
Nominal Unification

from a Higher-Order Perspective⋆

Jordi Levy1 and Mateu Villaret2

1 Artificial Intelligence Research Institute (IIIA),
Spanish Council for Scientific Research (CSIC), Barcelona, Spain.

http://www.iiia.csic.es/~levy
2 Departament d’Informàtica i Matemàtica Aplicada (IMA),

Universitat de Girona (UdG), Girona, Spain.
http://ima.udg.edu/~villaret

Abstract. Nominal Logic is an extension of first-order logic with equal-
ity, name-binding, name-swapping, and freshness of names. Contrarily to
higher-order logic, bound variables are treated as atoms, and only free
variables are proper unknowns in nominal unification. This allows “vari-
able capture”, breaking a fundamental principle of lambda-calculus. De-
spite this difference, nominal unification can be seen from a higher-order
perspective. From this view, we show that nominal unification can be
reduced to a particular fragment of higher-order unification problems:
higher-order patterns unification. This reduction proves that nominal
unification can be decided in quadratic deterministic time.

1 Introduction

Nominal Logic is a version of first-order many-sorted logic with equality and
mechanisms for renaming via name-swapping, for name-binding, and for fresh-
ness of names. It also provides a new-quantifier [GP99], to modeling name
generation and locality. It was introduced at the beginning of this decade by
Pitts [Pit01,Pit03]. These first works have inspired a sequel of papers where bind-
ings and freshness are introduced in other topics, like equational logic [CP07],
rewriting [FG05,FG07], unification [UPG03,UPG04], Prolog [CU04,UC05].

This paper is concerned with Nominal Unification [UPG03,UPG04], an ex-
tension of first-order unification where terms can contain binders and unification
is performed modulo α-equivalence. Moreover, (first-order) variables (unknowns)
are allowed to “capture” bound variables (atoms). [UPG03,UPG04] describe a
sound and complete, but inefficient (exponential), algorithm for nominal unifi-
cation. Later this algorithm was extended to deal with the new-quantifier and
locality in [FG05]. In [CF07] there is a description of a direct but exponential
implementation in Maude, and a polynomial implementation in OCAML based
on termgraphs.

⋆ This research has been partially founded by the CICYT research project TIN2007-
68005-C04-01/02/03.

The use of α-equivalence and binders in nominal logic immediately suggests
to view nominal unification from a higher-order perspective, the one that we
adopt in this paper. Some intuitions about this relation are already roughly
described in [UPG04]; and in [Che05] there is a reduction from higher-order
pattern unification to nominal unification (here we prove the opposite reduction).

The main benefit of nominal logic, compared to a higher-order logic, is that
it allows the use of binding and α-equivalence without the other difficulties
associated with the λ-calculus. In particular, with respect to unification, we
have that nominal unification is unitary (most general unifiers are unique) and
decidable [UPG03,UPG04], whereas higher-order unification is undecidable and
infinitary [Luc72,Gol81,Lev98,LV00].

In this paper we fully develop the study of nominal unification from the
higher-order view. We show that full higher-order unification is not needed but
only a fragment: Higher-order Pattern Unification [Mil91,Nip93,Qia96]. This
subclass of problems were proposed by Miller [Mil91]. Contrarily to general
higher-order unification, higher-order pattern unification is decidable and uni-
tary [Mil91,Nip93]. Moreover, the problem can be solved in linear time [Qia96].
All this will lead us to show how to reduce nominal unification to higher-order
pattern unification, and to conclude its decidability in quadratic time as well as
the uniqueness of most general unifiers.

From a higher-order perspective, nominal unification can be seen as a variant
of higher-order unification where:

1. variables are all first-order typed, and constants are of order at most three
(therefore, nominal unification is a fragment of second-order unification),

2. unification is performed modulo α-equivalence, instead of the usual α and
β-equivalence,

3. instances of variables (unknowns) are allowed to capture bound variables
(atoms), contrarily to the standard higher-order definition, and

4. apart from the usual term-equality predicate, we use a “freshness” predicate
a# t with the intended meaning: bound variable a does not occur free in the
instance of term t.

The first requirement does not suppose a difficulty. On the contrary, in the
reduction to higher-order unification we will add capturable variables as argu-
ments of free variables. The fact that original variables do not have arguments
will allow us to reduce nominal unification to higher-order pattern unification.

The second requirement is not a difficulty, either. As all variables are first-
order typed, their instantiation can not introduce β-redexes, and β-reduction is
not really necessary.

The third requirement is the key point that makes nominal unification an in-
teresting subject of research. Variable capture is always a trouble spot. Roughly
speaking, the main idea of this paper is to translate (first-order) nominal vari-
ables to higher-order variables with the list of bound variables that it can “cap-
ture” as arguments. This implies that the arguments of free variables will be
lists of pairwise distinct bound variables, hence higher-order patterns.

2

The fourth requirement can also be overcome by translating freshness pred-
icates into equality predicates.

We structure the paper as follows: after some preliminaries in Section 2,
in Section 3, we illustrate by examples the main ideas of the reduction at the
same time that we show the main features of nominal unification. In Section 4 we
show how to translate a nominal unification problem into a higher-order patterns
unification problem, and we prove that this translation is effectively a quadratic
time reduction in Section 5. In Section 6 we conclude.

