
Mining Melodic Patterns in Large Audio Collections of Indian Art Music
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Abstract—Discovery of repeating structures in music is
fundamental to its analysis, understanding and interpretation.
We present a data-driven approach for the discovery of short-
time melodic patterns in large collections of Indian art music.
The approach first discovers melodic patterns within an audio
recording and subsequently searches for their repetitions in the
entire music collection. We compute similarity between melodic
patterns using dynamic time warping (DTW). Furthermore, we
investigate four different variants of the DTW cost function
for rank refinement of the obtained results. The music col-
lection used in this study comprises 1,764 audio recordings
with a total duration of 365 hours. Over 13 trillion DTW
distance computations are done for the entire dataset. Due
to the computational complexity of the task, different lower
bounding and early abandoning techniques are applied during
DTW distance computation. An evaluation based on expert
feedback on a subset of the dataset shows that the discovered
melodic patterns are musically relevant. Several musically
interesting relationships are discovered, yielding further scope
for establishing novel similarity measures based on melodic
patterns. The discovered melodic patterns can further be used
in challenging computational tasks such as automatic rāga
recognition, composition identification and music recommen-
dation

Keywords-Motifs, Pattern discovery, Time series, Melodic
analysis, Indian art music

I. INTRODUCTION

Audio music is one of the fastest growing multimedia
content in modern days. We need intelligent computational
tools to organize big audio music repositories in a way that
can enable meaningful navigation, efficient search and dis-
covery, and recommendation. This necessitates establishing
relationships between audio recordings based on different
types of data, such as the editorial metadata, the audio
content and the surrounding context [1]. In this article we
focus on music content analysis through the discovery of
short-time melodic patterns.

Repeating structures (or patterns) are important informa-
tion units in data such as text, DNA sequences, images,
videos, speech and music [2], [3]. Patterns are exploited
in a variety of ways, ranging from signal level tasks such
as data-compression [4] to more cognitively complex tasks
such as analyzing an art work [5]. In the music domain,
the identification of repeating structures in a musical piece

is fundamental to its analysis, understanding and interpreta-
tion [6], [7].

In music information research (MIR), several approaches
have been proposed for analyzing different kinds of re-
peating structures, including long duration repetitions such
as themes, choruses and sections [8], and short duration
repetitions such as motifs and riffs [9]. While there exists
a number of approaches for motivic discovery in sheet
music [10], there are fewer approaches that work on audio
music recordings [11]. This can be attributed to the audio-
symbolic gap [12], which can be bridged by a reliable
automatic transcription system to abstract the audio music
content into musically meaningful discrete symbols. There
exists a wide scope for developing methodologies for the
discovery and analysis of short duration melodic patterns
(or motifs) in large audio music collections. In this paper,
we address this task for Carnatic music.

Carnatic music is one of the two Indian art music (IAM)
traditions with over millions of listeners around the world.
Melodies in this music tradition are complex and are based
on an intricate melodic framework, the rāga, which has
evolved through centuries [13]. Rāgas are largely charac-
terized by their constituent melodic patterns, and hence,
discovering melodic patterns is a key to meaningful infor-
mation retrieval in Carnatic music [14]. When compared
to other genres from western popular music, fewer musical
instruments and the prominence of melody in IAM reduces
the complexity of some signal processing steps such as pitch
estimation1. However, the main challenges arise primarily
due to nuances in the sophisticated rāga framework. More-
over, the improvisatory nature of music results in a higher
degree of variability across repetitions of a melodic pattern.
These challenges make IAM a unique and difficult repertoire
with which to develop computational approaches for melodic
pattern discovery from raw audio recordings.

In recent years, many approaches have been proposed
for this task, most of them of a supervised nature.
Ross et al. [15] detect title phrases of a composition
within a concert of Hindustani music. The authors use
annotated rhythm cycle boundaries for pattern segmentation.

1Compare results across datasets: http://www.music-ir.org/mirex/wiki/
2013:MIREX2013 Results



Ishwar et al. [16] propose a two-stage approach and a sparse
melody representation for spotting characteristic melodic
patterns of a rāga. Rao et al. [14] classify melodic motives
in IAM by using exemplar-based matching and propose an
approach to learn DTW global constraints for computing
melodic similarity. Many of these approaches either use
semi-supervised pitch estimation, manually segmented pat-
tern boundaries, a dataset comprising few recordings, or
analyze only a limited number of characteristic phrases.
Thus, scalability of such approaches is questionable and
over-fitting of the approach to a specific dataset is probable.

