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Abstract

This paper focuses on completeness results about generic expansions
of logics of both continuous t-norms and Weak Nilpotent Minimum
(WNM) with truth-constants. Indeed, we consider algebraic semantics
for expansions of these logics with a set of truth-constants {r | r ∈ C},
for a suitable countable C ⊆ [0, 1], and provide a full description of
completeness results when (i) either the t-norm is a finite ordinal sum of
 Lukasiewicz, Gödel and Product components (and hence continuous) or
the t-norm is a Weak Nilpotent Minimum with a finite partition and (ii)
the set of truth-constants covers all the unit interval in the sense that
each component (in case of continuous t-norm) or each interval of the
partition (in the WNM case) contains values of C in its interior. Results
on expansions of the logic of a continuous t-norm were already published,
while many of the results about WNM are presented here for the first time.

Keywords: Monoidal t-norm based Logic (MTL), Basic Fuzzy logic BL,
Gödel,  Lukasiewicz and Product Logics, Nilpotent minimum Logic (NM),
Weak nilpotent minimum logics (WNM), t-norm-based logic, Rational
Pavelka Logic, Rational Gödel logic, Rational Product logic, Rational t-
norm based logic, completeness results.

1 Introduction

T-norm based fuzzy logics are basically logics of comparative truth. In fact, the
residuum ⇒ of a (left-continuous) t-norm ∗ satisfies the condition x ⇒ y = 1
if, and only if, x ≤ y for all x, y ∈ [0, 1]. This means that a formula ϕ→ ψ is a
logical consequence of a theory if the truth degree of ψ is at least as high as the
truth degree of ϕ in any interpretation which is a model of the theory. Indeed,
the logic of continuous t-norms as it is presented in Hájek’s seminal book [22],
only deals with valid formulae and deductions using 1 as the only designated
truth-value. This line is followed by the majority of logical papers written from
then in the setting of many-valued fuzzy logics.

But, in general, these systems do not exploit in depth neither the idea of com-
parative truth nor the potentiality of dealing with explicit partial truth that a
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many-valued logic setting offers. On the one hand, for instance, a logic which is
based exclusively on the idea of comparative truth is the system  L≤∞ (see [19])
where a deduction is valid if, and only if, the degre of truth of the premises
is less or equal than the degree of truth of conclusion. The system developed
there is based on  Lukasiewicz infinitely-valued logic  L but it could be defined
over any other t-norm based logic. Actually, since Gödel logic G is the only
t-norm based logic enjoying the classical deduction-detachment theorem, it is
the only case in which the usual G logic coincides with G≤

∞.

On the other hand, in some situations one might be also interested to explicitly
represent and reason with partial degrees of truth. To do so, one convenient
and elegant way is introducing truth-constants into the language. This approach
actually goes back to Pavelka [35] who built a propositional many-valued logical
system which turned out to be equivalent to the expansion of  Lukasiewicz Logic
 L by adding into the language a truth-constant r for each real r ∈ (0, 1), together
with a number of additional axioms. Although the resulting logic is not strongly
complete with respect to the intended semantics defined by the  Lukasiewicz t-
norm (like the original  Lukasiewicz logic), Pavelka proved that his logic, denoted
here PL, is complete in a different sense. Namely, he defined the truth degree of
a formula ϕ in a theory T as ‖ϕ‖T = inf{e(ϕ) | e is a PL-evaluation model of
T}, and the provability degree of ϕ in T as |ϕ|T = sup{r | T `PL r → ϕ} and
proved that these two degrees coincide. This kind of completeness is usually
known as Pavelka-style completeness, and strongly relies on the continuity of
 Lukasiewicz truth functions. Novák extended Pavelka’s approach to a first order
logic [32]. Furthermore,  Lukasiewicz logic extended with truth-constants has
been extensively developed by Nóvak and colleagues in the frame of the so-
called fuzzy logic with evaluated syntax [33].

Later, Hájek [22] showed that the logic PL could be significantly simplified while
keeping the Pavelka-style completeness results. Indeed he showed it is enough
to extend the language only by a countable number of truth-constants, one
constant r for each rational in r ∈ (0, 1), and by adding to  Lukasiewicz Logic
the two following additional axiom schemata, called book-keeping axioms:

r&s↔ r ∗ L s
(r → s) ↔ r ⇒ L s

where ∗ L and ⇒ L are the  Lukasiewicz t-norm and its residuum respectively. He
called this new system Rational Pavelka Logic, RPL for short. Moreover, he
proved that RPL is strongly complete (in the usual sense) for finite theories.

Similar rational expansions for other continuous t-norm based fuzzy logics can
be analogously defined, but Pavelka-style completeness cannot be obtained since
 Lukasiewicz Logic is the only fuzzy logic whose truth-functions are continuous.
1

1An easy argument shows that for logics based on other continuous t-norms Pavelka-style
completeness does not hold. Let L∗ be the logic of a continuous t-norm ∗ (not isomorphic
to  Lukasiewicz t-norm) and its residuum ⇒ (as defined in [16]). Then it is known that the
induced negation ¬x = x ⇒ 0 is not continuous in x = 0, i.e. sup{¬x | x > 0} < ¬0 = 1.

Let p be a propositional variable and let T = {p → r | r > 0}. One can show that ‖p →
0‖T 6= |p → 0|T . Indeed, ‖p → 0‖T = inf{e(p) ⇒ 0 | e(p) ≤ r for all r > 0} = 0 ⇒ 0 = 1, and
we show that |p → 0|T < 1. For this, it is enough to prove that T 6` r0 → (p → 0) for any
r0 < 1 such that r0 > sup{¬x | x > 0} (such an element exists because ∗ is not isomorphic to
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However, several expansions with truth-constants of fuzzy logics different from
 Lukasiewicz have been studied, mainly related to the other two outstanding
continuous t-norm based logics, namely Gödel and Product logic. We may cite
[22] where an expansion of G∆ (the expansion of Gödel Logic G with Baaz’s
projection connective ∆) with a finite number of rational truth-constants, [15]
where the authors define logical systems obtained by adding (rational) truth-
constants to G∼ (Gödel Logic with an involutive negation) and to Π (Product
Logic) and Π∼ (Product Logic with an involutive negation). In the case of the
rational expansions of Π and Π∼ an infinitary inference rule (from {ϕ→ r : r ∈
Q∩ (0, 1]} infer ϕ→ 0) is introduced in order to get Pavelka-style completeness.
Rational truth-constants have been also considered in some stronger logics like in
the logic  LΠ 1

2 [16], a logic that combines the connectives from both  Lukasiewicz
and Product logics plus the truth-constant 1/2, and in the logic P L [26], a
logic which combines  Lukasiewicz Logic connectives plus the Product Logic
conjunction (but not implication), as well as in some closely related logics.

Following this line, Cintula gives in [8] a definition of what he calls Pavelka-style
extension of a particular fuzzy logic. He considers the Pavelka-style extensions of
the most popular fuzzy logics, and for each one of them he defines an axiomatic
system with infinitary rules (to overcome discontinuities like in the case of Π
explained above) which is proved to be Pavelka-style complete. Moreover he
also considers the first order versions of these extensions and provides necessary
conditions for them to satisfy Pavelka-style completeness.

Recently, the approach based on traditional algebraic semantics has been con-
sidered to study completeness results (in the usual sense) for expansions of
t-norm based logics with truth-constants. Indeed, as already mentioned, only
the case of  Lukasiewicz logic was known after [22]. Using this algebraic ap-
proach, the expansion of Gödel (and of some t-norm based logic related to the
Nilpotent Minimum t-norm) with rational truth-constants and the expansion
of Product logic with countable sets of truth-constants have been respectively
studied in [17] and in [36]. Very recently, the basic cases of  Lukasiewicz, Gödel
and Product logics have been extended to the more general case of logics of
continuous t-norms which are finite ordinal sums of the three basic components
[13]. In these papers, the issue of canonical standard completeness (that is,
completeness with respect to the standard algebra where the truth-constants
are interpreted as their own values) for these logics has been determined. Also,
special attention has been paid to the fragment of formulae of the kind r → ϕ,
where ϕ is a formula without additional truth-constants. Actually, this kind
of formulae have been extensively considered in other frameworks for reasoning
with partial degrees of truth, like in Novák’s evaluated syntax formalism based
on  Lukasiewicz Logic (see e.g. [34]), in Gerla’s framework of abstract fuzzy
logics [20] or in fuzzy logic programming (see e.g. [38]).

In this paper, within the algebraic semantics approach, we survey completeness
results for expansions with truth-constants of logics of continuous t-norms and
of weak nilpotent minimum t-norms2 (WNM t-norms for short) in a general

 Lukasiewicz t-norm). Suppose not. In such a case, there would exist a finite theory T0 ⊆ T
such that T0 ` r0 → (p → 0). Then, by soundness, it should be r0 ≤ ¬e(p) for any evaluation
e such that e(p) ≤ s, where s = min{r | r → p ∈ T0}, which is a contradiction (e.g. take
e(p) = s).

2A weak nilpotent t-norm ∗ is a left-continuous t-norm satisfying x ∗ y = min(x, y) if
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setting. More specifically, we provide a full description of completeness results
for the expansions of logics of these t-norms with a set of truth-constants {r |
r ∈ C}, for a suitable countable C ⊆ [0, 1], when (i) the t-norm is either a finite
ordinal sum of  Lukasiewicz, Gödel and Product components or a WNM that has
a finite partition and (ii) the set of truth-constants covers all the unit interval in
the sense that each component (for continuous case) or interval of the partition
(for the WNM case) contains at least one value of C in its interior. Results on
expansions of logics of continuous t-norms are already published, while many of
the results about WNM logics are presented here for the first time.

The paper is structured as follows. After this introduction, we provide the
necessary background in the next section. We give the general definitions of
t-norm based logics we will deal with in the paper, the notion of standard
completeness and general results for axiomatic extensions of these logics, the
equivalence between different kinds of standard completeness and properties of
the corresponding algebraic varieties (the partial embeddability property play-
ing an important role), and finally, completeness results for logics of continuous
and WNM t-norms. In Section 3 we introduce the expanded logics with truth-
constants and their algebraic counterpart. In Section 4 we study the structure
and relevant algebraic properties of the expanded linearly ordered algebras,
which are needed to obtain the completeness results described in Section 5.
Section 6 deals with completeness results when restricting the language to eval-
uated formulae. Section 7 summarizes and generalizes results about complexity
issues for expanded t-norm based logics with truth-constants. We finish with
some concluding remarks and open problems.