2 Preliminaries

2.1 Nominal Unification

In nominal logic we talk about variables and atoms. Only variables may be in-
stantiated, and only atoms may be bounded. They roughly correspond to the
higher-order notions of free and bound variables, respectively, but are considered
as completely different entities. Therefore, contrarily to the higher-order perspec-
tive, the distinction between free and bound variables does not only depend on
the occurrences, i.e. in the existence of a binder above them.

In nominal signatures we have sorts of atoms (typically ν) and sorts of data
(typically δ) as disjoint sets. Atoms (typically a, b, . . .) have one of the sorts of
atoms. Variables, also called unknowns, (typically X,Y, . . .) have a sort of atom
or sort of data, i.e. of the form ν | δ. Nominal function symbols (typically f, g, . . .)
have an arity of the form τ → δ, where δ is a sort of data and τ is a sort given
by the grammar τ ::= ν | δ | τ ×τ | 〈ν〉τ . Abstractions have sorts of the form 〈ν〉τ .

Nominal terms (typically t, u, . . .) are given by the grammar:

t ::= 〈t1, t2〉 | ft | a | a.t |π · X

where f is a function symbol, a is an atom, π is a permutation (finite list of
swappings), and X is a variable. They are called respectively pairs, application,
atom, abstraction and suspension. For simplicity, we do not consider the unit
value.

A swapping (a b) is a pair of atoms of the same sort. The effect of a swapping
over an atom is defined by (a b) · a = b and (a b) · b = a and (a b) · c = c, when
c 6= a, b. For the rest of terms the extension is straightforward, in particular,
(a b) ·(c.t) =

(

(a b) ·c
)

.
(

(a b) · t
)

. A permutation is a (possibly empty) sequence of

swappings. Its effect is defined by (a1 b1) . . . (an bn)·t = (a1 b1)·
(

(a2 b2) . . . (an bn)·

t
)

. Notice that every permutation π naturally defines a bijective function from
the set of atoms to the sets of atoms, that we will also represent as π. Suspensions
are uses of variables with a permutation of atoms waiting to be applied once the
variable is instantiated.

A nominal unification problem (typically P) is a set of equations of the form

t
?

≈ u or a# ?t. A freshness environment (typically ∇) is a list of pairs a#X
stating that the instantiation of X cannot capture a.

A solution of a nominal problem is given by a substitution σ and a freshness
environment ∇. Substitutions are like in first-order logic, and allow atom capture,

3

for instance [X 7→ a]a.X = a.a. Formally, the pair 〈∇, σ〉 solves P if, ∇ ⊢

a#σ(t), for equations a# ?t ∈ P , and ∇ ⊢ σ(t) ≈ σ(u), for equations t
?

≈ u ∈ P .
The predicates ≈ and # are defined in [UPG03,UPG04] by means of a theory.
Their intended meanings are: ∇ ⊢ a# t holds if, for every substitution σ avoiding
the atom captures forbidden by ∇, a is not free in σ(t); ∇ ⊢ t ≈ u holds if, for
every substitution σ avoiding the atom captures forbidden by ∇, t and u are
α-convertible.

2.2 Higher-Order Pattern Unification

In higher-order signatures we have types constructed from a set of basic types
(typically α, . . .) using the grammar τ ::= α | τ → τ , where → is associative to
the right).

λ-terms are built using the grammar t ::= x | c |λx.t | t1 t2, where x is a vari-
able and c is a constant. Other standard concepts of λ-calculus, like free variables
(noted FV), bound and free occurrences of variables, α-conversion, β-reduction,
η-long β-normal form, substitutions, most general unifiers, etc. are defined as
usual (see [Dow01]). The domain of a substitution σ is denoted by Dom(σ), and
we say that X occurs in σ if X occurs free in σ(Y) for some Y ∈ Dom(σ).

A higher-order pattern is a simply typed λ-term where, when written in
normal form, all free variable occurrences are applied to lists of pairwise distinct
bound variables. Higher-order pattern unification is the problem of deciding if
there exists a unifier for a set of equations t ?= u between higher-order patterns.
The most general unifiers of a pattern unification problem is unique (up to free
variable renaming). Moreover, it instantiates variables by higher-order patterns.
There is an algorithm that finds these unifiers, if exist, in linear time [Qia96].

3 Four Examples

In order to describe the reduction of nominal unification to higher-order pattern
unification, we will use the unification problems proposed in [UPG03,UPG04] as
a quiz.

Example 1. The nominal equation

a.b.〈X1, b〉
?

≈ b.a.〈a,X1〉

has no nominal unifiers. Notice that, although unification is performed modulo
α-equivalence, as far as we allow atom capture, we can not α-convert terms
before instantiating them. Therefore, this problem is not equivalent to

a.b.〈X1, b〉
?

≈ a.b.〈b,X1〉

which is solvable, and must be α-converted as

a.b.〈X1, b〉
?

≈ a.b.〈b, (a b) · X1〉

Recall that (a b) · X1 means that, after instantiating X1 with a term that
possibly contain a or b, we have to exchange these variables.

4

According to the ideas exposed in the introduction, we have to replace every
occurrence of X1 by X ′

1 a′ b′, since a, b is the list of atoms (bound variables) that
can be captured. We get3:

λa′.λb′.〈X ′
1 a′ b′ , b′〉 ?= λb′.λa′.〈a′ , X ′

1 a′ b′〉

Since this is a higher-order unification problem, we can α-convert one of the
sides of the equation and get:

λa′.λb′.〈X ′
1 a′ b′ , b′ 〉 ?= λa′.λb′.〈b′ , X ′

1 b′ a′〉

which is unsolvable, like the original nominal equation.

