
Connecting ABT with Arc Consistency ?

Ismel Brito and Pedro Meseguer

IIIA, Institut d’Investigació en Intel.ligència Artificial
CSIC, Consejo Superior de Investigaciones Cientı́ficas

Campus UAB, 08193 Bellaterra, Spain.
{ismel|pedro}@iiia.csic.es

Abstract. ABT is the reference algorithm for asynchronous distributed constraint
satisfaction. When searching, ABT produces nogoods as justifications of deleted
values. When one of such nogoods has an empty left-hand side, the considered
value is eliminated unconditionally, once and for all. This value deletion can be
propagated using standard arc consistency techniques, producing new deletions in
the domains of other variables. This causes substantial reductions in the search ef-
fort required to solve a class of problems. We also extend this idea to the propaga-
tion of conditional deletions, something already proposed in the past. We provide
experimental results that show the benefits of the proposed approach, especially
considering communication cost.

1 Introduction

In recent years, there is an increasing interest for solving problems in which informa-
tion is distributed among different agents. Most of the work in constraint reasoning as-
sumes centralized solving, so it is inadequate for problems requiring a true distributed
resolution. This has motivated the new Distributed CSP (DisCSP) framework, where
constraint problems with elements (variables, domains, constraints) distributed among
automated agents which cannot be centralized for different reasons (prohibitive transla-
tion costs or security/privacy issues) are modelled and solved.

When solving a DisCSP instance, all agents cooperate to find a globally consis-
tent solution. To achieve this, agents assign their variables and exchange messages on
these assignments, which allows them to check their consistency with respect to prob-
lem constraints. Several synchronous and asynchronous solving algorithms have been
proposed [12, 13, 8, 2, 5]. While synchronous algorithms are easier to understand and
implement, asynchronous ones are more robust. If some agents disconnect, an asyn-
chronous algorithm is still able to provide a solution for the connected part, while this
is not true in general for synchronous ones. Asynchronous algorithms exhibit a high
degree of parallelism, but the information exchanged among agents is less up to date
than in synchronous ones.

ABT [12, 13] is the reference algorithm for asynchronous distributed constraint
solving, playing a role similar to backtracking algorithm in the centralized case. Several
ideas to improve its efficiency and privacy have been proposed.

? Supported by the Spanish project TIN2006-15387-C03-01.

In this paper we study the idea of propagating value deletions in ABT. When search-
ing, ABT produces nogoods as justifications of deleted values. When one of such no-
goods has an empty left-hand side, the considered value is eliminated unconditionally,
once and for all. This value deletion can be propagated using standard arc consistency
techniques, producing new deletions in the domains of other variables. This causes sub-
stantial reductions in the search effort required to solve a class of problems, especially
on communication cost. We extend this idea to the propagation of conditional deletions.

The idea of including consistency maintenance in ABT is not new. It was proposed
by [9, 10]. However, the specialization to unconditional value deletions (nogoods with
empty left-hand side) is new. Previous experimental results [9, 10], considered AAS [8]
with bound consistency. Here, we provide experimental results for ABT with directional
and full (both directions) arc consistency on a set of random DisCSP instances.

This paper is organized as follows. First, we recall the DisCSP definition and the
ABT description. Then, we present the idea of propagating unconditional deletions, in
the ABT-UAC algorithm. We extend this idea to conditional deletions, in the ABT-DAC
algorithm. We present experimental results for both approaches on random DisCSP
instances. Finally, we extract some conclusions and directions for further research.

2 Preliminaries

2.1 Distributed Constraint Satisfaction

A Constraint Satisfaction Problem (X ,D, C) involves a finite set of variables X , each
taking values in a finite domain, and a finite set of constraints C. A constraint on a subset
of variables forbids some combinations of values that these variables can take. A solu-
tion is an assignment of values to variables which satisfies every constraint. Formally,

• X = {x1, . . . , xn} is a set of n variables;
• D = {D(x1), . . . , D(xn)} is a set of finite domains; D(xi) is value set for xi;
• C is a finite set of constraints. A constraint Ci on the ordered subset of variables
var(Ci) = (xi1 , . . . , xir(i)) specifies the relation prm(Ci) of the permitted combi-
nations of values for the variables in var(Ci), prm(Ci) ⊆

∏
xik
∈var(Ci)

D(xik
).

An element of prm(Ci) is a tuple (vi1 , . . . , vir(i)), vik
∈ D(xik

).

A Distributed Constraint Satisfaction Problem (DisCSP) is a CSP where variables,
domains and constraints are distributed among automated agents. Formally, a finite
DisCSP is defined by a 5-tuple (X ,D, C,A, φ), where X , D and C are as before, and

• A = {1, . . . , p} is a set of p agents,
• φ : X → A is a function that maps each variable to its agent.

Each variable belongs to one agent. The distribution of variables divides C in two
disjoint subsets, Cintra = {Ci|∀xj , xk ∈ var(Ci), φ(xj) = φ(xk)}, and Cinter =
{Ci|∃xj , xk ∈ var(Ci), φ(xj) 6= φ(xk)}, called intraagent and interagent constraint
sets, respectively. An intraagent constraint Ci is known by the agent owner of var(Ci),
and it is unknown by the other agents. Usually, it is considered that an interagent con-
straint Cj is known by every agent that owns a variable of var(Cj) [13].

