok ← temp(high), 0.9)
(9) (pump clog ← pump fuel ∧ speed(very low), 0.7)
(10) (speed(low)← sw2 , 0.8)
(11) (∼speed(low)← sw2 , sw3 , 0.8)
(12) (fuel ok ← sw3 , 0.9)
(13) (sw1, 1)
(14) (sw2, 1)
(15) (sw3, 1)
(16) (temp(interval 25 31), 1)
(17) (temp(around 31), 0.85)

Fig. 1. DePGL+ program Peng (example 3)

of the engine:

– sw1, sw2 and sw3 are on,
– the temperature is in the interval [25, 31]oC, and
– the temperature seems to be around 31oC.

This knowledge can be modelled by the program Peng shown in Fig. 1. Note that
uncertainty is assessed in terms of different necessity degrees while imprecise
knowledge is represented by means of fuzzy object constants like high, low,
very low, around 31 and interval 25 31.

Next we introduce the notion of argument in DePGL+. Informally, an argu-
ment for a literal (goal) Q with necessity degree α is a tentative (as it relies
to some extent on uncertain, possibilistic information) proof for (Q, α).

Definition 4 (Argument) Given a context IU,m and a DePGL+ program
P = (Π, ∆), a set A ⊆ ∆ of uncertain clauses is an argument for a goal Q
with necessity degree α > 0, denoted 〈A, Q, α〉, iff:

(1) Π ∪ A is non contradictory;
(2) α = sup{β ∈ [0, 1] | Π ∪ A `τ (Q, β)}, i.e. α is the greatest degree of

deduction of Q from τ(Π ∪ A), denoted as |Q|τ(Π∪A); and
(3) A is minimal wrt set inclusion, i.e. there is no A1 ⊂ A such that Π∪A1 `τ

(Q, α).

Definition 5 (Subargument) Let 〈A, Q, α〉 and 〈S, R, β〉 be two arguments.
We will say that 〈S, R, β〉 is a subargument of 〈A, Q, α〉 iff S ⊆ A. Notice
that the goal R may be a subgoal associated with the goal Q in the argument

12



A.

Note that for the program Peng in Example 3 the sets of uncertain clauses S =
{(pump fuel ← sw1 , 0.6)} and A = {(pump fuel ← sw1, 0.6), (fuel ok ←
pump fuel, 0.6)} are arguments for the goals pump fuel and fuel ok, respec-
tively, with necessity degree 0.6 and 〈S, pump fuel, 0.6〉 is a subargument of
〈A, fuel ok, 0.6〉.

Let IU,m be a context, let P be a DePGL+ program and let p be a predicate
symbol of type (σ) appearing in P . Then, in [4,1] it is shown that

|p(A)|τ(P ) = |p(A)|(p(C),1) = N(m(A) | m(C)),

where A and C are object constants of sort σ and C is such that, for each
u ∈ Uσ, µm(C)(u) = inf{µm(B)(u) | B object constant of sort σ such that
P `τ (p(B), 1)}. Thus, the greatest degree of deduction of p(A) from τ(P )
corresponds to the unification degree between the fuzzy constant A and the
most specific 1 fuzzy constant that can be deduced from P with necessity
degree 1. Then, in order to compute arguments with the greatest degree of
deduction, we need to introduce the notion of canonical argument.

Definition 6 (Canonical argument) Let P be a DePGL+ program and let
IU,m be a context. An argument wrt P and IU,m 〈A, Q, α〉 is called canonical
if either Q is a propositional variable, or if Q = p(A) then α = 1 and there is
no fuzzy constant C more specific than A such that Π ∪ A ` (p(C), 1).

It must be noted that given an argument of the form 〈A, p(A), α〉, the canon-
ical argument associated with the set A and predicate p is unique. As we will
see later in Sections 5 and 6, the notion of canonical argument will turn to be
very useful since it will allow us to restrict the search for conflicting arguments
and simplify the process of deciding when an argument is ultimately accept-
able or not. In [4,1] an efficient algorithm has been presented for computing
the most specific fuzzy constant that can be deduced, for a given predicate
symbol, from a set of clauses with necessity degree 1 which is based on the
MP, SU, IN and UN inference rules. Consequently, this algorithm can be then
used to compute canonical arguments.

The next procedure addresses the important issue of how to build arguments
for a DePGL+ program.

