
Winner Determination for Mixed Multi-unit Combinatorial
Auctions via Petri Nets

Andrea Giovannucci
J. A. Rodriguez-Aguilar

IIIA-CSIC

Jesus Cerquides
Universitat de Barcelona

Ulle Endriss
University of Amsterdam

ABSTRACT
Mixed Multi-Unit Combinatorial Auctions (MMUCAs) al-
low agents to bid for bundles of goods to buy, goods to sell,
and transformations of goods. In particular, MMUCAs offer
a high potential to be employed for the automated assembly
of supply chains of agents offering goods and services, and
in general MMUCAs extend and generalise several types of
combinatorial auctions. Here we provide a formalism, based
on an extension of Petri Nets, with which MMUCAs, and
therefore all auction types subsumed by MMUCAs —and in
particular combinatorial auctions for supply chain formation
(SCF)–, can be formally analysed. As a second direct ben-
efit, consequence of the provided mapping to Petri Nets, we
manage to dramatically reduce the number of decision vari-
ables involved in the optimisation problem posed by MMU-
CAs from quadratic to linear for a wide class of MMUCA
Winner Determination Problems (WDPs). Hence, we also
make headway in the practical application of MMUCAs, and
in particular to SCF.

General Terms
Algorithms, Economics

Keywords
Petri nets, Supply Chain Formation, Combinatorial Auc-
tions, Integer Programming

1. INTRODUCTION
A combinatorial auction (CA) is an auction where bidders

can buy (or sell) entire bundles of goods in a single trans-
action [2]. Although computationally very complex, selling
items in bundles has the great advantage of eliminating the
risk for a bidder of not being able to obtain complementary
items at a reasonable price in a follow-up auction (think of a
combinatorial auction for a pair of shoes, as opposed to two
consecutive single-item auctions for each of the individual
shoes). The study of the mathematical, game-theoretical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07 May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

and algorithmic properties of combinatorial auctions has re-
cently become a popular research topic in AI. This is due
not only to their relevance to important application areas
such as electronic commerce or supply chain management,
but also to the range of deep research questions raised by
this auction model.

In particular, supply chain formation (SCF) appears as a
very promising application area where strong complementar-
ities arise. Indeed, Walsh et al. [6] observe that production
technologies often have to deal with strong complementar-
ities: the inputs and outputs of a production process are
strongly connected since a producer may risk to produce
unsold goods, as well as fail to produce already sold goods
when failing to obtain the inputs, thus losing credibility on
the market. Hence, a supply chain can be regarded as an
intricate network of producers (entities transforming input
goods into output goods at a certain cost), and consumers
interacting in a complex way. Nevertheless, the comple-
mentarities arising in SCF are different from the ones we
do find in CAs. The complementarities in SCF arise be-
cause of the preconditions and postconditions of production
processes: precedences and dependences along the supply
chain must be taken into account. Hence, whilst in CAs
the complementarities can be simply represented as rela-
tionships among goods, in SCF the complementarities in-
volve not only goods, but also interrelated transformation
(production) relationships along several levels of the supply
chain.

In order to automate SCF, Walsh et al. [6] have intro-
duced the notion of task dependency network (TDN) as a
way of introducing such complementarities. Nonetheless, al-
though TDNs are indeed valuable to model SCF, it is our be-
lief that further requirements (namely expressiveness, com-
putability, and formal analysis) must be addressed to fully
support automated SCF.

As to expressiveness requirements, we shall need: to rep-
resent complementarities among production processes (e.g.
if iron and copper are melt together in the same oven, the
transformation can be offered at a lower cost than the service
of transforming iron and copper separately); to represent
production relationships with multiple output goods (e.g.
the quartering of a cow to sell its parts); to offer some bid-
ding language to express combinations of bids; to consider
the notion of free disposal (buy goods or transformations
that remain unused); to support the specification of the con-
figuration to end up with (a supply chain manager may be
interested in finishing the SCF process with a given surplus
of goods); to support a wide range of supply chain topologies

beyond acyclic nets. As to computational requirements, we
must ensure computational tractability of SCF while pre-
serving optimality. Finally, as to formal requirements, we
advocate for counting on a formalism that supports the for-
mal study of structural and behavioural properties of a sup-
ply chain.

To achieve these goals, we depart from the work in [1],
which introduces a generalisation of the standard model of
combinatorial auction and discusses the issues of bidding
and winner determination. The winner determination is the
problem, faced by the auctioneer, of choosing which goods
to award to which bidder so as to maximise its revenue.
Bidding is the process of transmitting one’s valuation func-
tion over the set of goods on offer to the auctioneer (truth-
fully or otherwise). This new auction extends and gener-
alises a whole range of combinatorial auctions: single-unit
CAs, multi-unit CA, double CAs, and supply chain forma-
tion CAs. It provides a bidding language that can express
several types of complex bids, and allows for bids on combi-
nations of production processes, as well as a general WDP
solver working on any network topology. This auction model
is called mixed multi-unit combinatorial auction (MMUCA).
Notice that this must not to be confused with a double auc-
tion [2]. In particular, the order in which agents consume
and produce goods is of central importance in our model
and affects the definition of the winner determination prob-
lem. Notice that the use of MMUCAs shall guarantee the
satisfaction of the expressiveness requirements above.