A solution of a DisCSP is an assignment of values to variables satisfying every
constraint. DisCSPs are solved by the coordinated action of agents, which communicate
by exchanging messages. It is assumed that the delay of a message is finite but random.
For a given pair of agents, messages are delivered in the order they were sent. For
simplicity, we assume that each agent owns exactly one variable, and the agent number
is the variable index (∀xi ∈ X , φ(xi) = i). Furthermore, we assume that all constraints
are binary. A constraint Cij indicates that it binds variables xi and xj .

2.2 Asynchronous Backtracking

ABT [12, 13] is the reference algorithm for asynchronous distributed constraint solving,
with a role similar to backtracking in the centralized case. An ABT agent makes its own
decisions, informs other agents about them, and no agent has to wait for the others’ de-
cisions. The algorithm computes a global consistent solution (or detects that no solution
exists) in finite time; its correctness and completeness have been proved [13, 2]. ABT
requires constraints to be directed. A binary constraint causes a directed link between
the two constrained agents: the value-sending agent, from which the link starts, and the
constraint-evaluating agent, at which the link ends. To make the network cycle-free,
there is a total order among agents, which is followed by the directed links.

Each ABT agent keeps its own agent view and nogood store. The agent view of
self , a generic agent, is the set of values that self believes are assigned to higher
priority agents (connected to self by incoming links). Its nogood store keeps nogoods
as justifications of inconsistent values. Agents exchange four message types:

• ok?: a high priority agent informs lower priority ones about its assignment.
• ngd: a lower priority agent inform a higher priority one of a new nogood.
• addl: a lower priority agent requests a higher priority one to set up a link.
• stop: the empty nogood has been generated. There is no solution.

When the algorithm starts, each agent assigns its variable, and sends the assignment
to its neighboring agents with lower priority. When self receives an assignment, self
updates its agent view with the new assignment, removes inconsistent nogoods and
checks the consistency of its current assignment with the updated agent view.

When self receives a nogood, it is accepted if the nogood is consistent with self ’s
agent view (for the variables in the nogood, their values in the nogood and in self ’s
agent view are equal). Otherwise, self discards the nogood as obsolete. If the nogood is
accepted, the nogood store is updated, causing self to search for a new consistent value
(since the received nogood forbids its current value). If an unconnected agent i appears
in the nogood, it is requested to set up a new link with self . From this point on, self will
receive i values. When self cannot find any value consistent with its agent view, either
because of the original constraints or because of the received nogoods, new nogoods
are generated from its agent view and each one sent to the closest agent involved in
it. This operation causes backtracking. There are several forms of how new nogoods
are generated. In [2], when an agent has no consistent values, it resolves its nogoods
following a procedure described in [1]. In this paper we consider this last version. The
ABT code is in Figure 1 for the self agent. Γ+

0 and Γ−0 are the sets of agents initially
constrained with self which are above and below it in the agent ordering.

procedure ABT()
Γ = Γ−0 ∪ Γ

+
0 ; Γ− = Γ−0 ; Γ+ = Γ+

0 ; myV alue← empty; end← false; CheckAgentView();
while (¬end) do
msg ← getMsg();
switch(msg.type)
Ok?:ProcessInfo(msg); Ngd:Conflict(msg); Stop: end← true; AddL:SetLink(msg);

procedure CheckAgentView()
if ¬consistent(myV alue,myAgentV iew) then
myV alue← ChooseValue();
if (myV alue) then for each k ∈ Γ+ do sendMsg:Ok?(k,myV alue); else Backtrack();

procedure ProcessInfo(msg)
Update(myAgentV iew,msg.assig); CheckAgentView();

procedure Conflict(msg)
if Coherent(msg.nogood, Γ− ∪ {self}) then

CheckAddLink(msg); add(msg.nogood,myNogoodStore);
myV alue← empty; CheckAgentView();

else if Coherent(msg.nogood, self) then sendMsg:Ok?(msg.sender,myV alue);

procedure SetLink(msg)
add(msg.sender, Γ+); sendMsg:Ok?(msg.sender,myV alue);

procedure CheckAddLink(msg)
for each (var ∈ lhs(msg.nogood))

if (var /∈ Γ−) then sendMsg:AddL(var, self); add(var, Γ−);
Update(myAgentV iew,msg.nogood[var]);

procedure Backtrack()
newNogood← solve(myNogoodStore);
if (newNogood = empty) then end← true; sendMsg:Stop(system);
else sendMsg:Ngd(newNogood); Update(myAgentV iew,rhs(newNogood)← unknown);

CheckAgentView();

function ChooseValue()
for each v ∈ D(self) not eliminated by myNogoodStore do

if consistent(v,myAgentV iew) then return (v); else add(nogood(v),myNogoodStore);
return (empty);

procedure Update(myAgentV iew, newAssig)
add(newAssig,myAgentV iew);
for each ng ∈ myNogoodStore do

if ¬Coherent(lhs(ng),myAgentV iew) then remove(ng,myNogoodStore);

function Coherent(nogood, agents)
for each var ∈ nogood ∪ agents do if nogood[var] 6= myAgentV iew[var] then return false;
return true;

Fig. 1. The ABT algorithm for asynchronous backtracking search.