Algorithm 7 (Argument construction procedure) Given a context IU,m

and a DePGL+ program P = (Π, ∆), a set A ⊆ ∆ of uncertain clauses is an
argument for a goal Q with necessity degree α > 0 wrt P and IU,m iff A and

1 That is, the smallest, as membership function, with respect to the point-wise
order.
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α can be computed by (recursively) applying any of the following construction
rules:

(1) Building arguments from facts (INTF):
• If (Q, 1) ∈ Π

then A = ∅ and α = 1
• If (Q, β) ∈ ∆ and Π ∪ {(Q, β)} 6`τ ⊥ and Π 6`τ (Q, γ) for any γ ≥ β

then A = {(Q, α)} and α = β
(2) Building arguments from program rules by applying the modus ponens

rule (MPA):
• If (Q ← L1 ∧ . . . ∧ Lk , 1) ∈ Π and 〈A1, L1, β1〉, . . . , 〈Ak, Lk, βk〉 are

arguments and Π∪⋃k
i=1Ai 6`τ ⊥ and there is no B ⊂ ⋃k

i=1Ai such that
Π ∪ B `τ (Q, γ) with γ ≥ min(β1, β2, . . . , βk)
then A =

⋃k
i=1Ai and α = min(β1, β2, . . . , βk)

• If (Q ← L1 ∧ L2 ∧ . . . ∧ Lk , β) ∈ ∆ and 〈A1, L1, β1〉, . . . , 〈Ak, Lk, βk〉
are arguments and Π ∪ {(Q ← L1 ∧ L2 ∧ . . . ∧ Lk , β)} ∪ ⋃k

i=1Ai 6`τ ⊥
and there is no B ⊂ ⋃k

i=1Ai ∪ (Q ← L1 ∧ L2 ∧ . . . ∧ Lk , β) such that
Π ∪ B `τ (Q, γ) with γ ≥ min(β, β1, β2, . . . , βk)
then A =

⋃k
i=1Ai ∪ (Q ← L1 ∧ L2 ∧ . . . ∧ Lk , β) and α = min(β, β1,

β2, . . . , βk)
(3) Building arguments from canonical arguments by applying the unification

rule (SUA):
If Q = p(B) and 〈A1, p(A), 1〉 is a canonical argument such that N(m(B) |
m(A)) 6= 0 and there is no A2 ⊂ A1 such that Π ∪ A2 `τ (p(B), γ) with
γ ≥ N(m(B) | m(A))
then A =A1 and α = N(m(B) | m(A))

(4) Building arguments from canonical arguments by applying the intersection
rule (INA):
If Q = p(C) and 〈A1, p(A), 1〉 and 〈A2, p(B), 1〉 are a pair of canonical
arguments such that m(C) = m(A) ∩m(B) and Π ∪ A1 ∪ A2 6`τ ⊥ and
there is no B ⊂ A1 ∪ A2 such that Π ∪ B `τ (p(C), 1)
then A = A1 ∪ A2 and α = 1

The basic idea with the argument construction procedure is to keep a trace of
the set A ⊆ ∆ of all uncertain information in the program P used to derive a
given goal Q with necessity degree α and to ensure that α = |Q|τ(Π∪A). On the
one hand, appropriate preconditions ensure that the proof obtained satisfies
the non-contradiction constraint of arguments wrt the certain knowledge Π of
the program and that computed arguments are minimal wrt set inclusion. On
the other hand, the completeness results of the PGL+ proof method (see [1])
ensure that necessity degrees computed by means of the MP, SU and IN
inference rules after resolving uncertainty on both program facts and new
derived facts, correspond to greatest degrees of deduction. Given a context
IU,m and a DePGL+ program P , rule INTF allows to construct arguments
from facts. An empty argument can be obtained for any certain fact in P . An
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argument concluding an uncertain fact (Q, α) in P can be derived whenever
assuming (Q, α) is not contradictory wrt the set Π in P and that Q can
not be proved from Π with a necessity degree greater or equal than α. Rule
MPA accounts for the use of modus ponens, both with certain and defeasible
rules. Note it assumes the existence of an argument for every literal in the
antecedent of the rule. Then, in a such a case, the MPA rule is applicable
whenever no contradiction results when putting together Π, the sets A1, . . . ,
Ak corresponding to the arguments for the antecedents of the rule and the rule
(Q ← L1 ∧ . . . ∧ Lk , β) when β < 1, and whenever it is strictly necessary to
consider all these clauses in order to prove Q with a greater necessity degree.
Rule SUA accounts for semantic unification from canonical arguments; i.e.
corresponds to the unification between the fuzzy constant B and the more
specific fuzzy constant that can be deduced from A1 with necessity degree 1.
As the rule does not deal with new uncertain knowledge, we do not need to
check the non-contradictory constraint. However, it is necessary to ensure that
all defeasible information is strictly necessary to derive the goal. In a similar
way, rule INA applies intersection between canonical arguments provided that
the resulting intersection is non contradictory wrt Π and minimal wrt set
inclusion.

Note that we cannot ensure that arguments with necessity degree 1 are canon-
ical arguments. The following proposition establishes the relationship between
arguments and canonical arguments.

Proposition 8 Let IU,m be a context, let P = (Π, ∆) be a DePGL+ program
and let A ⊆ ∆ be a set of uncertain clauses. If 〈A, p(A), α〉 is an argument
then there exists one, and only one, fuzzy constant C such that 〈A, p(C), 1〉 is
a canonical argument.