2 Preliminaries

The weakest logic that we will consider in this survey is the Monoidal T-norm
based Logic (MTL). It is defined by Esteva and Godo in [14] by means of a
Hilbert style calculus in the language L = {&,→,∧, 0} of type 〈2, 2, 2, 0〉. The
only inference rule is modus ponens and the axiom schemata are the following
(taking → as the least binding connective):

(A1) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))
(A2) ϕ&ψ → ϕ
(A3) ϕ&ψ → ψ&ϕ
(A4) ϕ ∧ ψ → ϕ
(A5) ϕ ∧ ψ → ψ ∧ ϕ
(A6) ϕ&(ϕ→ ψ) → ϕ ∧ ψ
(A7a) (ϕ→ (ψ → χ)) → (ϕ&ψ → χ)
(A7b) (ϕ&ψ → χ) → (ϕ→ (ψ → χ))
(A8) ((ϕ→ ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(A9) 0 → ϕ

Cintula has shown in [9] that (A3) is in fact redundant. The usual defined
connectives are introduced as follows:

x ∗ y > 0 for all x, y ∈ [0, 1].
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ϕ ∨ ψ := ((ϕ→ ψ) → ψ) ∧ ((ψ → ϕ) → ϕ);
ϕ↔ ψ := (ϕ→ ψ)&(ψ → ϕ);

¬ϕ := ϕ→ 0;
1 := ¬0.

Axiom schema Name
¬¬ϕ→ ϕ Involution (Inv)

¬ϕ ∨ ((ϕ→ ϕ&ψ) → ψ) Cancellation (C)
ϕ→ ϕ&ϕ Contraction (Con)

ϕ ∧ ψ → ϕ&(ϕ→ ψ) Divisibility (Div)
ϕ ∧ ¬ϕ→ 0 Pseudocomplementation (PC)
ϕ ∨ ¬ϕ Excluded Middle (EM)

(ϕ&ψ → 0) ∨ (ϕ ∧ ψ → ϕ&ψ) Weak Nilpotent Minimum (WNM)

Table 1: Some usual axiom schemata in fuzzy logics.

Tables 1 and 2 collect some axiom schemata and the axiomatic extensions of
MTL that they define.3

Logic Additional axiom schemata
SMTL (PC)
ΠMTL (C)
IMTL (Inv)
WNM (WNM)
NM (Inv) and (WNM)
BL (Div)
SBL (Div) and (PC)

 L (Div) and (Inv)
Π (Div) and (C)
G (Con)

CPC (EM)

Table 2: Some axiomatic extensions of MTL obtained by adding the correspon-
ing additional axiom schemata.

The algebraic counterpart4 of MTL logic is the class of the so-called MTL-
algebras. They are defined as follows.

Definition 1 ([14]) An MTL-algebra is an algebra A = 〈A,&A,→A

,∧A,∨A, 0A, 1A〉 of type 〈2, 2, 2, 2, 0, 0〉 such that:

3Of course, some of these logics were known well before MTL was introduced. We only
want to point out that it is possible to present them as the axiomatic extensions of MTL
obtained by adding the corresponding axioms to the Hilbert style calculus for MTL given
above.

4We assume some basic knowledge on Universal Algebra. All the undefined notions can be
found in [3].
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1. 〈A,∧A,∨A, 0A, 1A〉 is a bounded lattice.

2. 〈A,&A, 1A〉 is a commutative monoid with unit 1A.

3. The operations &A and →A form an adjoint pair:
∀a, b, c ∈ A, a&Ab ≤ c iff b ≤ a→A c.

4. It satisfies the prelinearity equation:
(x→A y) ∨A (y →A x) ≈ 1A

An additional (unary) negation operation is defined as ¬Aa := a →A 0A, for
every a ∈ A.

If the lattice order is total we will say that A is an MTL-chain.

For the sake of a simpler notation, superscripts in the operations of the algebras
will be omitted when they are clear from the context.

The class of all MTL-algebras is a variety which will be denoted as MTL.

Given an MTL-algebra A and an element a ∈ A, we say that a is the (negation)
fixpoint of A if, and only if, a = ¬a. It is easy to prove that there exists at most
one fixpoint (see, for example, [25]). The sets of positive and negative elements
of A are respectively defined as:

A+ := {a ∈ A : a > ¬a}

A− := {a ∈ A : a ≤ ¬a}

Consider the terms p(x) := x∨¬x and n(x) := x∧¬x. The next proposition is
an easy but useful result describing these sets.

Proposition 2 ([30]) Let A be an MTL-algebra. Then:

• A+ = {p(a) : a ∈ A,¬a 6= ¬¬a}.

• A− = {n(a) : a ∈ A}.

Notice that p(a) is the fixpoint if, and only if, ¬a = ¬¬a .

Given an MTL-algebra A, a filter is any set F ⊆ A such that:

• 1A ∈ F ,

• If a ∈ F and a ≤ b, then b ∈ F , and

• If a, b ∈ F , then a&b ∈ F .

In the rest of the paper we will use the following notations:

1. Fi(A) denotes the set of proper filters of A.

2. Given a filter F ∈ Fi(A), F denotes the set {a ∈ A | ¬a ∈ F}
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3. For each element a ∈ A, Fa denotes the filter generated by a, i.e. the
minimum filter containing a.

Next proposition states the usual one-to-one correspondence between filters and
congruences.

Proposition 3 Let A be an MTL-algebra. For every filter F ⊆ A we define
Θ(F ) := {〈a, b〉 ∈ A2 : a ↔ b ∈ F}, and for every congruence θ of A we define
Fi(θ) := {a ∈ A : 〈a, 1〉 ∈ θ}. Then, Θ is an order isomorphism from the set of
filters onto the set of congruences and Fi is its inverse.

By virtue of this correspondence, we will do a notational abuse by writing A/F
instead of A/Θ(F ), and for each a ∈ A, [a]F will denote the class of a in A/F .

Given any class K of MTL-algebras, we denote its equational consequence as
|=K, i.e. given a set of equations Λ and an equation ϕ ≈ ψ in the language L,
Λ |=K ϕ ≈ ψ means that for every A ∈ K and every evaluation e of the formulae
in A, e(ϕ) = e(ψ) whenever e(α) = e(β) for every α ≈ β ∈ Λ. If Λ = ∅, then
we write |=K ϕ ≈ ψ, instead of ∅ |=K ϕ ≈ ψ. When there is only one algebra in
K, say A, we write Λ |=A ϕ ≈ ψ instead of Λ |={A} ϕ ≈ ψ.

Theorem 4 ([14]) For every set of formulae Γ ∪ {ϕ} ⊆ FmL, Γ `MTL ϕ if,
and only, {ψ ≈ 1 : ψ ∈ Γ} |=MTL ϕ ≈ 1.

This completeness result can be refined by means of the following property of
MTL-algebras.

Proposition 5 ([14]) Every MTL-algebra is representable as a subdirect prod-
uct of MTL-chains.

Corollary 6 For every set of formulae Γ∪{ϕ} ⊆ FmL, Γ `MTL ϕ if, and only,
{ψ ≈ 1 : ψ ∈ Γ} |={MTL−chains} ϕ ≈ 1.

Moreover, MTL is actually an algebraizable logic in the sense of Blok and Pigozzi
(see [2]) and MTL is its equivalent algebraic semantics. This implies that all
axiomatic extensions of MTL are also algebraizable and their equivalent alge-
braic semantics are the subvarieties of MTL defined by the translations of the
axioms into equations. In particular, there is an order-reversing isomorphism
between axiomatic extensions of MTL and subvarieties of MTL:

1. If Σ ⊆ FmL and L is the extension of MTL obtained by adding the
formulae of Σ as schemata, then the equivalent algebraic semantics of L
is the subvariety of MTL axiomatized by the equations {ϕ ≈ 1 : ϕ ∈
Σ}. We denote this variety by L and we call its members L-algebras.
There are two exceptions to that rule: the algebras associated to  L are
called MV-algebras following the terminology of Chang in [4], and the
algebras associated to the Classical Propositional Calculus (CPC for short)
are called, of course, Boolean algebras. Moreover, since L-algebras are
representable as subdirect product of L-chains, the completeness of MTL
with respect to chains is inherited by L.
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2. Let L ⊆ MTL be the subvariety axiomatized by a set of equations Λ.
Then the logic associated to L is the axiomatic extension L of MTL given
by the axiom schemata {ϕ↔ ψ : ϕ ≈ ψ ∈ Λ}.

Moreover, a lot of expansions of MTL are also algebraizable. Indeed, let L be
an axiomatic extension of MTL, let L′ be a language extending L, consider a
set Σ ⊆ FmL′ and let L’ be the expansion of L obtained by adding the formulae
of Σ as axiom schemata. Assume that for every new n-ary connective λ in the
language L′,

{p1 ↔ q1, . . . , pn ↔ qn} `L′ λ(p1, . . . , pn) ↔ λ(q1, . . . , qn)

Then, L′ is algebraizable and its equivalent algebraic semantics is the variety of
algebras in the language L′ axiomatized by the axioms of L plus the equations
{ϕ ≈ 1 : ϕ ∈ Σ}. We call the members of this variety L′-algebras. In general,
L′ needs not be a conservative expansion of L; in fact, we can extract from [2]
the following criterion.

Proposition 7 ([2]) Under the previous hypothesis, L′ is a conservative ex-
pansion of L if, and only if, every L-algebra is a subreduct of some L′-algebra.

Some algebraizable expansions of the so far mentioned logics have been intro-
duced in the literature. Among them, a remarkable set of expansions are those
obtained by enriching the language with the projection connective ∆ (see [1]).
Namely, given any axiomatic extension L of MTL, the expansion L∆ is defined
by adding to the language a unary connective ∆, and adding to the Hilbert-style
system of L the following axiom schemata:

(∆1) ∆ϕ ∨ ¬∆ϕ

(∆2) ∆(ϕ ∨ ψ) → (∆ϕ ∨∆ψ)

(∆3) ∆ϕ→ ϕ

(∆4) ∆ϕ→ ∆∆ϕ

(∆5) ∆(ϕ→ ψ) → (∆ϕ→ ∆ψ)

and the rule of necessitation:
ϕ

∆ϕ

This logic is algebraizable and its equivalent algebraic semantics is the variety
of L∆-algebras, i. e. expansions with ∆ of L-algebras satisfying the translation
of the axioms (∆1), . . . , (∆5) and the equation ∆1 ≈ 1. It is easy to prove
that all L∆-algebras are representable as subdirect products of L∆-chains. The
interpretation of the ∆ connective in these chains is very simple, namely if A is
an L∆-chain, then ∆A(1A) = 1A and ∆A(a) = 0A for every a ∈ A \ {1A}.

Proposition 8 For every axiomatic extension L of MTL, L∆ is a conservative
expansion of L.
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Proof: It is obvious that every L-chain is the reduct of an L∆-chain (just take
the same chain and define ∆ in the only possible way for chains), thus we can
apply Proposition 7. 2

2.1 Standard completeness properties and equivalencies

Fuzzy Logic has always been interested in semantics defined over the real unit
interval. Such kind of semantics can be found inside the class of MTL-algebras.
Indeed, given a left-continuous t-norm ∗ and its residuum ⇒ (defined as a ⇒
b = max{c : a ∗ c ≤ b}), the algebra

[0, 1]∗ = 〈[0, 1], ∗,⇒,min,max, 0, 1〉

is an MTL-chain. Notice that [0, 1]∗ is completely determined by the t-norm.
Moreover, it is obvious that in every MTL-chain A over [0, 1], the operation &A

is a left-continuous t-norm. We will call these chains standard algebras.