In order to provide a formalism to reason about MMU-
CAs, and therefore also about SCF, we firstly define a new
type of Petri Nets [4], the so-called Weighted Transition
Petri Nets (WTPN), to express the notion of transformation
(production) cost. Petri nets are a well known graphical tool
to analyse discrete dynamical systems. We resort to Petri
Nets because they can naturally help capture the notions of
transformation; they have a well-defined semantics that can
naturally accommodate the notion of sequence of transfor-
mations; they have an integrated description of both states
and actions to characterise the search space where transfor-
mations occur; they have a large number of formal analysis
methods that allow the investigation of structural and dy-
namic properties of the net; they have a graphical represen-
tation that is intuitively very appealing to study problems
related to the topology of the supply chain. Secondly, we
introduce and solve a new type of reachability problem over
WTPN to which we map the MMUCA WDP. Two major
benefits, and therefore contributions, stem from this process.
First of all, as a main benefit, we do manage to provide a
formalism with which MMUCAs, and therefore all auction
types subsumed by MMUCAs —and in particular CAs for
SCF–, can be formally analysed. For instance, topological
problems of a supply chain can be readily analysed by means
of adapting Petri Nets tools. As a second benefit, direct con-
sequence of the provided mapping to WTPNs, we manage to
dramatically reduce the number of decision variables in the
optimisation problem posed by MMUCAs from quadratic to
linear for a wide class of MMUCA WDPs. Hence, we make
headway in the practical application of MMUCAs, and in
particular to SCF as intended. Both the formalism and the
computational reduction allow us to comply with the formal
and computational requirements mentioned above.

The paper is organised as follows. In Section 2 we describe
MMUCAs and recall the Integer Programming (IP) formula-

tion of their WDP [1]. In section 3 we introduce a new type
of Petri Nets, the so-called Petri Nets with Weighted Tran-
sitions (WTPN). Furthermore, we define and solve a new
reachability problem over WTPN, the Constrained Maxi-
mum Weight Occurrence Sequence Problem (CMWOSP).
Next, in section 4 we show the equivalence between the
MMUCAs WDP and the CMWOSP. Finally, section 5 con-
cludes with a discussion of related work and an outlook on
future work.

2. MMUCA
Let G be the finite set of all the types of goods. A trans-

formation is a pair of multisets over G: (I,O) ∈ N
G × N

G.
An agent offering the transformation (I,O) declares that
it can deliver O after having received I. In our setting,
bidders can offer any number of such transformations, in-
cluding several copies of the same transformation. That is,
agents will be negotiating over multisets of transformations

D ∈ N
(N

G×N
G). For example, {({ }, {a}), ({b}, {c})} means

that the agent in question is able to deliver a (no input re-
quired) and that it is able to deliver c if provided with b.
Note that this is not the same as {({b}, {a, c})}. In the for-
mer case, if another agent is able to produce b if provided
with a, we can get c from nothing; in the latter case this
would not work.

In an MMUCA, agents negotiate over bundles of transfor-

mations. Hence, a valuation v : N
(N

G×N
G) → R is a (typi-

cally partial) mapping from multisets of transformations to
the real numbers. Intuitively, v(D) = p means that the agent
equipped with valuation v is willing to make a payment of p

in return for being allocated all the transformations in D (in
case p is a negative number, this means that the agent will
accept the deal if it receives an amount of |p|). For instance,
v({({oven , dough}, {oven , cake})}) = −20 means that I can
produce a cake for $20 if given an oven and some dough,
and that I will return the oven again afterwards

An atomic bid b = ({(I1,O1), . . . , (In,On)}, p, l) speci-
fies a finite multiset of finite transformations, a price p, and
a bid owner identifier l. To make the semantics of such an
atomic bid precise, we need to decide whether or not we
want to make a free disposal assumption. We can distin-
guish two types of free disposal. As to free disposal at the
bidder’s side, there are two possible free disposals sub-types:
good free disposal and transformation free disposal. Good
free disposal means that a bidder would always be prepared
to accept more goods and give fewer goods away, without
requiring a change in payment; whereas transformation free
disposal means that it is allowed that some transformations
are sold but not employed in the transformation process.
As to free disposal at the auctioneer’s side, we only have
good free disposal, meaning that the auctioneer may accept
more and give away fewer goods. Both these free disposals
affect the definition of what constitutes a valid solution to
the winner determination problem.

A suitable bidding language should allow a bidder to en-
code choices between alternative bids and the like [5]. Infor-
mally, an OR-combination of several bids signifies that the
bidder would be happy to accept any number of the sub-bids
specified, if paid the sum of the associated prices. An XOR-
combination of bids expresses that the bidder is prepared
to accept at most one of them. More details about bidding
languages for MMUCAs can be found in [1].

The input to the WDP consists of a complex bid expres-
sion for each bidder, a multiset Uin of goods the auctioneer
holds to begin with, and a multiset Uout of goods the auc-
tioneer expects to end up with.

In standard combinatorial auctions, a solution to the
WDP is a set of atomic bids to accept. In our setting,
however, the order in which the auctioneer “uses” the ac-
cepted transformations matters. For instance, if the auction-
eer holds a to begin with, then checking whether accepting
the two bids Bid1 = ({a}, {b}, 10) and Bid2 = ({b}, {c}, 20)
is feasible involves realising that we have to use Bid1 before
Bid2. Thus, a solution to the WDP will be a sequence of
transformations. A valid solution has to meet two condi-
tions:
(1) Bidder constraints: The multiset of transformations in
the sequence has to respect the bids submitted by the bid-
ders. This is a standard requirement. For instance, if a
bidder submits an XOR-combination of transformations, at
most one of them may be accepted. With no transformation
free disposal, if a bidder submits an offer over a bundle of
transformations, all of them must be employed in the trans-
formation sequence, whereas in the case of transformation
free disposal any number of the transformations in the bun-
dle can be included into the solution sequence, but the price
to be paid is the total price of the bid.
(2) Auctioneer constraints: The sequence of transformations
has to be implementable: (a) check that Uin is a superset
of the input set of the first transformation; (b) then update
the set of goods held by the auctioneer after each transfor-
mation and check that it is a superset of the input set of the
next transformation; (c) finally check that the set of items
held by the auctioneer in the end is a superset (the same
set in the case of no good free disposal) of Uout. An optimal
solution is a valid solution that maximises the sum of prices
associated with the atomic bids selected.

