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Abstract. Robust object recognition is one of the most challenging topics in com-
puter vision. In the last years promising results have been obtained using local re-
gions and descriptors to characterize and learn objects. One of these approaches is
the one proposed by Lowe in [1]. In this work we compare different region detec-
tors in the context of object recognition under different image transformations such
as illumination, scale and rotation. Additionally, we propose two extensions to the
original object recognition scheme: a Bayesian model that uses knowledge about
region detector robustness to reject more unlikely hypotheses and a final verifica-
tion process to check that all final hypotheses are coherent to each other.
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1. Introduction

Since its beginnings, object recognition has been amongst the most important objectives
of computer vision. One of the main issues to solve this challenge is finding new ways
to represent objects that allow a reliable recognition under a wide range of variations in
lightning, pose or noise. Lately, one of the most successful approaches to this problem
has been the use of local feature regions to characterize and learn objects.

Local feature regions correspond to interesting elements of an image, which can be
detected under larger changes in viewpoint, scale and illumination. Many different types
of feature region detectors have been developed recently [1,2,3,4]. Mikolajczyk in [5]
reviewed the state of the art of these affine covariant region detectors individually.

Lowe developed in [6,1] a object recognition scheme that uses SIFT points (Scale In-
variant Feature Transform) to learn and recognize objects. Matches between the learned
object models and the new image are computed and refined through various stages. This
approach achieved good results detecting previously learned objects in cluttered environ-
ments with changes in pose and with partial occlusion.

In this work we use this scheme with the region detectors that give better results
in the comparison done by Mikolajczyk et al. and the SIFT descriptor to test its per-
formance in a object recognition task under changes in lightning, pose and scale. For
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our experiments we use the well known object databases ALOI [7], COIL-100 [8] and
GroundTruth100-for-COIL [9].

Additionally we propose two improvements to the original Lowe recognition
scheme: a Bayesian model that calculates hypothesis probability using knowledge about
the robustness of regions detectors to different transformations and a final verification
process to asses that all final hypotheses are coherent to each other.

The rest of the paper is structured as follows: In Section 2 we explain the object
recognition method developed by Lowe and our proposed enhancement. Then, in Section
3 we detail the experiments and provide an analysis of the results. Finally, in section 4
we discuss the conclusions and some lines of future research.

2. Object detection scheme

In this section we briefly describe the object detection scheme proposed by Lowe in [6,1]
and our proposed modifications. An overview of this method can be seen in Fig. 1

2.1. Local region extraction

The first step in the object recognition scheme is to detect and describe the local interest
regions in model and test images. Lowe proposed in [6,1] its detector and descriptor:
the Difference-of-Gaussian detector (DoG’s) and the Scale Invariant Feature Transform
(SIFT) respectively. In our approach, in addition to the DoG’s regions, we wanted to test
the performance of the object recognition scheme with other local regions. Mikolajczyk
et al. compared in [5] some of the latest affine-covariant region detectors. Based on this
comparison we have chosen the three region detectors that obtained better results: the
Harris-Affine [2], the Hessian-Affine [2] and the MSER (Maximally Stable Extremal
Regions) [3]. We use all these detectors combined or separated to extract the different
interest image regions.

In order to match different occurrences of an interest region it is necessary to use a
local descriptor to characterize it. In this work , as in the original scheme, we have used
the SIFT descriptor. This descriptor divides the local region into several sub-regions and
computes histograms of the orientations of the gradient for every sub-region. The values
of all bins of the histograms are then concatenated, forming a descriptor vector of 128
dimensions.

2.2. Descriptor matching

Here we explain the descriptor matching process used to identify different object in-
stances in test images by matching image descriptors to an object descriptor database
that stores the object models.
Descriptors from a test image are matched to descriptors stored in the database using
Euclidean distance. Each new local descriptor is matched against its nearest neighbour
in the model database. Then, the second nearest neighbour is used to decide if the match
is valid or if it is a false correspondence: if the first and the second nearest neighbours
are very close, the match is considered incorrect. Namely:

NN2

NN1
> 0.8, (1)



Where NN1 is the distance to the first nearest neighbour, NN2 is the distance to the
second nearest neighbour, and 0.8 is a threshold value determined experimentally by
Lowe [1]. Descriptors are efficiently matched using a k-d tree structure and the Best-Bin-
First algorithm. As a result of this process, a set of matches between models and the test
image is found. These matches are the first hypotheses about which objects appear in the
new image. An example of these preliminary matches can be seen in Fig.2.