Examples: It is well known that a standard algebra [0, 1]∗ is a BL-chain if,
and only if, ∗ is continuous. Prominent examples of continuous t-norms are
the  Lukasiewicz, the product and the minimum t-norms. We will denote their
corresponding standard algebras by [0, 1] L, [0, 1]Π and [0, 1]G, respectively. In
[28] and [29] it is proved that every standard BL-algebra is decomposable as an
ordinal sum of isomorphic copies of these three basic components.

For some expansions of MTL their completeness with respect to chains can be
improved to completeness with respect to standard algebras. This leads to the
following standard completeness properties.

Definition 9 (SC, FSSC, SSC) If a logic L is an algebraizable expansion of
MTL in a language L′, we say that L has the (finitely) strong standard com-
pleteness property, (F)SSC for short, when for every (finite) set of formulae
T ⊆ FmL′ and every formula ϕ it holds that T `L ϕ iff {ψ ≈ 1 : ψ ∈ T} |=A
ϕ ≈ 1 for every standard L-algebra A. We say that L has the standard com-
pleteness property, SC for short, when the equivalence is true for T = ∅.

Of course, the SSC implies the FSSC, and the FSSC implies the SC. These
completeness properties are preserved when taking fragments of the logics.

Proposition 10 ([13]) Suppose that L′ is a conservative expansion of L. Then:

• If L′ enjoys the SC, then L enjoys the SC.

• If L′ enjoys the FSSC, then L enjoys the FSSC.

• If L′ enjoys the SSC, then L enjoys the SSC.

On the scope of algebraizable logics, these properties have their equivalent al-
gebraic properties.

Theorem 11 Let L be an algebraizable axiomatic expansion of MTL (in par-
ticular an axiomatic extension of MTL), and let L be its equivalent variety
semantics. Then:
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1. L has the SC if, and only if, L = V(StandL),

2. L has the FSSC if, and only if, L = Q(StandL),

3. L has the SSC if, and only if, every countable chain of L belongs to
ISP(StandL)

where StandL is the class of all standard algebras in L, V(StandL) is the variety
generated by StandL, and Q(StandL) is the quasivariety generated by StandL.

Items 1 and 2 are well-known results in algebraic logic, while item 3 is proved
in [31].

Nevertheless, these completeness properties have not usually been proved using
the equivalencies above, but by means of some forms of embeddings of L-chains
into standard L-chains. Actually, the SSC has been proved for the following
logics by showing that all countable chains are embebbable into a standard one:
MTL (in [27]), IMTL and SMTL (in [12]), G (in [10]) and WNM and NM (in
[14]). In fact, as stated in next theorem, SCC is equivalent to the embeddability
of the subdirectly irreducible countable chains. As regards to the FSSC, in some
cases (see for instance [24, 22, 6] for Product,  Lukasiewicz and BL logics), rather
than using the equivalencies stated in Theorem 11, the result has been obtained
by proving first that every chain of the equivalent variety semantics is partially
embeddable into a standard algebra. For a long time, this condition was only
known to be sufficient, but in [13] it has been proved that it is actually equivalent
to the FSSC.

Definition 12 Given two algebras A and B of the same language we say that
A is partially embeddable into B when every finite partial subalgebra of A is
embeddable into B. Generalizing this notion to classes of algebras, we say that a
class K of algebras is partially embeddable into a class M if every finite partial
subalgebra of a member of K is embeddable into a member of M.

Theorem 13 ([13]) If L is an algebraizable axiomatic expansion of MTL (in
particular if it is an axiomatic extension of MTL), then

(i) L has the FSSC if, and only if, the class of L-chains is partially embeddable
into the class of standard L-algebras StandL, whenever the language of L
is finite.

(ii) L has the SSC if, and only if, every countable subdirectly irreducible chain
of L is embeddable into a standard L-chain.

Notice that in (i) the implication from right to left is true even if the language
is infinite.

Sometimes standard completeness properties can be refined with respect to some
subclass of standard algebras; sometimes it is even enough to consider only one
standard algebra. When the standard completeness can be proved with respect
to a particular standard algebra which is the intended semantics for the logic, we
call it canonical standard completeness. As a matter of fact, the equivalencies in
Theorems 11 and 13 remain true when restricted to some subclass of standard
algebras.
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2.2 About the logics L∗

The canonical standard completeness is a matter of special interest when one
considers the logic of the variety generated by the algebra defined by one par-
ticular t-norm, because then this t-norm gives the intended semantics for the
logic.

Definition 14 Let ∗ be a left-continuous t-norm. L∗ will denote the axiomatic
extension of MTL whose equivalent algebraic semantics is V([0, 1]∗), the variety
generated by [0, 1]∗.

By definition, for every left-continuous t-norm ∗, the logic L∗ enjoys the SC
restricted to [0, 1]∗, i.e. the canonical SC. But what about (canonical) FSSC
and SSC properties for the logics L∗?

We start with the case of continuous t-norms. Throughout the rest of this paper
we will use the following notation:

CONT = {∗ is a continuous t-norm}

CONT-fin = {∗ ∈ CONT | ∗ is an ordinal sum of finitely many basic
components}

Recall that  L, Π and G are actually important examples of logics L∗, namely
the logics L∗ for ∗ being the  Lukasiewicz, the product and the minimum t-
norm respectively (proved in [5], [24] and [10], respectively). Besides, in [16]
the authors provide an algorithm that produces a finite axiomatization Hilbert-
style calculus with finitely many axiom schemata (with modus ponens as the
only inference rule) for every logic L∗ with ∗ being a continuous t-norm. In these
cases, canonical SC results can be improved to canonical FSSC by showing that
given any continuous t-norm ∗, all chains in V([0, 1]∗) are partially embeddable
into [0, 1]∗. The result is obvious for G-chains, and taking into account the
relation of both MV-chains and Π-chains to lattice ordered Abelian groups and
Gurevich-Kokorin Theorem, it is also true for  L and Π (see [7]). This was finally
generalized to any logic L∗ for ∗ being a continuous t-norm in [13]. Therefore,
after Theorem 13, we obtain the following result.

Theorem 15 For every ∗ ∈ CONT, the logic L∗ has the canonical FSSC.

Moreover, this result cannot be improved to SSC with one exception.

Proposition 16 ([13]) For every ∗ ∈ CONT such that ∗ 6= min, the logic L∗
does not enjoy the SSC.

Besides, in [16] the authors provide an algorithm that produces a Hilbert-style
calculus for L∗ for every continuous t-norm ∗.
Now we move to the case of logics L∗ for ∗ being a left-continuous non-continuous
t-norms, which is much more difficult, mainly because, unlike the continuous
case, there is no general representation theorem for left-continuous t-norms.
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However, some particular families of left-continuous non-continuous t-norms
are well studied and even some finite axiomatizations are known for their cor-
responding logics. Namely, the standard WNM-algebras are studied in [21] and
in [31]. Next, we summarize the main results.

The operations in WNM-chains are easily described. Let A = 〈A,&,→
,∧,∨, 0A, 1A〉 be a WNM-chain. Then for every a, b ∈ A:

a&b =
{
a ∧ b if a > ¬b,
0A otherwise.

a→ b =
{

1A if a ≤ b,
¬a ∨ b otherwise.

In [14] it is shown that the operation ∗ in WNM-chains defined over the real unit
interval [0, 1] is given by a special kind of left-continuous t-norm. These t-norms
are defined in the following way. If n is a negation function5 and a, b ∈ [0, 1],
the operation ∗n defined as:

a ∗n b =
{

min{a, b} if a > n(b),
0 otherwise,

is a left-continuous t-norm and its residuum is given by:

a⇒n b =
{

1 if a ≤ b,
max{n(a), b} otherwise.

for every a, b ∈ [0, 1]. Moreover, it fulfills a ⇒n 0 = n(a). It is straightforward
that [0, 1]∗n

:= 〈[0, 1], ∗n,⇒n,min,max, 0, 1〉 is a WNM-chain, and all WNM-
chains over [0, 1] are of this form.

Notice that a standard WNM-chain given by a negation function n is an NM-
chain if, and only if, n is involutive, i.e. n(n(a)) = a for every a ∈ [0, 1]. It
follows from the study of such negations in [37] that there is only one standard
NM-chain up to isomorphism, namely the one given by the negation n(x) = 1−x.
We will refer to it as [0, 1]NM. The left-continuous t-norm corresponding to this
algebra was introduced by Fodor in [18].

Since standard WNM-chains are completely determined by their negation func-
tions, the study of L∗ logics when [0, 1]∗ is a WNM-chain, requires some knowl-
egde on the properties of such negations functions.

Lemma 17 ([11]) Let A be a MTL-chain. Then for every a ∈ A:

(i) ¬a = ¬¬¬a,

(ii) a ≤ ¬¬a,

(iii) a = ¬¬a if, and only if, there is b ∈ A such that a = ¬b, and

5A non-increasing function n : [0, 1] → [0, 1] is a negation function if x ≤ n(n(x)) for any
x ∈ [0, 1] and n(1) = 0, see [11].
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0           a1       a2     a3      a4      a5 a6     a7             1

1

x ∗ y = min(x, y)

x ∗ y = 0

Figure 1: An example of WNM t-norm with a finite partition.

(iv) ¬¬a = min{b ∈ A : a ≤ b and b = ¬¬b},

(v) when A = [0, 1], ¬ is a left-continuous function.

The last one gives rise to the following definition:

Definition 18 Let A be a WNM-chain and let a ∈ A be an involutive element.
We define Ia := {b ∈ A : ¬b = ¬a} and we call it the interval associated to
a, where the negation function is constant with value ¬a. We say that a has a
trivial associated interval when Ia = {a}.

A weak negation function has a form of symmetry; roughly speaking: if we
complete its graph by drawing vertical lines in the jumps, then the obtained
graph is symmetric with respect to the diagonal x = y. Therefore, the constant
intervals Ia in the positive part of the chain symmetrically correspond to jumps
in the negative parts (and viceversa).

Definition 19 We say that the standard WNM-chain defined by a weak nega-
tion function n : [0, 1] → [0, 1] has a finite partition if n is constant in a finite
number of intervals. In such a case we define the associated finite partition by
considering the set X = {0, 1}∪{a ∈ (0, 1) : a is either the maximum or infimum
of a non-trivial interval associated to an involutive element, or a discontinuity
of n, or the fixpoint}. The family of intervals determined by X is called the
partition of the WNM t-norm ∗n.

Notice that this partition yields two kinds of intervals: those where the negation
takes a constant value, and those where all the elements are involutive. As a

13



0 c    1                 0       1-c         c        1                  0      1-c         c       1

1

0

c        c               c

1

0

1

0

Figure 2: Three parametric families of WNM t-norms with finite partition.

matter of nomenclature, we call them constant intervals and involutive intervals,
respectively. Figure 1 shows an example of a WNM t-norm with a fixpoint, a3,
and with a finite partition where the constant intervals are [a4, a5] and [a6, a7],
while the involutive intervals are [0, a1], [a1, a2], [a2, a3], [a3, a4], [a5, a6] and
[a7, 1].

