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Abstract. Decentralized energy production is meant to reduce generation and
distribution inefficiencies, leading to major economic and environmental benefits.
This new model is meant to be supported by smart grids, electricity networks that
can intelligently integrate the actions of all users connected to them —generators,
consumers, and prosumers (those that do both)— to efficiently deliver sustain-
able, economic and secure electricity supplies. A major research challenge is the
design of markets for prosumers in smart grids that consider distribution grid
constraints. Recently, a discrete market model has been presented that allows pro-
sumers to trade electricity while satisfying the constraints of the grid. However,
most of the times energy flow problems possess a continuous nature, and that
discrete market model can only provide approximate solutions. In this paper we
extend the market model to deal with continuous (piecewise linear) utility func-
tions. We also provide a mapping that shows that the clearing of such a market
can be done by means of integer linear programming.
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1 Introduction

Our centralized model of production and transmission wastes enormous amounts of en-
ergy. According to [6], ”...an astonishing two-thirds of primary energy inputs”. Since
power stations are generally far from centers of demand, much of the produced heat
is not used, but vented up chimneys or discharged to rivers. Additional losses come
about as the electricity travels along the wires of the transmission and distribution sys-
tems [6,23]. As argued in [23], favoring the decentralized generation of energy over
traditional centralized electricity generation will reduce generation and distribution in-
efficiencies and will facilitate increased contributions from renewables. This new model
is meant to be supported by smart grids.

Following [3], a smart grid is an electricity network that can intelligently integrate
the actions of all users connected to it —generators, consumers, and prosumers (those
that do both)— to efficiently deliver sustainable, economic and secure electricity sup-
plies. In the smart grid the consumer can be either an individual or a household, but



also a community or an SME. In its more general form, a smart grid is populated by
prosumers capable of both generating and consuming energy. Therefore, smart grids
clearly play the central role in the integration of all these prosumers (electricity grid
users) by means of the enactment of a system that satisfies a number of societal goals.
Out of these goals, there is that of setting market-based prices for electricity taking into
account grid system constraints. Thus, a major research challenge in the heart of several
roadmaps for the Smart Grid [3,4] is the design of markets for prosumers in smart grids
that consider distribution grid constraints. This vision will allow prosumers to directly
trade over the smart grid [8]. Following [18], market operations will involve a large
number of heterogeneous prosumers, distributed throughout the network (closer to the
point of use of electricity), and trading much smaller amounts of energy that are nowa-
days traded. The distribution of electricity employs one of the three common types of
network topologies: radial, ring main, and interconnected [5,7,21]. On the one hand,
radial networks are acyclic. On the other hand, as observed in [13], though ring main
and interconnected networks contain cycles, they are configured into acyclic networks
by means of switches to supply power [7,21].

The smart grid vision has spurred a wealth of research on the design of markets and
trading agents for the smart grid. The state-of-the-art has mainly considered to employ
different types of auctions for this endeavor. Thus, the market-based trading of energy is
typically addressed by the literature by having prosumers participate in a double auction
where energy is traded on a day-ahead basis [8,9,10,14,16,20]. Submitted buy and sell
orders for energy are matched either by means of either a continuous double auction
[10,16,20] or a call market [8,9,14]. Exceptions to this common approach are repre-
sented by the tailored multi-unit auctions in [22] and the simultaneous combinatorial
reverse auctions employed in [17] to match demand and supply.

In [1], the limitation of the market mechanisms employed in the literature are identi-
fied, noticing that up to then, no mechanism takes into account grid system constraints.
Thus, the clearing of the market occurs disregarding, for instance, that the transmission
of energy is carried out along capacity-constrained distribution networks (which is an
actual-world constraint [21]). Therefore, trading and distribution are considered as de-
coupled activities. Furthermore, the bidding language offered to grid users is pointed
out to be not expressive enough to express a prosumer’s energy profile since with the
exception of [17], which supports combinatorial bids, double auctions limit a grid user
to submit a single price-quantity bid to either buy or sell. This does not allow a pro-
sumer to express a full energy profile encompassing a combination of all her buy and
sell offers.