2.3. Clustering and pose estimation algorithms

In this stage the scheme combines different clustering and pose estimation algorithms
to find consistent sets of descriptor matches within the initial matches set and give an
estimation of the transformation occurred. We propose two modifications to the original
scheme: a bayesian model combined with the RANSAC algorithm to consider hypothesis
probabilities given a transformation and a process of verification of the final hypotheses.

Typically, the initial set of matches coming from the descriptor matching process
is still contaminated with correspondences that come from other objects or background
texture. To discard most of the false matches and distinguish between different object
instances, the next step is a clustering with a generalised Hough transform. In this step,
the matches belonging to the same model are clustered according to its scale, position
and orientation. Each cluster with three or more matches is an hypothesis and is subject
to further verification. Since each match votes for more than one bin (the selected bin and
its adjacent) matches may appear in more than one hypothesis. These repeated matches

Figure 1. Diagram of the detection scheme.

Figure 2. Example of execution where the final hypotheses verification step detects two hypotheses that refers
to the same object instance



will be used in the last verification hypothesis step to detect hypothesis that refer to the
same object instance and keep only the one which has higher robustness and support.

Next, for all clusters with three or more correspondences, the RANSAC algorithm
is used to obtain an estimation of the object pose and identify the remaining outlier if
any (see Fig.2 for an example of outliers, displayed as red lines, detected by RANSAC).
Although typically the model parameters estimated by RANSAC are not very precise,
it is used due to its high tolerance to outliers (it has a breakdown of 50%). Finally,
RANSAC best hypotheses inliers are used in the reweighted least squares method (IRLS)
to recompute the estimated model parameters accurately.

2.3.1. RANSAC with Bayesian Model

In this section we propose a modification over RANSAC to improve pose estimation
results. In the pose estimation process sometimes the correct hypothesis is discarded
in favour of a more supported, yet improbable, hypothesis. We define an improbable
hypothesis as one that proposes a transformation where detectors are know to have very
low repeatability rates. However we observe that given a number of matches between an
object and an instance not all pose estimation hypotheses are feasible or equiprobable.
Typically RANSAC returns as best hypothesis the one that maximizes the number of
inliers or the hypothesis with the least median residual. In our approach we propose to
modify these functions to consider not only that the hypothesis gets support from the
input data set but also the hypothesis probability given that data set (Eq. 2).

VH∗ = VH · (1 + P (H̄ | |D|)) (2)

where VH is the typical cost function of RANSAC that calculates how good is one hy-
pothesis, H is the transformation estimation hypothesis and |D| is the cardinality of the
set of matches that support it.

We propose a bayesian model to calculate the probability of an hypothesis given a
set of matches which uses as prior probabilities the expected detector repeatability rates
under different transformations,

P (H | |D|) =
P (H) · P (|D| | H)

P (|D|)
(3)

where H is the pose estimation hypothesis and |D| is the cardinality of the set
matches that support H . We consider P (|D|) equiprobable given a model and we set its
value to 1

|Dm| where |Dm| is the number of descriptors contained in the model. We also
define all the hypotheses space as equiprobable (P (H)).
As the object recognition system can use more than one region detector with different ro-
bustness and capabilities, we define P (|D| | H) in a more general form where the prob-
abilities are calculated for each detector and weighted by its presence in the descriptor
matches set:

P (|D| | H) =
∑

i∈detectors

pi · P (|Di| | H), (4)

where pi is the percentage of matches with regions type i (notice that
∑

i∈detectors
pi =

1) , |Di| is the cardinality of the set of matches using the region detector i and detectors is
the set of all detectors used in the extraction of image characteristic regions.



Given an hypothesis of the transformation occurred, the probability that the system
retrieves a number of matches depends on the robustness of the detectors to that trans-
formation. Hence we propose to define P (|D| | H) in function of the results of the ex-
periments described in detail in Section 3 (see Fig.4 and Fig. 5 for experiment results).
The repeatability rate expected for each detector is obtained interpolating the result value
of the two closer sampled points of the transformation space in our experiments. The
hypothesis probability distribution is modeled using a normal distribution with a mean
equal to the number of matches we expect to have (the product between the percentage
expected and the total number of regions from the model image) and a variance equal to
a half of the mean. The final hypothesis probability is obtained by adding the hypothe-
sis probability calculated for each detector separately weighted by the percentage of the
regions extracted with that detector in the input data.