Figure 2 shows three families of WNM t-norms with finite partition parametrized
with a real number c: c ∈ [0, 1) for ⊗c, c ∈ [1/2, 1) for ?c and c ∈ [1/2, 1] for �c.
Notice that ⊗0 = �1 = min and ?1/2 = �1/2 is the Nilpotent Minimum t-norm.
These families are actually the only WNM t-norms with a finite partition of at
most three intervals.

An interesting observation is that in any standard WNM-chain [0, 1]∗n , if a
is positive element then Fa = [a, 1] and the elements of the quotient algebra
[0, 1]∗/Fa are such that

[x]Fa
=


[1]Fa

, if x ∈ Fa (i.e. if x ≥ a)
[0]Fa

, if x ∈ Fa (i.e. if x ≤ n(a))
{x}, otherwise

Therefore, the quotient algebra [0, 1]∗/Fa is isomorphic to another standard
WNM-chain. If a belongs to a constant interval, then this standard chain has
I1 6= {1}, see Figure 3.

To refer to the class of WNM t-norms and those with a finite partition we will
use from now on the following notation:

WNM = {∗ is a weak nilpotent minimum t-norm}

WNM-fin = {∗ ∈ WNM | ∗ has a finite partition}

In [31] the following results have been proved.

Theorem 20 ([31]) In the context of L∗ logics for ∗ ∈ WNM, the following
statements hold:
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1. If ∗ ∈ WNM-fin , then the logic L∗ is finitely axiomatizable (and an
algorithm for finding the axiomatization has been given).

2. If ∗ ∈ WNM-fin and I1 6= {1}, then L∗ has the canonical SSC, i.e. with
respect to the class {[0, 1]∗}.

3. If ∗ ∈ WNM-fin and I1 = {1}, then L∗ has the SSC with respect to the
class {[0, 1]∗, [0, 1]∗/Fa}, where a is the maximum involutive element such
that Ia 6= {a}. Moreover, this result cannot be improved, i. e. L∗ does not
enjoy the SSC with respect to only one of these two algebras.

4. If ∗ /∈ WNM-fin and I1 6= {1}, then L∗ has the canonical FSSC, i.e. with
respect to the class {[0, 1]∗}.

5. If ∗ /∈ WNM-fin and I1 = {1}, then L∗ has the FSSC with respect to
the class {[0, 1]∗} ∪ {[0, 1]∗/Fa : a positive involutive element such that
Ia 6= {a}}.

6. There are ∗ /∈ WNM-fin for which L∗ has not the SSC.

Figure 3 shows on the left an example of ∗ ∈ WNM-fin falling under item 3
of the last theorem, where I1 = {1} and a is the maximum involutive element
such that Ia 6= {a}, while on the right it shows the t-norm of a standard algebra
isomorphic to the quotient algebra [0, 1]∗/Fa.

0                                            a           1                                      0                                                      1  

[0, 1]
*

isomorphic to [0, 1]
* /Fa

1 1
x ∗ y = min(x, y) x ∗ y = min(x, y)

x ∗ y = 0
x ∗ y = 0

•

Figure 3: A WNM t-norm with a finite partition such that I1 = {1} (left) and its

corresponding t-norm of the quotient algebra [0, 1]∗/Fa.

3 Adding truth-constants

In this section we introduce the basic definitions and first general results regard-
ing the expansions with truth-constants for those extensions of MTL which are
the logic of a given left-continuous t-norm.
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Definition 21 (logic L∗(C)) Let ∗ be a left-continuous t-norm, and let C =
〈C, ∗,⇒,min,max, 0, 1〉 ⊆ [0, 1]∗ be a countable subalgebra. Consider the ex-
panded language LC = L ∪ {r : r ∈ C \ {0, 1}} where we introduce a new
constant for every element in C \ {0, 1}. We define L∗(C) as the expansion of
L∗ in the language LC obtained by adding the so-called book-keeping axioms:

r&s↔ r ∗ s
(r → s) ↔ r ⇒ s

for every r, s ∈ C.

Notice that in this definition the book-keeping axioms r ∧ s ↔ min{r, s} that
would correspond to the other primitive connective in MTL, ∧, are not present,
since they are easily derivable in L∗(C) as actually defined.

The algebraic counterparts of the L∗(C) logics are defined in the natural way.

Definition 22 Let ∗ be a left-continuous t-norm and let C be a countable sub-
algebra of [0, 1]∗. An L∗(C)-algebra is a structure

A = 〈A,&A,→A,∧A,∨A, {rA : r ∈ C}〉

such that:

1. 〈A,&A,→A,∧A,∨A, 0A, 1A〉 is an L∗-algebra, and

2. for every r, s ∈ C the following identities hold:

rA&AsA = r ∗ sA

rA →A sA = r ⇒ sA.

The canonical standard L∗(C)-chain is the algebra

[0, 1]L∗(C) = 〈[0, 1], ∗,⇒,min,max, {r : r ∈ C}〉,

i. e. the LC-expansion of [0, 1]∗ where the truth-constants are interpreted by
themselves.

Since the additional symbols added to the language are 0-ary, the condition
of algebraizability given in the prelimininaries is trivially fulfilled. Therefore,
L∗(C) is also an algebraizable logic and its equivalent algebraic semantics is
the variety of L∗(C)-algebras, denoted as L∗(C). In particular this means that
the logics L∗(C) are strongly complete with respect to the variety of L∗(C)-
algebras. Furthermore, reasoning as in the MTL case, we can prove that all
L∗(C)-algebras are representable as a subdirect product of L∗(C)-chains, hence
we also have completeness of L∗(C) with respect to L∗(C)-chains.

Theorem 23 For any Γ ∪ {ϕ} ⊆ FmLC
, Γ `L∗(C) ϕ if, and only if, {ψ ≈ 1 :

ψ ∈ Γ} |={L∗(C)−chains} ϕ ≈ 1.

This general completeness with respect to chains, can be refined by using [8,
Lemma 3.4.4], where Cintula proves a very general result for expansions of
fuzzy logics with rational truth-constants. Adapted to our framework, it reads
as follows.
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Theorem 24 ([8]) Let ∗ be a left-continuous t-norm such that L∗ is strongly
complete with respect a class K of L∗-chains. Then L∗(C) is strongly complete
with respect to the class of L∗(C)-chains whose L-reducts are in K.

Notice that when K is the class of all L∗-chains, then this theorem does not
provide anything new other than the result of Theorem 23. If K is the class of
standard L∗-chains, the condition that L∗ should be strongly complete is very
demanding. For instance if we restrict ourselves to continuous t-norm based
logics, then only Gödel logic G satisfies this condition (SSC). If we consider
logics of genuine left-continuous t-norms, then so far we can only additionally
consider the NM logic and some WNM logics (see previous section).

Since all the logics L∗(C) are expansions of MTL, sharing Modus Ponens as the
only inference rule, they have the same local deduction-detachment theorem as
MTL has. In fact, the proof for MTL or BL also applies here.

Theorem 25 For every Γ∪{ϕ,ψ} ⊆ FmLC
, Γ, ϕ `L∗(C) ψ if, and only if, there

is a natural k ≥ 1 such that Γ `L∗(C) ϕ
k → ψ.

One can also show the following general result about the conservativity of L∗(C)
w.r.t. L∗.

Proposition 26 L∗(C) is a conservative expansion of L∗.

Proof: Let Γ∪ {ϕ} ⊆ FmL be arbitrary formulae and suppose that Γ `L∗(C) ϕ.
Then, there is a finite Γ0 ⊆ Γ such that Γ0 `L∗(C) ϕ. By the above deduction
theorem, there exists a natural k such that `L∗(C) (Γ0)k → ϕ, identifying the set
Γ0 with the strong conjunction of all its formulae. By soundness, this implies
that |=[0,1]L∗(C)

(Γ0)k → ϕ. Since the new truth-constants do not occur in
Γ0 ∪ {ϕ}, we have |=[0,1]∗ (Γ0)k → ϕ, and by SC of L∗, `L∗ (Γ0)k → ϕ, and
hence Γ `L∗ ϕ as well. 2

In the rest of the paper we will study the SC, FSSC and SSC properties for the
logics with truth-constants L∗(C), and also canonical standard completeness
properties, i.e. SC, FSSC and SSC restricted to the canonical standard algebra.

4 Structure of L∗(C)-chains

We have seen in Theorem 25 that the logics L∗(C) are complete with respect to
the L∗(C)-chains. To study standard completeness results for L∗(C) we need to
get a deeper insight into L∗(C)-chains. This is done in this section.

Next we assume ∗ is a left-continuous t-norm and C is a countable subalgebra
of [0, 1]∗.

Lemma 27 For any L∗(C)-chain A = 〈A,&,→,∧,∨, {rA : r ∈ C}〉, let
FC(A) = {r ∈ C : rA = 1A} and FC(A) = {r ∈ C : ¬r ∈ FC(A)}. Then:

(i) FC(A) is a filter of C.
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(ii) The set {rA : r ∈ C} forms an L∗-subalgebra of A isomorphic to C/FC(A),
through the mapping rA 7→ [r]A, in such a way that

[1]A = FC(A) and [0]A = FC(A),

where [r]A denotes the equivalence class of r ∈ C w.r.t. to the congruence
defined by the filter FC(A).

Proof: (i) If r ∈ FC(A) and s ∈ C with s > r, then s ∈ FC(A) because by the

book-keeping axioms we have sA = max(r, s)
A

= rA ∨ sA = 1A. Moreover if
r, s ∈ FC(A) then r ∗ s ∈ FC(A) since r ∗ sA = rA&sA = 1A. Therefore FC(A)
is a filter.
(ii) An easy computation shows that sA = rA iff (r ⇒ s) ∗ (s⇒ r)

A
= 1A, i.e.

elements of the same class have to be interpreted by the same element of A
while elements of different classes have to be interpreted by different elements
of A. 2

In general, the equivalence classes of C with respect to a filter F , i.e. the elements
of C/F , are difficult to describe, but some interesting cases can be indeed fully
described. The next lemma refers to these cases.

Lemma 28 Let ∗ ∈ CONT ∪WNM and let C be a (countable) subalgebra of
[0, 1]∗. For any F ∈ Fi(C) we have:

(i) for any r, s /∈ F ∪ F , [r]F = [s]F iff r = s;

(ii) moreover, if ∗ ∈ CONT then F = {0}.

Proof: For ∗ being a continuous t-norm the proofs of (i) and (ii) can be found
in [13]. If ∗ is a WNM t-norm the proof of (i) is an easy generalization of the
proof for NM and some particular WNM t-norm logics given in [17]. 2

This lemma shows that the interpretation of the constants over a L∗(C)-chain
A depends only on the filter FC(A). Indeed, if i : C → {rA : r ∈ C} denotes
that interpretation, i.e. i(r) = rA for all r ∈ C, then i maps truth-values r to
1A or 0A depending on whether r ∈ FC(A) or r ∈ FC(A) respectively, and over
the rest of the elements of C, i.e. those in C \ (FC(A)∪FC(A)), i is a one-to-one
mapping.