Proof: On the one hand, if 〈A, p(A), α〉 is an argument then α = sup{β ∈
[0, 1] | Π ∪ A `τ (p(A), β). Therefore, as we proved in [1], Π ∪ A `τ (p(A), α)
and, by the soundness of the UN inference rule, Π∪A `τ (p(B), 1) where B is
a fuzzy constant such that m(B) = max(1− α, m(A)). Hence, we can ensure
that B = {B object constant | Π ∪ A `τ (p(B), 1)} is a non-empty set, and
thus, we can safely define C as the most specific fuzzy constant that can be
deduced from Π ∪ A with necessity degree 1.
On the other hand, if 〈A, p(A), α〉 is an argument then A is minimal wrt
set inclusion, and thus, for all A1 ⊂ A, |p(A)|τ(Π∪A1) < α and, by the com-
pleteness of PGL+, ‖p(A)‖τ(Π∪A1) < α. Therefore, by the PGL+ semantics,
‖p(B)‖τ(Π∪A1) < 1 where B is a fuzzy constant such that m(B) = max(1 −
α, m(A)). Hence, as C is either B or is more specific than B, ‖p(C)‖τ(Π∪A1) <
1, and thus, |p(C)|τ(Π∪A1) < 1 for all A1 ⊂ A. 2

Example 9 Consider the program Peng in Example 3, where temp(·) is a
unary predicate of type (degrees), speed(·) is a unary predicate of type (rpm),
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“high”, “interval 25 31” and “around 31” are object constants of sort degrees,
and “very low” and “low” are object constants of sort rpm. Further, consider
the context IU,m such that:

U = {Udegrees = [−100, 100] oC, Urpm = [0, 200]};
m(high) = [28, 30, 100, 100] 2 ,
m(interval 25 31) = [25, 25, 31, 31],
m(around 31) = [26, 31, 31, 36],
m(very low) = [5, 15, 15, 25],
m(low) = [10, 15, 25, 30], and
m(¬low) = 1−m(low).

Remark that, for this particular context, the corresponding PGL+ program sat-
isfies the modularity constraint. Then, the following arguments can be derived
from Peng:

(1) The argument 〈B1, fuel ok, 0.6〉 can be derived as follows:
i) 〈∅, sw1, 1〉 from rule (13) via INTF.
ii) 〈D, pump fuel, 0.6〉 from rule (2) and i) via MPA.
iii) 〈B1, fuel ok, 0.6〉 from rule (3) and ii) via MPA.
where

D={(pump fuel ← sw1 , 0.6)},
B1 = D ∪ {(fuel ok ← pump fuel , 0.85)}.

(2) Similarly, the argument 〈C1, oil ok, 0.8〉 can be derived using the rules
(15), (4) and (5) via INTF, MPA, and MPA respectively, with C1 =
{(pump oil ← sw2 , 0.8); (oil ok ← pump oil , 0.8)}.

(3) The argument 〈A1, engine ok, 0.6〉 can be derived as follows:
i) 〈B1, fuel ok, 0.6〉 as shown above.
ii) 〈C1, oil ok, 0.8〉 as shown above.
iii) 〈A1, engine ok, 0.6〉 from i), ii) and the rule (6) via MPA.
with A1={(engine ok ← fuel ok ∧ oil ok , 0.6)} ∪ B1 ∪ C1.
Note that 〈C1, oil ok, 0.8〉 and 〈B1, fuel ok, 0.6〉 are subarguments of
〈A1, engine ok, 0.6〉.

(4) One can also derive the argument 〈C2,∼oil ok, 0.8〉, where
C2 = {(temp(around 31), 0.85), (∼oil ok ← temp(high), 0.9)},

as follows:
i) As N(m(around 31) | m(interval 25 31)) = 0, it is not possible

to derive an argument for temp(around 31) from the set of certain
clauses of program Peng. Then,

〈{(temp(around 31), 0.85)}, temp(around 31), 0.85〉
can be derived from rule (17) via INTF.

ii) Consider one new fuzzy constant “specific around 31” interpreted in

2 We represent a trapezoidal fuzzy set as [t1; t2; t3; t4], where the interval [t1, t4] is
the support and the interval [t2, t3] is the core.

16



the context IU,m as

m(specific around 31) =
min(m(interval 25 31), max(1− 0.85, m(around 31))).

The canonical argument for i) is
〈{(temp(around 31), 0.85)}, temp(specific around 31), 1〉.

Now, as it is not possible to derive an argument for temp(high)
from the set of certain clauses of program Peng and N(m(high) |
m(specific around 31)) = 0.8, from the canonical argument via SUA
we get

〈{(temp(around 31), 0.85)}, temp(high), 0.8〉.
iii) 〈C2,∼oil ok, 0.8〉 from ii) and the rule (8) via MPA.

(5) Similarly, an argument 〈A2,∼engine ok, 0.8〉 can be derived using the
rules (17), (16) and (7) via INTF, SUA, and MPA, with
A2 = {(temp(around 31), 0.85); (∼engine ok ← temp(high), 0.95)}.