3 Propagating Unconditional Deletions

During search, ABT produces nogoods in self as result of the reception of ok? and
ngd messages. A nogood is a conjunction of individual assignments, which has been
found inconsistent, either because the initial constraints or because searching all possi-
ble combinations. For instance, the following nogood,

x1 = a ∧ x2 = b ∧ x3 = c

means that these three assignments cannot happen simultaneously because they cause
an inconsistency: either they violate a constraint or any extension including the remain-
ing variables violates a constraint. Often, a nogood is written in directed form,

x1 = a ∧ x2 = b⇒ x3 6= c

meaning that x3 cannot take value c because of the values of x1 and x2. In a directed
nogood, ”⇒” separates the left-hand side (lhs) from the right-hand side (rhs). Since
variables are ordered at each branch of the search tree, it is useful to write nogoods
in a directed form, where the last variable in the branch order appears in the rhs. A
nogood is a necessary justification to eliminate a value. In the previous example, the
directed nogood is a justification to eliminate value c of D(x3). A nogood is active if
the assignments in its lhs hold. To assure polynomic space usage, ABT only keeps
one active nogood per eliminated value. As soon as a nogood becomes no active, it is
removed (and the corresponding eliminated value is again available).

When all values of D(self) are eliminated by some nogood, the justifying nogoods
are resolved generating a new nogood ng (see [1] for a detailed description of this
process). ng is sent to var, the variable that appears in rhs(ng) (which always has the
form var 6= val). This means that val can be eliminated from D(var), conditioned to
the assignments of lhs(ng). It may happen that lhs(ng) is empty. In this case, val can
be deleted fromD(var) unconditionally, once and for all. After removal, val will never
be available again: no matter which new assignments may be explored in the future, the
empty lhs(ng) always holds.

An unconditional deletion may generate further unconditional deletions in other
domains, if it happens that the initial deletion causes a constraint (or a subset of con-
straints) to become locally inconsistent, and the corresponding local consistency is en-
forced afterwards. In this paper, we only consider arc consistency, although other local
consistencies removing single values could also be analyzed [6]. We assume that do-
mains are initially arc consistent (if not, this can be easily done by a preprocess, ex-
plained below). If value a of variable xi is deleted, this has to be notified to all agents
connected with i. These agents will check their constraints with i to enforce arc consis-
tency after a deletion (for instance, using the popular revise-2001 function [3]). If
more deletions occur, they are propagated in the same way, until reaching a fix point.

Values deleted in this way are removed once and for all. Let us assume three sequen-
tially constrained agents i, j and k, i < j < k, connected by two constraints Cij and
Cjk, such that j receives a nogood from k eliminating unconditionally value b. If it hap-
pens that b was the only support for value a ∈ D(xi), after the deletion of b in D(xj),
a must be deleted from D(xi) because a will not be in any solution. Value b will never
be available again, so a would never have a support and its deletion is unconditional.

3.1 ABT-UAC

The idea of propagating unconditional deleted values can be included in ABT, produc-
ing the new algorithm ABT-UAC. It exploits the idea that a constraint Cij is known by
both agents i and j. ABT-UAC requires the some minor changes with respect to ABT:

• In addition to its own domain, the domain of every variable constrained with self
is also represented in self . Assuming that a constraint between self and j does
not contain irrelevant values, domain computation can be done by projecting the
constraint on xj . This constraint will be arc consistent after the preprocess.

• A new message type, del, is required. When self deletes value a in D(self), it
sends a del message to every agent initially constrained with it, except the agent
that sent the message that caused a deletion. When self receives a del message, it
registers that the message value has been deleted from the domain of sender, and it
enforces arc consistency on the constraint between self and sender. If, as result of
this enforcing, some value is deleted in D(self) it is propagated as above.

Including the propagation of unconditionally deleted values does not changes the
semantic of original ABT messages. It is worth noting that ABT-UAC keeps the good
ABT properties, namely correctness, completeness and termination: since we are elim-
inating values which are unconditionally arc inconsistent, their removal will not cause
to miss any solution. If the value assigned to self is found to be arc inconsistent, it is
removed and another value is tried for self . Any value removal is propagated to agents
initially constrained with self .

It is mentioned above that initial domains are assumed to be arc consistent. If not,
this can be easily done by a preprocess depicted in Figure 2, executed on each agent.
First, it initially enforces arc consistency between self and each constrained agent.

procedure AC-preprocess()
compute Γ0 = Γ−0 ∪ Γ

+
0 ; end← false; init structures of revise-2001

for each j ∈ Γ0 do AC(self, j);
while (¬end) do
msg ← getMsg();
switch(msg.type)
Del: ValueDeletedPre(msg.sender,msg.value); Stop: end← true;

procedure ValueDeletedPre(j, a)
D(j)← D(j)− {a}; AC(self, j);

procedure AC(self, j)
if revise-2001(self, j) then

if D(self) = ∅ then sendMsg:Stop(system);
else DEL is the set of deleted values in D(self) by the last revise-2001(self, j) call

for each v ∈ DEL and k ∈ Γ0, k 6= j do sendMsg:Del(self, v);