Computational motivic analysis can yield interesting mu-
sical results through a data-driven, unsupervised method-
ology. This is largely explored in the case of western
sheet music. Janssen et al. [9] present an overview and
categorization of these approaches based on a taxonomy.
Those approaches address various challenges such as melody
representation, melody segmentation, melodic similarity and
pattern redundancy reduction [10], [17], [18]. In the case
of audio music recordings, approaches for motif discovery
can benefit from the literature in the domain of time se-
ries analysis such as time series representation [19], core
pattern discovery methods [20], and search and indexing
techniques [21].

In this paper, we present a data-driven unsupervised ap-
proach for melodic pattern discovery in large collections of
music recordings containing hundreds of millions of pattern
candidates. Over 13 trillion distance computations are done
in this task. To the best of our knowledge, this is the first
time melodic patterns are mined from such a large volume
of audio data. We propose a quantitative methodology for
parameter selection during the data pre-processing step. In
addition, we evaluate four different variants of the DTW cost
function for computing melodic similarity. Our approach
is robust to different tonic pitches of the lead artist, non-
linear timing variations, global tempo changes and added
melodic ornaments. As a result, we also discovered several
non-intuitive melodic patterns that surprised a professional
musician with over 20 years of experience. To facilitate the
reproducibility of our work, and in order to incrementally
build new tools for the melodic analysis of massive collec-
tions, the code and the data used in this study are made
available online2.

II. METHOD

Our proposed approach consists of four main blocks
(Fig. 1). The data processing block (Sec. II-A) generates
pitch subsequences from every audio recording in the mu-
sic collection. The intra-recording pattern discovery block
(Sec. II-B) performs an exact pattern discovery by detecting
the closest subsequence pairs within an audio recording
(referred to as seed patterns). The inter-recording pattern

2http://compmusic.upf.edu/node/210
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Figure 1. Block diagram of the proposed approach.
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Figure 2. Block diagram of the data processing module.

detection block (Sec. II-C) considers each seed pattern as a
query and searches for its occurrences in the entire music
collection. The rank refinement block (Sec. II-D) reorders
a ranked list of search results by recomputing melodic
similarity using a more sophisticated similarity measure.

We choose to perform first an intra-recording pattern
discovery because several melodic patterns are repeated
within a music piece of Carnatic music. Moreover, the scal-
ability of the computational approaches considered here for
discovering patterns at the level of the entire music collection
is questionable. To confirm this hypothesis, we conducted an
experiment using a state of the art algorithm for time series
motif discovery [20], with a trivial modification to extract
the top K motifs. Using just 16 hours of audio data, the
algorithm could discover only 40 patterns in 24 hours using
Euclidean distance. Besides pattern pairs being from the
same recording, only a few of the obtained pattern pairs were
melodically similar. This brought up the need for a similarity
measure that was robust to non-linear timing variations.
Scaling these algorithms to over hundreds of hours of audio
data and using computationally expensive distance measures
is nowadays a challenge.

A. Data Processing

1) Pre-processing: The steps involved in the pre-
processing block are shown in Fig. 2. A brief description
of each of these steps is given below:

a) Predominant Pitch Estimation: We consider melody
as the predominant pitch in the audio signal and estimate
it using the method proposed by Salamon and Gómez [22].
This method performed very favorably in an international
MIR evaluation campaign focusing on a variety of music



genres, including IAM3. We use the implementation avail-
able in Essentia 2.0 [23], an open-source C++ library for
audio analysis and content-based MIR. We use a frame size
of 46 ms and a hop size of 4.44 ms. All other parameters are
left to their default values. Before pitch estimation, we apply
an equal-loudness filter using the default set of parameters.
Noticeably, the predominant pitch estimation algorithm also
performs voicing detection, which is used in the later part of
our data processing methodology to filter unvoiced segments
(Fig. 2).

b) Pitch Representation: For the pitch representation
to be musically relevant, the pitch values are converted
from Hertz to Cents (logarithmic scale). For this conversion
we additionally consider the tonic pitch of the lead artist
as the reference frequency (i.e., 0 Cent corresponds to the
tonic pitch). Thus, our representation becomes independent
of the tonic of the lead artist, which allows a meaningful
comparison of melodies of two distinct recordings (even if
sung by two different artists in different tonic pitches). The
tonic of the lead artist is identified automatically using a
classification-based multi-pitch approach [24]. We use the
implementation of this method available in Essentia with
the default set of parameters.