The standard chains of the variety L∗(C), i.e. the L∗(C)-algebras over [0, 1], are
the key to get standard completeness results for the logic L∗(C) when using the
technique of partially embedding L∗(C)-chains into standard ones. In order to
know when such embeddings are possible, it is necessary to study the standard
L∗(C)-chains in more detail. This question is in fact related to describe the
ways the truth-constants from C can be interpreted in [0, 1] respecting the book-
keeping axioms. We have seen in Lemmas 27 and 28 some necessary conditions
showing the preeminent role the set Fi(C) of proper filters of C plays in this
question. Observe that each proper filter of C is either of type Fa = {x ∈ C :
x ≥ a} or of type F>a = {x ∈ C : x > a} for some a ∈ C.
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One can wonder whether, given a filter F ∈ Fi(C), there always exists a standard
L∗(C)-chain A such that FC(A) = F . Obviously, the simplest thing to look at
is whether the algebra

[0, 1]FL∗(C) = 〈[0, 1], ∗,⇒∗,min,max, {iF (r) : r ∈ C}〉,

where the mapping iF : C → [0, 1] is defined as

iF (r) =


1, if r ∈ F
0, if r ∈ F
r, otherwise

(1)

is always an L∗(C)-algebra over [0, 1]∗, or in other words, whether the map-
ping iF is always a proper interpretation of the truth-constants, in the sense of
satisfying the book-keeping axioms.

It is easy to check that this is actually the case when ∗ ∈ CONT, and in
such a case [0, 1]FL∗(C) will be called standard algebra of type F . Moreover,
when ∗ ∈ CONT-fin does not contain any Gödel component and C covers all
components of ∗, one can show that these are all the standard chains one can
define, in the sense that there are as many L∗(C)-algebras over [0, 1]∗ (up to
isomorphism) as proper filters of C.

Proposition 29 ([13]) Let ∗ ∈ CONT-fin be such that it does not contain
any Gödel component, and let C ⊆ [0, 1]∗ be a countable subalgebra such that
each component of [0, 1]∗ contains at least one value of C different from the
bounds of the component. Then:

(i) For any F ∈ Fi(C), the algebra [0, 1]FL∗(C) is an L∗(C)-algebra. Conversely,
any standard L∗(C)-chain whose L-reduct is [0, 1]∗ is (up to isomorphism)
an algebra [0, 1]FL∗(C), for some F ∈ Fi(C).

(ii) Let X = {[A] : A standard L∗(C)-algebra over [0, 1]∗} be the set of
isomorphism classes of L∗(C)-algebras over [0, 1]∗. Then, the function
Φ : X → Fi(C) defined by Φ([A]) = FC(A) for every [A] ∈ X is a bijec-
tion.

The case of L∗(C) logics when ∗ ∈ WNM-fin is not so simple. We illustrate
the problem with an example. Let ∗ be the WNM t-norm depicted in the left
hand side of Figure 3 and take C = Q ∩ [0, 1]. Let a be a positive involutive
element such that I∗a 6= {a} and let Fa be the principal filter generated by a.
Then the mapping iFa

: C → [0, 1], defined as in expression (1), is not a proper
interpretation of the truth-constants since for each b ∈ I∗a , ¬i(b) = ¬b = ¬a
and i(¬b) = i(¬a) = 0, i.e. the book-keeping axioms are not satisfied and hence
the algebra [0, 1]FL∗(C) is not an L∗(C)-algebra. Thus the mapping (1) used to
interpret the truth-constants in the case of continuous t-norms does not always
work in the case of a WNM t-norm.

In fact, for the case ∗ ∈ WNM-fin, if we want to associate to each filter
F ∈ Fi(C) a standard chain of L∗(C) such that FC(A) = F , we need to proceed
in a different way. We will divide the job by cases.
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1. If the classes of C/F satisfy the condition that ¬[r]F = [0]F implies [r]F =
[1]F , then the interpretation used in the case of continuous t-norms works
well and the chain [0, 1]FL∗(C) is an L∗(C)-chain like in the continuous case.

2. If in C/F there are classes such that

[r]F 6= [1]F (that is, r /∈ F ) and ¬[r]F = [0]F ,

then the mapping iF : C → [0, 1] defined by expression (1) is not, in
general, an interpretation as the example above proves.

Thus in this case, we consider two further subcases:

(a) If [0, 1]∗ is such that I∗1 6= {1} (i.e. ¬x = 0 for some x < 1), then the
mapping i′F : C → [0, 1] defined by,

i′F (r) =


1, if r ∈ F
0, if r ∈ F
f(r), if ¬r = 0 and r /∈ (F ∪ F )
r, otherwise

(2)

where f : {r ∈ C | ¬r = 0, r /∈ (F ∪ F )} → I∗1 is an (arbitrary)
one-to-one increasing mapping, is an interpretation which satisfies
the book-keeping axioms. Then the algebra

[0, 1]FL∗(C) := 〈[0, 1], ∗,⇒∗,min,max, {i′F (r) : r ∈ C}〉

is an L∗(C)-chain over [0, 1]∗.

(b) If [0, 1]∗ is such that I∗1 = {1} (i.e. ¬x = 0 implies x = 1), then the
mapping i′F : C → [0, 1] defined in the previous case does not apply
here since having I∗1 = {1} makes impossible to define a one-to-one
mapping f as required there. In this case we take as initial chain,
not the standard chain [0, 1]∗, but the chain ([0, 1]∗)/Fa (which still
belongs to the variety L∗) where a ∈ C is the greatest element in the
constant intervals of [0, 1]∗. Notice that [1]Fa = [a, 1], [0]Fa = [0,¬a]
and [r]Fa = {r} for any r ∈ (¬a, a). Hence, ([0, 1]∗)/Fa is isomorphic
to an L∗-chain [¬a, a]∗′ by identifying [1]Fa

with a, [0]Fa
with ¬a,

and [r]Fa
with r for all r ∈ (¬a, a), and by taking ∗′ as the obvious

adaptation to the interval [¬a, a] of the original ∗. Now it is clear
that [¬a, a]∗′ is such that I∗

′

1 6= {1} and therefore we can define a
mapping i′′F : C → [¬a, a] analagously to (2) which makes the algebra

〈[¬a, a], ∗′,⇒∗′ ,min,max, {i′′F (r) : r ∈ C}〉

an L∗(C)-chain. Finally, by means of an increasing linear transfor-
mation h : [¬a, a] → [0, 1], it is easy to get an isomorphic L∗(C)-chain
over [0, 1]

[0, 1]FL∗(C) := 〈[0, 1], ◦,⇒◦,min,max, {jF (r) : r ∈ C}〉

where x◦y = h(h−1(x)∗′ h−1(y)) and jF (r) = h(i′′F (r)) for all r ∈ C.
Notice that ◦ needs not coincide with ∗.
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Notice that the algebra [0, 1]FL∗(C) built in case (a) and in case (b) is not
univocally defined since its definition depends on the choice of some map-
pings, but all possible choices would yield isomorphic algebras.

Thus, we have the following corollary.

Corollary 30 Let ∗ ∈ CONT-fin∪WNM-fin and let C be a countable subalge-
bra of [0, 1]∗. Then, for any filter F ∈ Fi(C), there exists a standard L∗(C)-chain
A such that FC(A) = F , namely A = [0, 1]FL∗(C).

Any standard L∗(C)-chain A such that FC(A) = F will be called from now on
standard L∗(C)-chain of type F .

5 Completeness results

In this section we will give completeness results for the logics L∗(C) in the
following particular cases:

1. When ∗ ∈ CONT-fin and C is a countable subalgebra of [0, 1]∗ such that
C has elements in the interior of each component of the t-norm ∗, and in
addition every r ∈ C belonging to a  Lukasiewicz component generates a
finite MV-chain.

2. When ∗ ∈ WNM-fin and C is a countable subalgebra of [0, 1]∗ such that
has elements in the interior of each interval of the partition.

Thus, from now on we will assume that the algebra C satisfies these conditions.

In the following subsection we will focus on strong and finite strong standard
completeness results while in the second subsection we will focus on the issue
of canonical standard completeness.

5.1 About SSC and FSSC results

We start with a general result on strong standard completeness when ∗ ∈
WNM-fin which is a consequence of Cintula’s Theorem 24 and the SSC re-
sults given in statements 2 and 3 of Theorem 20.

Theorem 31 For every ∗ ∈ WNM-fin and every suitable C, the logic L∗(C)
enjoys the SSC restricted to the family {[0, 1]FL∗(C) : F ∈ Fi(C)}.

As particular cases of the above theorem we obtain that the logics G(C) and
NM(C) enjoy the SSC restricted to the corresponding family {[0, 1]FL∗(C) : F ∈
Fi(C)}.
Notice that these results can never be improved to canonical SSC, as the fol-
lowing example shows.
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Example 1 For every non-trivial filter F (that exists in all these cases) and
every r ∈ F \ {1}, the derivation

(p→ q) → r |= q → p

is valid in [0, 1]L∗(C) but not in [0, 1]FL∗(C).

Observe that by Proposition 16 and Theorem 10 and being L∗(C) a conservative
expansion of L∗, the SSC is false for the logics L∗(C) for each ∗ ∈ CONT-fin
when ∗ 6= min.

Since there is no result relating the FSSC for logics without truth-constants to
the FSSC for the corresponding expanded logics with truth-constants, in order
to study the FSSC we need to use the bridge result given in Theorem 13, i.e. we
have to study partial embeddability property for algebras with truth-constants.
Next we summarize some results which can be found in [17, 36, 13].

Definition 32 The logic L∗(C) has the partial embeddability property if, and
only if, for every filter F ∈ Fi(C) and every subdirectly irreducible L∗(C)-chain
A of type F , A is partially embeddable into [0, 1]FL∗(C).

Obviously, the logics with truth-constants that enjoy the SSC restricted to the
family of standard chains of type F , being F a proper filter of C, enjoy the
partial embeddability property as well. Thus in the next theorem we consider
cases that in general do not enjoy the SSC.

Theorem 33 ([13]) For every ∗ ∈ CONT-fin and every suitable C, the logic
L∗(C) enjoys the partial embeddability property, and therefore it has the FSSC
restricted to the family {[0, 1]FL∗(C) : F ∈ Fi(C)}.

Notice that the following interesting cases are included in the previous theorem:

(1) ∗ is the product t-norm.

(2) ∗ is the  Lukasiewicz t-norm and C is contained in the rationals of [0, 1].

The proofs for the expansion of Product logic can be found in [36] respectively.
The proof for expansions of  Lukasiewicz logic can be found in [22] and for the
other cases of continuous t-norms in [13].