Example 2. The nominal equation

a.b.〈X2, b〉
?

≈ b.a.〈a,X3〉

is solvable. Its translation is

λa′.λb′.〈X ′
2 a′ b′ , b′〉 ?= λb′.λa′.〈a′ , X ′

3 a′ b′〉

The most general unifier of this higher-order pattern unification problem is

X ′
2 7→ λx.λy.y

X ′
3 7→ λx.λy.x

Now, taking into account that the first argument corresponds to the bound
variable a′, and the second one to b′, we can reconstruct the most general nominal
unifier as:

X2 7→ b
X3 7→ a

Example 3. In some cases, there are interrelationships between the instances of
variables that make reconstruction of unifiers more difficult. This is shown with
the following nominal equation:

a.b.〈b,X4〉
?

≈ b.a.〈a,X5〉

that is solvable. Its translation results on:

λa′.λb′.〈b′ , X ′
4 a′ b′〉 ?= λb′.λa′.〈a′ , X ′

5 a′ b′〉

and its most general unifier is:4

X ′
4 7→ λx.λy.X ′

5 y x

This higher-order unifier can be used to reconstruct the nominal unifier

X4 7→ (a b) · X5

The swapping (a b) comes from the fact that the arguments of X ′
5 and the

lambda abstractions in front have a different order.

3 In this example we allow the use of the binary constant 〈 , 〉 in λ-calculus for pairs.
Later on we will describe formally the translation algorithm and how pairs are really
translated.

4 The unifier X ′

5 7→ λx.λy.X ′

4 y x is equivalent modulo variable renaming. In this case
we obtain the also equivalent nominal unifier X5 7→ (a b) · X4.

5

Example 4. The solution of a nominal unification problem is not just a substitu-
tion, but a pair (∇, σ) where σ is a substitution and ∇ is a freshness environment
imposing some restrictions on the atoms that can occur free in the fresh variables
introduced by σ. The nominal equation

a.b.〈b,X6〉
?

≈ a.a.〈a,X7〉

has as solution

σ = [X6 7→ (b a) · X7]
∇ = {b#X7}

where the freshness environment is not empty and requires instances of X7 to
not contain (free) occurrences of b. Let us see how this is reflected when we
translate the problem into a higher unification problem. The translation of the
equation using the translation algorithm results on:

λa′.λb′.〈b′ , X ′
6 a′ b′〉 ?= λa′.λa′.〈a′ , X ′

7 a′ b′〉 (1)

After a convenient α-conversion we get

λa′.λc′.〈c′ , X ′
6 a′ c′〉 ?= λa′.λc′.〈c′ , X ′

7 c′ b′〉

The most general unifier is again unique:

X ′
6 7→ λx.λy.X8 y b′

X ′
7 7→ λx.λy.X8 x y

Nevertheless, in this case we cannot reconstruct the nominal unifier. More-
over, by instantiating the free variable b′, we get other (non-most general) higher-
order unifier without nominal counterpart. The translation does not work in this
case because b′ occurs free in the right hand side of (1). We translate both atoms
and unknowns as variables. Occurrences of unknowns become free occurrences
of variables, and occurrences of atoms, if are bounded, become bound occur-
rences of variables. Therefore, in most cases, after the translation the distinction
atom/unknown become a distinction free/bound variable. However, if atoms are
not bounded, as in this case, they are translated as free variables, hence are
instantiable, whereas atoms are not instantiable.

To avoid this problem, we have to ensure that any occurrence of an atom
is translated as a bound variable occurrence. This is easily achievable if we add
binders in front of both sides of the equation. Therefore, the correct translation
of this problem is:

λa′.λb′.λa′.λb′.〈b′ , X ′
6 a′ b′〉 ?= λa′.λb′.λa′.λa′.〈a′ , X ′

7 a′ b′〉

where two new binder λa′.λb′ have been introduced in front of both sides of the
equation. The most general unifier is now:

X ′
6 7→ λx.λy.X ′

8 y
X ′

7 7→ λx.λy.X ′
8 x

This can be used to reconstruct the nominal substitution:

X6 7→ (a b) · X8

X7 7→ X8

6

As far as X ′
8 x is translated back as X8, and X ′

8 x does not uses the second
argument (the one corresponding to b), we have to add a supplementary condi-
tion ensuring that X8 does not contain free occurrences of b. This results on the
freshness environment {b#X8}. Then, X ′

8 y is translated back as (a b) · X8.

4 The Translation Algorithm

In this Section we formalize the translation algorithm. We transform nominal
unification problems into higher-order unification problems. Both kinds of prob-
lems are expressed using distinct kinds of signatures. In nominal unification we
have sorts of atoms and sorts of data. In higher-order this distinction is no
longer necessary, and we will have a base type (typically ν′ and δ′) for every sort
of atoms ν or sort of data δ. We give a sort to types translation function that
allows us to translate any sort into a type.

Definition 1. The translation function is defined on sorts inductively as fol-
lows.