2.4. Final hypotheses verification step

In our experiments we observe that because of in the Hough transform matches can be
duplicated in different clusters, final hypotheses can present a non-disjoint set of support
data (some repeated matches). To solve this, it is not acceptable to keep just one hypoth-
esis and discard the rest, because we would not consider that an object can have more
than one instance in the image. However, since a descriptor match can belong to only
one object instance, we can assume that if the inlier data sets of different hypotheses are
not disjoint then they must refer to the same object or only one of the hypotheses can
be the correct. In that case we propose to keep the hypothesis with the highest number
of inliers or, if several hypotheses have an equal number of inliers, the one with less
transformation error. To illustrate this process, see Fig. 2 where the Hough Transform
ends with two clusters of valid matches from the initial set. These both hypotheses reach
the final verification step with different pose estimations but since they have matches in
common (displayed as lines between the two images) the scheme detects that they refer
to the same object instance and discard the hypothesis with less number of matches.

3. Experimental Results

First we explain the experiments designed to assess the robustness and capabilities of
the different region detectors and the descriptor used. The empirical results obtained in
this test are used as prior probabilities in the Bayesian Model. Secondly we present the
experimental results for our object recognition and pose estimation scheme by evaluating
its performance with public image databases.

3.1. Region Repeatability Results

As explained in [10] one of the characteristics to measure the performance of a good
region detector is repeatability. We evaluate the repeatability rates of each detector under
three different transformations: illumination variation, scale change and image rotation.
The measure of repeatability takes into account the uncertainty of detection. A point xi

detected in image Ii is repeated in image Ij if the corresponding point xj is detected in
image Ij where xj is defined as:

{xj} = {xi | Ti · xi ∈ Ij} (5)



(a) Object data set (b) Illumination repeatability results

Figure 3. Illumination test

A repeated point is in general not detected exactly at position xj , but rather in some
neighbourhood of xj . The size of this neighbourhood is denoted by e and repeatability
within this neighbourhood is called e-repeatability. The set of points pairs (xi, xj) which
correspond within an e-neighbourhood is defined by :

Rj(e) = {(xi, xj) | dist(Ti · xi, xj) < e} (6)

We set parameter e = 1.5, as is proposed in [10] for all experiments.

3.1.1. Illumination Variation

In this experiment we evaluate the repeatability rate of each region detector for a set of
scenes where an object is presented under different illumination conditions. We use the
ALOI (Amsterdam Library of Object Images) image dataset which provide one-thousand
small objects recorded under 24 different illumination conditions (Figure 3(a)).

Fig. 3(b) depicts the means over the tests done with 100 different objects and their
respective 24 images grouped by illumination variation. The repeatability rate varies con-
siderably among different illumination changes. Observe that although different detec-
tors generally present similar results, significant differences appear in tests with soft illu-
mination changes (L2,L6). In these cases Hessian and Harris detectors produce consid-
erably better results than MSER and DOG’s.

3.1.2. Scale Changes

In this experiment we assess the repeatability rate of the detectors under 10 different
scales (1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25 and 3.5).
Fig. 4 depicts means over the 50 tests run using objects from the ALOI image database.
Observe that significant differences appear among different detectors. DoG’s detector
produces better results than all other detectors keeping their repeatability rate less af-
fected among the scale variations applied. MSER detector achieves higher rates than
Hessian and Harris, these last two reporting nearly identical results.



Figure 4. Scale repeatability results

Figure 5. Rotation repetability results

3.1.3. Image Rotation

In this experiment we evaluate the repeatability rate of the detectors under different ro-
tation angles. We report means over 50 tests run using images of objects from the ALOI
image database. Images are rotated at 6 different angles: 0 ◦, 20 ◦, 60 ◦, 80 ◦, 120 ◦ and
260 ◦ . As you can see in Fig. 5 the detector repeatability rates are independent of the rota-
tion angle applied producing similar results among all rotation angles. However rates ob-
tained when some rotation is applied to the image varies among detectors. While DoG’s
and MSER produce results close to 80%, Harris and Hessian present a repeatability rate
of only 60%.