Observe that in the  Lukasiewicz case the subalgebra of constants C has a unique
proper filter F = {1} and thus the logic enjoys the canonical FSSC. Moreover,
Example 1 also shows that the rest of the logics do not enjoy the canonical
FSSC. Furthermore, observe that in the case of the product t-norm the family
of standard chains associated to proper filters of C contains only two chains
(since any product chain has only two proper filters).

All these results are collected in Tables 3 and 4.
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G(C) Π(C)  L(C) L∗(C), for other ∗ ∈ CONT-fin
SC Yes Yes Yes Yes

FSSC Yes Yes Yes Yes
SSC Yes No No No

Canonical FSSC No No Yes No
Canonical SSC No No No No

Table 3: (Finite) strong standard completeness results for logics of a t-norm
from CONT-fin.

G(C) NM(C) L∗(C), for other ∗ ∈ WNM-fin
SC Yes Yes Yes

FSSC Yes Yes Yes
SSC Yes Yes Yes

Canonical FSSC No No No
Canonical SSC No No No

Table 4: (Finite) strong standard completeness results for logics of a t-norm
from WNM-fin.

5.2 About canonical standard completeness

From the results of the last sections, we already know that all the considered
logics enjoy the SC restricted to the family of standard chains associated to
proper filters of C, i.e, their theorems are exactly the common tautologies of
the chains of the family {[0, 1]FL∗(C) : F ∈ Fi(C)}. But although the logics
considered in the last sections have not in general the canonical SSC or the
canonical FSSC (only  L(C) enjoys it when C ⊆ Q ∩ [0, 1]), some of them still
enjoy the canonical SC, i. e. their theorems are exactly the tautologies of their
corresponding canonical standard algebra. In order to prove it, we need to show
that tautologies of the canonical standard chain are a subset of the tautologies
of each one of the standard chains associated to each proper filter of C. We will
study this problem by cases in next subsections.

5.2.1 The case of continuous t-norms

For the case of expansions of  Lukasiewicz logic with truth-constants, since  L(C)
has the canonical FSSC it trivially has the canonical SC as well.

Theorem 34 ([22])  L(C) has the canonical SC.

For the case of the expansions of Gödel or product logics with truth-constants,
in [17] and in [36] the following results were proved.

Theorem 35 ([17]) G(C) has the canonical SC.

Theorem 36 ([36]) Π(C) has the canonical SC.

23



But the canonical SC is not valid in general for any logic L∗(C) with ∗ ∈
CONT-fin. In [13] this is shown by providing counterexamples, i. e. by
exhibiting in each case a suitable formula ϕ that is a tautology of the canonical
standard algebra [0, 1]L∗(C) but not of the algebra [0, 1]FL∗(C) for some proper fil-
ter F of C. Suppose that the first component of [0, 1]∗ is defined on the interval
[0, a].

1. If [0, 1]∗ = [0, a] L ⊕ A and a ∈ C, then an easy computation shows that
the formula

a→ (¬¬x→ x)

is valid in the canonical standard algebra but it is not valid in the standard
chain [0, 1]FL∗(C) defined by the filter F = [a, 1]∩C (where a is interpreted
as 1).

2. If [0, 1]∗ = [0, a]Π ⊕ A, take b ∈ C ∩ (0, a). Then an easy computation
shows that the formula

b→ ¬x ∨ ((x→ x&x) → x)

is valid in the canonical standard algebra but it is not valid in the standard
chain [0, 1]FL∗(C) defined by the filter F = (0, 1]∩C (where b is interpreted
as 1).

3. If [0, 1]∗ = [0, a]G ⊕ A, take b as any element of C ∩ (0, a). Then the
formula

b→ (x→ x&x)

is valid in the canonical standard algebra but it is not valid in the standard
chain [0, 1]FL∗(C) defined by the filter F = [b, 1] ∩C (where b is interpreted
as 1).

Observe that for a t-norm whose decomposition begins with two copies of
 Lukasiewicz t-norm, the idempotent element a separating them has to belong to
the truth-constants subalgebra C. Indeed, take into account that, by assump-
tion, C must contain a non idempotent element c of the second component and
for this element there exists a natural number n such that cn = a and thus
a ∈ C. Hence this case is subsumed in the above first item.

The remaining cases (when the first component is  Lukasiewicz but its upper
bound a does not belong to C) are studied by cases:

(1) If [0, 1]∗ = [0, a] L⊕ [a, 1]G or [0, 1]∗ = [0, a] L⊕ [a, 1]Π, then the logic L∗(C)
has the canonical SC. Actually, in that case the filters of C are the same
as the filters of C ∩ [0, 1]G or C ∩ [0, 1]Π respectively, and thus a modified
version of the proof of the canonical SC for G(C) and Π(C) applies (see
[13] for the complete proofs).

(2) If [0, 1]∗ is an ordinal sum of three or more components, then L∗(C) has
not the canonical SC as the following examples show:

24



2.1.- If [0, 1]∗ = [0, a] L ⊕ [a, b]G ⊕A, take d ∈ F = (a, b]∩C in the second
component. Then the formula,

d→ (¬¬x→ x) ∨ (x→ x&x)

is a tautology of the canonical standard algebra but not of [0, 1]FL∗(C).

2.2.- If [0, 1]∗ = [0, a] L ⊕ [a, b]Π ⊕A, take d ∈ F = (a, b] ∩C in the second
component. Then the formula,

d→ (¬¬x&¬¬y&((x→ x&y) → y)&(y → x)&(x→ x&x) → x)

is a tautology of the canonical standard algebra and not of [0, 1]FL∗(C).

Summarizing (see Table 5) the canonical SC holds for the expansion of the
logic of a continuous t-norm ∗ which is a finite ordinal sum of the three basic
ones by a set of truth-constants if, and only if, [0, 1]∗ is either one of the three
basic algebras ([0, 1] L, [0, 1]G or [0, 1]Π) or [0, 1]∗ = [0, a] L ⊕ [a, 1]Π or [0, 1]∗ =
[0, a] L ⊕ [a, 1]G (with a 6∈ C).

5.2.2 The case of WNM-fin t-norms

The question canonical SC for WNM-fin t-norms is fully solved. Some cases
have been proved to be canonical standard complete and in the other cases
we provide a counterexample showing that they are not canonical standard
complete. In fact in [17] it is proved that the expansions of Gödel logic, NM
logic and the logics corresponding to the t-norms ⊗c and ?c depicted in Figure
2 enjoy the canonical SC6. Here we give a new unified and simpler proof.

Theorem 37 If ∗ ∈ WNM-fin such that its negation on the set of positive
elements is either both involutive and continuous, or is identically 0, then L∗(C)
enjoys the canonical SC

Proof: Suppose ϕ is a tautology with respect to [0, 1]L∗(C). We will prove that
ϕ is also a tautology with respect to [0, 1]FL∗(C) for each F ∈ Fi(C), which
implies that `L∗(C) ϕ. Let e be an interpretation over the chain [0, 1]FL∗(C).
Suppose that A is the finite algebra generated by {e(ψ) | ψ subformula of ϕ} and
α = min{r ∈ F | r occurs in ϕ}. Suppose that f : (¬α, α) → (0, 1) is a bijection
such that f(r) = r for all r /∈ F ∪F such that r in ϕ and f is a homomorphism
from A to the canonical standard chain. Then define an evaluation e′ on the
canonical standard chain defined by e′(p) = f−1(e(p)) if p is a propositional
variable that appears in ϕ and e′(p) = 1 otherwise. Since ϕ is a tautology for
the canonical standard chain, e′(ϕ) = 1. Take the algebra [0, 1]∗/Fα where Fα

is the principal filter generated by α. By hypothesis this algebra is isomorphic
to [0, 1]∗. Define the evaluation e′′ on the quotient algebra obtained from e′ and
it obviously satisfies e′′(ϕ) = [1]Fα . But a simple computation shows that the
algebra B generated by {e′′(ψ) | ψ subformula of ϕ} is isomorphic to A and
e′′(ϕ) over the quotient algebra corresponds to e(ϕ) over the chain [0, 1]FL∗(C)
and thus e(ϕ) = 1. 2

6In [17] it is wrongly claimed that the expansions L∗(C) for ∗ = �c (see Figure 2) were
also canonical standard complete, in Example 2 we provide a counter-example.
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Actually, the only expansions of logics L∗ with ∗ ∈ WNM-fin that enjoy the
canonical SC are those falling under the hypotheses of last theorem. This is
proved below by showing counterexamples for the remaining cases, where p(x)
and n(x) denote the terms x ∨ ¬x and x ∧ ¬x respectively.

Example 2 Let ∗ ∈ WNM-fin not falling under the hypotheses of last theo-
rem. We distinguish the following three cases:

• Suppose the negation is continuous on the set of positive elements and the
only constant interval formed by positive elements is I1. In such a case,
there is an interval I of involutive positive elements, followed by I1. Take
a truth-constant b in the interior of I. Then the formula,

(¬¬p(x) → p(x)) ∨ (b→ p(x))

is a tautology for [0, 1]L∗(C) and it is not a tautology for [0, 1]FL∗(C) for any
F containing b. Take into account that in [0, 1]L∗(C) a positive element is
either involutive or greater than b.

• Suppose the negation is continuous on the set of positive elements and
there is some constant interval formed by positive elements different from
I1 (this is the case of the family of t-norms �c in Figure 2). Let b be the
minimum involutive positive element with a non-trivial associated interval.
Then the formula,

(¬¬p(x) → p(x)) ∨ (¬p(x) → ¬b)

is a tautology for [0, 1]L∗(C) and it is not a tautology for [0, 1]FL∗(C) for any
F containing b. Notice that in this case [0, 1]FL∗(C) is such that either a
positive element is involutive or its negation is not greater than ¬b.

• Suppose the negation is continuous on the set of positive elements. Let b
be the minimum discontinuity point of the negation function in the set of
positive elements. Then I¬b is the greatest constant interval in the negative
part with biggest element ¬b and not containing the fixpoint. Then take

(¬¬n(x) → n(x)) ∨ (¬n(x) → ¬¬n(x)) ∨ (n(x) → ¬b)

is a tautology for [0, 1]L∗(C) and it is not a tautology for [0, 1]FL∗(C) for
any F containing b. Notice that in [0, 1]L∗(C) a negative element is either
involutive or belongs to a constant interval whose greatest element is the
fixpoint (if it exists) or it is less or equal than ¬b.

These three examples prove that a rather large family of expansions of the logic
of a t-norm from WNM-fin with truth-constants do not enjoy the canonical
SC. In fact, only the following cases, proved to enjoy the canonical SC in [17],
are not included in the previous examples:

• when the set of positive elements define an involutive interval of the par-
tition (NM, ?c of Figure 2).

• when the set of positive elements define a constant interval of the partition
(G, ⊗c of Figure 2).