c) Downsampling: In order to reduce the computa-
tional cost, we downsample the predominant pitch sequence
(Fig. 2). We derive the new sampling rate using the auto-
correlation (ACR) of short-time pitch segments generated
using a sliding window of 2 s. We compute the ACR of all
possible pitch segments in the entire dataset for different
lags l, l ∈ {0, 1, . . . 30}, and examine the histogram of
normalized ACR values at each lag (Fig. 3). We select the
lag at which the third quartile Q3 has an ACR value of
0.8, which corresponds to a sampling rate of 22.22 ms. We
informally found that this sampling rate generally preserves
melodic nuances and rapid pitch movements while reducing
the computational requirements of the task. In the literature,
we could not find any reference for this sampling rate of the
melody. Thus, our quantitative derivation could be useful for
further studies.

d) Solo Percussion Removal: A concert of Carnatic
music typically contains a solo percussion section, referred
as Tani Avartana or Tani in short. Its duration typically varies
from 2 to 25 min. Since the main percussion instrument in
Carnatic music, the mr. daṅgaṁ, has tonal characteristics, the
pitch estimation algorithm tracks the pitch of the mr.daṅgaṁ
strokes instead of detecting this section as an unvoiced
segment. Hence, we dedicate an extra effort to discard such
segments using a classification-based approach (Fig. 2). To
feed the classifiers we extracted 13 MFCC coefficients, spec-
tral centroid, spectral flatness and pitch salience (c.f. [25])
from the audio signal using Essentia. We iterated over 23, 46

3http://nema.lis.illinois.edu/nema out/mirex2011/results/ame/indian08/
summary.html

Figure 3. Histograms of ACR values (histogram value is indicated by the
colormap on the right; for ease of visualization, we compress the range of
the histogram values by taking its fourth root). Q1, Q2 and Q3 denote the
three quartile boundaries of the histogram.

and 92 ms frame sizes and chose the one which resulted in a
better classification accuracy. We set the hop size as half the
frame size and all other parameters to their default values.
Next, we computed means and variances of these features
over 2 s non-overlapping segments. For training, we used a
labeled audio music dataset containing 1.5 hours of mixed
voice and violin recordings and 1.5 hours of solo percussion
recordings. To assess the performance of the extracted
features, we performed a leave-one-out cross-validation.
We experimented with five different algorithms exploiting
diverse classification strategies [26]: decision trees (Tree),
K nearest neighbors (KNN), naive Bayes (NB), logistic
regression (LR), and support vector machines with a radial
basis function kernel (SVM). We used the implementations
available in scikit-learn version 0.14.1 [27]. We used the
default set of parameters with few exceptions to avoid
over-fitting and to compensate for the uneven number of
instances per class. We set min_ samples_split=10
for Tree, fit_prior=False for NB, n_neighbors=5
for KNN, and for LR and SVM class_weight=‘auto’.
The combination of the frame size of 46 ms and the SVM
classifier yielded the best performance (96% accuracy), with
no statistically significant difference to the performance with
the Tree (95.5%) and the KNN (95%), for the same frame
size. We finally chose KNN because of its low complexity.

2) Subsequence Generation: The steps involved in gen-
erating candidate subsequences are as follows:

a) Segmentation: Due to the lack of reliable methods
for segmentation of melodic patterns in IAM [28], we
generate pitch subsequences by using a sliding window
of length Wl with a hop size of one sample (22 ms).
Given no quantitative studies investigating the length of the
melodic patterns in Carnatic music, we make a choice of
Wl = 2 s based on recommendations from a few Carnatic
musicians. Since unvoiced segments are removed from the
pitch sequence at the pre-processing step, a window can
include pitch samples separated by more than Wl seconds.
To handle these cases, we use the time stamps of the first



Figure 4. ROC curves for ‘flat’ and ‘non-flat’ region classification for
different values of window length (Wstd) used for selecting an optimal
value of standard deviation Si.

sample (T1) and the last sample (T2) in a window. We filter
out all subsequences for which T2−T1 > Wl+Φ. We select
Φ = 0.5 s to account for the short pauses during a phrase
rendition. This value was empirically set to differentiate
between inter- and intra-phrase pauses.