5 Counter-argumentation and defeat in DePGL+

Given a program and a particular context, it can be the case that there
exist arguments for contradictory literals. For instance, in the above exam-
ple, 〈A1, engine ok, 0.6〉 and 〈A2,∼engine ok, 0.8〉, and 〈C1, oil ok, 0.8〉 and
〈C2,∼oil ok, 0.8〉, and thus, the program Peng considering the context IU,m

is contradictory. Therefore, it is necessary to define a formal framework for
solving conflicts among arguments in DePGL+. This is formalized next by
the notions of counterargument and defeat, based on the same ideas used in
P-DeLP [18] but incorporating the treatment of fuzzy constants.

Definition 10 (Counterargument) Let P be a DePGL+ program, let IU,m

be a context, and let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two arguments wrt P
in the context IU,m. We will say that 〈A1, Q1, α1〉 counterargues 〈A2, Q2, α2〉
iff there exists a subargument (called disagreement subargument) 〈S, Q, β〉 of
〈A2, Q2, α2〉 such that either

(i) Q1 and Q are propositional variables and Q1 =∼Q 3 ,
(ii) or Q1 = p(A) and Q = p(B) for some predicate p and fuzzy constants A

and B, such that m(A) ∩m(B) is a non-normalized fuzzy set.

Note that our definition of counterargument accounts for the two usual conflict
situations in argumentation systems [14,30]: direct attacks (also called rebut-
ters) , in which conflicting arguments have opposite conclusions, and indirect
attacks (sometimes referred to as undercutters in the literature), in which a

3 For a given goal Q, we write ∼ Q as an abbreviation to denote “∼ q” if Q ≡ q
and “q” if Q ≡ ∼ q.
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given argument is in conflict with some intermediate step or subargument of
another argument.

Since arguments rely on uncertain and hence defeasible information, conflicts
among arguments may be resolved by comparing their strength. Therefore,
a notion of defeat amounts to establish a preference criterion on conflicting
arguments. In our framework, when no fuzzy constants are involved, it seems
natural to define it on the basis of necessity degrees associated with argu-
ments, following [18]. When fuzzy constants are involved, due to the concept
of contradiction we have adopted, the comparison of conflictive arguments
becomes more involved.

To simplify, assume we have two arguments

Arg1 = 〈X, p(A), α〉, Arg2 = 〈Y, p(B), β〉

such that A ∩ B is non-normalized 4 , hence Arg1 counter-argues Arg2 and
viceversa. In order to compare these arguments what we do is to analyze
how much each of them supports the negated conclusion of the other. In
fact, from Arg1 we can build an argument for ∼ p(B) by applying the SUA
inference rule to its corresponding canonical argument (X, p(A′), 1), where
A′ = max(1− α, A), which yields the argument

Arg′1 = 〈X,∼p(B), min(α, N(¬B | A)))〉

taking into account that, by definition, ∼ p(B) = p(¬B) and that N(¬B |
max(1 − α, A)) = min(α, N(¬B | A)). Analogously, from Arg2 we can build
the following argument for ∼p(A):

Arg′2 = 〈Y,∼p(A), min(β, N(¬A | B)))〉

Therefore, we need to actually compare the strengths of Arg′1 and Arg2 on the
one hand, and of Arg′2 and Arg1 on the other hand. The following possibilities
arise:

(1) if min(α, N(¬B | A)) > β, then it follows that α > min(β, N(¬A | B))
as well. In this case Arg′1 is stronger than Arg2 and Arg1 stronger than
Arg′2. Then it is clear that Arg1 is strictly stronger than Arg2. Conversely,
if min(β, N(¬A | B)) > α, then Arg2 is strictly stronger than Arg1;

(2) if min(α, N(¬B | A)) = β and min(β, N(¬A | B)) = α, then Arg′1 and
Arg2 are equally strong, as well as as Arg1 and Arg′2. In this case, we
have that min(N(¬B | A), N(¬A | B)) ≥ α = β, and we can compare
the values of N(¬B | A)) and N(¬A | B)) to decide whether Arg1 or

4 Note that we write A ∩ B for m(A) ∩m(B), and similarly in other expressions
which follow, dropping the m function symbol when no confusion arises.
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Arg2 finally wins;

(3) if min(α, N(¬B | A)) = β and min(β, N(¬A | B)) < α, we have that
Arg′1 is equally strong to Arg2 but Arg′2 is weaker than Arg1. In this case
we consider Arg1 as the winner. Conversely, when min(α, N(¬B | A)) < β
and min(β, N(¬A | B)) = α, Arg2 is considered as winner;

(4) finally, if min(α, N(¬B | A)) < β and min(β, N(¬A | B)) < α then there
is no winner argument, we have a tie.

According to the above considerations we define the following notions of proper
and blocking defeaters.

Definition 11 (Defeat) Let P be a DePGL+ program, let IU,m be a context,
and let the argument 〈A1, Q1, α1〉 counterargue the argument 〈A2, Q2, α2〉 with
disagreement subargument 〈A, Q, β〉. We distinguish two cases:

Case(1): Q1 and Q are propositional variables
We say that 〈A1, Q1, α1〉 is a proper (resp. blocking) defeater for 〈A2, Q2, α2〉
when α1 > β (resp. α1 = β).