JδK = δ′

JνK = ν′

Jτ1 × τ2K = (Jτ1K → Jτ2K → ⊤) → ⊤
Jτ1 → τ2K = Jτ1K → Jτ2K
J〈ν〉τK = ν′ → JτK

where ⊤, δ′ and ν′ are base types.

Remark 1. The translation function for terms depends on all the atoms occur-
ring in the nominal unification problem. We assume that there exists a fixed,
finite and ordered list of atoms 〈a1, . . . , an〉 used in the problem. This seems to
contradict the assumption of a countably infinite set of atoms for every sort.
However, this does not imply a loss of generality as far as every nominal uni-
fication problem only contains a finite set of atoms, and its solutions can be
expressed without adding new atoms (see Lemma 5). From now on, we will
consider this list given and fixed.

For every function symbol f, . . ., we will use a constant with name f ′,
Nominal atoms a, b . . . are translated as (bound) variables, with the names
a′, b′, The lack of distinction between sorts of atoms and data, after the
translation, forces us to ensure that the translation of every atom occurrence
will correspond to a bounded occurrence of variable. For every variable (un-
known) X,Y, . . ., we will use a (free) variable with name X ′, Y ′, Trivially,
atom abstractions a.t are translated as lambda abstractions, and data f t as
applications. The translation of suspensions π ·X is more complicated, as far as
it gets rid of atom capture.

Definition 2. Let 〈a1, . . . , an〉 be an ordered list of atoms occurring in the nom-
inal unification problem. The translation function from nominal terms with a

7

freshness environments ∇ into λ-terms is defined inductively as follows.

J〈t1, t2〉K∇ = λp.p Jt1K∇ Jt2K∇
JaK∇ = a′

Jf tK∇ = f ′ JtK∇
Ja.tK∇ = λa′.JtK∇
Jπ · XK∇ = X ′ (π · b1)

′ . . . (π · bm)′ where bj #X 6∈ ∇, for j = 1, . . . ,m

where, if a : ν is an atom, then a′ : JνK is a bound variable, if f : τ is a
function symbol, then f ′ : JτK is a constant, and if X : τ is a variable, then
〈b1, . . . , bm〉 ⊆ 〈a1, . . . , an〉 is the sublist of atoms such that bj #X 6∈ ∇ and
X ′ : Jν1K → . . . → JνmK → JτK is a free variable and bj : νj.

5

Lemma 1. Let ∇ be a freshness environment.
For every nominal term t of sort τ , the λ-term JtK∇ has type JτK.
Therefore, JtK∇ is a well-typed λ-term, for every nominal term t.

Proof. The proof is simple by structural induction on t. The only point that mer-
its a more detailed explanation is the case of suspensions. Since ai : νi, X : τ ,
and X ′ : Jνi1K → · · · → Jνim

K → JτK, we have JXK∇ = X ′Jai1K∇ . . . Jaim
K∇ : JτK.

When X is affected by a swapping (aij
aik

) we also have J(aij
aik

) · XK∇ =
X ′Jai1K∇ . . . Jaij−1

K∇Jaik
K∇Jaij+1

K∇ . . . Jaik−1
K∇Jaij

K∇Jaik+1
K∇ . . . Jaim

K∇ : JτK
because the suspension is not a valid nominal term unless aij

and aik
belong to

the same sort. The same applies to arbitrary permutations. ⊓⊔

Example 5. Given the nominal term a.b.c.(c a)(a b) · X, after applying the sub-
stitution [X 7→ 〈〈a, b〉, c〉] we get the instantiation a.b.c.〈〈b, c〉, a〉. Let 〈a, b, c〉
be the (ordered) list of atoms of our problem. The translation of the term and
its instantiation results into λa′.λb′.λc′.X ′b′c′a′ and λa′.λb′.λc′.λp.p(λp.p b′c′)a′,
respectively. There is a λ-substitution [X ′ 7→ λa′.λb′.λc′.λp.p(λp.p a′b′)c′] that
when applied to the translation of the original term results into the translation
of its instantiation. Graphically this can be represented as the commutation of
the following diagram, and is proved in general in Lemma 4.

a.b.c.(c a)(a b) · X
[X 7→ 〈〈a, b〉, c〉]

- a.b.c.〈〈b, c〉, a〉

λa′.λb′.λc′.X ′b′c′a′

J K

? [X ′ 7→ λa′.λb′.λc′.λp.p(λp.p a′b′)c′]
- λa′.λb′.λc′.λp.p(λp.p b′c′)a′

J K

?

As we have said nominal unification problems contains two kinds of judg-

ments: freshness equations like a# ?t, and equality equations like t
?

≈ u. Equal-
ity equations are trivially translated as higher-order unification problems, adding
some λ-bindings in front of both terms to ensure that all occurrences of atoms
are translated as bounded occurrences of variables. Freshness equations a# ?t

are translated as equations of the form Y
?

≈ t where Y is a fresh variable that
will not be able to capture free occurrences of a.

5 Notice that bj and π · bj are of the same sort.

8

Definition 3. Let 〈a1, . . . , an〉 be an ordered list of atoms occurring in the nom-
inal unification problem. The translation function is defined on nominal problems
inductively as follows

J{ai # ?t} ∪ P K = {λa′
1.λa′

n.Y ′a′
1 . . . a′

i−1 a′
i+1 . . . a′

n
?= λa′

1.λa′
n.JtK∅} ∪ JP K

J{t
?