For the formal definition of the WDP, we restrict our-
selves to bids in the XOR-language, which is known to be
fully expressive for MMUCAs [1]. However, the results can
easily be extended to other bidding languages, in particular
languages incl uding an OR-operator. Let B be the set of
all atomic bids. Recall that an atomic bid b = (Db, pb, lb)
consists of a multiset of transformations, a price, and a label

indicating the owner of the bid, i.e. Db ∈ N
(N

G×N
G), pb ∈ R,

and lb ∈ L. L is the set of bidders. Bl is the set of all bids
submitted by bidder l ∈ L.

For each bid b, let tbk be a unique label for the kth trans-
formation in Db (for some arbitrary but fixed ordering of
Db). Let (Ibk,Obk) be the actual transformation labelled by
tbk. Finally, let T be the set of all tbk; that is, |T | is the
overall number of transformations mentioned anywhere in
the bids.

The auctioneer has to decide which transformations to ac-
cept and in which order to implement them. Thus, we define
a decision variable xm

bk ∈ {0, 1}, where xm
bk takes on value 1

if the transformation tbk is selected at the mth position of
the solution sequence, and 0 otherwise. We also introduce
several sets of auxiliary binary decision variables: xm takes
on value 1 iff any transition at all is selected at the mth
position of the solution sequence; xbk takes on value 1 iff
transition tbk is present anywhere in the sequence; and xb

takes on value 1 iff any of the transformations in the the
atomic bid b are selected. Let (Im,Om) be the mth trans-
formation in the solution sequence, i.e. the tb,k such that

xm
b,k = 1.
Given this sequence, we can obtain the set of goods held

by the auctioneer after each transformation. For instance,
say that the auctioneer begins with Uin = {a, a, d, d}. If
we apply the first transformation (I1,O1) = ({a, a}, {c})
(from two units of a produce one unit of c), the auctioneer
ends up with M1 = {c, d, d}. Formally, we can express this
operation as an equation over multisets:

M1(g) = Uin(g) + O1(g) − I1(g)

The application of the transformation is only possible be-
cause two units of good a are available. This condition maps
to:

Uin(g) ≥ I1(g)

Let Mm ∈ N
G be the goods held by the auctioneer after

applying the mth transformation. We can generalise the
two equations above as follows (let M0 = Uin):

Mm(g) = Mm−1(g) + Om(g) − Im(g) (1)

Im(g) ≤ Mm−1(g) (2)

Given this, notice that not all the solution sequences will be
valid. In what follows we express as linear equations all the
constraints that a valid solution sequence must fulfil.

(1) xb ≥ xbk (∀b ∈ B, k = 1, 2, ..., |Db|). Selecting a trans-
formation in a bid b implies selecting bid b. Recall that
xb = 1 means that bid b has been selected. In case of
no transformation free disposal, simply substitute ≥
with =.

(2)
P

b∈Bl
xb ≤ 1 (∀l ∈ L). The atomic bids submitted

by each bidder are mutually exclusive (XOR).

(3) xbk =
P|T |

m=1 xm
bk (∀b ∈ B, k = 1, 2, ..., |Db|). A trans-

formation can be selected at most for a single position
in the solution sequence.

(4) xm =
P

b∈B

P|Db|
k=1 xm

bk (m = 1, 2, ..., |T |). At most
one transformation is selected at each position of the
solution sequence.

(5) xm ≥ xm+1 (m = 1, 2, ..., |T |). There should be no
gaps in the sequence.

(6) We capture the condition expressed by equations (1)
and (2). These must hold for each transformation
(Im,Om) in the solution sequence and each good
g ∈ G. This condition ensures that all transforma-
tions have enough input goods available.

Firstly, the multiset of goods held by the auctioneer af-
ter performing m steps of the transformation sequence
can be computed recursively, by equation ((1)), as fol-
lows:

Mm(g) = Uin(g) +

m
X

ℓ=1

X

b∈B

|Db|
X

k=1

x
ℓ
bk · (Obk(g) − Ibk(g))

(∀g ∈ G, m = 1, 2, ..., |T |) (3)

Second, we formulate the constraint enforcing that
enough goods must be available at step m to perform
the next transformation (cf. equation ((2))):

X

b∈B

|Db|
X

k=1

x
m
bk · Ibk(g) ≤ Mm−1(g) (∀g ∈ G, ∀m) (4)

(7) M|T |(g) ≥ Uout(g) (∀g ∈ G). After having performed
all the selected transformations, the set of goods held
by the auctioneer must be a superset of the final goods.
This works correctly, because M|T |(g) = Mm(g) for
the highest m with xm = 1. In case of no goods free
disposal simply substitute ≥ by =.

Therefore, solving the WDP for MMUCAs with XOR-bids
amounts to maximising

P

b∈B xb · pb, while fulfilling con-
straints (1)–(7).