Case(2): Q1 = p(A) and Q = p(B)
We say that 〈A1, Q1, α1〉 is a proper defeater for 〈A2, Q2, α2〉 when either
- min(α1, N(¬B | A)) > β,
- α1 = β and N(¬B | A) > N(¬A | B), or
- min(α1, N(¬B | A)) = β and min(β, N(¬A | B)) < α1.

We say that 〈A1, Q1, α1〉 is a blocking defeater for 〈A2, Q2, α2〉 when
- α1 = β and N(¬B | A)) = N(¬A | B)), or
- min(α1, N(¬B | A)) < β and min(β, N(¬A | B)) < α1.

In any case above, if the argument 〈A1, Q1, α1〉 is canonical, it will be called
canonical (proper or blocking) defeater.

Example 12 Following Examples 3 and 9, it is the case that the argument
〈A2,∼engine ok, 0.8〉 is a proper defeater for the argument 〈A1, engine ok, 0.6〉
while 〈C2,∼oil ok, 0.8〉 is a blocking defeater for 〈C1, oil ok, 0.8〉.

Example 13 Consider the DePGL+ program

P = {(temp(around 31), 0.45), (temp(between 25 30), 0.7)}

where temp(·) is a unary predicate of type (degrees), and the context IU,m

with U = {Udegrees = [−100, 100] oC} and

m(around 31) = [26, 31, 31, 36],
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m(between 25 30) = [20, 25, 30, 35],
m(¬around 31) = 1−m(around 31), and
m(¬between 25 30) = 1−m(between 25 30).

Consider the following sets of clauses:

A1 = {(temp(around 31), 0.45)}
A2 = {(temp(between 25 30), 0.7)}.

Within the context IU,m, the arguments

A1 =〈A1, temp(around 31), 0.45〉,
A2 =〈A2, temp(between 25 30), 0.7〉,

can be derived from P, but notice that m(around 31) ∩m(between 25 30) is
a non-normalized fuzzy set, and thus, A1 counterargues A2, and viceversa.
However, since we have

N(m(¬around 31) | m(between 25 30)) = 0 and
N(m(¬between 25 30) | m(around 31)) = 0,

one can only derive arguments for the negated literals ∼ temp(around 31) and
∼ temp(between 25 30) with necessity degree 0. Hence, A1 is as a blocking
defeater for A2, and viceversa.

Note that the unification degree between fuzzy constants depends on the con-
text we are considering. For instance, if for the above context IU,m we would
consider the Gödel negation instead of the standard involutive negation, i.e.

m(¬A)(t) =

 1, if m(A)(t) = 0

0, otherwise

for any fuzzy constant A, we would get

N(m(¬around 31) | m(between 25 30)) = 0.2 and
N(m(¬between 25 30) | m(around 31)) = 0.2

However, as 0.2 < 0.45 and 0.2 < 0.7, in this new particular context we would
still have that A1 is blocking defeater for A2 and viceversa.

6 Computing warranted arguments in DePGL+

As already explained in Section 2, argument-based inference involves a dialec-
tical process in which arguments are compared in order to determine which

20



beliefs are ultimately accepted (or warranted) on the basis of a given knowl-
edge base. In the case of argument-based logic programming, such knowledge
base is given by the underlying logic program (in our case, a DePGL+ pro-
gram).

Skeptical argument-based semantics [20,30] are commonly used for computing
warranted arguments. The intuition behind such skeptical approaches to the
notion of warrant (using the object language of DePGL+) can be defined as
follows:

(1) An argument 〈A, Q, α〉 is warranted if 〈A, Q, α〉 has no defeaters;
(2) An argument 〈A, Q, α〉 is warranted if it has defeaters 〈B1, Q1, β1〉,. . . ,
〈Bk, Qk, βk〉, such that every defeater 〈Bi, Qi, βi〉, (1 ≤ i ≤ k) is in turn
defeated by a warranted argument.

In DeLP and in P-DeLP the above intuition is formalized in terms of an
exhaustive dialectical analysis of all possible argumentation lines rooted in a
given argument (see [18] for details) which can be efficiently performed by
means of a top-down algorithm, as described in [16].

Example 14 Given the following simple P-DeLP program P = {(p, 0.45), (∼
p, 0.7)}, we can see that A = 〈{(∼ p, 0.7)},∼ p, 0.7〉 is warranted, as there is
no argument defeating A from the program P. Similarly, we can conclude that
the argument A′ = 〈{(p, 0.45)}, p, 0.45〉 is not warranted, as argument A is a
proper defeater for the argument A′. Argument A′ is therefore not warranted
as it is defeated by a warranted argument,

In DePGL+, one can perform a similar dialectical analysis provided some care
is taken with the management of fuzzy constants and their associated fuzzy
unification mechanism as we show in the following example.