≈ u} ∪ P K = {λa′
1.λa′

n.JtK∅
?= λa′

1.λa′
n.JuK∅} ∪ JP K

where Y ′ is a fresh variable with the appropriate type.

Remark 2. Alternatively to Definition 3, we could decompose freshness equa-
tions into simple pieces until we get a freshness environment, and use it in the
translation of the equality equations. This would result into the following induc-
tive definition.

J{a# ?〈t1, t2〉} ∪ P K = J{a# ?t1, a# ?t2} ∪ P K
J{a# ?b} ∪ P K = JP K if a 6= b
J{a# ?f t} ∪ P K = J{a# ?t} ∪ P K
J{a# ?b.t} ∪ P K = J{a# ?t} ∪ P K if a 6= b
J{a# ?a.t} ∪ P K = JP K
J{a# ?π · X} ∪ P K = J{π−1 · a#X} ∪ P K
J∇∪ P K = JP K∇ if for all {a# ?t} ∈ ∇, t is a variable

J{t
?

≈ u} ∪ P K∇ = {λa′
1.λa′

n.JtK∇
?= λa′

1.λa′
n.JuK∇} ∪ JP K∇

However, in this case, the type of the free variables X ′ would depend on the
freshness equations, and we would have problems to define the translation of a
substitution that would have to instantiate such variables. Therefore, for sim-
plicity we opt for Definition 3.

Lemma 2. Given a nominal unification problem P , its translation JP K is a
higher-order pattern unification problem.
Moreover, the size of JP K is bounded by the square of the size of P .

Finally, we have to translate solutions of nominal unification problems.

Definition 4. Let 〈a1, . . . , an〉 be an ordered list of atoms occurring in the nom-
inal unification problem. The translation function is defined on solutions of nom-
inal unification problems inductively as follows.

J〈∇, σ〉K =
⋃

X∈Dom(σ)

[

X ′ 7→ λa′
1. · · ·λa′

n.Jσ(X)K∇

]

Remark 3. Notice that, if P contains freshness equations, then the set of free
variables of JP K is bigger than the set of unknowns in P (we have a new free
variable, called Y ′, for every freshness equation). However, σ and J〈∇, σ〉K have
equivalent domains. This would imply that, if 〈∇, σ〉 is a solution of P , we will
have to extend J〈∇, σ〉K, by instantiating also the variables Y ′, to get a unifier of
JP K. If we had translated nominal unification problems as described in Remark 2,
we would obtain a pattern unification problem with equivalent sets of variables.
But, we would lose simplicity in other proofs.

We start by proving the following two technical lemmas.

9

Lemma 3. For any freshness environment ∇, nominal terms t, u, and atom a,
we have

1. ∇ ⊢ a# t if, and only if, a′ 6∈ FV (JtK∇), and
2. ∇ ⊢ t ≈ u if, and only if, JtK∇ =α JuK∇.

Proof. The first statement can be proved by routine induction on t and its
translation. Notice that atoms are translated “nominally” into variables and
that the binding structure is also identically translated, hence, the freshness of an
atom a corresponds to the free occurrence of its variable counterpart a′. We here
only comment the case t = π ·X, in this case, Jπ ·XK∇ = X ′(π ·a1)

′ . . . (π ·am)′,
where ai #X /∈ ∇, for any i ∈ {1..m}. Therefore, we can establish the following
sequence of equivalences ∇ ⊢ a#π·X iff π−1·a#X ∈ ∇ iff π−1·a 6∈ {a1, . . . , am}
iff a 6∈ {π ·a1, . . . , π ·am} iff a′ 6∈ FV (X ′(π ·a1)

′ . . . (π ·am)′) iff a′ 6∈ FV (Jπ ·XK).
The proof of the second statement can be done by induction on the equiva-

lence t ≈ u. We only comment the equivalence between suspensions: π·X ≈ π′·X.
Notice that, π ·X ≈ π′ ·X if, and only if, for all atoms a such that π · a 6= π′ · a,
we have a#X ∈ ∇. This condition is equivalent to: the bound variables (π · a)′

and (π′ ·a)′ are passed as a parameter to X ′ in Jπ ·XK∇ and Jπ′ ·XK∇ only when
π · a = π′ · a. Finally, this condition is equivalent to Jπ · XK∇ = Jπ′ · XK∇. ⊓⊔

Lemma 4. For any freshness environment ∇, nominal terms t, and nominal
substitution σ, we have J〈∇, σ〉K(JtK∅) = Jσ(t)K∇.6

Proof. Again this lemma can be proved by structural induction on t. We only
sketch the suspension case. Let t = π · X. We have the equalities:

J〈∇, σ〉K(Jπ · XK∅) = [. . . ,X ′ 7→ λa′
1 . . . λa′

n . Jσ(X)K∇, . . .](X ′(π · a1)
′ . . . (π · an)′)

= (λa′
1 . . . λa′

n . Jσ(X)K∇)(π · a1)
′ . . . (π · an)′

= J[a1 7→ π · a1, . . . , an 7→ π · an]σ(X)K∇
= Jπ · σ(X)K∇
= Jσ(π · X)K∇ ⊓⊔

From these two lemmas we can prove the following result and corollary.

Theorem 1. For any freshness environment ∇, nominal unification problem P ,
and nominal substitution σ, we have that:

〈∇, σ〉 solves the nominal unification problem P , if, and only if, there exists
an extension of J〈∇, σ〉K, for the variables of JP K not occurring in P , that solves
the pattern unification problem JP K.