All the results about canonical SC are gathered in Table 5.
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[0, 1]∗ Canonical SC for L∗(C)
[0, 1] L Yes
[0, 1]G Yes
[0, 1]Π Yes

[0, a]G ⊕A No
[0, a]Π ⊕A No
[0, a] L ⊕A, a ∈ C No

[0, a] L ⊕ [a, 1]G, a 6∈ C Yes
[0, a] L ⊕ [a, 1]Π, a 6∈ C Yes

[0, a] L ⊕ [a, b]G ⊕A, a 6∈ C No
[0, a] L ⊕ [a, b]Π ⊕A, a 6∈ C No

[0, 1]NM Yes
[0, 1]⊗c

Yes
[0, 1]?c Yes

[0, 1]∗, for other ∗ ∈ WNM-fin No

Table 5: Canonical standard completeness results for logics L∗(C) when ∗ ∈
CONT-fin ∪ WNM-fin. Recall that ⊗c, and ?c are those WNM t-norms
depicted in Figure 2.

6 Completeness results for evaluated formulae

This section deals with completeness results when we restrict to what we call
evaluated formulae, formulae of type r → ϕ, where ϕ is a formula without
new truth-constants (different from 0 and 1). These formulae can be seen as
a special kind of Novák’s evaluated formulae, which are expressions a/A where
a is a truth value (from a given algebra) and A is a formula that may contain
truth-constants again, and whose interpretation is that the truth-value of A is
at least a. Hence our formulae r → ϕ would be expressed as r/ϕ in Novák’s
evaluated syntax. On the other hand, formulae r → ϕ when ϕ is a Horn-like rule
of the form b1&...&bn → h also correspond to typical fuzzy logic programming
rules (b1&...&bn → h, r), where r specifies a lower bound for the validity of the
rule.

From the previous sections we know that the FSSC is true for the expansion of
L∗ with a suitable subalgebra of truth-constants (not only for evaluated formu-
lae), but the canonical FSSC is only true for expansions of  Lukasiewicz logic.
Restricting the language to evaluated formulae these results can be improved.
To describe them we divide the subject by cases.

6.1 The case of continuous t-norms

Next theorem7 states the canonical FSSC restricted to evaluated formulae for
the expansions of Gödel and Product logics with truth-constants.

7The proof can be found in [17] for the case of G(C) and in [36] for Π(C).
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Theorem 38 ([17, 36]) G(C) and Π(C) have the canonical FSSC if we restrict
the language to evaluated formulae, i.e. for any finite index set I we have:

• {ri → ϕi}i∈I `G(C) s→ ψ iff {ri → ϕi}i∈I |=[0,1]G(C)
s→ ψ.

• {ri → ϕi}i∈I `Π(C) s→ ψ iff {ri → ϕi}i∈I |=[0,1]Π(C)
s→ ψ.

where ψ,ϕi ∈ FmL.

Now, following [13], we will study the canonical SC and the canonical FSSC
restricted to evaluated formulae for other logics. Take any ∗ ∈ CONT-fin
which is an ordinal sum of more than one basic component and suppose that
the first component is defined on the interval [0, a]. In the following cases we
can refute the canonical SC (and hence the canonical FSSC as well):

1. The first component of the t-norm ∗ is a copy of  Lukasiewicz t-norm and
a ∈ C.

2. The first component of the t-norm ∗ is a copy of product t-norm.

3. The first component of the t-norm ∗ is a copy of minimum t-norm.

4. There are more than two components and the second component is a copy
of minimum t-norm.

5. There are more than two components and the second component is a copy
of product t-norm.

Indeed, for all these cases we can use the same counterexample that was given
in the previous section to show that the corresponding logics do not enjoy the
canonical SC, because the counterexamples were actually evaluated formulae.

The following theorem deals with the remaining case of ordinal sums of two
basic components. The case [0, 1]∗ = [0, a] L⊕ [a, 1] L is not considered here since
in such a situation, under the working hypothesis that there exists b ∈ (a, 1]
such that b ∈ C, necessarily a ∈ C as well.

Theorem 39 ([13]) The restriction to evaluated formulae of the logic L∗(C)
when either [0, 1]∗ = [0, a] L⊕[a, 1]G or [0, 1]∗ = [0, a] L⊕[a, 1]Π and the minimum
element of the second component does not belong to C has the canonical FSSC.

All these results are summarized in Table 6, where interestingly enough it turns
out that both standard completeness properties (SC and FSSC) restricted to
evaluated formulae are equivalent, for each ∗ ∈ CONT-fin.

6.2 The case of WNM-fin t-norms

In this case, the only available results are those from [17] for evaluated formulae
of the kind r → ϕ where r is a positive constant. We will call them positively
evaluated formulae. For general evaluated formulae there are no results so far.
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Theorem 40 ([17]) If ∗ is one of the three WNM t-norms depicted in Fig.
2 (⊗c, ?c,�c)then L∗(C) has the following canonical FSSC if we restrict the
language to evaluated formulae:

{ri → ϕi}i∈I `L∗(C) s→ ψ iff {ri → ϕi}i∈I |=[0,1]L∗(C)
s→ ψ.

where I is a finite index set, ψ,ϕi ∈ FmL and ri ∈ (c, 1].

Notice that in all these logics, the positive constants coincide with the interval
(c, 1] ∩ C, except for the logics corresponding to �c with c > 1/2 where the
positive constants are those in (1− c, 1]∩C. The case L∗ = NM appears above
when ∗ = ?1/2 = �1/2, and then the condition for the constants is ri ∈ ( 1

2 , 1]).

For ∗ ∈ WNM-fin other than ⊗c, ?c the canonical FSSC restricted to positively
evaluated formulae does not hold as the following counterexamples show.

Example 3 Let ∗ = �c with c > 1/2. Let r ∈ C such that 1− c < r ≤ c. Then
the semantical deduction

¬¬p(x) → p(x) |= r → p(x)

is valid in [0, 1]L∗(C) but not in [0, 1]FL∗(C) for any F containing r. Obviously, in
[0, 1]L∗(C) any involutive and positive element is greater than r.

Example 4 Let ∗ ∈ WNM-fin be such that the first interval I of the partition
associated to ∗ formed by positive elements is involutive and there is a constant
interval on the right of it. In such a case, take a truth-constant r in the interior
of I. Then the semantical deduction,

(¬¬p(x) → p(x)) → p(x) |= r → p(x)

is valid in [0, 1]L∗(C) but not in [0, 1]FL∗(C) for any F containing r. Observe that
in [0, 1]L∗(C) the premise is true if, and only if, p(x) is not involutive or 1, and
for these cases p(x) is greater than r.

Example 5 Let ∗ ∈ WNM-fin such that the first interval of the partition
associated to ∗ formed by positive elements is a constant interval with respect to
the negation (Ic being c the biggest element of the interval). Additionally suppose
that there is another interval of positive elements that is also a constant interval
with respect to the negation. In such a case, take a truth-constant r ∈ Ic. Then
the formula,

r → ¬¬p(x)

is a tautology for [0, 1]L∗(C) and it is not a tautology for [0, 1]FL∗(C) for any F

containing r. Obviously in [0, 1]L∗(C) any involutive and positive element is
greater than r.

Example 6 Let ∗ ∈ WNM-fin be such that there is a positive element which
is a discontinuity point of the negation function. Then, due to symmetry of
negation functions, there is a constant interval whose elements are negative and
whose greatest element is not the fixpoint. Denote by I the greatest constant
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interval formed by negative elements whose greatest element is different from
the fixpoint and take r as the greatest element of I, i.e. I = Ir. Then the
semantical deduction,{

¬¬n(x) → ¬(¬¬n(x) → n(x)),
¬n(x) → ¬(¬n(x) → ¬¬n(x))

}
|= ¬r → ¬n(x)

is valid deduction in [0, 1]L∗(C) but it is not in [0, 1]FL∗(C) for any F containing r.
Observe that the first premise is true if, and only if, n(x) is either not involutive
or n(x) = 0 and the second premise is true if and only if n(x) does not belong
to a constant interval whose greatest element is the fixpoint. Thus, if x satisfies
the premises, it is clear that n(x) belongs to a constant interval which does not
contain the fixpoint, thus it is less or equal to r, and hence the conclusion is
also satisfied.

This four examples, as in the case of general SC studied in the last section,
prove that a rather large family of expansions of the logic of a WNM t-norm
with truth constants do not enjoy canonical FSSC even when we restrict the
language to positively evaluated formulae.

The reader can see a summary of all these completeness results in Table 6.
Notice that the canonical SC restricted to positively evaluated formulae remains
an open problem when ∗ ∈ WNM-fin is not one the t-norms ⊗c or ?c in Figure
2. In fact, in the cases considered in Example 5, the canonical SC does not hold,
but we still do not know whether it is true in other cases.

Furthermore, comparing this table with Table 5 we realise that for a logic L∗(C)
where ∗ ∈ CONT-fin ∪WNM-fin (except for the case which remains open),
the canonical SC turns out to be equivalent to the canonical SC (and to the
canonical FSSC) restricted to positively evaluated formulae.

Open problem: Are these equivalencies valid for wider classes of L∗(C) logics?

7 Adding truth-constants to expansions with ∆
connective

For every left-continuous t-norm ∗, consider the logic L∗∆, the expansion of the
logic L∗ by adding to the language the unary connective ∆ as introduced in
Section 2.

Since there is a one-to-one correspondence between L∗-chains and L∗∆-chains,
Theorem 13 leads to the next statement about the SSC and FSSC of logics L∗∆.

Theorem 41 For any left-continuous t-norm ∗, L∗ has the SSC (resp. FSSC)
with respect to a class of standard L∗-chains K if, and only if, L∗∆ has the SSC
(resp. FSSC) with respect to the class of standard L∗∆-chains K∆, where K∆

denotes the class of ∆-expansions of chains in K.

Now we will consider expansions with truth-constants for these logics with ∆.
Given a left-continuous t-norm ∗ and a countable subalgebra C ⊆ [0, 1]∗, we
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Restricted to pos. evaluated formulae of L∗(C)
[0, 1]∗ Canonical SC Canonical FSSC
[0, 1] L Yes Yes
[0, 1]G Yes Yes
[0, 1]Π Yes Yes

[0, a]G ⊕A No No
[0, a]Π ⊕A No No
[0, a] L ⊕A, a ∈ C No No

[0, a] L ⊕ [a, 1]G, a 6∈ C Yes Yes
[0, a] L ⊕ [a, 1]Π, a 6∈ C Yes Yes

[0, a] L ⊕ [a, b]G ⊕A, a 6∈ C No No
[0, a] L ⊕ [a, b]Π ⊕A, a 6∈ C No No

[0, 1]NM Yes Yes
[0, 1]⊗c

Yes Yes
[0, 1]?c

Yes Yes
[0, 1]∗, for other ∗ ∈ WNM-fin ? No

Table 6: Canonical SC and FSSC results restricted to posiitvely evaluated for-
mulae for logics L∗(C) when ∗ ∈ CONT-fin ∪WNM-fin.

define the logic L∗∆(C) as the expansion of L∗∆ in the language LC obtained
by adding the following book-keeping axioms:

r&s↔ r ∗ s
(r → s) ↔ r ⇒ s
∆r ↔ ∆r

for every r, s ∈ C.

