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Abstract. Recently, a temporal extension of the argumentation defea-
sible reasoning system DeLP has been proposed. This system, called
t-DeLP, allows to reason defeasibly about changes and persistence over
time but does not offer the possibility of ranking defeasible rules accord-
ing to criteria of preference or certainty (in the sense of belief). In this
contribution we extend t-DeLP by allowing to attach uncertainty weights
to defeasible temporal rules and hence stratifying the set of defeasible
rules in a program. Technically speaking, weights are modelled as neces-
sity degrees within the frame of possibility theory, a qualitative model of
uncertainty.

1 Introduction and Motivation

The system DeLP [13] provides a defeasible logic programming-based argumen-
tation framework, based on the use of dialectical trees, upon which several exten-
sions have been built. In particular, the system t-DeLP [17] makes it possible to
express defeasible reasoning in a discrete temporal framework as well as changes
and persistence over time. t-DeLP, however, does not offer the possibility of rank-
ing defeasible rules according to criteria of preference or certainty (in the sense
of belief).

In addition, in t-DeLP, the application of rules does not take into account any
possible uncertainty in the occurrence of temporal events. This issue has been
already tackled in another extension of DeLP, the system P-DeLP [3,2,8], that
allows the handling of possibilistic uncertainty (of a qualitative, ordinal nature)
by attaching defeasible rules and arguments with necessity degrees.

To bridge this gap, in this paper we introduce an extended argumentation
framework, called pt-DeLP, where it is possible to express uncertainty on tem-
poral rules and events, and how this uncertainty may change over time. This
new system presents the possibility of formalizing arguments and defeat rela-
tions among them that combine both temporal criteria of t-DeLP and the belief
strength criteria from P-DeLP. In fact, preferred arguments in t-DeLP are those
with comparably more (temporally basic) information, or comparably less use of
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persistence rules (which simply assume that some fact will not change). This al-
lows to express certain non-monotonic temporal phenomena (extinction of facts
vs. persistence) in an economic way. On the other hand, P-DeLP establishes a
preference for arguments that support their conclusions with comparably higher
weights. Then, a natural way of combining these two kinds of preference (de-
feat) relations is through the definition of a lexicographic preference relation
(see e.g. [4]) that assigns more relevance to temporal criteria or vice versa. We
will show that, under any of these two lexicographic combinations, pt-DeLP is a
conservative extension of t-DeLP, while this is not the case with P-DeLP.

The paper is structured as follows. In Section 2 we present the logic underlying
the proposed logic programming framework, which is introduced in Section 3.
The relationship between t-DeLP and P-DeLP to the new framework pt-DeLP is
studied in Section 4. Then, an illustrative example is developed in Section 5 and
we finish with a brief discussion on related work and conclusions.

2 Language and Semantics of the Base Logic of pt-DeLP

The logic upon which pt-DeLP is based on consists of (Boolean combinations of)
temporal formulas, encoding the occurrence of an event at a given time, equipped
with a weight that represents the degree of uncertainty attached to the formula.
Here, we describe how pt-DeLP is defined within such a syntactic framework.

Given a finite set of propositional variables Var = {p, q, . . . }, let us denote by
Lit the set of literals built from Var, i.e. Lit = {p,¬p | p ∈ Var}. By ¬! we will
denote ¬p if ! = p, or p if ! = ¬p, with p ∈ Var.

The set ATForm is defined as the set of all pairs (!, t) such that ! ∈ Lit and
t ∈ N. Every formula in ATForm is called an atomic temporal formula. The set
TForm of temporal formulas is built, as usual, from the set of atomic temporal
formulas with the classical Boolean connectives ∧,∨,¬,−→.

A temporal interpretation for TForm is a mapping w : ATForm× N → {0, 1}
such that, for each t ∈ N, w((¬p, t)) = 1−w((p, t)). The interpretation w extends
to formulas TForm as usual using the classical truth-functions for the Boolean
connectives. Notice that the above extra condition ensures that, in fact, temporal
formulas (¬!, t) and ¬(!, t) are considered as logically equivalent.