As a consequence of this analysis they introduce the Energy Allocation Problem
(EAP) as the problem of deciding how much energy each prosumer trades as well as
how energy must be distributed throughout the grid so that the overall benefit is max-
imized while complying with the grid constraints and the prosumers’ preferences. On
the one hand, they consider that the capacity of the distribution network is limited [21].
On the other hand, since a prosumer can both generate and consume energy, their for-
mulation considers that each prosumer can encode her preferences as a combination of
offers to both buy and sell energy. Solving the EAP amounts to clearing a prosumer-
oriented market. However, in the EAP, prosumers are limited to bid for discrete amounts



of energy. That is, a prosumer can offer to buy either 3 KW for 6ce or 2 KW for 4ce,
but it is not allowed to express that he will buy any amount of energy between 2 KW
and 3 KW and that he will be willing to pay 2ce per KW. In many energy settings,
such offers make complete sense and provide a better representation of the prosumer
interests when approaching the market. Thus, in this paper we make headway towards
the application of these models by extending the EAP so that it allows prosumers to
communicate continuous (piecewise linear) utility functions.

More precisely, we make the following contributions:

– We extend the Energy Allocation Problem (EAP) into the continuous energy allo-
cation problem (CEAP). It turns out that the extension is not trivial and requires
some mathematical development. We provide some of the results required to deal
with piecewise linear functions to represent prosumer preferences.

– We show how to encode the CEAP as a mixed-integer program so that it can be
optimally solved for any distribution network topology by means of off-the-shelf
commercial solvers such as CPLEX or Gurobi.

– Finally, since the CEAP defines the allocation rule of our market, we also touch
upon the design of payment rules that together with our allocation rule can help
design a mechanism for our prosumer-oriented market.

The rest of the paper is organized as follows. Section 2 formally defines the alloca-
tion rule that we propose to clear prosumer-oriented electricity markets with piecewise
linear valuation functions. Thereafter, section 3 shows how to implement the clearing
of the market as a mixed-integer program (MIP). Next, section 4 touches upon how
to cope with prosumers’ strategic behavior, and section 5 concludes and sets paths to
future research.

2 The energy allocation problem

The aim of this section is to provide a simple mathematical model for the energy mar-
ket in a prosumer network, and the allocation rule proposed for that market. We start
by providing an example of an energy trading scenario that illustrates the model of
prosumers and the model of energy network that we will consider. Thereafter, we pro-
vide the allocation rule for that market as the solution to an optimization problem: the
continuous energy allocation problem (CEAP).

2.1 Example: energy trading scenario

Figure 1 shows an example of an energy trading scenario involving four prosumers,
each one represented by a circle. Each edge connecting two prosumers means that they
are physically connected. Moreover, each link is labeled with its capacity, namely with
the amount of energy it can transport. For instance, prosumer 1 is connected to prosumer
2, and their link can transport up to 2 energy units. Each prosumer can offer to either
buy, sell or transmit energy. The offer of each prosumer is represented as a table next to
each prosumer in Figure 1, where each entry in the table represents contains the range of



1

2 4

3

2 5

3

Units     Price

[1,2]       0.5x+0.75
[0,1]     1.25x      
[-2,0]         3x
[-3,-2]        5x+4

Units     Price

[1,2]         0.75x+0.5
[0,1]         1.25x 
[-3,0]             2x

Units     Price

[-1,0]        2x
[-3,-1]    1.5x-0.5

Units     Price

 [4,5]        2.5x-1     
 [0,4]      2.25x
 

Fig. 1. Energy trading scenario.

energy units to which it applies and the linear function used to obtain the price provided
that the prosumer is required to provide a number of energy units in that range. As a
convention, a selling offer is expressed by means of a negative number of units, whereas
a buying offer is encoded with a positive number of units. For instance, prosumer 4’s
first entry communicates that, if as a result of clearing the market, he is provided an
amount of energy e between 1 KW and 2 KW, he will pay (0.5 · e + 0.75)ce. That is if
he is provided 1.5KW, he will pay 1.5ce. On the other hand, its last entry states that if
he is requested to provide an amount of energy e between 2 and 3 KW, he will be paid
(5 · e − 4) ce (note that the sign is reversed from the expression in the table because
we are encoding sell offers with negative numbers). Finally note that, by applying its
third valuation, he shows his willingness to transmit energy for free (he will be happy to
receive 0KW at price 0ce). In Figure 1, we observe that prosumer 1 only sells energy,
and prosumer 2 only buys energy, while prosumers 3 and 4 can either buy or sell.

2.2 Problem definition

Now the problem faced by the prosumers in Figure 1 is to decide how much energy to
trade and with whom so that the overall benefit (social welfare) is maximized while the
energy network’s capacity constraints are fulfilled. This means that: (i) each prosumer
must select how much to trade; and (ii) each pair of prosumers connected by a link must
agree on the amount of energy to be transferred by their link together with the direction
of the transfer (with whom). In what follows we cast this problem as an optimization
problem, and we put off the solution to this problem to sections 3.