Finally, a valid solution Σ (an optimal solution sequence)
is obtained from the solution of the IP by making transition
tbk the mth element of the solution sequence iff xm

bk = 1.
The number of decision variables in the above integer pro-

gram is of the order of |T |2 (corresponding to xm
bk). This rep-

resents a serious computational cost. Thus, in what follows,
we try to reduce the number of variables required to solve
the problem at the price of reducing the class of solvable
problems.

3. PETRI NETS WITH WEIGHTED TRAN-
SITIONS (WTPN)

In this section we introduce and extend the concept of
Place Transition Net (PTN). Based on such an extension,
we provide the definition of a new optimisation problem on
Petri nets.

3.1 Background on Petri Nets
Place Transition Nets, also known as Petri Nets [4], are

a powerful mathematical and graphical tool for the descrip-
tion of discrete distributed systems. An example of Petri
net is showed in figure 1. A PTN is a bipartite graph: it has
place nodes, transition nodes, and directed arcs connecting
places to transitions and transitions to places. The places
connected to a transition by means of input arcs are called
the input places of the transition, and the ones connected
by outgoing arcs from the transition are the output places
of the transition. Places can contain tokens. A distribution
of tokens over the set of places is called a marking, and it
stands for the state of the Petri net. We say that a transition
is enabled in a marking if all its input places contain tokens
in that marking. If the transition is enabled it can fire con-
suming tokens of the input places and producing tokens in
the output places.

p2 •p3

••p1

t1

2

1

2

Figure 1: Example of a Place Transition Net

More formally, following [4], a Place/Transition Net
Structure (PTNS) is a tuple N = (P, T, A,E) such that: (1)
P is a set of places; (2) T is a finite set of transitions such
that P ∩T = { }; (3) A ⊆ (P ×T)∪ (T ×P) is a set of arcs;
(4) E : A → N

+ is an arc expression function (it represents
the weights associated to the arcs, it stands for the number
of input/output tokens consumed/produced by the transi-
tion). A marking M : P → N of a PTNS is a distribution of
tokens over P . M(p) = k means that in marking M place

p ∈ P contains k tokens. The marking of picture 1 is rep-
resented by M(p1) = 2,M(p2) = 0,M(p3) = 1. A PTNS
with a given initial marking M0 is called a Place/Transition
Net (PTN). The graphical representation of a PTNS is com-
posed of the following graphical elements: places are repre-
sented as circles, transitions are represented as rectangles,
arcs connect places to transitions or transitions to places,
and E labels arcs with values.

A transition t ∈ T is said to be enabled if each input
place p of t is marked with at least E(p, t) tokens. E(p, t)
represents the weight of the arc connecting p to t. More
formally, a transition p is enabled in a marking M iff:

E(p, t) ≤ M(p) ∀p ∈ P (5)

The equation above enforces that enough tokens are present
in every input place of t1. For instance in figure 1 transition
t1 is enabled since E(p1, t1) = 2 ≤ M(p1) = 2.

An enabled transition may or may not fire. A firing of an
enabled transition removes E(p, t) tokens from each input
place p and adds E(t, p) tokens to each output place p. A
firing of a transition t will change marking Mk−1 to a mark-
ing Mk. The new marking can be computed employing the
following equation:

Mk(p) = Mk−1(p) + Z(t, p) ∀p ∈ P (6)

where Z(t, p) = E(t, p) − E(p, t).
A sequence of firings will result in a series of markings. A

marking Mn is said to be reachable from a marking M0 if
there exists a sequence of firings transforming M0 into Mn.
All the markings reachable from M0 in a PTN S are noted
as R(S,M0). A finite firing sequence is a finite sequence of
transitions and markings:J = M0 t1 M1 . . . Mn−1 tn Mn

or simply J = t1 t2 . . . tn. In this case Mn is reachable
from M0, and we write M0[J > Mn. M0 is called the
start marking, while Mn is called the end marking.

Furthermore, the start and end markings are related by
the following equation:

∀p ∈ P Mn(p) = M0(p) +
X

t∈J

Z(t, p). (7)

For a Petri Net N with r transitions and n places, the
incidence matrix A = [ai,j] is an r × n matrix of inte-
gers and its typical entry is given by ai,j = a+

ij − a−
ij ,

where a+
ij = E(ti, pj) its the weight of the arc connect-

ing the ti transition to its output place pj place, whereas
a−

ij = E(pj, ti). Notice that in this new representation a

transition ti is enabled in a marking if a−
i,j ≤ M(pj). We

can represent a marking Mk as an n×1 column vector such
that the j − th entry of Mk represents the number of to-
kens present in place pj after the k− th firing in some firing
sequence. We also define the firing vector uk as a vector of
r − 1 zeros and a 1 in the i − th position indicating that
in marking Mk transition ti is fired. We can now express
equation (6) in matrix form:

Mk = Mk−1 + A
T
uk k = 1, 2, ... (8)

Say that Md is reachable from M0, then there exists a firing
sequence {u1, u2, ..., ud} bringing from M0 to Md. There-
fore, a necessary condition on reachability can be expressed

1Notice that for economy of notation we implicitly assume
that E(p, t) = 0 if (p, t) 6∈ A and E(t, p) = 0 if (t, p) 6∈ A.

in terms of a matrix equation:

M0[J > Md ⇒ (Md = M0 + A
T
x) (9)

where x =
Pd

k=1 uk is an r×1 column vector of nonnegative
integers and is called the firing count vector. The i−th entry
x[i] of the vector encodes the number of times a transition
ti must be fired to transform M0 into Md.