We will denote by Ω the set of temporal interpretations over TForm. An
interpretation w ∈ Ω is called a model of a temporal formula Φ, denoted by
w |= Φ, whenever w(Φ) = 1.

In what follows, we expand the temporal language by introducing weights and
provide a suitable semantics in terms of possibilistic uncertainty.1

Definition 1. A possibilistic model over TForm is a possibility distribution π :
Ω → [0, 1] such that maxw∈Ω π(w) = 1. The possibility distribution π induces a
necessity measure Nπ on TForm in the usual way, i.e.: Nπ(Φ) = inf{1 − π(w) |
w ∈ Ω, w '|= Φ}.
1 For all the details on possibility theory and possibilistic logic the reader is referred
e.g. to [11] and the references therein.
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A weighted temporal formula (wt-formula) is an expression of the form 〈Φ〉r , with
Φ ∈ TForm, and r ∈ [0, 1], which is to be interpreted as a lower bound for the
necessity degree of Φ. Note that a formula like 〈(!1, t) −→ (!2, t)〉r is a formula
from TForm, while 〈(!1 −→ !2, t)〉r is not. The set of all wt-formulas is denoted
WTForm.

Definition 2. A possibilistic model π over TForm satisfies a weighted temporal
formula 〈Φ〉r, denoted π |=pos 〈Φ〉r, whenever Nπ(Φ) ≥ r. As usual, we say that
π satisfies a set of wt-formulas P whenever π satisfies every 〈Φ〉r ∈ P . Moreover,
the induced consequence relation is defined as follows: P |=pos 〈Φ〉r iff every π
satisfying P also satisfies 〈Φ〉r.

We now define the language of pt-DeLP as a fragment of WTForm, replacing −→
by ←− as costumary in logic programming languages. Let

WTLit = {〈(!, t)〉r | ! ∈ Lit, t ∈ N, r ∈ [0, 1]}

be the set of all wt-formulas 〈Φ〉r where Φ is in ATForm. Each formula of this
kind is called a weighted temporal literal 2 (wt-literal, for short). Moreover, let

WTRule = {〈(!, t) ←− (!1, t1) ∧ · · · ∧ (!n, tn)〉r | (!, t), . . . , (!n, tn) ∈ ATForm;
t ≥ max{t1, . . . , tn}, r ∈ [0, 1]}

be the set of all wt-formulas 〈Φ〉r where Φ is a temporal formula of the form
(!, t) ←− (!1, t1) ∧ · · · ∧ (!n, tn). Each formula contained in WTRule is called
a weighted temporal rule (wt-rule, for short).3 If δ = 〈(!, t) ←− (!1, t1) ∧ · · · ∧
(!n, tn)〉r, we write head(δ) = (!, t), body(δ) = {(!1, t1), . . . , (!n, tn)}, and lit(δ) =
{head(δ)} ∪ body(δ). If r = 1, δ is called a strict rule, and defeasible otherwise
(i.e. when 0 < r < 1). The language of pt-DeLP corresponds to the fragment of
WTForm consisting of the set of formulas WTLit ∪WTRule.

Note that rules from WTRule are forward temporal rules (i.e rules in which
the time of the occurrence of the literal in the conclusion follows the time
of the occurrences of the premises), and so we keep from t-DeLP the idea
that temporal rules represent causal relationships. For instance, a wt-rule like
〈(dead(Lars), t) ←− (bitten(Lars), t1) ∧ (antidote(Lars), t2))〉α means: it is α-
plausible that Lars dies at t when poisoned at t1 and given an antidote at t2.

It turns out that in many situations the weight attached to a temporal for-
mula (!, t) ←− (!1, t1) ∧ · · · ∧ (!n, tn) does not actually depend on the absolute
time values but on the temporal distances t − t1, . . . , t − tn between the time
of occurrence of the head of the rule and of the different premises. For this
reason we introduce the following convenient and schematic notation for spec-
ifying a given temporal evolution of the weights in a wt-rule. In a sense, such
schematic representations assume that the weights are invariant under uniform
time translations: a schematic weighted temporal rule is an expression δν of the
form