Following example 1, we consider that the energy network connecting a set of pro-
sumers P can be modeled as an undirected graph (P, E), where the vertexes stand for
the prosumers and each edge in E connects a pair of prosumers. An edge {i, j} ∈ E
means that prosumer i and j are physically connected to trade energy. When {i, j} ∈ E,
i < j we say that i is an in-neighbor of j and that j is an out-neighbor of i. The set of
in-neighbors (resp. out-neighbors) of j is in( j) (resp. out( j)).



Each prosumer j expresses her offers to buy and sell energy by means of an general
valuation function o j : R → R ∪ {−∞}. For instance, o j(3) = 2 indicates that prosumer
j is willing to buy 3 energy units at 2ce, while o j(−4) = −2 indicates that she is
willing to sell 4 energy units if paid 2ce. Notice that offer functions capture prosumers’
constraints. To communicate her offer function, each prosumer sends a table like the
ones in Figure 1 making explicit her feasible energy states and their values. Given a
number of units x, if x does not belong to the interval of any of the entries in the table,
it means that such energy state is unfeasible for the prosumer and thus its value o j(x)
is −∞. If x appears in more that one interval, then its o j(x) is the maximum among the
values assigned for each of the entries in the table in which it is contained.

In the following we define formally the mathematical foundations that underlie
piecewise linear valuations.

Definition 1. A general valuation is any function α : R → R ∪ {−∞}. We use Fα to
note the subset of R in which α takes finite values, that is Fα = α−1(R). We define the
zero valuation 0 as the function that maps every real number to −∞. That is, for all
x ∈ mathbbR we have that 0(x) = −∞. We define the unit valuation 1 as the one that

maps 0 to 0 and any other element to −∞. That is, 1(x) =

0 if x = 0
−∞ otherwise

Let W = {ω1, . . . , ωn} be a finite set of general valuations. We define FW as the
set of values where at least one of the valuations in W takes a finite value. That is,
FW =

⋃n
i=1 Fωi .

Furthermore, we can define the maximum valuation β = max W as

β(x) = (max W)(x) =

max1≤i≤n {ωi(x)|x ∈ Fωi } if x ∈ FW

−∞ otherwise.
(1)

Definition 2 (Point Valuation). A general valuation α is a point valuation if and only if
Fα contains a single element. We can always represent a point valuation by an ordered
pair (p, q) ∈ R2, such that

α(x) =

q if x = p
−∞ otherwise.

(2)

Note that the unit valuation is a point valuation represented by the ordered pair
(0, 0).

Definition 3 (Linear Interval Valuation). A real interval is a subset of real numbers
[l, u] = {x ∈ R | l ≤ x ≤ u}. A general valuation α is a linear interval valuation if and
only if there is a real interval Iα = [lα, uα], and two real numbers aα, bα, such that for
each x ∈ R

α(x) =

aα · x + bα if x ∈ Iα
−∞ otherwise

(3)

We say that the ordered tuple (lα, uα, aα, bα) ∈ R4 is a representation of α.

Lemma 1. Any point valuation is a linear interval valuation



Proof. Let (p, q) be the representation of a point valuation α. Then, (p, p, 0, q) is a
representation of α as interval lineal valuation.

Definition 4 (Discrete Valuation). A general valuation α is a discrete valuation if and
only there exists a finite set of point valuations W = {ω1, . . . , ωn}, such that α = max W.
That is, for each x ∈ R, we have that α(x) = (max W)(x).

Definition 5. A general valuation α is piecewise linear if and only there exists a finite
set of linear valuations W = {ω1, . . . , ωn}, such that α = max W.

In that case we say that W is a piecewise linear representation of α of size n. Note
that Fα =

⋃n
i=1 Iωi .

Lemma 2. Any discrete valuation is piecewise linear.

Proof. Directly from the definitions of discrete and piecewise linear valuation and
Lemma 1.

Note that this means that piecewise linear valuations are a more general framework
than that used in [1]. Thus, any algorithm or problem definition that assumes piecewise
linear valuations will in particular be capable of working with discrete valuations. Next,
we provi

Lemma 3. Each piecewise linear valuation admits a representation W = {ω1, . . . , ωn}

in which

1. For each two linear interval valuations ωi and ω j, we have that |Fωi ∩ Fω j | ≤ 1.
That is, the finite domains of ωi and ω j are either disjoint or share a single point.