Fig. 2. The AC algorithm for preprocessing DisCSP.

procedure ABT-UAC()
Γ = Γ−0 ∪ Γ

+
0 ; Γ− = Γ−0 ; Γ+ = Γ+

0 ;
myV alue← empty; end← false; CheckAgentView();
while (¬end) do
msg ← getMsg();
switch(msg.type)
Ok?:ProcessInfo(msg); Ngd:Conflict(msg); Stop: end← true;

new AddL:SetLink(msg); Del: ValueDeleted(msg.sender,msg.value);

procedure Conflict(msg)
if Coherent(msg.nogood, Γ− ∪ {self}) then

new if lhs(msg.nogood) = empty then DeleteValue(myV alue,msg.sender);
else CheckAddLink(msg); add(msg.nogood,myNogoodStore);

myV alue← empty; CheckAgentView();
else if Coherent(msg.nogood, self) then sendMsg:Ok?(msg.sender,myV alue);

new procedure ValueDeleted(j, a)
new D(j)← D(j)− {a}; AC(self, j);
new if myV alue 6∈ D(self) then myV alue← empty; CheckAgentView();

new procedure DeleteValue(a, j)
new D(self)← D(self)− {a};
new if D(self) = ∅ then sendMsg:Stop(system);
new else for each k ∈ Γ0, k 6= j do sendMsg:Del(self, a); CheckAgentView();

procedure Backtrack()
newNogood← solve(myNogoodStore);
if (newNogood = empty) then end← true; sendMsg:Stop(system);
else sendMsg:Ngd(newNogood); Update(myAgentV iew,rhs(newNogood)← ukn);

new if lhs(newNogood) = empty then ValueDeleted(rhs(newNogood));
else CheckAgentView();

Fig. 3. New lines/procedures of ABT-UAC with respect to ABT.

Second, value deletions are propagated as described above, until reaching quiescence,
when ABT-UAC execution begins. Value deletions in the preprocessing phase are un-
conditional. Differences between ABT-UAC and ABT appear in Figure 3. They are,

• ABT-UAC. It includes theDelmessage, which notifies that a value has been deleted
in some domain. Upon reception, the ValueDeleted procedure is called.
• Conflict. After accepting aNgdmessage with empty lhs, the DeleteValue

procedure is called.
• ValueDeleted(j, a). Agent j has deleted value a of its domain. self registers

this in its D(j) copy, and enforces AC on the constraint between self and j. If
the value of self is deleted in this process, the CheckAgentView procedure is
called (looking for a new compatible value; if none exists performs backtracking).
Any deletion in D(self) is propagated.

• DeleteValue(a, j). Agent self must delete its currently assigned value a be-
cause a nogood with empty lhs has been received from agent j. Value a is deleted
from D(self). If, as consequence of a’s deletion, D(self) becomes empty, there
is no solution so a Stop message is produced. Otherwise, a’s deletion is notified
to all agents constrained with self except j via Del messages, and the procedure
CheckAgentView is called.

• Backtrack. After self computes and sends a newNogood, it checks if its lhs
is empty. If so, self knows that the value that forbids newNogood will be removed
in the domain of the variable that appears in rhs(newNogood). Therefore, self
calls ValueDeleted, as if it would had received a Del message.

3.2 Example

A simple example of the benefits of this approach appears in Figure 4. It is a graph color-
ing instance, with seven agents and the indicated domains. This instance has no solution
(realize that there are two available values a, b for the clique formed by the agents 5, 6
and 7, mutually connected). We assume that agents are ordered lexicographically and
values are tried in the order indicated for each domain. Agent 1 assigns x1 ← a, to dis-
cover after a while that there is no solution with this assignment. A nogood with empty
lhs will reach agent 1, forbidding value a. From this point on, ABT and ABT-UAC
behave differently.

ABT behavior is summarized in Figure 5, while ABT-UAC behavior is summarized
in Figure 6. Since tracing asynchronous algorithms is difficult, we assume that all mes-
sages sent in a time period are read in the next time period. The main difference between
ABT and ABT-UAC is that the latter propagates unconditional deletions via del mes-
sages. As consequence of that, it detects two empty domains at period 4 (D4 and D5),
so there is no solution. For this, it exchanges 23 messages. ABT performs just search
and it requires 25 messages to deduce that the instance has no solution.