〈! ←− (!1, d1) ∧ · · · ∧ (!n, dn)〉ν(d1,...,dn),
2 In the rest of the work, wt-literals 〈(!, t)〉r will be written in the simpler form (!, t)r.
3 The notation 〈(!, t) ←− (!1, t1), . . . , (!n, tn)〉r will also be used later for wt-rules.
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where d1, . . . , dn are variables taking values in N and ν : Nn → [0, 1]. This
schematic rule compactly encodes the set of the following instantiated wt-rules:

δ = 〈(!, t) ←− (!1, t− d1) ∧ · · · ∧ (!n, t− dn)〉ν(d1,...,dn)

for each d1, . . . , dn ∈ N and for each t ≥ max{d1, . . . , dn}. The function ν is
called a weight distribution and assigns to each instantiated rule δ a weight
ν(d1, . . . , dn) that depends on the temporal distances d1, . . . , dn of the head of
the rule ! with respect to each premise !i in the body.

As a particular case, we can represent weighted versions of t-DeLP persistence
rules δ% for selected literals !. These are of the form 〈! ←− (!, d)〉ν(d) which state
that a literal ! holding at t will still hold at t+ d with degree ν(d), for any d.

The notion of derivability in pt-DeLP is the natural extension of that of t-DeLP
with possibilistic weights by means of a weighted version of modus ponens (which
is sound with respect to the above possibilistic semantics, see e.g. [11]).

Definition 3 (Derivability). Given a set of wt-literals and wt-rules P ⊆
WTLit ∪ WTRule, we say that a wt-literal (!, t)r is derivable from P , denoted
(!, t)r ∈ Cn(P ), iff

1. (!, t)r′ ∈ P with r ≤ r′, or
2. there exist a set of wt-literals (!1, t1)r1 , . . . , (!n, tn)rn ∈ Cn(P ) and a wt-rule

〈(!, t) ←− (!1, t1) ∧ · · · ∧ (!n, tn)〉s, such that r ≤ min{s, r1, . . . , rn}.

3 An Argumentation System for pt-DeLP

Logic-based argumentation systems aim at providing computational tools to
reason under conflicting or inconsistent information. Therefore, it is crucial to
have a clear notion of what an inconsistent set of pt-DeLP formulas is.

Definition 4. A set P ⊆ WTLit∪WTRule is said to be pt-DeLP-inconsistent if
there exist (!, t)r, (¬!, t)s ∈ Cn(P ) with min(r, s) > 0. Otherwise, we say that P
is pt-DeLP-consistent.

Note that if P is inconsistent, P is not satisfiable by any possibilistic model since
min(Nπ((!, t)), Nπ((¬!, t))) = 0 in any possibilistic model π. The converse is not
true, since the notion of derivability in pt-DeLP is obviously weaker than the
possibilistic logical consequence |=pos. In other words, if (!, t)r ∈ Cn(P ) then
P |=pos (!, t)r, but the opposite does not always hold.

Definition 5 (Program). A pt-DeLP program is a pair (Π,∆) such that Π is
a consistent finite set of strict wt-rules and ∆ is a finite set defeasible wt-rules.

Definition 6 (Argument). Given a pt-DeLP program P = (Π,∆), an argu-
ment for (!, t)r is a set A = AΠ ∪ A∆, with AΠ ⊆ Π and A∆ ⊆ ∆, such
that:

1. Π ∪A∆ is pt-DeLP-consistent,
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2. r = max{s ∈ [0, 1] | (!, t)s ∈ Cn(A∆ ∪AΠ)},
3. Both A∆ and AΠ are minimal w.r.t. inclusion, i.e.: there are no A′

∆ ⊂ A∆

and A′
Π ⊂ AΠ such that (!, t)r ∈ Cn(A′

∆ ∪A′
Π).

Notice that, given a pt-DeLP program (Π,∆) there may exist different arguments
for (!, t)r, with different r. In fact, there might be different sets A = AΠ ∪A∆

and A′ = A′
Π ∪A′

∆, with AΠ '⊆ A′
Π and A∆ '⊆ A′

∆, such that A is an argument
for (!, t)s, while A′ is an argument for (!, t)s′ , with s '= s′.