Example 15 Consider the DePGL+ program P and the context IU,m of Ex-
ample 13. Let

A3 = {(temp(about 25), 0.9)},

and let P ′ = P ∪ A3 be a new program. Further, consider two new fuzzy
constants “between 31 32” and “about 25 ext”. The three new fuzzy constants
are interpreted in the context IU,m as

m(about 25) = [24, 25, 25, 26],
m(¬about 25) = 1−m(about 25),
m(between 31 32) = [26, 31, 32, 37], and
m(about 25 ext) = [24, 25, 25, 32].

Notice that arguments A1 and A2 from Example 13 are still arguments with
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respect to the new program P ′. Now, in the frame of the program P ′, from the
canonical argument associated with A1 and by applying the SUA procedural
rule, we can build the argument

A3 =〈A1, temp(between 31 32), 0.45〉,

since N(m(between 31 32) | max(1 − 0.45, m(around 31))) = min(0.45, 1) =
1. One can easily check that, as in the case of A1, A3 is a blocking defeater
for A2, and viceversa. Moreover, as m(around 31) ≤ m(between 31 32), i.e.
“around 31” is more specific than “between 31 32”, we have

N(m(¬between 25 30) | m(around 31)) ≥ N(m(¬between 25 30) | m(between 31 32))

and thus, the argument A3 can be considered a spurious blocking defeater for
the argument A2.

On the other hand, the argument

A4 =〈A3, temp(about 25), 0.9〉,

can be derived from P ′. Then, as m(about 25) ∩ m(around 31) is a non-
normalized fuzzy set, the argument A4 counterargues the argument A1, and
viceversa. Moreover, as

N(m(¬around 31) | m(about 25)) = N(m(¬about 25) | m(around 31)) = 1

and 0.9 > 0.45, the argument A4 is a proper defeater for the argument A1.
Now, from the canonical argument attached with A4 and by applying the SUA
procedural rule, we can build the argument

A5 =〈A3, temp(about 25 ext), 0.9〉,

since N(m(about 25 ext) | max(1 − 0.9, m(about 25))) = min(0.9, 1) = 0.9.
As m(about 25 ext) ∩m(around 31) is a non-normalized fuzzy set, the argu-
ment A5 counterargues the argument A1, and viceversa. Moreover, as it holds
that N(m(¬around 31) | m(about 25 ext)) = 0.5, N(m(¬about 25 ext) |
m(around 31)) = 0 and min(0.9, 0.5) > 0.45, the argument A5 is a proper
defeater for the argument A1. However, as the fuzzy constant “about 25” is
more specific than the fuzzy constant “about 25 ext”, the argument A5 can be
considered a spurious proper defeater for the argument A1.

Considering suitable extensions (by adding ambiguity) of fuzzy constants one
can find multiple spurious (proper and blocking) defeaters for arguments.
Then, in order to provide DePGL+ with an efficient procedure for comput-
ing warrants (based on an exhaustive dialectical analysis of all argumentation
lines), we have to restrict ourselves to canonical defeaters. The formalization
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of the notion of argumentation line in the framework of DePGL+ is done
as follows. An argumentation line starting in an argument 〈A0, Q0, α0〉 is a
sequence of arguments

λ = [〈A0, Q0, α0〉, 〈A1, Q1, α1〉, . . . , 〈An, Qn, αn〉, . . .]

where each 〈Ai, Qi, αi〉 is a defeater for the previous argument 〈Ai−1, Qi−1, αi−1〉
in the sequence, i > 0.

In order to avoid fallacious reasoning, most argument-based approaches im-
pose additional constraints on such an argument exchange to be rationally
acceptable (see e.g. [24,11]). In particular, for DeGLP+ we impose the follow-
ing constraints on the argumentation lines:

(1) Non-contradiction: given an argumentation line λ, the set of arguments
of the proponent (resp. opponent) should be non-contradictory wrt P and
IU,m.

(2) Progressive argumentation: (i) every blocking defeater 〈Ai, Qi, αi〉 in
λ with i > 0 is defeated by a proper defeater 5 〈Ai+1, Qi+1, αi+1〉 in λ; and
(ii) each argument 〈Ai, Qi, αi〉 in λ, with i ≥ 2, is such that Qi 6=∼Qi−1.

(3) Canonicity: every argument 〈Ai, Qi, αi〉 in λ with i > 0 is canonical; i.e.
〈Ai, Qi, αi〉 is the best proper or blocking defeater one can consider from
a given set of clauses.