It is worth noting that the detection of empty domains by ABT-UAC is done by the
unique action of del messages, and ok? and ngd messages are useless.

x1

x3
≠

≠

≠

x4

≠

x2

x7

≠ x6

x5

≠ ≠ ≠

a b a b a b

 a b b a a b a b

Fig. 4. Instance of graph coloring with 7 agents, each holding a variable. Domains are indicated.

t/a 1 2 3 4 5 6 7
1 x1 ← b x2 ← a x3 ← b x4 ← a x5 ← a x6 ← a x7 ← a

1 ok? to x2 1 ok? to x3 1 ok? to x4 1 ok? to x5 2 ok? to x6, x7 1 ok? to x7
1 ok? to x5

2 x1 = b ⇒ x5 6= b x6 ← b x7 ← b
x4 = a ⇒ x5 6= a 1 ok? to x7
1 ngd to x4
x5 ← a
2 ok? to x6x7

3 x1 = b ⇒ x4 6= a x5 = a ⇒ x7 6= a
x3 = b ⇒ x4 6= b x6 = b ⇒ x7 6= b
1 ngd to x3 1 ngd to x6
x4 ← b x7 ← b
1 ok? to x5

4 x1 = b ⇒ x3 6= b x5 = a ⇒ x6 6= a
x2 = a ⇒ x3 6= a x5 = a ⇒ x6 6= b
1 ngd to x2 1 ngd to x5
x3 ← a x6 ← a
1 ok? to x4 1 ok? to x7

5 x1 = b ⇒ x2 6= a x1 = b ⇒ x5 6= b
x1 = b ⇒ x2 6= b ⇒ x5 6= a
1 ngd to x1 1 ngd to x1
x2 ← a x5 ← a
1 ok? to x3 2 ok? to x6, x7

6 ⇒ x1 6= a x6 ← b
⇒ x1 6= b 1 ok? to x7
empty nogood
stop

Fig. 5. Trace of ABT in the example, after discarding value a for x1.

time/agent 1 2 3 4 5 6 7
1 D1 = {6ab}

2 del to x2, x5
x1 ← b x2 ← a x3 ← b x4 ← a x5 ← a x6 ← a x7 ← a
2 ok? to x2, x5 1 ok? to x3 1 ok? to x4 1 ok? to x5 2 ok? to x6, x7 1 ok? to x7

2 D5 = {a 6 b}
2 del to x6, x7
x1 = b ⇒ x5 6= b x6 ← b x7 ← b
x4 = a ⇒ x5 6= a 1 ok? to x7
1 ngd to x4
x5 ← a
2 ok? to x6x7

3 D6 = {6ab} D7 = {6ab}
1 del to x7 1 del to x6

x1 = b ⇒ x4 6= a x5 = a ⇒ x7 6= a
x3 = b ⇒ x4 6= b x6 = b ⇒ x7 6= b
1 ngd to x3 1 ngd to x6
x4 ← b x7 ← b
1 ok? to x5

4 x1 = b ⇒ x3 6= b D6 = ∅ D7 = ∅
x2 = a ⇒ x3 6= a stop stop
1 ngd to x2
x3 ← a
1 ok? to x4

Fig. 6. Trace of ABT-UAC in the example, after discarding value a for x1.

4 Propagating Any Deletion

The idea of propagating unconditional deletions can be extended to propagate any dele-
tion, including conditional ones. A value is conditionally deleted when the reason for
its removal is a nogood with a non-empty lhs. This value remains deleted as long as its
justifying nogood is active. When this nogood becomes no active, it has to be removed
and the value is available again. Propagating any deletion means that any deleted value
and its justifying nogood of any agent has to be sent to any other agent constrained
with it. This was already proposed in [9, 10]. Agents have to store the received no-
goods while they are active, but the space complexity remains polynomial [9]. As in the
previous case, ABT propagating any deletion remains sound, complete and terminates.

When a value a ∈ D(self) is removed, we differentiate between,

• Unconditional deletion. Value a is removed when,
1. a nogood with empty lhs has been accepted, or
2. all values initially consistent with a in the domain of a constrained variable

have been unconditionally eliminated.
Then, a is eliminated from D(self) once and for all (D(self)← D(self)−{a}).

• Conditional deletion. Value a is removed when,
1. self produces a nogood with non-empty lhs for a when looking for a consis-

tent value for xself ; it is the justification for the conditional a deletion, or
2. a nogood with non-empty lhs has been accepted; this nogood is the justifica-

tion for the conditional a deletion, or
3. all values initially consistent with a in the domain of a constrained variable

have been eliminated, and this removal is conditional for at least one of these
values. The nogood of a deletion is the conjunction of the lhs of the nogoods
of the conditionally removed values which were initially consistent with a.

Nogoods justifying deletions of values in D(self) have to be sent to constrained
agents, which will enforce arc consistency in their constraints with self . This may
produce further deletions in the domains of those agent variables, which have to be
propagated, etc. Each time a value is conditionally deleted, a nogood is added that
justifies its deletion. When this nogood is no longer active, it has to be removed and the
deleted value becomes available again. Because of that, if an agent stores a nogood, it
must have direct link with all agents owners of the variables that appear in its lhs, to
be notified if one of these variables changes its value (which could render the nogood
no active). To perform propagation, self has to send all nogoods of its values to all
agents constrained with self . If ng is a nogood to propagate, it is sent to all constrained
agents that are below the last variable (lv) in the static agent ordering of ABT agents,
that appears in lhs(ng). The reason is clear: if ng is sent to agent k < lv(lhs(ng)),
agent k has no way to determine if ng is active or not, because there are variables in
lhs(ng) which are below k (so their values will never be sent to k).

Propagating any deletion has a clear drawback: the huge number of messages that
should be exchanged. This large number of del messages may overcome the benefits of
propagation, which are reduction of the search effort (because there are less available
values) which causes a reduction in the number of ok? and ngd messages. To mitigate
this drawback, we suggest to propagate any deletion directionally, following the ABT
static order of agents. If a value is deleted in self , the del message goes to agents above
self in the ordering. If agent j, j < self is constrained with self , upon the reception
of del message, j enforces arc consistency in the constraint between j and self .