Definition 7. Given a pt-DeLP program (Π,∆) and an argument A = AΠ∪A∆

for (!, t)r, we define:

1. concl(A) = (!, t)r;
2. base(A) = {(!′, t) | ∃δ ∈ A, (!′, t) ∈ body(δ), and ' ∃δ ∈ A, (!′, t) ∈ head(δ)};
3. TLit(A) =

⋃
δ∈A lit(δ).

Definition 8 (Sub-argument). Let (Π,∆) be a pt-DeLP program and let A =
AΠ ∪ A∆ be an argument for (!, t)r in (Π,∆). Given some (!0, t0) ∈ TLit(A),
a sub-argument for (!0, t0)s (for some s ∈ (0, 1]) is a set B = BΠ ∪ B∆, with
B∆ ⊆ A∆ and BΠ ⊆ AΠ , such that B is an argument for (!0, t0)s. The sub-
argument of A induced by (!0, t0) will be denoted A(!0, t0).

We now define the notion of attack between arguments as a natural extension
of those for DeLP and t-DeLP.

Definition 9 (Attack). Given a pt-DeLP program (Π,∆), let A0 and A1 be
arguments for (!0, t0)r0 and (!1, t1)r1 , respectively. We say that A1 attacks A0

iff there exists a subargument B0 of A0 for a weighted temporal literal (¬!1, t1)s
for some s > 0. In this case, A1 is said to attack A0 at B0.

Given the notion of attack, we can now consider several notions of defeat. On
the one hand, following the idea proposed in P-DeLP (Possibilsitic DeLP), the
presence of weights makes it reasonable to use such weights in deciding whether
an attacking argument defeats another argument. Note that the next definition
is a direct extension to pt-DeLP of the notion of defeater in P-DeLP.

Definition 10 (Possibilistic Defeater). Let an argument A1 attack A0 at
B0, where we have concl(A1) = (!, t)r and concl(B0) = (¬!, t)s. We say that A1

is a proper possibilistic defeater for A0, denoted A1 1π A0, whenever r > s; and
we say that A1 is a blocking possibilistic defeater for A0, denoted A1 23π A0,
whenever s = r.

Still, time and information specificity plays a fundamental role in reasoning in
pt-DeLP, and so the definition given in [17] of a temporal defeater for t-DeLP
should be also taken into account. In the following definition ∆¬% denotes a
suitable set of instances of the schematic persistence rule 〈¬! ←− (¬!, d)〉ν(d).

Definition 11 (Temporal Defeater). Let an argument A1 attack A0 at B0,
where concl(A1) = (!, t)r and concl(B0) = (¬!, t)s. We say that A1 is a proper
temporal defeater for A0, denoted A1 1τ A0 iff
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1. base(A1) ! base(B0), or
2. there exists t′ < t such that B0 = A1(!, t′) ∪∆¬%

We say A1 is a blocking temporal defeater for A0, denoted A1 23τ A0 iff
neither A1 nor B0 are proper temporal defeaters for each other.

The fact that pt-DeLP is built upon the presence of time and weights, formalized
in terms of a necessity measures, suggests that both the concepts of possibilistic
and a temporal defeaters should be taken into account to define a proper notion
of defeat.

Definition 12 ((π × τ)-defeater, (τ × π)-defeater). Let an argument A1 at-
tack A0 at B0, where concl(A1) = (!, t)r and concl(B0) = (¬!, t)s. We say that
A1 is a proper (π × τ)-defeater for A0, denoted A1 1π×τ A0 iff

1. A1 1π A0, i.e. A1 is a proper possibilistic defeater, or
2. A1 23π A0, i.e. A1 is a blocking possibilistic defeater for A0, and A1 1τ

A0, i.e. A1 is a proper temporal defeater for A0.

We say that A1 is a blocking (π × τ)-defeater for A0, denoted A1 23π×τ A0

iff A1 23π A0 and A1 23τ A0. The definition of proper and blocking (τ × π)-
defeater is completely analogous and is obtained by replacing τ with π and vice
versa.