An argumentation line satisfying these three conditions are called acceptable.
The first condition disallows the use of contradictory information on either
side (proponent or opponent). The first condition of progressive argumentation
enforces the use of a proper defeater to defeat an argument which acts as a
blocking defeater, while the second condition avoids non optimal arguments in
the presence of a conflict. Indeed, if we had a sequence of successively defeated
arguments of the form

λ = [. . . , 〈Ai, Q, αi〉, 〈Ai+1,∼ Q, αi+1〉, 〈Ai+2, Q, αi+2〉, . . .],

it would mean that 〈Ai, Q, αi〉 could have been in fact replaced by a stronger
argument taking into the information in 〈Ai+2, Q, αi+2〉. The canonicity con-
dition avoids the use of spurious defeaters, due to the application of the SUA
inference rule, with weaker information than what it actually could carry, and
thus able to be potentially defeated by stronger counter-arguments. The en-
forced use of canonical arguments in the process of exchange of arguments
ensures that both the proponent and the opponent are arguing with the best
arguments for a given goal at hand. Moreover, it also enforces that both the
length of acceptable argumentation lines and the number of acceptable argu-
mentation lines rooted in a given argument is finite, since for any subset of

5 It must be noted that the last argument in an argumentation line is allowed to
be a blocking defeater for the previous one.
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uncertain clauses A ⊆ ∆ and each predicate p appearing in a given program
(there are finitely-many such predicates), there can be at most one canonical
argument of the kind (A, p(C), 1).

Given a program P , a context IU,m and an argument 〈A0, Q0, α0〉, the set of all
acceptable argumentation lines starting in 〈A0, Q0, α0〉 accounts for a whole
dialectical analysis for 〈A0, Q0, α0〉.

Definition 16 (Warrant) Given a program P = (Π, ∆), a context IU,m, and
a goal Q, we will say that Q is warranted wrt P in the context IU,m with a
maximum necessity degree α iff there exists an argument of the form 〈A, Q, α〉,
for some A ⊆ ∆, such that:

(1) every acceptable argumentation line starting with 〈A, Q, α〉 has an odd
number of arguments; i.e. every argumentation line starting with 〈A, Q, α〉
finishes with an argument proposed by the proponent which is in favor of
Q with at least a necessity degree α; and

(2) there is no other argument of the form 〈A1, Q, β〉, with β > α, satisfying
the above.

Note that we will generalize the use of the term “warranted” for applying it
to both goals and arguments: whenever a goal Q is warranted on the basis of
a given argument 〈A, Q, α〉 as specified in Def. 16, we will also say that the
argument 〈A, Q, α〉 is warranted. Continuing with Examples 13 and 15, we
will next show how to determine, according to the above definition, whether
some arguments appearing there (arguments A4, A1 and A2) are warranted.

Example 17 Consider the DePGL+ program P ′ and the context IU,m of Ex-
ample 15. Further, consider two new fuzzy constants “between 25 300.7” and
“about 250.9” interpreted in the context IU,m as

m(between 25 300.7) = max(1− 0.7, m(between 25 30)), and
m(about 250.9) = max(1− 0.9, m(about 25)).

Let us recall the following arguments:

A1 = 〈A1, temp(around 31), 0.45〉,
A2 = 〈A2, temp(between 25 30), 0.7〉, and
A4 = 〈A3, temp(about 25), 0.9〉.

Consider first the argument A4. On the one hand, it has neither a proper de-
feater nor a blocking defeater, hence there exists an acceptable argumentation
line starting with A4 with just one argument. Indeed, the only possible argu-
mentation line rooted in A4 that can be obtained is [A4]. Since this line has
odd length, according to Definition 16, the goal “temp(about 25)” can be war-
ranted wrt P ′ in the context IU,m with a maximum necessity degree of 0.9. On
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the other hand, the canonical argument attached with A4 is

A6 = 〈A3, temp(about 250.9), 1〉

and, obviously, A6 is also warranted wrt P ′ in the context IU,m.

Consider now the case of argument A1. On the one hand, the argument A6 is
a canonical proper defeater for A1 and A6 is a warranted argument. On the
other hand, the canonical argument attached with A2 is

A7 = 〈A2, temp(between 25 300.7), 1〉

and A7 is a canonical blocking defeater for A1. Therefore two acceptable ar-
gumentation lines rooted at A1 can be built: [A1, A6] and [A1, A7]. Since it is
not the case that every argumentation line rooted in A1 has odd length, the
argument A1 cannot be warranted.

Finally, following a similar discussion for A2, we can conclude that the argu-
ment A2 is not warranted either. However, the goal temp(between 25 30) can
be warranted from A3 with the maximum necessity degree of 0.9 as follows:
From the canonical argument A6, by applying the SUA procedural rule, we get
the argument

A8 = 〈A3, temp(between 25 30), 0.9〉
since N(m(between 25 30) | m(about 250.9) = 0.9, and obviously, A8 is also
warranted wrt P ′ in the context IU,m.

It must be noted that to decide whether a given goal Q is warranted (on
the basis of a given argument A0 for Q) it may be not necessary to compute
every possible argumentation line rooted in A0, e.g. in the case of A1 in the
previous example, it sufficed to detect just one even-length argumentation
line to determine that is not warranted. Some aspects concerning computing
warrant efficiently by means of a top-down procedure in P-DeLP can be found
in [16].