Assuming that the instance is initially arc consistent, directional arc consistency is
maintained. These ideas are implemented in the ABT-DAC algorithm. This algorithm
presents the following changes with respect to ABT-UAC:

• Agent self , in addition to store the nogoods for the values of D(self), it has to
store the nogoods for values of other agents. Because of that, myNogoodStore
becomes a vector indexed by agent, myNogoodStore[k].

• Message del contains a nogood (instead of a pair (variable,value)).

Differences of ABT-DAC with ABT-UAC appear in Figure 7. In that code, when value
a is unconditionally deleted, it is removed from its domain (D ← D − {a}). When a
is conditionally deleted, a nogood justifying its deletion is added to the nogood store.
Checking for empty domain (D = ∅) means if all values of D have been uncondition-
ally removed. New lines are explained in the following,

procedure ValueDeleted(msg)
new if Coherent (msg.nogood, Γ− ∪ {self}) then
new if lhs(msg.nogood) = empty then D(msg.sender)← D(msg.sender)− {a};
new else add(msg.nogood,myNogoodStore[msg.sender]); CheckAddLink(msg);
new DAC(self,msg.sender);

if myV alue 6∈ D(self) then myV alue← empty; CheckAgentView();

procedure DeleteValue(a, j)
D(self)← D(self)− {a};
if D(self) = ∅ then sendMsg:Stop(system);

new else for each k ∈ Γ−0 , k 6= j do sendMsg:Del(”⇒ xself 6= a”); CheckAgentView();

procedure Backtrack()
new newNogood← solve(myNogoodStore[self]);

if (newNogood = empty) then end← true; sendMsg:Stop(system);
else sendMsg:Ngd(newNogood); Update(myAgentV iew,rhs(newNogood)← ukn);

new ValueDeleted(newNogood);

new procedure DAC(self, j)
new if revise-2001(self, j) then
new if D(self) = ∅ then sendMsg:Stop(system); /* empty by unconditional deletions */
new else DEL is the set of deleted values in D(self) by the last revise-2001(self, j) call
new for each a ∈ DEL, ng(a) justifies deletion, k ∈ Γ−0 , k > lv(lhs(ng(a)) do
new sendMsg:Del(ng(a));

function ChooseValue()
new for each v ∈ D(self) not eliminated by myNogoodStore[self] do

if consistent(v,myAgentV iew) then return (v);
new else add(nogood(v),myNogoodStore[self]);
new for each k ∈ Γ−0 k > lv (lhs(nogood(v))) do sendMsg:Del(nogood(v));

return (empty);

procedure Update(myAgentV iew, newAssig)
add(newAssig,myAgentV iew);

new for each k ∈ Γ+ ∪ {self} do
new for each ng ∈ myNogoodStore[k] do
new if ¬Coherent(lhs(ng),myAgentV iew) then remove(ng,myNogoodStore[k]);

Fig. 7. New lines/procedures for ABT-DAC, with respect to ABT-UAC. Deletions are direction-
ally propagated with DAC.

• ValueDeleted(msg). Agent msg.sender has deleted a value of its domain
with msg.nogood. First, self checks if this message is up to date, by compar-
ing lhs(msg.nogood) with its agentV iew. If the message is accepted, then it
differentiates between unconditional or conditional deletion. In the first case, the
value is removed from D(msg.sender). Otherwise, the nogood is stored and ana-
lyzed for possible new links. in both cases, directed arc consistency between self
and msg.sender is enforced. If the value of self is deleted in this process, the
CheckAgentView procedure is called (looking for a new compatible value; if
none exists performs backtracking). Any deletion in D(self) is directionally prop-
agated.

• DeleteValue(a, j). The only difference with the same procedure of ABT-UAC
is in the last line, where an unconditional deletion is propagated. The new format
of del message requires to form a directed nogood.

• Backtrack. Differences are in the first and last lines. In the first line, because
myNogoodStore is now a vector, myNogoodStore[self] is solved, instead of
myNogoodStore. In the last line, the ValueDeleted procedure is always called.

• DAC(self, j). Arc consistency is enforced in the constraint between self and j. If,
as result of this enforcing, D(self) becomes empty (all values have been uncon-
ditionally deleted), the problem has no solution, stop. Otherwise, any deletion is
propagated to agents above self and below lv(lhs) of the nogood sent.

• ChooseValue(). A new value for self , consistent withmyAgentV iew, is fetched.
If a particular value is not consistent withmyAgentV iew (because constraints with
other agents), a nogood justifying its conditional deletion is computed, stored and
directionally propagated.

• Update(myAgentV iew, newAssig).myNogoodStore[k], now a vector indexed
by agent, causes the only difference. To remove nogoods which may become no ac-
tive by newAssig, all stored nogoods of agents below self should be checked.

It may occur that a del message includes a nogood more up to date than the agent view
of the receiving agent. In that case, [9] used a time-stamp system to determine which
message was earlier, and how to update correctly the agent view. We take a simpler
approach here: if this happens, the del message is considered obsolete and discarded
(see ValueDeleted).