Again, using the general facts mentioned in the preliminaries we know that
L∗∆(C) is an algebraizable logic and we can axiomatize its equivalent algebraic
semantics, the variety of L∗∆(C)-algebras. Moreover, it can be easily checked
that L∗∆(C)-algebras are representable as subdirect product of chains.

Proposition 42 For every left-continuous t-norm ∗ and every countable subal-
gebra C ⊆ [0, 1]∗, the logic L∗∆(C) is a conservative expansion of L∗∆, whenever
L∗∆ has the FSSC.

Proof: Let us denote by S is the class of standard L∗∆-chains and by S(C) is the
class of standard L∗∆(C)-chains. Let Γ ∪ {ϕ} be arbitrary formulae of L∗∆ and
suppose that Γ `L∗∆(C) ϕ. Then, there is a finite Γ0 ⊆ Γ such that Γ0 `L∗∆(C) ϕ,
and this implies that Γ0 |=S(C) ϕ. Since the new truth-constants do not occur
in Γ0 ∪ {ϕ}, we have Γ0 |=S ϕ, and by FSSC of L∗∆, Γ0 `L∗∆ ϕ, and hence
Γ `L∗∆ ϕ. 2

Hence, for all ∗ ∈ CONT∪WNM, L∗∆(C) is a conservative expansion of L∗∆.

Since L∗∆-chains are simple, adding ∆ to L∗(C)-chains simplifies significantly
their structure as next lemma shows.
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Lemma 43 Let A be a non-trivial L∗∆(C)-chain, ∗ be a left-continuous t-norm
and C ⊆ [0, 1]∗ be a countable subalgebra. Then, for every r, s ∈ C such that
r < s, we have rA < sA.

Proof: Suppose rA = sA. Then, 1A = ∆1A = ∆s→ rA = ∆(s→ t)
A

= 0A; a
contradiction. 2

Therefore, in the variety of L∗∆(C)-algebras all chains A are such that FC(A) =
{1}, among them the canonical standard chain that we denote by [0, 1]L∗∆(C).
This has several nice consequences, which generalize the results for the contin-
uous case given in [13] that can be proved in an analogous way.

Theorem 44 Let ∗ ∈ CONT-fin∪WNM-fin and let C ⊆ [0, 1]∗ be a suitable
countable subalgebra. Then:

1. L∗∆(C) has the canonical FSSC.

2. L∗∆(C) is a conservative expansion of L∗(C) iff L∗(C) has the canonical
FSSC, i.e. iff ∗ is  Lukasiewicz t-norm.

3. L∗∆(C) has the canonical SSC iff ∗ ∈ WNM-fin.

In Figure 4 we show which of the considered expansions of L∗ are always con-
servative (the ones represented by bold arrows).

L*Δ(C)

L*ΔL*(C)

L*
: conservative expansion

Figure 4: Diagram of expansions for ∗ ∈ CONT-fin ∪WNM-fin.
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8 Complexity results

In a recent paper [23], Hájek has studied the computational complexity of rel-
evant subsets of formulae with rational truth-constants, i.e. formulae of the
language LC where C = Q ∩ [0, 1]. His results will allow us to determine the
computational complexity of some logics L∗(C) with ∗ ∈ CONT-fin.

In the following we will use [0, 1]Q to denote Q∩ [0, 1]. A left-continuous t-norm
∗ is called r-admissible when both ∗ and its residuum ⇒ are closed operations on
[0, 1]Q . Notice that if ∗ is r-admissible, then Q∗ = 〈[0, 1]Q, ∗,⇒,min,max, 0, 1〉
is a countable subalgebra of the standard algebra [0, 1]∗, and hence it is meaning-
ful to consider the logic L∗(Q∗) and the canonical standard algebra [0, 1]L∗(Q∗).
To simplify a bit the notation we will denote the latter as [0, 1]L∗(Q).

We introduce the following three sets of formulae, namely the set of tautologies,
the set of satisfiable formulae and the set of pairs of formulae in the semantical
consequence relation, everything with respect to the canonical standard chain
[0, 1]L∗(Q):

RTAUT (∗) = {ϕ | [0, 1]L∗(Q) |= ϕ ≈ 1}

RSAT (∗) = {ϕ | [0, 1]L∗(Q) 6|= ¬ϕ ≈ 1}

RSECON(∗) = {〈ϕ,ψ〉 | ϕ ≈ 1 |=[0,1]L∗(Q)
ψ ≈ 1}

Hájek’s results in [23] can be summarized as follows. An r-admissible t-norm
∗ ∈ CONT-fin is called strong r-admissible when each  L-component and Π-
component is isomorphic to [0, 1] L and [0, 1]Π respectively via a bijection f
mapping rationals into rationals such that both f and f−1 restricted to rationals
are deterministically polynomially computable. Then, for a strong r-admissible
t-norm ∗ ∈ CONT-fin with rational endpoints in all its basic components:

(i) when [0, 1]∗ has no Π-component, RTAUT (∗) and RSECON(∗) are
coNP-complete and RSAT (∗) is NP-complete;

(ii) otherwise, RTAUT (∗), RSECON(∗) and RSAT (∗) are in PSPACE.

Now, let us consider the set of theorems of L∗(Q∗), the set of consistent formulae
in L∗(Q∗) and the set of pairs of formulae such that the second is derivable from
the first in L∗(Q∗):

RTHEO(∗) = {ϕ | L∗(Q) ` ϕ}

RCONS(∗) = {ϕ | ϕ 6`L∗(Q) 0}

RSY CON(∗) = {〈ϕ,ψ〉 | ϕ `L∗(Q) ψ}

Taking into account the canonical standard completeness results described in
Section 5.2, we have the following cases for r-admissible t-norms ∗ ∈ CONT-fin:

1. RTAUT (∗) = RTHEO(∗) and RSAT (∗) = RCONS(∗) only when [0, 1]∗
is isomorphic either to [0, 1] L, to [0, 1]G, to [0, 1]Π, to [0, a] L ⊕ [a, 1]G (for
a 6∈ [0, 1]Q), or to [0, a] L ⊕ [a, 1]Π (for a 6∈ [0, 1]Q).
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2. RSECON(∗) = RSY CON(∗) only when [0, 1]∗ is isomorphic to [0, 1] L.

Therefore, from the above discussion we can state the following complexity
results.

Theorem 1 Let ∗ ∈ CONT-fin be strong r-admissible. Then we have the
following complexity results for L∗(Q∗):

1. RTHEO(∗) is coNP-complete and RCONS(∗) is NP-complete when
[0, 1]∗ is isomorphic to [0, 1] L or to [0, 1]G;

2. RSY CON(∗) is coNP-complete when [0, 1]∗ is isomorphic to [0, 1] L;

3. RTHEO(∗), RCONS(∗) and RSY CON(∗) are in PSPACE when [0, 1]∗
is isomorphic to [0, 1]Π.

Notice that, unfortunately, the cases [0, a] L⊕ [a, 1]G and [0, a] L⊕ [a, 1]Π are not
covered by Hájek’s results since the endpoint a must be assumed not belonging
to [0, 1]Q in order to get canonical completeness.

Theorem 2 Let ∗ ∈ WNM-fin be r-admissible such that all the end-
points of its partition and the negation fixpoint (if it exists) are rational.
Then RTAUT (∗) and RSECON(∗) are coNP-complete and RSAT (∗) is NP-
complete.

Proof: The proof is a generalization of the one for ∗ = min in [23, Theorem
2]. Given a formula ϕ, let R(ϕ) be the universe of the WNM-subalgebra of Q∗
generated by the set of truth-constants appearing in ϕ. It is clear that R(ϕ)
is finite. Let Part(∗) be the set 0 < s1 < ... < sm < 1 of the endpoints of
the partition associated to ∗ (including the negation fixpoint if it exists) and let
X = R(ϕ)∪Part(∗) = {0 = t0 < t1 < ... < tk−1 < tk = 1} which forms another
finite WNM-subalgebra of Q∗. If ϕ contains n propositional variables, then we
choose n rational elements ai1, ..., ain in each open interval (ti, ti+1) such that
X ∪

⋃k−1
i=0 {ai1, ..., ain} forms a WNM-subalgebra Aϕ of Q∗. Now, one can prove

the following:

Claim: ϕ ∈ RSAT (∗) if and only if there exists an evaluation e on Aϕ such that
e(ϕ) = 1.

Proof: Let v be an evaluation on [0, 1]L∗(Q) such that v(ϕ) = 1, and let B the
L∗(R(ϕ))-algebra generated by the set {v(q) | q propositional variable in ϕ}.
Then one can check that B can be embedded in Aϕ. 2

Therefore ϕ ∈ RSAT (∗) if and only if one can guess such an evaluation.

Analogously, one can prove that ϕ 6∈ TAUT (∗) iff one can guess an evaluation
e on Aϕ such that e(ϕ) < 1.

Finally, the case of checking 〈ϕ,ψ〉 ∈ RSECON(∗) is reduced, due to the
deduction theorem for WNM, to checking ϕ2 → ψ ∈ TAUT (∗). This ends the
proof. 2

Finally, taking into account the canonical standard completeness results for
expansions of WNM logics (see Section 5.2), we can state the computational
complexity of the following logics with rational truth-constants.
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Theorem 3 Let ∗ ∈ WNM-fin be r-admissible such that all the endpoints of
its partition and the negation fixpoint (if it exists) are rational. For L∗ being
G, NM or ∗ belonging to one of three families depicted in Figure 2, we have
that RTHEO(∗) and RSY CON(∗) are coNP-complete and RCONS(∗) is NP-
complete.

9 Conclusions

In the paper we have focused on an algebraic approach to study expansions of
propositional logics of a left-continuous t-norm with truth-constants. Specially,
we have surveyed in detail completeness results for the expansions of logics
of left-continuous t-norms with a set of truth-constants {r | r ∈ C}, for a
suitable countable C ⊆ [0, 1], when (i) the t-norm is a finite ordinal sum of
basic components or is WNM t-norm with finite partition, and (ii) the set of
truth-constants covers all the unit interval in the sense that the interior of each
basic component of the t-norm (in the case of continuous t-norms) or of each
interval of the partition (in the case of the WNM t-norms) contains at least
one value of C. From a practical point of view, this latter condition seems to
correspond to the most interesting case for fuzzy logic-based systems, since they
usually consider a set of truth values spread all over the real unit interval, and
hence it is natural to assume there are elements of C in each component or
partition of the t-norm.

Of course a lot of expansions with truth-contansts remain to be studied, among
them:

• the case of a logic of a t-norm with a  Lukasiewicz component containing
some r ∈ C which generates an infinite MV-chain (in other words, when r
corresponds to an irrational value in the isomorphic copy of the component
over [0, 1]);

• the case when the set of truth-constants does not cover the unit interval;

• the case of continuous t-norms which are the ordinal sum of infinitely
many components;

• the case of any other left-continuous t-norm, in particular WNM t-norms
with infinite partition.

Another important issue to be addressed is the predicate calculi of these ex-
panded logics. All these issues are matters for future research.
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