In [4], Murata shows that in an acyclic Petri Net (a net in
which no directed cycles exist), the previous condition is not
only necessary, but also sufficient. That is, if there exists a
solution to equation (9), an occurrence sequence reaching
Md from M0 is guaranteed to exist, and x represents its
firing count vector. In fact, Murata further extends the
class of petri nets for which the condition is still sufficient.
These particular nets (trap-circuit,siphon-circuit,TCC,and
SCC nets) have special topologies with particular types of
circuits. For such nets, the state equation represents all
the reachable states if the initial marking M0 satisfies some
constraints. Other efforts have been done for extending the
validity of the state equation to more classes of petri nets.
Due to lack of space, we cannot report all these results. Here
we just remark that a whole corpus of tools for analysing the
petri nets reachability problem can be directly imported to
solve our problem.

3.2 Adding Weights to Petri Nets
We can finally extend the notion of Petri net by associat-

ing a cost to each transition to obtain a Weighted Transition
Petri Net (WTPN). Thus, a WTPN is defined as a tuple
(P, T, A, E,M0, C) where:

• P, T, A,E,M0 are defined exactly as in a PTN.

• C : T → R is a cost function that associates a cost to
each transition.

A WTPN preserves all the properties of a PN but allows
the quantitative representation of the cost of an opera-
tion/transition. With this tool, we can define the notion
of cost CTS of a sequence of transitions J = {u1, u2, ..., ud}
by adding the costs of all the transitions in the sequence:

CTS(J) =

d
X

k=1

uk · cT = cT ·

d
X

k=1

uk = x
T · cT (10)

where cT is an r× 1 cost vector, in which the i− th element
is the cost associate to transition ti. Therefore, the cost
of each occurrence sequence is a linear function of its firing
count vector.

3.3 Constrained Maximum Weight Occur-
rence Sequence Problem

Since there is a cost associated to each transition, one may
be interested in finding a minimum/maximum cost firing
sequence leading from a given initial marking to a given
final marking. More importantly, one may be interested in
finding a maximum/minimum cost firing sequence leading
from a given initial marking M0 to a final marking Md that
fulfils a set of inequality constraints. For instance, we may
want to impose that in the final marking Md each place
contains exactly one token, formally Md(p) = 1,∀p ∈ P .
With this aim we define the Constrained Maximum Weight
Occurrence Sequence Problem (CMWOSP).

Definition 1 (CMWOSP). Given a WTPN S =
(P, T, A, E,M0, C), a set of inequality/equality constraints
that a final marking Md must fulfil, expressed as:

∀p ∈ P Md(p) ∼p hp (11)

where hp ∈ N and ∼p∈ {>,≥, =}2, find an occurrence se-
quence Jmax = {u1, u2, ..., ud} that brings the initial marking
M0 to a final marking Md such that: (1) Md fulfils all the
constraints in equation (11); and (2) Jmax maximises the
total cost CTS .

Lemma 1. Consider an WTPN S and the following inte-
ger program:

max x
T
cT (13)

subject to A
T
x + M0 ∼ h (14)

All the integer solutions xmax to this IP represent the fir-
ing count vectors of all the optimal solutions Jmax to the
CMWOSP defined by 〈∼,h〉 iff AT x+M0 represents all the
reachable states R(S,M0).

Proof. Notice that equation (14) simply imposes that
the end marking fulfils the constraints defined by 〈∼,h〉.
Now, the cost CTS(J) associated to the firing sequence rep-
resented by x is equivalent to xT cT (see equation (10)). This
is exactly the quantity being maximised in (13). As a result,
a solution x∗ to the IP defined by equations (13) and (14)
maximises the sum of the costs associated to fired transi-
tions, while ensuring that the final marking is reachable and
fulfils the constraints defined by 〈∼,h〉.

According to the results explained at the end of section 3.1,
it is possible to express the reachability set with the state
equation for a broad class of petri nets (e.g. acyclic, TCC,
..., etc.). In all these cases the integer program above is
solution to the CMWOSP. Hence, we solve the CMWOSP
problem in two steps. First, we determine the optimal fir-
ing count vector xJmax

by solving the Integer Linear Pro-
gram (ILP) in equations (13) and (14). Then, we construct
Jmax from xJmax

. Various techniques are available to solve
this problem [7]. In what follows we explain how to build
Jmax for acyclic nets. Let xJmax

be the solution of the ILP.
We can easily construct an occurrence sequence, with firing
count vector xJmax

, for which each step is enabled. Since S

is acyclic, we can establish a partial order among transitions
so that t1 < t2 iff t2 uses as input some output of t1. We
can construct an occurrence sequence Jmax by ordering the
transitions in the firing count vector xJmax

non-decreasingly
according to our partial ordering. Every step in the so or-
dered occurrence sequence is guaranteed to be enabled. The
occurrence sequence Jmax is consequently the solution to our
CMWOSP.

4. MAPPING MMUCA TO WTPN
In this section we demonstrate that an instance of the

MMUCA WDP can be transformed into an instance of the
CMWOSP problem. We introduce this mapping because it
allows, for some classes of WTPN, to reduce the number of
decision variables of the IP formulation.