Proof. The pair 〈∇, σ〉 solves P iff

∇ ⊢ ai #σ(t) for all ai # ?t ∈ P

∇ ⊢ σ(t) ≈ σ(u) for all t
?

≈ u ∈ P

6 When we write = between λ-terms, we mean that they are αβη-equivalent, i.e. that
have the same η-long β-normal form.

10

By Lemma 3 this is equivalent to:

a′ 6∈ FV (Jσ(t)K∇) for all a# ?t ∈ P

Jσ(t)K∇ =α Jσ(u)K∇ for all t
?

≈ u ∈ P

By Lemma 4 this is equivalent to:

a′
i 6∈ FV (J〈∇, σ〉KJtK∅) for all ai # ?t ∈ P

J〈∇, σ〉KJtK∅ = J〈∇, σ〉KJuK∅ for all t
?

≈ u ∈ P

Since we avoid variable capture, this is equivalent to:
[

Y ′ 7→ λa′
1 . . . a′

i−1a
′
i+1 . . . a′

n.J〈∇, σ〉KJtK∅

](

λa′
1 . . . a′

n.Y ′a′
1 . . . a′

i−1 a′
i+1 . . . a′

n

)

?=

?= J〈∇, σ〉K
(

λa′
1 . . . a′

n.JtK∅

)

for all ai # ?t ∈ P

J〈∇, σ〉K
(

λa′
1.λa′

n.JtK∅

)

?= J〈∇, σ〉K
(

λa′
1.λa′

n.JuK∅

)

for all t
?

≈ u ∈ P

Finally, this means that the following extension solves JP K.

σ′ = J〈∇, σ〉K ∪
⋃

Y ′

[Y ′ 7→ λa′
1.λa′

i−1.λa′
i+1.λa′

n.J〈∇, σ〉KJtK∅]
⊓⊔

Corollary 1. If the nominal unification problem P is solvable, then the higher-
order pattern unification problem JP K is solvable.

5 The Reverse Translation

Notice that Theorem 1 is not enough to prove that, if JP K is solvable, then P is
solvable. We still have to prove that if JP K is solvable, then for some solution σ′

of JP K we can build a nominal solution 〈∇, σ〉 of P . This is the main objective of
this section. Taking into account that JP K is a higher-order pattern unification
problem, and that these problems are unitary, we will prove something stronger:
if JP K is solvable, then Jσ′K−1 is defined for some most general unifier σ′ of JP K.

In the following example we note that in the solution of pattern unification
problems it is important to save names of bound variables.

Example 6. Consider the nominal problem a.X
?

≈ a.f (b.Y). Its translation
is λa′.λb′.λa′.X ′ a′ b′ ?= λa′.λb′.λa′.f ′ (λb′.Y ′ a′ b′). An α-conversion results in
λa′.λb′.λc′.X ′ c′ b′ ?= λa′.λb′.λc′.f ′ (λd′.Y ′ c′ d′) and it shows that the param-
eters of X ′ and Y ′ are in fact different. A most general solution is [X ′ 7→
λc′.λb′.f ′(λd′.Y ′ c′ d′)]. Since Y is translated as Y ′ a′ b′, we have to translate back
Y ′ c′ d′ as (a c)(d b) · Y . And, since [X 7→ t] is translated as [X ′ 7→ λa′.λb′.JtK∇],
we have to translate back [X ′ 7→ λc′.λb′.JtK∇ as [X 7→ (a c) · t]. Therefore, our
pattern unifier can be translated back as [X 7→ (a c)·f(d.(a c)(d b)·Y)]. However,
the list of atoms is fixed as the list of atoms occurring in the problem, therefore,
we know how to translate a and b as a′ and b′ and vice versa, but we do not
know how to translate back c′ and d′ (here it is done introducing new atoms).

To avoid the problem discussed in the previous example, we will be cautious
with the α-conversions. Lemma 5 justifies why we can avoid the use of other

11

atoms but the ones occurring in the original nominal problem. Lemma 6 will be
also necessary, and also describes some properties of pattern unifiers.

Lemma 5. For any solvable pattern unification problem, there exists a most
general unifier that does not use other names and types for bound variables than
the ones already used in the problem.

Proof. It can be proved by inspection of the transformations rules in
[Mil91,Nip93], that describe a sound and complete algorithm for pattern unifica-
tion. These transformations introduce fresh variables and new lambda binders.
However, the names of the new bound variables can always be chosen to coincide
with names of already existing bound variables with the same type. ⊓⊔

Lemma 6. For every pattern unification problem P and most general unifier σ,
if X occurs free in σ, then for every type of an argument of X, there exists a
variable Y in P with an argument of the same type, and there exists a variable
Z in P with the same return type as X.

Proof. Like for the previous lemma, we can analyze the transformations rules in
[Mil91,Nip93]. It can be seen that when we introduce a fresh variable with type
τ1 → . . . → τn → τ0, there exist already another variable with type τ ′

1 → . . . →
τ ′
m → τ ′

0, such that {τ1, . . . , τn} ⊆ {τ ′
1, . . . , τ

′
m} and τ0 = τ ′

0. The only exception
is in rigid-flexible pairs (imitation rule), where fresh variables not satisfying these
properties are introduced. But it is easy to see that they always disappear from
the solution. ⊓⊔

Even using a solution of the higher-order pattern unification problem with a
restricted use of names of bound variables, we still have some freedom to select
the unifier Jσ′K−1. This is reflected in the way we translate back applications of
free variables, i.e. in the definition of the list of variable indices LX′ for every
free variable X ′.