b) Subsequence Filtering: A subsequence may contain
a segment of the pitch contour corresponding to a single
musical note, where the pitch values are nearly constant.
Such musically uninteresting patterns are discarded in a
filtering stage (Fig. 2). The criterion for discarding such
subsequences is summarized below:

β =

Wn∑
i=0

Θ (Si ≥ Tstd) ,

where β is the flatness measure of a subsequence, Wn

denotes its number of samples, Θ(z) is a Heaviside step
function yielding Θ(true) = 1 and Θ(false) = 0, and Si is
the standard deviation at the i-th sample of a subsequence,
computed using a window of length Wstd centered at sample
i. In order to determine the optimal values of Wstd and
Tstd, we manually labeled a number of regions in pitch
contour as ‘flat’ and ‘non-flat’ for 4 excerpts in our database.
We iterated over different parameter values and analyzed
the resultant ROC curve (Fig. 4). Doing so, we found that
Wstd = 200 ms resulted in the best performance and that the
knee of the curve corresponded to Tstd = 45 Cents. Having
a value of β for each subsequence, we finally filter out the
ones for which β ≤ γWn, using γ = 0.8. The latter was set
by visual inspection.

After the data processing step, we retain around 17.5
million pattern candidates for our entire dataset. If no
subsequence filtering is applied, a sampling rate of 225 Hz
for pitch sequence amounts to nearly 300 million pattern
candidates for a database as big as ours.

B. Intra-recording Pattern Discovery

We perform an exact pattern discovery by computing the
similarity between every possible subsequence pair obtained
within an audio recording. We regard the top N = 25

closest subsequence pairs in each recording as seed patterns.
We omit overlapping subsequences in order to avoid trivial
matches and additionally constrain the top N seed pattern
pairs to be mutually non-overlapping. Due to this constraint
for some recordings we obtain less than 25 pattern pairs. In
total, for all the recordings, nearly 1.4 trillion DTW distance
computations are done to obtain 79,172 seed patterns.

1) Melodic Similarity: We compute melodic simi-
larity between two subsequences using a DTW-based
distance measure [29]. We use a step condition of
{(1, 0), (1, 1), (0, 1)} and the squared Euclidean distance as
the cost function. We do not use any penalty for insertion
and deletion. These choices are made in order to allow lower
bounding (see below). In addition, we apply the Sakoe-Chiba
global constraint with the band width set to 10% of the
pattern length. This constraint may be sufficiently large for
accounting time warpings in melodic repetitions in Carnatic
music.

2) Lower Bounding DTW: To make DTW distance com-
putations tractable for such a large number of subsequences
we apply cascaded lower bounds [21]. In particular, we use
FL (first-last) lower bound and LB Keogh bound for both
query to reference and reference to query matching. Besides,
we apply early abandoning, both during the computation
of lower bounds as well as during the DTW distance
computation [21].

3) Pattern Length Compensation: Along with the local
non-linear time warpings, the overall length of a melodic
pattern may also vary across repetitions. For example, a
melodic pattern of length 2 s might be sung in 2.2 s in
a different position in the song. We handle this by using
multiple time scaled versions of a subsequence in the
distance computation. This technique is also referred to as
local DTW and is shown to have tighter lower bounds [30].
It should be noted that typically such issues are addressed by
using a subsequence variant of the DTW distance measure.
However, the lower bounding techniques we used during the
DTW distance computation do not work for the subsequence
variant of the DTW.

For every subsequence, we generate five subsequences
by uniformly time scaling it by a factor of α ∈ Iintp =
{0.9, 0.95, 1, 1.05, 1.1}, such that the length of the resulting
subsequences is Wl. We use cubic interpolation for uni-
formly time scaling a subsequence. Since these 5 interpola-
tion factors increase the computational cost by a factor of
25, we assume that the distance between a subsequence pair
X1.0 and Y1.05 is very close to the distance between the
pair X1.05 and Y1.1 (the sub-index denotes the interpolation
factor α). Following this rationale, we can avoid the distance
computation between 16 of the 25 combinations without a
significant compromise on accuracy.