2These inequations can be expressed in matrix form:

Md∼h (12)

The idea behind the transformation of the WDP into a
CMWOSP is that an atomic transformation can be viewed
as a transition in a WTPN. Consider the example in figure
1, and say that each place represents a good. Let p1 be
water H2O (each token represents a mole of water), p2 be
hydrogen H2, and p3 be oxygen O2. Transition t1 represents
an hydrolysis process: 2 moles of water are transformed into
1 mole of oxygen and two moles of hydrogen at the cost
associated to t1. Thus, a transition can graphically express
an atomic transformation in which the input places are the
input goods of the transformation, the output places are the
output goods of the transformation, and the transition cost
is the cost associated to the transformation. Equivalently,
a bid offering goods can be represented as a transition with
only output places, and a bid asking for goods is equivalent
to a transition with only input places.

Consider the example of figure 2, it represents all the bids
submitted within a MMUCA. Bid bid1 offers two moles of
water at the price of $10, bid bid2 the same at a price of
$14, bid bid3 is a bid on the hidrolisis process for $8. Bids
bid4 and bid5 represent the offers to buy the products of
the reaction for $23 and $25 respectively (the minus repre-
sents the fact that bidders pay money). In this example the
optimal solution is straightforward: first buy two moles of
water offered in bid1, then process the water through the
transformation offered in bid3, and then sell the products
of the reaction to bid bid5. The total gain of the supply
chain is 25 − (8 + 10) = $7. Notice carefully that this so-
lution is exactly the solution of the CMWOSP defined on
the WTPN of figure 2 with initial marking empty and des-
tination marking Md satisfying the following constraints:
Md(pH2O) ≥ 0,Md(pO2

) ≥ 0, and Md(pH2
) ≥ 03.

bid1 $10 bid2 $14

bid4−$23 bid5−$25

O2 H2

H2O

bid3$8

2

1

2

2

2

1
2

1 2

Figure 2: Example of a MMUCA in form of WTPN.

Given the example above we want to show that if we build
a Petri net joining all the atomic transformations received
within bids, we set the initial marking to the goods initially
available to the auctioneer, and we set some constraints on
the destination marking, the solution to the CMWOSP cor-
responds to the solution of the MMUCA WDP.

Informally this is the kind of mapping we intend to demon-
strate. We obtain several advantages from this mapping. We
can straightforwardly import a series of results and tools
valid for Petri nets, as for instance tools to analyse static
and behavioural properties of the net, tools to study the
reachability problem, etc. As a major benefit, in this pa-
per we manage to dramatically reduce the complexity of the
3In case of no free disposal replace ≥ with =.

WDP. We succeed in composing an IP solver with a number
of variables linear in the number of total atomic transfor-
mations. Recall that in the general case (see section 2) a
quadratic number of variable was required.

In the previous example we restricted ourselves to the
case in which providers can only submit one bids. We also
considered only bids over a single atomic transformation, i.e.
|Db| = 1. Next, we progressively relax all these constraints.
First of all, we explain how to represent a bid on a bundle
of transformations on a WTPN.

In a combinatorial bid on transformations we have to en-
sure that if at least an atomic transformation in a bid is
included in the solution sequence, the price that has to be
paid to (received by) the bidder is the price of the whole bid.
Therefore, we must guarantee the payment of the price pb

associated to a bid b, whenever one of the transformations in
it is selected. We achieve this by introducing some auxiliary
places and transitions. The example in table 1(a) represents
a bid on the set of transformations {tb,1, tb,2, tb,3}, whose
associated price is pb = $20. For each bid b we introduce
an auxiliary transition tb (bid transitions) and an auxiliary
place cb. For each atomic transformation tb,k, k = 1...|Db |,
we add an auxiliary place cb,k (cb,1, cb,2, and cb,3 in table
1(a)) (control places). It is easy to check that this partic-
ular topology allows for firing any subset of {tb,1, tb,2, tb,3}.
Notice also that firing at least one of the three transitions
implies previously firing transition tb, since this guarantees
having tokens in the cb,i places. We associate the bid cost
pb=$20 to transition tb. Thus, we guarantee that firing at
least one of the transitions implies firing also tb, and there-
fore that money is paid to lb. Any legal firing sequence on
the net of table 1(a) guarantees that selecting at least one
of the tb,k implies also selecting tb.

In case of no free disposal on transformations the require-
ments are different. In this case either all or none of the tb,k

must fire, and in the case they all fire, tb must fire too. The
topology in table 1(a) alone cannot guarantee such prop-
erty. For instance, a marking in which transformations tb,1

and tb,2 fire, but not tb,3, is legal but does not comply with
the no-free disposal assumption. In order to enforce no free
disposal on transformations, we simply impose some con-
straints on the final configuration of the net. Say that we im-
pose that in the final configuration cb,1, cb,2 and cb,3 contain
no tokens (Md(cb,1) = 0,Md(cb,2) = 0,Md(cb,3) = 0). This
implies that all the legal firing sequences leading to the final
configuration Md contain either none or all the three transi-
tions tb,1, tb,2, tb,3. In fact the only possible firing sequences
are, either no firings J = {}, or J = {tbtb,1, tb,2tb,3}, J =
{tbtb,3tb,2tb,1},

Finally, we have to express the XOR relationships among
the bids that come from the same bidder. Say that a bidder
submits two bids b and b′ in XOR, i.e. they cannot be
jointly selected. Table 1(b) depicts bids b and b′: bid b

is over transformations tb,1, tb,2 and tb,3; and bid b′ is over
transformations tb′,1 and tb′,2. The cost associated to b is
c(tb) = $20, and the cost associated to b′ is c(tb′) = $10.
Notice that we introduce a new place, labelled with pXOR,
called XOR place. Notice, too, that we get rid of places cb

and cb′ . It is easy to verify that this topology inhibits the
firing of both b and b′: when either of them fires, it consumes
the unique token in pXOR. This structure applies also to the
case of m bids in XOR among them.