Definition 5. Let 〈a1, . . . , an〉 be the fixed list of atoms. For every free variable
X ′ : τ1 → . . . τm → τ0 we define the list of indexes of atoms LX′ = 〈i1, . . . im〉
such that aij

has sort JτjK
−1, 7 for j = 1, . . . ,m, and we also define the corre-

sponding freshness environment ∇X′ = {ai #X | i 6∈ LX′}.

Definition 6. Let 〈a1, . . . , an〉 be the fixed list of atoms. The back-translation
function is defined on λ-terms in η-long β-normal form as follows:

Jλp. p t1 t2K
−1 = 〈Jt1K

−1, Jt2K
−1〉 if p : τ1 → τ2 → ⊤

Ja′K−1 = a
Jf ′ tK−1 = f JtK−1

Jλa′.tK−1 = a . JtK−1 if a′ is base typed

JX ′ a′
j1

. . . a′
jm

K−1 =

(

ai1 · · · aim

aj1 · · · ajm

)

· X
where LX′ = 〈i1, . . . im〉
and {aj1 , · · · , ajm

} ⊆ {a1, . . . , an}

7 Notice that Lemma 6 ensures that, even for the introduced fresh variables, for every
type τj there exists at least one atom aij

satisfying aij
: JτjK

−1. Notice also that for
every X ′, we freely choose one among many possible lists LX′ .

12

where a′ is a bound variable with name a, f ′ is the constant associated to the
function symbol f , either X ′ is the free variable associated to X, or if X ′ is a
fresh variable then X is a fresh unknown, and the permutation is supposed to be
decomposed in terms of transpositions (swappings).

Notice that the back-translation function is not defined for all λ-terms, even
for all higher-order patterns. In particular, Jλx.tK−1 is not defined when x is not
base typed nor returns something of type ⊤, or Jx tK−1 is not defined when x is
a bound variable.

Definition 7. The back-translation function is defined on substitutions induc-
tively as follows.

Jσ′K−1 =

〈

⋃

X′∈Dom(σ′)

X′:ν′

1
→...→ν′

n→δ′

[

X 7→ Jσ′(X ′) a′
1 . . . a′

nK−1
]

,
⋃

Z′
occurs in σ′

∇Z′

〉

Notice that the back-translation only translates those instantiations affecting
variables with type ν′

1 → . . . → ν′
n → δ′. When σ′ is a unifier of a problem JP K,

then it contains in Dom(σ′) variables X ′ associated to a nominal variable X,
that satisfies this condition, and variables Y ′ resulting from the translation of
freshness equations, that do not satisfy the condition because they have type
ν′
1 → . . . → ν′

i−1 → ν′
i+1 → . . . → ν′

n → δ′. These second type of variables have
not back-translation and do not occur in the domain of Jσ′K−1.

Example 7. The nominal unification problem

P = {a.a.X
?

≈ c.a.X , a.b.X
?

≈ b.a.(a b) · X , a# ?X}

is translated as

JP K = { λa′.λb′.λc′.λa′.λa′. X ′ a′ b′ c′ ?= λa′.λb′.λc′.λc′.λa′. X ′ a′ b′ c′ ,

λa′.λb′.λc′.λa′.λb′. X ′ a′ b′ c′ ?= λa′.λb′.λc′.λb′.λa′. X ′ b′ a′ c′ ,

λa′.λb′.λc′. Y ′ b′ c′ ?= λa′.λb′.λc′. X ′ a′ b′ c′}

The pattern unifier is

σ′ = [X ′ 7→ λa′.λb′.λc′. Z ′ b′ , Y ′ 7→ λb′.λc′. Z ′ b′]

Fixed 〈a, b, c〉 as the fixed list of atoms, and taking LZ′ = 〈2〉, the nominal
solution is

〈∇, σ〉 = Jσ′K−1 = 〈{a#Z, c#Z} , [X 7→ Z]〉

They satisfy the relation

σ′ = J〈∇, σ〉K ∪ [Y ′ 7→ λb′.λc′. Z ′ b′]

Notice that a and b are of the same sort. Therefore, we could take LZ′ = 〈1〉.
Then, we would obtain another “equivalent” nominal unifier:

〈∇, σ〉 = Jσ′K−1 = 〈{b#Z, c#Z} , [X 7→ (a b) · Z]〉

Lemma 7. For every λ-substitution σ′, if Jσ′K−1 exists, then JJσ′K−1K is exten-
sible to σ′.

13

Proof. Straightforward from the definition of J K and J K−1. ⊓⊔

Lemma 8. For every nominal unification problem P , if the pattern unification
problem JP K is solvable, then it has a most general unifier σ′ such that Jσ′K−1 is
defined.

Proof. By Lemma 5, there exists a most general unifier that does not use bound
variables with other names and types than the ones already used in the original
problem. This ensures that we can always translate back bound variables a′ as
the atom with the same name a. For the same reason, in all λ-expressions λx.t
the bound variable x will have type τ1 → τ2 → ⊤ (for pairs) or base type ν′

i,
which will ensure that its translation back is possible.