The argumentation semantics for pt-DeLP inherits the one of DeLP (as well as
those of t-DeLP and P-DeLP) based on dialectical trees, with slight modifications
in each case. The following definitions actually are parametric with respect to
the notion of proper and blocking defeater, so they can be instantiated in any
of the (τ × π) or (π × τ) criteria. Of course, depending on whether we prioritize
the temporal defeat criteria or the comparison among weights, we will obtain
distinct notions of warrant.

Definition 13 (Argumentation Line, Dialectical Tree, Marking). Let A1

be an argument in (Π,∆). An argumentation line for A1 is a sequence Λ =
[A1,A2, . . .] where:

(i) supporting arguments, i.e. those in odd positions A2i+1 ∈ Λ are jointly
consistent with Π, and similarly for interfering arguments A2i ∈ Λ ;

(ii) a supporting (resp. interfering) argument is different from the attacked sub-
arguments of previous supporting (resp. interfering) arguments: Ai+2k '=
Ai(¬concl(Ai+1));

(iii) Ai+1 is a proper defeater for Ai if Ai is a blocking defeater for Ai−1.

An argumentation line [A1, . . . ,An] for A1 is maximal if there is no other ar-
gument An+1 such that [A1, . . . ,An,An+1] is an argumentation line for A1.

The dialectical tree for A1 is the set of maximal argumentation lines rooted in
A1 arranged in the form of a tree, and is denoted T(Π,∆)(A1) (see [13] for more
details). The bottom-up marking procedure of a dialectical tree T is as follows:
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(1) mark all terminal nodes of T with a U (for undefeated);
(2) mark a node B with a D (for defeated) if it has a children node marked U ;
(3) mark B with U if all its children nodes are marked D.

Finally, the notion of warranted literal is defined as follows. Notice that in the
presence of weights it makes sense to actually consider two notions of warrant,
the usual one and another one witnessing the highest weight with which a literal
can be warranted, see e.g. [3,8].

Definition 14 (Warrant, Strong Warrant). Given a pt-DeLP program (Π,∆)
and a query temporal literal (!, t), we say (!, t) is warranted in (Π,∆), denoted
(!, t) ∈ warr(Π,∆), if, for some r > 0, there exists an argument A for (!, t)r
such that A is undefeated in T(Π,∆)(A). In case there is no value s > r such
that (!, t)s is also warranted, we say that (!, t)r is strongly warranted in (Π,∆),
denoted (!, t)r ∈ swarr(Π,∆).

It should be noted that, as expected, the set warr(Π,∆) is always consistent,
even with the (τ × π) defeat relation, but its consistency with the strict part of
the program Π cannot be guaranteed.

4 Relating pt-DeLP to t-DeLP and P-DeLP

Now we proceed to study how pt-DeLP relates to each of the frameworks t-DeLP
and P-DeLP. To this end, we first propose a translation between the respective
languages.

Definition 15. We define the translation maps f and g from, respectively,
the language of t-DeLP and P-DeLP into that of pt-DeLP. These maps are the
following:

f : t-DeLP %−→ pt-DeLP
fact (!, t) %−→ (!, t)1
rule (!, t) ←− (!1, t1), . . . , (!n, tn) %−→ 〈(!, t) ←− (!1, t1), . . . , (!n, tn)〉r

where

{
r = 1 if δ ∈ Π

r = .5 if δ ∈ ∆

g : P-DeLP %−→ pt-DeLP
fact (!)r %−→ (!, 0)r
rule 〈! ←− !1, . . . , !n〉r %−→ 〈(!, 0) ←− (!1, 0), . . . , (!n, 0)〉r

If P is a set of t-DeLP formulas, we will denote its translation by f by f [P ] or
simply fP , and analogously with g. Note that both mappings f and g preserve
the strict or defeasible character of facts and rules (in the case of g the weight
is also preserved).