5 Experimental Results

We experimentally evaluate the performance of ABT-UAC and ABT-DAC algorithms
with respect to ABT on uniform binary random DisCSP. A binary random DisCSP
class is characterized by 〈n, d, p1, p2〉, where n is the number of variables, d the num-
ber of values per variable, p1 the network connectivity defined as the ratio of existing
constraints, and p2 the constraint tightness defined as the ratio of forbidden value pairs.
The constrained variables and the forbidden value pairs are randomly selected [11]. A
problem class will be referred to as a 〈n, d, p1, p2〉 network. Each agent is assigned one
variable. Neighboring agents are connected by constraints.

Using this model, we have tested random instances on four sets of experiments. The
first three ones consist of instances of 16 agents and 8 values per agent, considering

alg #ok? #ngd #addl #del #msg #del-val #obsolete nccc
ABT 4,866 1,829 27 0 6,722 0 446 5,689

p1 = .2 ABT-UAC 1,566 573 19 154 2,312 66 142 2,502
ABT-DAC 2,983 1,132 26 1,938 6,080 22 653 57,785
ABT 28,055 8,070 39 0 36,164 0 2,702 39,923

p1 = .5 ABT-UAC 27,487 7,902 39 125 35,553 19 2,642 40,039
ABT-DAC 28,042 8,094 39 11,281 47,456 3 5,138 345,933
ABT 53,400 14,999 19 0 68,418 0 5,909 98,330

p1 = .8 ABT-UAC 52,304 14,670 19 805 67,798 76 5,783 101,948
ABT-DAC 53,238 14,932 19 21,484 89,674 7 11,049 670,803

Table 1. Results of ABT, ABT-UAC and ABT-DAC on random instances of 16 agents, 8 values
per agent and sparse, medium and dense connectivities.

alg #ok? #ngd #addl #del #msg #del-val #obsol nccc
ABT 267,046 153,909 0 0 420,955 0 100,632 557,242

p1 = 1 ABT-UAC 44,312 25,378 0 45,640 115,331 1,130 16,277 1,708,130
ABT-DAC 66,596 38,270 0 124,931 229,797 499 65,762 131,596,664
ABT 1,191,937 468,069 301 0 1,660,307 0 321,994 1,876,059

p1 = .7 ABT-UAC 1,130,235 443,916 301 47,954 1,622,407 1,587 305,807 4,535,344
ABT-DAC 210,963 87,129 275 277,351 575,718 52 151,288 391,778,623

Table 2. Results of ABT, ABT-UAC and ABT-DAC on random instances of 50 agents, 50 values
per agent and two connectivities.

three connectivity classes, sparse (p1 = .2, p2 = .7), medium (p1 = .5, p2 = .4) and
dense (p1 = .8, p2 = .3) while the four experiment considers instances of 50 agents
and 50 values per agent, considering two dense connectivity classes, (p1 = 1, p2 =
.875, p1 = .7, p2 = .8). Tightness were selected at the complexity peak, where the
differences among algorithms are more explicit. Tables 1 and 2 present the results of
the algorithms according to two parameters: the communication cost, in terms of the
number of messages, and the computation effort, in terms of the number of non con-
current constraint checks (nccc) [7], respectively. In addition to these parameters, we
also report the number messages sent for each message type, the number of uncondi-
tionally deleted values and the number obsolete messages (obsolete ngd for ABT and
ABT-UAC, obsolete ngd plus obsolete del for ABT-DAC). All parameters are averaged
over 50 executions.

Table 1 presents the first three sets of experiments for random instances of 16 agents
and 8 values per agent. The upper set corresponds to the sparse instances. Regarding
the number of messages, we observe that ABT-UAC and ABT-DAC always dominate
the standard ABT. ABT-UAC is the algorithm that shows the best results, reducing
approximately three times the number of ok?, ngd and total messages sent. As expected,
ABT-UAC sends a lower number of arc consistent messages than ABT-DAC. However,
ABT-UAC discards more unconditional arc inconsistent values than ABT-DAC (since
ABT-UAC and ABT-DAC perform different propagations of different deletions, they

may cause different numbers of removed values). Regarding message obsolescence,
results show that agents in ABT-UAC are better informed about others’ assignments
than agents in ABT.

The second and third sets of experiments in the same table correspond to medium
and dense connected binary instances of 16 agents and 8 values. In both cases the tight-
ness of the constraints is low at the complexity peak. Therefore, there is a little propaga-
tion to reach an arc consistent state. Although the impact of maintaining arc consistent
domains on ABT is minor, ABT-UAC is always more economic than ABT with respect
to the total number of messages. In contrast, ABT-DAC sends more messages than ABT.