By Lemma 6, since all free variables in the original problem JP K have type of
the form ν1 → . . . → νn → δ, all free variables in the unifier will have type of the
form X ′ : νii

→ . . . → νim
→ δ. This ensures the existence of LX′ = {i1, . . . , im},

as well as the translation back of suspensions.
Finally, we will never be forced to translate back terms of the form at1 . . . tm

where a is a bound variable, because in JP K, hence in σ′, all bound variables are
base typed. ⊓⊔

Theorem 2. For every nominal unification problem P , if the pattern unification
problem JP K is solvable, then P is solvable.

Proof. By Lemma 8, if JP K is solvable then there exist a most general unifier σ′ of
such that 〈∇, σ〉 = Jσ′K−1 is defined. By Lemma 7, we have J〈∇, σ〉K is extensible
(by instantiating all the variables of JP K not corresponding to any variable in
P) to σ′, which solves JP K. Hence, by Theorem 1, 〈∇, σ〉 solves P . ⊓⊔

Corollary 2. Nominal Unification is quadratic reducible to Higher-Order Pat-
tern Unification.
Nominal Unification can be decided in quadratic deterministic time.

6 Conclusion

The paper describes a precise quadratic reduction from Nominal Unification to
Higher-order Pattern Unification. This helps to better understand the semantics
of the nominal binding and permutations in comparison with λ-binding and
α-conversion. Moreover, using the result of linear time decidability for Higher-
Order Patterns Unification [Qia96], we prove that Nominal Unification can be
decided in quadratic time. It seems not difficult to prove that the translation and
the back-translation function that we present transform most general nominal
unifiers into most general higher-order patter unifiers and vice versa.

References

[CF07] C. Calvès and M. Fernández. Implementing nominal unification. ENTCS,
176(1):25–37, 2007.

14

[Che05] J. Cheney. Relating higher-order pattern unification and nominal unification.
In Proc. of the 19th Int. Work. on Unification, UNIF’05, pages 104–119, 2005.

[CP07] R. A. Clouston and A. M. Pitts. Nominal equational logic. ENTCS, 1496:223–
257, 2007.

[CU04] J. Cheney and C. Urban. α-prolog: A logic programming language with
names, binding and α-equivalence. In Proc. of the 20th Int. Conf. on Logic

Programming,ICLP’04, volume 3132 of LNCS, pages 269–283, 2004.
[Dow01] G. Dowek. Higher-order unification and matching. In Handbook of automated

reasoning, pages 1009–1062, 2001.
[FG05] M. Fernández and M. Gabbay. Nominal rewriting with name generation:

abstraction vs. locality. In Proc. of the 7th Int. Conf. on Principles and

Practice of Declarative Programming, PPDP’05, pages 47–58, 2005.
[FG07] M. Fernández and M. Gabbay. Nominal rewriting. Information and Compu-

tation, 205(6):917–965, 2007.
[GC04] M. Gabbay and J. Cheney. A sequent calculus for nominal logic. In Proc. of

the 19th Symp. on Logic in Computer Science, LICS’04, pages 139–148, 2004.
[Gol81] W. D. Goldfarb. The undecidability of the second-order unification problem.

Theoretical Computer Science, 13:225–230, 1981.
[GP99] M. Gabbay and A. M. Pitts. A new approach to abstract syntax involving

binders. In Proc. of the 14th Symp. on Logic in Computer Science, LICS’99,
pages 214–224, 1999.

[Lev98] J. Levy. Decidable and undecidable second-order unification problems. In
Proc. of the 9th Int. Conf. on Rewriting Techniques and Applications, RTA’98,
volume 1379 of LNCS, pages 47–60, 1998.

[Luc72] C. L. Lucchesi. The undecidability of the unification problem for third-order
languages. Technical Report CSRR 2059, Dept. of Applied Analysis and
Computer Science, Univ. of Waterloo, 1972.

[LV00] J. Levy and M. Veanes. On the undecidability of second-order unification.
Information and Computation, 159:125–150, 2000.

[Mil91] D. Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. J. of Logic and Computation, 1(4):497–536,
1991.

[Nip93] T. Nipkow. Functional unification of higher-order patterns. In Proc. of the

8th Symp. on Logic in Computer Science, LICS’93, pages 64–74, 1993.
[Pit01] A. M. Pitts. Nominal logic: A first order theory of names and binding. In

Proc. of the 4th Int. Symp. on Theoretical Aspects of Computer Software,

TACS’01, volume 2215 of LNCS, pages 219–242, 2001.
[Pit03] A. M. Pitts. Nominal logic, a first order theory of names and binding. Infor-

mation and Computation, 186:165–193, 2003.
[Qia96] Z. Qian. Unification of higher-order patterns in linear time and space. J. of

Logic and Computation, 6(3):315–341, 1996.
[UC05] C. Urban and J. Cheney. Avoiding equivariance in alpha-prolog. In Proc. of

the Int. Conf. on Typed Lambda Calculus and Applications, TLCA’05, volume
3461 of LNCS, pages 401–416, 2005.

[UPG03] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. In Proc.

of the 17th Int. Work. on Computer Science Logic, CSL’03, volume 2803 of
LNCS, pages 513–527, 2003.

[UPG04] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoretical

Computer Science, 323:473–497, 2004.

15