7 Related work

To the best of our knowledge, in the literature there have been not many ap-
proaches that aim at combining argumentation and fuzziness, except for the
work of Schroeder & Schweimeier [32,31,33]. Their argumentation framework
is defined for a logic programming framework based on extended logic pro-
gramming with well-founded semantics, and providing a declarative bottom-
up fixpoint semantics along with an equivalent top-down proof procedure.
In contrast with our approach, this argumentation framework defines fuzzy
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unification on the basis of the notion of edit distance, based on string com-
parison [33]. Their proposal, on the other hand, does not include an explicit
treatment of possibilistic uncertainty as in our case.

There have been different approaches connecting argumentative inference, de-
feasible reasoning and possibilistic logic (e.g.[10,8,9]). Including possibilistic
logic as part of an argumentation framework for modelling preference han-
dling and information merging has recently been considered by Amgoud &
Kaci [7] and Amgoud & Cayrol [6]. Such formulations are based on using
a possibilistic logic framework to handle merging of prioritized information,
obtaining an aggregated knowledge base. Arguments are then analyzed on
the basis of the resulting aggregated knowledge base. An important differ-
ence of these proposals with our formulation is that our framework smoothly
integrates an explicit representation of fuzziness together with a possibilistic
uncertainty handling. Indeed, in the proposed framework we attach necessity
degrees to object level formulas, which are propagated according to suitable
inference rules and play an important role in determining the final status of
arguments.

Besides of considering possibilistic logic and fuzziness, a number of hybrid
approaches connecting argumentation and uncertainty have been developed,
such as Probabilistic Argumentation Systems [22,23], which use probabilities
to compute degrees of support and plausibility of goals, related to Dempster-
Shafer belief and plausibility functions. However this approach is not based on
a dialectical theory (with arguments, defeaters, etc.) nor includes fuzziness as
presented in this paper. In a recent paper [25] a declarative language to handle
arguments with modalities like possible, probable, plausible, etc. is proposed.
The resulting framework is applied to modelling problems in the context of a
medical domain. In contrast with our approach, no possibilistic logic semantics
is associated with the framework, as modalities are categorized in terms of a
declarative semantics formalized on the basis of a complete lattice. Besides,
no representation of fuzziness at object level is provided in this framework, as
in the case of our proposal.

8 Conclusions and future work

In this paper we have provided a formalization of DePGL+, a possibilistic
defeasible logic programming language that integrates argumentation capa-
bilities and the characterization of fuzziness at object level in terms of fuzzy
constants and fuzzy propositional variables. Our extended framework is mo-
tivated on previous research which showed how to successfully integrate de-
feasible argumentation and possibilistic uncertainty [18]. We have shown how
PGL+ can be suitably adapted to be included in an argument-based setting.
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Fuzzy constants in PGL+ allow expressing imprecise information about the
possibly unknown value of a variable (in the sense of magnitude) modeled as
a (unary) predicate. It must be remarked that the notions of argument, de-
feat and dialectical analysis –common to all argumentation frameworks– could
be naturally borrowed into our formalization, and their expressivity was aug-
mented by the incorporation of fuzziness, integrated in the argument-based
inference process (rules INTF, MPA, SUA and INA). However, as discussed
in Section 5, the notion of canonicity of an argument was an additional re-
quirement in the new, extended framework, needed to ensure the proper com-
putation of argumentation lines (as discussed in Section 5) by enforcing that
the number of argumentation lines rooted in any argument be finite.

Part of our current work is focused on studying complexity issues in the con-
text of our proposal, as well as emerging logical properties which could help to
speed up computation of warranted arguments. In that respect, we think that
many of the results already available for PGL+ can be used as a basis for ex-
ploring such possibilities in the context of DePGL+. It must be also noted that
we have not introduced default negation in DePGL+, even though this form
of negation is available in DeLP [21] (where an extended literal not p is proven
iff the literal p fails to be ultimately acceptable). We are currently exploring
the inclusion of default negation into our formalism. On the other hand, Cam-
inada & Amgoud [13] identify anomalies in several argumentation formalisms
and provide an interesting solution in terms of rationality postulates which
–the authors claim– should hold in any well-defined argumentative system.
In [2] we have started a preliminary analysis for this problem in the context
of P-DeLP [18], and currently part of our research is focused on this issue. In
particular, we are formalizing a new conceptualization of what warranted and
blocked goals with respect a program should be. This new approach, where
warranted and blocked goals are attached with degrees in a similar way of [28],
addresses all rationality postulates proposed in [13] without the need of ex-
tending the original program with the transposed versions of all strict rules.

As for the knowledge representation capabilities of DePGL+, the formalism
proposed has some representation limitations due to the restriction of allowing
only unary predicates. Clearly, having an underlying full predicate logic would
make the framework more powerful. Indeed, PGL+∀, the first order extension
of PGL+, has been already developed in [1], so it remains as an interesting
future work to extend the argumentative framework over PGL+∀. Given that
this would considerably increase the technical complexity of the paper without
providing new conceptual insights, we also leave it as a future task to develop.
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[14] C. I. Chesñevar, A. Maguitman, and R. Loui. Logical Models of Argument.
ACM Computing Surveys, 32(4):337–383, December 2000.
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