Considering the three experiments, propagating deletions algorithms send del mes-
sages, which cause to delete some values. These deletions cause to diminish the search
effort, decreasing the number of ok? and ngd messages exchanged. When the number
of saved ok? and ngd messages is larger than the number of del messages, propagation
pays off and causes an overall message decrement. However, if the number of saved ok?
and ngd messages is smaller than the number of del messages, propagation is harmful.
In the sparse class, both ABT-UAC and ABT-DAC are beneficial, while for the medium
and dense classes only ABT-UAC is beneficial while ABT-DAC is harmful. In these two
classes, the number of ok? and ngd is practically the same for ABT and ABT-DAC, so
the effect of propagation is practically unnoticed. In terms of nccc, propagating dele-
tions algorithms are clearly more costly than ABT, since they perform full or directed
arc consistency, which implies more constraint checks. ABT-DAC is always more costly
than ABT-UAC because it performs more effort, propagating also conditional deletions.

Since the decrement in the number of messages caused by ABT-UAC in the medium
and dense connectivity classes of 16 agents and 8 values is minor, one might think that
the proposed approach is not beneficial on any medium or dense classes. To evaluate
this hypothesis, we have performed the fourth set of experiments for random instances
of 50 agents and 50 values per agent, with p1 = 1 and p1 = 0.7. Results appear in Table
2. Regarding communication cost, results of p1 = 1 show a significant improvement
of ABT-UAC with respect to ABT: the number of messages it sends is 3.6 times lower
than ABT. We can note larger gains in the number of messages for each ABT message
type. We observe that ABT-DAC also needs lower number of messages than ABT, even
when it discards less than the half of the arc inconsistent values that ABT-UAC. Results
for p1 = .7 show that the winner here is ABT-DAC, requiring a number of messages
that divides by 2.9 the number required by ABT. ABT-UAC shows some minor im-
provements. Regarding computation effort, once again nccc reflect the high local effort
that agents must pay in order to have consistent domains.

6 Conclusions

From this work we can extract some conclusions. According to experimental results,
propagation of unconditional deletions is not harmful, and it provides substantial ben-
efits for some problem instances, reducing substantially ABT communication require-
ments among agents. Directional propagation of any deletion provides a less clear pic-
ture: it can be harmful in some instances, but also beneficial in others. More experimen-
tal work is needed to assess their relative importance in different problem classes.

As future work, many ideas remain to be explored. On one hand, it has to be found
the right degree of arc consistency when propagating any deletion. In more general
terms, other local consistencies that remove individual values [6] could replace arc con-
sistency in the proposed approach; it remains to analyze how this can be done and
their cost. On the other hand, the proposed approach could be combined with other
strategies that improve ABT efficiency, like dynamic variable ordering [14, 15], or the
hybrid ABT version [4]. Finally, privacy deserves a special mention. Obviously, the
proposed approach is less private than ABT, since deleted values (and the reasons for
their deletion) are exchanged among agents. How privacy could be improved inside the
framework of the proposed approach is an open question for further research.

Acknowledgements

Authors sincerely thank reviewers for their comments; they helped us to make a better
paper.

References

1. Baker A. B. The hazards of fancy backtracking. Proc. of AAAI-94, 288–293, 1994.
2. Bessiere C., Brito I., Maestre A., Meseguer P. The Asynchronous Backtracking without

adding links: a new member in the ABT family. Artifical Intelligence 161, 7–24, 2005.
3. Bessiere C., Regin J.C. Refining the basic constraint propagation algorithm. Proc. IJCAI-01,

309–315, 2001.
4. Brito I., Meseguer P. Improving ABT performance by adding synchronization points. Recent

Advances in Constraints in press, 2008.
5. Dechter R. and Pearl J. Network-Based Heuristics for Constraint-Satisfaction Problems. Ar-

tificial Intelligence, 34, 1–38, 1988.
6. Debruyne R., Bessiere C. Domain filtering consistencies. JAIR, 14:205–230, 2001.
7. Meisels A., Kaplansky E., Razgon I., Zivan R. Comparing Performance of Distributed Con-

straint Processing Algorithms. AAMAS Workshop on Distributed Constr. Reas., 86–93, 2002.
8. Silaghi M.C., Sam-Haroud D., Faltings B. Asynchronous Search with Aggregations. Proc.

of AAAI-00, 917–922, 2000.
9. Silaghi M.C., Sam-Haroud D., Faltings B. Consistency Maintenance for ABT. Proc. of CP-

01, 271–285, 2001.
10. Silaghi M.C., Sam-Haroud D., Faltings B. Asynchronous consistency and maintenance in

distributed constraint satisfaction. Artificial Intelligence, 161, 25–53, 2005.
11. Smith B. Phase Transition and the Mushy Region in Constraint Satisfaction Problems. In

Proc. of the 11th ECAI, 100–104, 1994.
12. Yokoo M., Durfee E., Ishida T., Kuwabara K. Distributed Constraint Satisfaction for Formal-

izing Distributed Problem Solving. In Proc. of the 12th. DCS, 614–621, 1992.
13. Yokoo M., Durfee E., Ishida T., Kuwabara K. The Distributed Constraint Satisfaction Prob-

lem: Formalization and Algorithms. IEEE Trans. Know. and Data Engin., 10, 673–685, 1998.
14. Zivan R., Meisels A. Dynamic ordering for asynchronous backtracking on DisCSPs. Con-

straints, 11, 179-197, 2006.
15. Zivan R., Zazone M., Meisels A. Min-domain ordering for asynchronous backtracking. Proc.

of CP-07, 758–772, 2007.