2. There is no point shared by more than 3 linear interval valuations.
3. For each 1 ≤ i < n we have that uωi ≤ lωi+1 .

We call such a representation a canonical representation.

Proof. The proof proceeds constructively. It is relatively simple to build an algorithm
that builds the canonical representation of the maximum of two valuations given their
canonical representations. On the other hand, for any interval lineal valuation, its canon-
ical representation is direct. Thus given a representation which is not canonical, the
canonical representation can always be built by taking the canonical representations of
the interval lineal valuations in the representation and then successively taking max-
imums between them until we have assessed the maximum of all the interval linear
valuations in the representation.

Our fundamental assumption in this work is that prosumers’ offers are piecewise
linear valuations. Hence, in the remaining of the paper when we refer to a valuation we
will always mean a piecewise linear valuation.

Besides prosumers’ offers, we also consider that the energy network is physically
constrained by the capacity of the connections between prosumers. We will note as ci j

the capacity limit of edge {i, j}, namely the maximum number of energy units that the
link between prosumers i and j can transmit. An allocation specifies the number of
units that each prosumer trades with each neighboring prosumer. We will encode an



allocation by means of a set of variables Y = {yi j | i ∈ P, j ∈ out(i)}, where yi j stands for
the number of units that prosumer i sells to prosumer j and is bounded by the capacity
limit ci j. That is, the domain of variable yi j is Di j = [−ci j .. ci j]. Thus, if yi j takes on
a value k greater than 0, it means that prosumer i sells k energy units to prosumer j.
Otherwise, if yi j takes on a negative value −k, we say that prosumer i buys k energy
units from prosumer j. From this follows that yi j represents a trade from prosumer i’s
perspective.

Now we want to assess the value of a given allocation. Before that, we will define
the local value of a given allocation for a single prosumer. We need to assess the amount
of energy that a prosumer acquires and sells according to an allocation Y. Prosumer j
will only consider its local view of the allocation, represented by Y j = y. j ∪ y j.. We can
assess the net energy balance for prosumer j as

net(Y j) =
∑

i∈in( j)

yi j −
∑

k∈out( j)

y jk, (4)

where each yi j and y jk are added with different signs because j takes the role of buyer
in yi j and that of seller in y jk. And therefore, the local value v j of an allocation Y for
prosumer j can be assessed as the value of her net energy balance by means of her offer
function

v j(Y j) = o j(net(Y j)). (5)

Therefore, the value of an allocation Y can be obtained by adding up the local value of
the allocations for each prosumer.

Value(Y) =
∑
i∈P

v j(Y j). (6)

Now, we are ready to define the energy trading allocation as that of finding the
allocation of maximum value that satisfies the capacity of the energy network.

Problem 1. Given a set of prosumers P, a canonical representation of their offers {o j| j ∈
P}, and an undirected graph E where each edge is labeled with its capacity ci j, the
continuous energy allocation problem (CEAP) amounts to finding an allocation Y that
maximizes Value(Y). Whenever the graph E is acyclic we say that the CEAP is acyclic.

At this point we can consider again the example in Figure 1. When solving the
CEAP defined by Problem 1, we obtain the variable assignment shown in Figure 2. The
solution indicates that prosumer 1 transfers 2 energy units to prosumer 2 (y12 = 2),
prosumer 2 also receives 3 energy units from prosumer 4 (y24 = −3), and prosumer 3
transfers 3 energy units to prosumer 4. Next to each offer table, we show the amount
of energy xi that each prosumer is provided (if xi is positive) or requested (when xi is
negative). This corresponds to the net energy balance (Equation 4). The value of the
offer of each prosumer in its energy balance state is added to assess the net value of the
allocation (see Equation 5). Thus, the allocation that maximizes Equation 6 has a value
of 2.

Notice that prosumer 2 obtains 5 energy units by aggregating the energy units re-
ceived from prosumers 1 and 4. However, prosumer 4 does not sell anything to pro-
sumer 2. The role of prosumer 4 is to relay to prosumer 2 the energy transferred from



1

2 4

3

2 5

3

y24 = -3

y34 = 3y12 = 2

NET VALUE = -3.5 + 11.5 + 0 - 6 = 2

Units     Price

 [4,5]        2.5x-1     
 [0,4]      2.25x
 

Units     Price

[-1,0]        2x
[-3,-1]    1.5x-0.5

Units     Price

[1,2]       0.5x+0.75
[0,1]     1.25x      
[-2,0]         3x
[-3,-2]        5x+4

Units     Price

[1,2]         0.75x+0.5
[0,1]         1.25x 
[-3,0]             2x

x2 = 5

x1 = -2 x3 = -3

x4 = 0

Fig. 2. Solution to the CEAP represented by the energy trading scenario.

prosumer 3, which is the one that does sell energy. In general, our model supports that
each prosumer either: (i) aggregates energy received from its neighbors when buying
energy; (ii) splits and distributes energy to its neighbors when selling energy; or (iii)
relays energy so that other prosumers can satisfy their demand.