Lemma 1. For arbitrary arguments A,B in a t-DeLP program P , we have A 1τ

B iff f [A] 1τ f [B] iff f [A] 1τ×π f [B] iff f [A] 1π×τ f [B]. The case of 23τ

,23τ×π and 23π×τ is similar.
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warr(Π,∆)

(Π,∆)

t-D
eLP

>

f [warr(Π,∆)]
=

warr(fΠ, f∆)

f
>

(fΠ, f∆) PT-
DeL

P

>

f
>

Fig. 1. A representation of pt-DeLP being a conservative extension of t-DeLP under
the translation map f , and for any of the two criteria (τ × π) and (π × τ )

Proof. (Sketch) The idea is to use the fact that conflicting arguments are nonethe-
less consistent with Π , so they must both be of degree .5. This makes the degrees
collapse and hence makes the 23π always true. Thus, the result is determined
purely by 1τ and 23τ relations.

Lemma 1 fails for the mapping g between P-DeLP and pt-DeLP, as shown in
Example 1 below. From now on, the results focus then on the relation between
t-DeLP and pt-DeLP. Indeed, if we ignore the notational differences between

– t-DeLP (being strictly vs. defeasibly derivable), and
– pt-DeLP with set of degrees {0, .5, 1} (i.e. being derivable with degree .5 vs.

with degree 1)

we can define the conditions for pt-DeLP to be a conservative extension of t-DeLP
as follows: the warr(·, ·) operator commutes with f ; see Figure 1.

Proposition 1. pt-DeLP is a conservative extension of t-DeLP, under both lex-
icographic orderings (τ × π) or (π × τ).

Proof. (Sketch) The proof proceeds by using Lemma 1 and showing by induction
that the dialectical trees T(Π,∆)(A) and T(fΠ,f∆)(f [A]) are isomorphic.

In contrast to this preservation result for t-DeLP and pt-DeLP, the mapping g
fails to guarantee the warrant literals from P-DeLP to pt-DeLP for both lexico-
graphic criteria, as the following example shows.

Example 1. Consider the P-DeLP-program (Π,∆) containing only the literals
and rules mentioned in the arguments below.

A = {(p)1; 〈q ←− p〉.8} with conclusion (q).8
B = {(p)1; (r)1; 〈¬q ←− p, r〉.8} with conclusion (¬q).8

Clearly, A and B attack each other, and are blocking defeaters for each other.
The dialectical tree for A is [A,B] which makes A defeated. Since this is the
only argument for (q).8, we have (q).8 /∈ warr(Π,∆). The tree for B is [B,A], and
we also have that (¬q).8 /∈ warr(Π,∆). On the other hand, if we translate them
into pt-DeLP as A′ = g[A] and B′ = g[B], we find that:
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1. Case (τ × π): From B′ 1τ A′, we infer B′ 1τ×π A′, so T(gΠ,g∆)(B′) = [B′]
and g(concl(B)) = (¬q, 0).8 ∈ warr(gΠ, g∆).

2. Case (π× τ): Since A′ 23π B′, we try the temporal criteria which as before
gives B′ 1π×τ A′ from B′ 1τ A′. As before, this makes B′ undefeated and
A′ defeated (in the corresponding trees), so (¬q, 0).8 ∈ warr(gΠ, g∆).

Thus, for both criteria, pt-DeLP is not a conservative extension of P-DeLP.

5 An Example

Consider the following scenario:
Lars, a tourist visiting the Snake Forest, just got bitten by a poisonous snake.

Normally, the bite of this kind of snake increases the likelihood of fast poisoning,
whose maximum degree is reached 10 hours after the bite. On the other hand,
Lars (who, as an experienced tropical tourist, has been bitten a few times before)
has developed some resistance to the poison. So this poison increases instead
his likelihood of slow poisoning, the maximum degree of likelihood for this being
reached 20 hours after the bite. In any case, once bitten, the actual occurrence
of slow or fast poisoning causes death immediately. Assuming Lars arrives alive
to the hospital and he is given an antidote, the likelihood that Lars survives the
next k hours depends on how much time passed between the bite and the antidote.

So we decide to take Lars to the nearest hospital, which normally takes 8 hours.
But, the radio just announced we will find a traffic jam, causing a delay of 4 more
hours. Thus, most plausibly it will take us 12 hours to reach the hospital. The
problem is then to compute at time 0 (now) how strong is our belief of whether
Lars will die (or not) at some later time t in this scenario.