3.2. Number of regions extracted by detector

In this experiment we aim to compare the number of regions extracted by each detec-
tor in 10 different image resolutions. Usually objects represent small regions in images,
therefore detectors that retrieve few regions can have problems in order to describe an



object present in a frame. The results reported in Fig. 6 are the means over 50 tests run
over different images. Observe that we have a linear relationship between the number of
regions extracted by each detector and the image resolution. Furthermore significant dif-
ferences appear among the number of regions extracted by each detector: DoG’s always
find the highest number of regions, followed by Hessian, Harris and MSER.

Figure 6. Number of regions extracted per image resolution

3.3. Object recognition and pose estimation experiments

In this experiment we aim to assess the performance of the scheme described in section
2 in the identification of which objects are present in an image scene (object recognition)
and which is its transformation with respect to the model (pose estimation). We use the
GroundTruth100-for-COIL image database which is composed of 100 images each one
with different objects instances from the COIL-100 object image database. Additionally,
this database includes information about which objects appear in each image and the
scale change and rotation angle applied in each case.
Fig. 7 (left) depicts the percentage of objects correctly detected using each single detec-
tor and all detectors combined. Furthermore the figure reports the percentage of correct
identified objects for which the object recognition scheme has been capable of generat-
ing an estimation of the geometric transformation occurred (a minimum of matches are
required in each step of the scheme to calculate the pose estimation ).
As you can see in Fig. 7 (right) DoG’s produces the highest rate of correct identified
objects (93%) , followed by Harris and Hessian detectors (38% and 43% respectively ).
MSER detector reports the worst results with a very poor percentage of correct matches
(13%). It also shows that when all detectors are used to detect object regions the final
number of matches increases (99%). These results are correlated with the number of re-
gions found by each detector rather than the repeatability rates reported in our experi-
ments (see section 3.1). Since the image resolution used is quite low, and consequently
regions corresponding to objects have small sizes, detectors that extract fewer numbers
of regions are likely to have low performances since they detect very few regions or none
for each object. Although we could have used images with higher resolutions usually
object recognition applications (robot navigation, video surveillance ...) require to work



Figure 7. Object recognition results grouped by region detectors.

with limited image sizes. Hence, a suitable detector for object recognition is usually re-
quired to achieve good results in poor quality images. Consequently DoG detector is
more suitable to be used in that conditions than other detectors like MSER which also
present good repeatibily rates. We can conclude that when using a recognition object
scheme with high tolerance to outliers best performances are achieved by detectors that
find higher number of regions (although they have more false matches) than very reliable
detectors that give fewer matches.
In that experiment we also measure the accuracy of the pose estimation provided by the
object recognition scheme. The results (see Fig. 7) show the median percent error pro-
duced in the estimation of the scale change and rotation occurred between the model and
the instance. These results match with the scale and rotation repeatability rates reported
in our experiments (see Section 3.2 ) since matches over DoG’s and MSER regions allow
more accurate scale and rotation approximation than the ones obtained with Harris and
Hessian regions. Finally we also observe that when we use all detectors the results are
quite similar to the ones produced using only DoG’s regions due to the higher number of
DoG’s regions compared to other detectors.

4. Conclusions

In this work we have evaluated the performance of various state-of-the-art region de-
tectors in the Lowe objection recognition scheme. According to our experiments, region
detectors that find a higher number of regions obtain better results in object recognition
tasks. From these results we also observe that detectors achieve different performances
under different kind of transformations. We also conclude that in order to choose a de-
scriptor is not only important its repeatability also the number of regions that it extracts
from the image. Very reliable detectors with high levels of repeatability are not suit-
able for object description because they extract very few regions per image. Finally we
observe that the combination of different region detectors improves object recognition
results. Furthermore, we propose two modifications to the original scheme: a bayesian
model that uses region detector robustness as prior knowledge to reject improbable trans-
formations and a process to verify final hypothesis. Our work argues in favour of re-
searching how to combine region detectors taking into account the information about its



robustness under different transformations. Finally, as future work, a formal comparison
of this new approach with respect to the original object recognition scheme should be
provided.
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