3 Solving the CEAP through MIP

Solving optimization problems by mapping them to linear programs has become a stan-
dard practice whenever such a mapping can be found. Through the advance of software
capabilities (including CPLEX and Gurobi), this practice turns out to be difficult to
beat even for problems, such as combinatorial auctions, that have attracted a stream of
research in specific algorithms [11]. Along this line, in this section we show how the
CEAP can be encoded as a linear program (LP).

Before translating the CEAP as an LP, we consider that the offer of prosumer j
is expressed as a piecewise linear valuation o j. According to lemma 3, each offer o j

admits a canonical representation that hereafter we denote as W j = {o1
j , . . . , o

n j

j }, where
o1

j , . . . , o
n j

j are linear interval valuations. Thus, each linear interval valuation ok
j ∈ W j is

defined as follows:

ok
j(x) =

aok
j
· x + bok

j
if x ∈ Iok

j

−∞ otherwise
(7)

where Iok
j
= [lok

j
, uok

j
] is a real interval, aok

j
and bok

j
are two real numbers, and x ∈ R.

To encode our optimization problem, we will consider two types of decision vari-
ables: network decision variables and prosumer decision variables. On the one hand,



as to the network, as described in section 2, for each edge (i, j) in the trading energy
network an integer variable yi j will take on as a value the number of units that prosumer
i sells to prosumer j (when yi j > 0), or that she buys from prosumer j (when yi j < 0).
Notice that yi j may also be zero if there is no trading between i and j. In general, the
value of yi j is within the domain Di j.

On the prosumer side, since the prosumer value v j(Y j) of equation 5 cannot be en-
coded as a linear function in terms of these variables, for each prosumer j we introduce
a set of auxiliary binary variables {zk

j | j ∈ P, 1 ≤ k ≤ |W j|}, where variable zk
j indicates

whether the k-th linear interval valuation in the offer is taken or not. Since the linear in-
terval valuations within the offer of prosumer j are mutually exclusive, these variables
are linked by a constraint that enforces that one and only one of them is active, namely∑|W j |

k=1 zk
j = 1.

Besides choosing some linear interval valuation out of an offer, we must also decide
the number of units that the prosumer is to trade. Thus, for each prosumer j we introduce
a set of auxiliary real variables {xk

j | j ∈ P, 1 ≤ k ≤ |W j|}, where variable xk
j indicates

the number of units the prosumer decides to trade. Therefore, we can readily encode the
value obtained from selecting xk

j energy units to trade from the linear interval valuation
ok

j as aok
j
· xk

j + bok
j
· zk

j.

At this point, we can establish how to enable each zk
j variable by means of the

following constraint:

zk
j = 1 if and only if xk

j ∈ Iok
j

(8)

This constraint ensures consistency between each prosumer’s decisions. If variable xk
j

is set to a value within Iok
j
, then variable zk

j must be enabled to reflect that the k-th linear

interval valuation of prosumer j is selected. Thus, each variable zk
j acts as an indicator

variable. Notice that equation 8 can be readily linearised by means of the following
inequations: zk

j · lok
j
≤ xk

j ≤ zk
j · uok

j
.

Now we are ready to put together the network and prosumer decision variables. The
net energy balance net(Y j) from equation 4 provides a connection between the flows
of energy in and out a prosumer and the offer selected. We can express equation 4 for
prosumer j by means of the constraint

∑
i< j

yi j −
∑
q> j

y jq =

|W j |∑
k=1

xk
j .

Finally, the prosumer value can be easily written as a linear expression in terms of
these variables:

∑|W j |

l=1 vk
j, where vk

j = aok
j
· xk

j + bok
j
· zk

j is the value contributed by the k-th
linear interval valuation.