C. Inter-recording Pattern Detection

We consider every seed pattern as a query (79,172 in
number) and perform an exhaustive search over all the sub-
sequences obtained from the entire audio music collection
(nearly 17.5 million in number). For every seed pattern we
store top M = 200 closest matches (referred to as search
patterns). Here also for every subsequence we consider 5
uniformly scaled subsequences in the distance computation.
For inter-recording pattern detection also use the same
similarity measure and lower bounding techniques as used in
intra-recording pattern discovery block (Sec. II-B). In total,
nearly 12.4 trillion DTW distance computations are done in
this step.

D. Rank Refinement

The lower bounds we use for speeding up distance com-
putations are not valid for any variant of DTW. However,
once the top matches are found, nothing prevents us from
reordering the ranked list using any variant of DTW, as we
do not need to apply lower bounds in this reduced search
space. In this step, we select a DTW step condition of
{(1, 2), (1, 1), (2, 1)} to avoid some pathological warpings
of the path. Furthermore, we investigate four different dis-
tance measures di, i = 1, . . . 4, used in the computation of
the DTW cost matrix as described below.

d1 = δ ; d3 =

{
δ − 25, if δ > 25

0, otherwise

d2 = δ2 ; d4 =

{
(δ − φ)1.5 + ϕ, if δ > 100

d3, otherwise

(1)

where δ = |p1 − p2| is the city block distance between two
pitch values and all numeric values are in Cents. We set
φ = 99.555 and ϕ = 74.70 to maintain point and slope
continuity. The formulation for the different di is inspired
by our own experience and some of the approaches we find
in the literature [14], [16]. We denote the four variants of
the rank refinement method by Vi, i = 1 . . . 4.

III. EVALUATION

A. Music Collection

The data used in this article comprises 365 hours of
music, containing 1,764 audio recordings covering diverse
forms in Carnatic music. This dataset is a subset of the
carefully compiled Carnatic music corpus of the CompMusic
project [31], [32]. The selected musical material is diverse in
terms of number and gender of lead artists, number of rāgas,
year of release and various forms within Carnatic music.

S1 S2 S3 

Figure 5. Distance distribution of seed patterns. Three seed pattern
categories are marked by S1, S2 and S3.

B. Evaluation Methodology

One of the challenges in any data-driven task is evaluation.
We here perform a quantitative evaluation based on expert
feedback. For the entire dataset we obtain over 15 million
search patterns for each of the rank refinement methods.
We divide seed patterns into three categories based on the
distance between the seed pairs, which we denote by D.
Then, to have an equal representation from the range of
values of D, 200 seed pairs equally distributed among these
categories are randomly selected for evaluation (Fig. 5). Seed
category boundaries are µ ± 1.5σ, where µ and σ are the
mean and the standard deviation of the distribution of D. For
every selected seed pattern we consider the first 10 search
patterns for each of the four rank refinement methods. Thus,
in total, we obtain 200 seed pairs and 8,000 search patterns
for expert evaluation.

Expert evaluation is performed by a professional Carnatic
musician who has received over 20 years of music education.
For examining similarity between two melodic patterns, the
musician listened to the audio fragments corresponding to
these patterns and scored a 0 for melodically dissimilar and
a 1 for melodically similar. The musician annotated melodic
similarity for each seed pair and between the seed and its
search patterns for every rank refinement method.

To quantify the musician’s assessment of the similarity
between the melodic patterns we use mean average pre-
cision (MAP), a typical evaluation measure in information
retrieval [33], which is also very common in MIR. This way,
we have a single number to evaluate the performance of the
four different rank refinement methods. For the computation
of the MAP scores we consider the total number of relevant
patterns as the number of relevant patterns retrieved in the
top 10 search results. For assessing statistical significance
we use the Mann-Whitney U test [34] with p < 0.05.
To compensate for multiple comparisons, we apply the
Holm-Bonferroni method [35]. Thus, eventually we use a
much more stringent criteria than p < 0.05 for measuring
statistical significance. We use ROC curves to analyze the
separation between the distance distribution of melodically
similar and dissimilar subsequences [33].
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Figure 6. Examples of the discovered melodic patterns.

IV. RESULTS AND DISCUSSION

Before presenting formal evaluations, we show a few
examples of the discovered melodic patterns in Fig. 6. Our
approach robustly extracts patterns in different scenarios
such as large local time warpings (b), uniform scaling (c),
patterns with silence regions (d) and across different tonic
pitches (e and f). It is worth mentioning that, during the
process of annotation, the musician found several musically
interesting results. For example, striking similarity between
phrases of two different rāgas, between phrases in sung
melodies and the melodies played on instruments (Violin
or Vīn. a), and phrases sung by different artists. Many of the
discovered patterns are the characteristic melodic phrases of
the rāga, which are the primary cues for rāga recognition.
Overall, the obtained results are musically relevant and can
be used to establish meaningful relationships between audio
recordings.