In what follows we formally define the mapping from

tb,3tb,2

p2 p3

p1 p4 p5

p6 p7 p8 p9

tb,1

2

1
2

1 1

1
1

1
1

cb,1 cb,2 cb,3

•
cb

tb $20

1 1 1

1

1 1
1

p2 p3

p1 p4 p5

p6 p7 p8 p9

tb,1 tb,2 tb,3

2

1
2

1 1

1
1

1
1

tb′,1

3

2 2

tb′,2

22
cb,1

cb,2

cb,3

cb′,1

cb′,2

tb$20 tb′$10

1 1
1

1 1 1

1

1

1

1

•
pXOR

1
1

(a) Bids on combinations of transformations. (b) XOR of bids.

Table 1: Graphical representation of a bid.

MMUCA to CMWOSP over a WTPN. Such WTPN is built
as follows:

• For each good g ∈ G add a place pg. We call these
places good places. The set of all the good places is
noted as PG. PG = {p1, ..., p9} in table 1(b).

• For each bid b ∈ B add a transition tb to the WTPN.
We call these transitions bid transitions. The set of
all bid transitions is noted as TB . For example, TB =
{tb, tb′} in table 1(b).

• For each bidder l ∈ L add a place pXORl
. we call

these places XOR places. The set of all XOR places is
denoted as PXOR. For instance, PXOR = {pXOR} in
table 1(b).

• For each atomic transformation in each bid tb,k, b ∈
B, k = 1, ..., |Db| add:

– a transition tb,k (atomic transition). The set of all
atomic transitions is denoted as TCT . For exam-
ple TCT = {tb,1, tb,2, tb,3, tb′,1, tb′,2} in table 1(b).

– a place cb,k to the WTPN (control place). The
set of all control places is denoted as PCP . For
example, PCP = {cb,1, ..., cb′,2} in table 1(b).

• Build a set of arcs AAT connecting the places rep-
resenting the input goods and output goods of each
atomic transformations tb,k to the transition repre-
senting it (tb,k)4. The input goods are connected by
incoming arcs whereas the output goods by outgoing
arcs. For instance transition tb,1 in figure corresponds
to the atomic transformation tb,1 = (Ib,1,Ob,1) =
({g1}, {g2, g3}). Therefore, place p1, representing in-
put good g1, is connected to transition tb,1 by means
of an incoming arc; and places p2 and p3, representing
output goods g2 and g3, are connected to tb,1 by means

4In this case we employ the same letters to indicate an
atomic transformation and its corresponding transition in
the WTPN.

of outgoing arcs. More formally, for each atomic trans-
formation tb,k = (Ib,k,Ob,k) in each bid b ∈ B, with
k = 1, ..., |Db|:

(pg, tb,k) ∈ AAT ⇐⇒ g ∈ Ib,k (15)

(tb,k, pg) ∈ AAT ⇐⇒ g ∈ Ob,k (16)

For example, AAT = {(p1, tb,1), (tb,1, p2), (tb,1, p3), · · ·
· · · , (p5, tb′,1), (tb′,1, p8), (tb′,1, p9)} in table 1(b).

• Build a set of arcs ABT such that: (1) bid transitions
tb are connected to control places cb,k; and (2) control
places cb,k are connected to atomic transitions tb,k:

(tb, cb,k) ∈ ABT b ∈ B, 1 ≤ k ≤ |Db| (17)

(cb,k, tb,k) ∈ ABT b ∈ B, 1 ≤ k ≤ |Db| (18)

For example AT B = {(tb, cb,1), (cb,1, tb,1), (tb, cb,2),
(cb,2, tb,2), ..., (tb′ , cb′,1), (cb′,1, tb′,1)} in table 1(b).

• Build a set of arcs AXOR connecting all the pXORl
, l ∈

L places to the bid transitions tb corresponding to bids
coming from the same provider l.

(pXORl
, tb) ∈ AXOR ⇐⇒ b ∈ Bl

AXOR = {(pXOR, tb), (pXOR, tb′)} in table 1(b).

• The arc expression function is built as follows:

E(pg, tb,k) = Ib,k(g) ⇐⇒ (pg, tb,k) ∈ AAT (19)

E(tb,k, pg) = Ob,k(g) ⇐⇒ (tb,k, pg) ∈ AAT (20)

E(t, p) = 1 ⇐⇒ (t, p) ∈ ABT ∪ AXOR (21)

E(p, t) = 1 ⇐⇒ (p, t) ∈ ABT ∪ AXOR (22)

• The bid cost function C : B → R is built as follows.
In the case of atomic transitions the cost associated
is 0: c(tb,k) = 0 for each b ∈ B, k = 1, ..., |Db|. The
price associated to bid b is associated to the firing of
bid transition tb, therefore c(tb) = pb, with b ∈ B.

• The initial marking is defined as

M0(p) =

8

>

<

>

:

Uin(g) p ∈ PG

1 p ∈ PXOR

0 otherwise

(23)

Thus, given a multiset of available goods Uin, a set of re-
quired goods Uout, and a set of bids in the XOR language5,
solving the WDP for MMUCAs amounts to solve the CM-
WOSP defined on the WTPN S∗ = (PG ∪PCP ∪PXOR, T ∪
TCT , AAT ∪ABT ∪AXOR, E, C,M0), with destination mark-
ing Md fulfilling the following constraints6:

Md(p) ≥ Uout(g) pg ∈ PG (24)

Md(p) ≥ 0 p ∈ PCP (25)

Md(p) ≥ 0 otherwise (26)

The converse holds as well.
Each firing sequence Jmax solution to the CMWOSP

can be transformed into an optimal solution sequence of
the MMUCA WDP. First, for each tb ∈ TBT such that
∃xb,k = 1 set xb = 1. Then, build an auxiliary sequence
J∗ = Jmax \ TBT taking out the bid transitions (TBT) from
Jmax. Next, if the m− th element of the sequence J∗ is tb,k

set xm
b,k = 1 and xb,k = 1 and xm = 1.