This example extends a similar scenario considered in [17], where only the
amount and relevance of temporal information was considered. The possibilistic
degrees allow for more smooth descriptions of the causal relations considered.

The scenario is formalized in Figure 2. The strict facts denote the factual
knowledge about the initial state (where the reasoning takes place). The strict
rules describe the effect of two possible ways in which the bite can lead to
death by poisoning (one way would be faster than the other). In either case, the
immediate effect is death. A faster poisoning does occur in normal people, while
certain resistance can be acquired with experience, giving some extra temporary
resistance (slow poisoning). The defeasible rules δ2, δ3 describe the likelihood of,
resp., faster and slower poisoning across time, provided Lars has been bitten
(resp. and experienced). This likelihood is represented in Figure 3 (Top). The
X-axis represents time (from now, 0, to 20 hours into the future). The Y-axis
describes the degree for derivability of slow and faster poisoning (i.e. death) at
each time t. The arguments built in this program are also shown in Figure 4. The
first and third arguments are those built from δ2 (in grey, denoting defeated)
and δ3 (white, denoting undefeated). In order to prevent conclusions that are too
pessimistic (about Lars’ chances) using δ2, a canceling rule δ4 is introduced. So
the argument for δ3 can impose the (correct) degree α3(d0)(= α3(t−0) = α3(t)),
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Π − facts
{
(@forest(Lars), 0)1, (bitten(Lars), 0)1,
(¬dead(Lars), 0)1, (exp(Lars), 0)1

}

Π − rules

〈dead(Lars) ←− fast.poisoning(Lars), 0)〉1 δ0

〈dead(Lars) ←− slow.poisoning(Lars), 0)〉1 δ1

∆

〈fast.poisoning(Lars) ←− ((bitten(Lars), d0))〉α2(d0) δ2

where α2(d0) is as in Fig. 3(Top).

〈slow.poisoning(Lars) ←− ((bitten(Lars), d0)), (exp(Lars), d1)〉α3(d0) δ3

where α3(d0) is as in Fig. 3(Top).

〈¬fast.poisoning(Lars) ←− ((bitten(Lars), d0)), (exp(Lars), d1)〉α4(d0) δ4

where α4(d0) = α3(d0) + .001

〈@hospital(Lars) ←− (bitten(Lars), d0), (@forest(Lars), d1)〉α5(d1) δ5

where α5(d1) =

{
.9 if d1 = 8

0 otherwise

〈¬@hospital(Lars) ←− (bitten(Lars), d0), (@forest(Lars), d1), δ6
(traffic.jam, d2)〉α6(d1)

where α6(d1, d2) =

{
.95 if d1 = 8 = d2

0 otherwise

〈¬slow.poisoning(Lars) ←− (bitten(Lars), d0),@hospital(Lars), d1), (exp(Lars), d2)〉α7 δ7

where α7(d0, d1) =

{
α3(d0) + .001 if d1 < d0

0 otherwise

〈@hospital(Lars) ←− (bitten(Lars), d0), (@forest(Lars), d1), δ8
(traffic.jam, d2)〉α6(d1,d2)

where α6(d1, d2) =

{
.95 if d1 = 12 = d2

0 otherwise

〈(dead(Lars) ←− (bitten(Lars), d0), (@hospital(Lars), d1), δ9
(exp(Lars, d2)〉α9(d0,d1)

where α9(d0, d1) =

{
α3(d1 − |d0 − d1|) if d1 < d0

0 otherwise

Fig. 2. The list of strict facts and rules, and defeasible rules for the example
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Fig. 3. The Snake-Bites-Lars example. (Top) A comparison between the likelihood of
fast-poisoning (resp. slow-poisoning) in dashed arrow (resp. solid arrow). (Mid) The
likelihood of Lars dying at t, if we reach the hospital at time 8; this is described by α3

-before reaching the hospital-, and by α9 -afterwards. (Bottom) Similarly for the case
we reach the hospital at time 12, which is the actual case.