Now we are ready to define the LP that solves the energy allocation problem intro-
duced in the previous section.

maximize
∑|P|

j=1
∑|W j |

k=1 aok
j
· xk

j + bok
j
· zk

j

subject to zk
j · lok

j
≤ xk

j ≤ zk
j · uok

j
∀ j ∈ P, 1 ≤ k ≤ |W j|∑|W j |

l=k zk
j = 1 ∀ j ∈ P, 1 ≤ k ≤ |W j|∑

i< j yi j −
∑

q> j y jq =
∑|W j |

k=1 xk
j ∀ j ∈ P, 1 ≤ k ≤ |W j|

yi j ∈ Di j ∀(i, j) ∈ E

zk
j ∈ {0, 1} ∀ j ∈ P, 1 ≤ k ≤ |W j|

xk
j ∈ R ∀ j ∈ P, 1 ≤ k ≤ |W j|

Let us consider again the example in Figure 1, and its solution in Figure 2. The
optimal allocation Y presented in the previous section is obtained by the MIP above by
setting the network decision variables to the following values: y12 = 2, y24 = −3 and
y34 = 3; and the prosumer decision variables to the following ones: x1

1 = −2, x2
2 = 5,

x1
3 = −3 and z1

1 = 1, z2
2 = 1, z1

3 = 1, z3
4 = 1 (otherwise xk

j = 0 and zk
j = 0). This leads

to the following evaluation of the allocation (only those j, k sumands with zk
j = 1 are

shown, since all others are zero):

[1.5 · (−2) − 0.5] + [2.5 · 5 − 1] + [1.25 · 0] + [2 · (−3)] = −3.5 + 11.5 + 0 − 6 = 2

4 Mechanism Design

Up to now, we have concentrated on how to formalize and provide a solution to the
CEAP through ILP, disregarding the strategic behavior of prosumers. Here we skim
through some game-theoretic considerations.

Mechanisms are composed of both a choice rule and a payment rule [19]. From
a mechanism design point of view, the CEAP can be understood as the choice rule
that selects the energy trades in our network based on the valuations provided by the
prosumers. The previous section shows that this choice rule can be assessed by means
of ILP However, we have not proposed any payment rule that establishes how much
should each agent pay/receive afterwards.

In their classical work from 1983, Myerson and Satterthwaite [15] proved the im-
possibility of having an efficient, individual-rational, incentive-compatible, and budget-
balanced mechanism in a simple exchange environment in which a buyer and a seller
trade a single unit of a given good. This very simple case is isomorph to an energy net-
work with two connected participants where one has available an energy unit that the
other one wants to buy. Thus, the impossibility result [15] extends to our setting.

On the other hand, the central result in mechanism design, on the incentive-compatibility
of the Vickrey-Clarke-Groves (VCG) mechanism, carries over to our model. Recall that
the VCG mechanism allocates goods in the most efficient manner and then determines



the price to be paid by each bidder by subtracting from their offer the difference of the
overall value of the winning bids and the overall value that would have been attainable
without that bidder taking part. That is, this “discount” reflects the contribution to the
overall production of value of the bidder in question. The VCG mechanism is strategy-
proof: submitting their true valuation is a (weakly) dominant strategy for each bidder.
As an inspection of standard proofs of this result reveals [12], this does not depend on
the internal structure of the agreements that agents make. Hence, it also applies to our
model.

Furthermore, assessing the VCG payment for each prosumer only requires solving
a new CEAP problem where that particular prosumer is not present, which can also be
done by means of generic ILP software such as CPLEX or Gurobi.

Further studying mechanism design properties of such markets (including alterna-
tive payment rules that could lead to asymptotic efficiency along the lines of [2]) re-
mains as future work.

5 Conclusions and future work

In this paper we have investigated how to extend the work in [1] to enable energy trad-
ing in prosumer networks for prosumers with piecewise linear valuations, and taking
into account grid system constraints. We propose to cast the energy trading problem as
an optimization problem, the continuous energy allocation problem (CEAP). We then
show that the CEAP can be formulated as an MIP so that it can be optimally solved for
any network topology by means of commercial optimization solvers.

A solver for the CEAP by means of the mapping provided in this paper has ef-
fectively been implemented and is currently able to solve problems with hundreds of
prosumers in the order of a tenth of a second. A detailed evaluation of the efficiency of
that solver is ongoing.

In [1], an alternative distributed algorithm (RadPro) is provided for efficiently solv-
ing the discrete EAP when the graph is acyclic. Another promising line of future work
is the extension of RadPro to provide a decentralized solver for the acyclic CEAP. Pro-
vided that this is successfully achieved, the next step will be to consider how to extend
such a solver so that it is able to effectively solve problems which contain cycles.
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