And the converse, given an optimal solution sequence rep-
resented by decision variables xm

b,k, xb, and xm, it is possible
to build an optimal firing sequence Jmax solution to the CM-
WOSP. The WTPN must built as explained in this section.
The optimal firing sequence is composed as follows. First,
compose a firing sequence J∗ in which the m − th element
is the transition tb,k such xm

b,k = 1. Secondly, compose Jmax

by inserting transition tb if xb = 1. Transition tb must be in-
serted in Jmax just before the first occurrence of a transition
tb,k in the sequence.

We have not given a formal demonstration of the sound-
ness of the mapping we defined. However, in what follows
we provide the intuition behind this mapping. If we con-
sider equations (3) and (4), we can easily check that they
represent exactly the firing rules for a petri net. In particu-
lar equation (3) maps to equation (6) and equation equation
(4) maps to equation (5).

5. CONCLUSIONS AND RELATED WORK
The Mixed Multi-Unit Combinatorial Auction, defined in

[1] subsumes a range of combinatorial auction models dis-
cussed in the literature (see e.g. [2]). In particular, it incre-
ments considerably the expressiveness and the range of solv-
able problems for Combinatorial Auctions for supply chain
formation [6]. MMUCAs incorporate the concept of a se-
quence of exchanges, which is required if the intention is to
model some sort of production process.

Walsh et al. [6] tackle a similar problem to ours focusing
on supply chain formation. Although their contribution is
very significant, their work is extended by MMUCAs along
several dimensions. Firstly, they do not allow a provider to

5Notice that in the case of OR language we could state
exactly the same if we make appropriate changes to the
WTPN. We should just represent all the bids as in table
1(a), i.e. omitting the XOR places.
6In case of no free disposal on goods simply substitute ≥
with = in equation (24). In case of no free disposal on trans-
formations simply substitute ≥ with = in equation (25).

submit bids on combinations of transformations. Secondly,
they do not define a bidding language (in fact, their agents
submit a bid with a single transformation each). Finally, the
transformation net that defines the supply chain has to fulfil
strict criteria: acyclicity, transformations can only produce
one output good, etc.

In this work, we identify as our main contribution the ex-
tension of a graphical formalism for analysing the structural
and behavioural properties of MMUCAs, and therefore of
all the types of auctions subsumed by MMUCAs, and in
particular of combinatorial auctions for supply chain forma-
tion. As a first benefit of providing such an extension, we
demonstrate how to dramatically reduce the number of de-
cision variables (from quadratic to linear with respect to the
number of transformations) for a broad subclass of MMU-
CAs WDPs (in particular, when the WTPNs underlying the
MMUCA WDP is acyclic, trap-circuit, siphon-circuit, TCC,
or SCC). Hence, we make headway in the practical applica-
tion of MMUCAs as intended. To attain these goals we have
resorted to Petri nets by defining a new type of Petri nets,
the so-called weighted transition Petri nets (WTPN), and
by defining a new optimisation problem over WTPN, the
so-called CMWOSP.

The results we propose can be easily extended along sev-
eral dimensions. First, it is known from the literature that
it is possible to increase the classes of petri nets for which
the state equation represents the whole reachability set. As
an example one may add linear side constraints to the state
equation [3]. Therefore, we would like to assess the applica-
bility of these types of techniques to our problem. Second,
the validity of the mapping from MMUCA WDP to WTPNS
in not restricted to bids in the XOR language, but in fact
it can easily cope with other languages. For instance, as
explained in section 4, the extension to the OR language is
trivial. Third, and most important, our mapping allows to
analyse structural and behavioural properties of the solu-
tions to the MMUCA WDP.

6. REFERENCES
[1] J. Cerquides, U. Endriss, A. Giovannucci, and J. A.

Rodriguez-Aguilar. Bidding languages and winner
determination for mixed multi-unit combinatorial
auctions. In Proc. of the 20th Intl. Joint Conferences
on Artif. Intelligence (IJCAI), pages 1221–1226,
Hyderabad, India, 2007.

[2] P. Cramton, Y. Shoham, and R. Steinberg, editors.
Combinatorial Auctions. MIT Press, 2006.

[3] J. Esparza and S. Melzer. Verification of safety
properties using integer programming: Beyond the
state equation. Formal Methods in System Design,
16:159–189, 2004.

[4] T. Murata. Petri nets: Properties, analysis and
applications. In IEEE, volume 77, pages 541–580, 1989.

[5] N. Nisan. Bidding languages for combinatorial auctions.
In P. Cramton et al., editors, Combinatorial Auctions.
MIT Press, 2006.

[6] W. E. Walsh, M. P. Wellman, and F. Ygge.
Combinatorial auctions for supple chain formation. In
Proc. of the 2nd ACM Conference on Electronic
Commerce, 2000.

[7] T. Watanabe. The legal firing sequence problem of
petri nets. IEICE Transactions on Information and
Systems, 3:397–406, 2000.