Fig. 4. An illustration of the example from Section 5 in terms of defeaters. Triangles
represent arguments, with the conclusion on top, and the base on bottom. White
triangles are undefeated arguments, grey arguments are defeated. The arrows denote
the defeat relations. Conclusions attacking their negations are left blank. For both
criteria (τ × π) and (π × τ ), the output swarr(Π,∆) includes (dead(Lars), t)α3 for
t < 12 and (dead(Lars), t)α9 , for t ≥ 12, as well as (@hospital(Lars), t).95.
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correct at least up to the point where we reach the hospital. See in Figure 4 how
the counter-argument based on δ4 acts against δ2 at a particular time point, to
let δ3-arguments succeed.

After we reach the hospital, the previously correct α3 becomes too pessimistic,
since it does not take into account the antidote, and prevents the correct degrees
to surface (the lower degrees described by α9). To this end, δ3-based arguments
are to be counter-argued by arguments with δ7. Now, arguments containing δ9 or
δ7 depend of course on the time t we reach the hospital: we have arguments for
t = 8 and for t = 12, though the latter is better supported. See Figure 3 (Mid)
for the t = 8 case and (Bottom) for the (correct) case t = 12. Thus, the output
swarr(Π,∆) includes (dead(Lars), t)α3(t) for t < 12 and (dead(Lars), t)α9(t), for
t ≥ 12, as well as (@hospital(Lars), t).95. These output results from either criteria
(τ × π) and (π × τ). So we could tell Lars that he will not be in much danger
most of the time.

6 Related Work and Conclusions

We presented a new argumentation-based logic programming formalism that
combines previous work on temporal reasoning, on the one side, and possibilistic
reasoning on the other. This is done by taking the lexicographic product of the
defeat criteria of these two systems. We have studied two notions of warrant
(with and without degrees). As a result, we have shown that the combined
system extend the temporal defeasible framework but not the possibilistic one.

Many different approaches exist in the area of temporal reasoning. Within the
more specific field of defeasible logics (for non-monotonic reasoning), one can point
to the initially proposed rule-based systems [6,16], recently extended in [14]. Since
[12], though,muchwork has been done on argumentation-based systems, for delib-
erative agents who have reasons for and against claims.Mostworks in this area that
address temporal argumentation, though, do so by associating time intervals to lit-
erals and arguments [15,5,9]. The present pointwise approach, based on [17], makes
t-DeLP (or pt-DeLP) simpler than thesewhile keeping enough expressive power.On
the other hand, several works on possibilistic defeasible logic programming can be
mentioned, e.g. [2,3,8]. We have assumed part of this work in the present possi-
bilistic temporal approach. Although as far as we know, combining possibilistic
and temporal defeasible argumentation is novel, the issue of combining time and
possibilistic logic had already been addressed in [10].

As for future work, we would consider the rationality postulates of [7], which
specify reasonable constraints on the logical behavior of the warrant operator.
We expect that some partial solution to this problem would come by trying to
extend the results for the temporal case in [17]. A more radical option would be
to adopt a recursive semantics (instead of the current based on dialectical trees)
like in [1] that would ensure the indirect consistency postulate.
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13. Garćıa, A., Simari, G.R.: Defeasible logic programming: An argumentative ap-
proach. Theory and Practice of Logic Programming 4(1+2), 95–138 (2004)

14. Governatori, G., Terenziani, P.: Temporal Extensions to Defeasible Logic. In:
Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 476–485.
Springer, Heidelberg (2007)

15. Mann, N., Hunter, A.: Argumentation Using Temporal Knowledge. In: Proc. of
COMMA 2008, pp. 204–215. IOS Press (2008)

16. Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and Logic
Programming, vol. 3, pp. 353–395. Oxford University Press (1994)

17. Pardo, P., Godo, L.: t-DeLP: A Temporal Extension of the Defeasible Logic Pro-
gramming Argumentative Framework. In: Benferhat, S., Grant, J. (eds.) SUM 2011.
LNCS, vol. 6929, pp. 489–503. Springer, Heidelberg (2011)


	Extending a Temporal Defeasible Argumentation Framework with Possibilistic Weights
	Introduction and Motivation
	Language and Semantics of the Base Logic of pt-DeLP
	An Argumentation System for pt-DeLP
	Relating pt-DeLP to t-DeLP and P-DeLP
	An Example
	Related Work and Conclusions