It is also interesting to analyze the contribution of different
lower bounds in pruning the search space. In Table I we
show in percentage the number of times the program counter
exits after a lower bound computation with respect to the
total number of distance computations. As mentioned before,
the total number of distance computations are 1.413 trillion
for intra-recording pattern discovery and 12.418 trillion for
inter-recording pattern detection. From Table I it becomes
evident that the lower bounding methods are more effective
in inter-recording pattern detection. This is expected as
different songs may correspond to different rāgas and hence
use different set of musical notes.

We now proceed to formal evaluations. We first evaluate
the performance of the intra-recording pattern discovery
task. We find that the fraction of melodically similar seed
pairs within each seed category S1, S2 and S3 consistently

Table I
PERCENTAGE OF EXITS AFTER A LOWER BOUND COMPUTATION WITH

RESPECT TO THE TOTAL NUMBER OF DISTANCE COMPUTATIONS.

Lower bound Intra-rec.(%) Inter-rec.(%)
LB KIM FL 52 45

LB Keogh EQ 23 51
LB Keogh EC 1 3

Figure 7. ROC curve for seed pairs and search patterns (using V2) in the
evaluation set.

decreases: 0.98, 0.67 and 0.31, respectively. To further exam-
ine the separation between melodically similar and dissimilar
seed pairs, we compute the ROC curve (Fig. 7, solid blue
line). The knee of such curve corresponds to a precision
of approximately 80% for 10% of false positive cases. This
indicates that the chosen DTW-based distance measure is a
sufficiently good candidate for computing melodic similarity
for the case of intra-recording seed pattern discovery.

Next, we evaluate the performance of inter-recording
pattern detection task and assess the effect of the four
DTW cost variants of Sec II-D (denoted by V1 . . . V4).
To investigate the dependence of the performance on the
category of the seed pair, we perform the evaluation within
each seed category (Table II). In addition, we also present a
box plot of corresponding average precision values (Fig. 8).
In general, we observe that every method performs well
for category S1, with a MAP score around 0.9 and no
statistically significant difference between each other. For
category S2, V2 and V3 perform better than the rest and
the difference is found to be statistically significant. The
performance is poor for the third category S3 for every
variant. The difference in performance between any two
methods across seed categories is statistically significant.
We observe that MAP scores across different seed categories
correlate well with the fraction of melodically similar seed
pairs in that category (discussed above). This suggests
that patterns which find good matches within a recording
(i.e., low distance D) also correlate with more repetitions
across recordings.

Finally, we analyze the distance distribution of search
patterns for the best performing method V2 (Fig. 7, dashed
red line). We observe that the separability between melod-



Table II
MAP SCORES FOR FOUR VARIANTS OF RANK REFINEMENT METHOD

(Vi) FOR EACH SEED CATEGORY (S1, S2 AND S3).

Seed Category V1 V2 V3 V4

S1 0.92 0.92 0.91 0.89
S2 0.68 0.73 0.73 0.66
S3 0.35 0.34 0.35 0.35

S1 S2 S3 

Figure 8. Boxplot of average precision for variants of rank refinement
method (Vi) for each seed category.

ically similar and dissimilar subsequences in this case is
poorer than the one obtained for the seed pairs (solid blue
line). This indicates that it is much harder to differentiate
melodically similar from dissimilar patterns when the search
is performed across recordings. This can be attributed to the
fact that phrases of two allied rāgas are differentiated based
on subtle melodic nuances [13]. Hence, one faces a much
more difficult task.

V. CONCLUSION AND FUTURE WORK

We presented a data-driven unsupervised approach for
melodic pattern discovery in large audio collections of
Indian art music. A randomly sampled subset of the ex-
tracted melodic patterns was evaluated by a professional
Carnatic musician. We first discovered seed patterns within
a recording and later used those as queries to detect similar
occurrences in the entire dataset. We used DTW-based dis-
tance measures to compute melodic similarity and compared
four different rank refinement methods. We showed that a
variant of DTW using cityblock distance performs slightly
better than the rest. We also found that a DTW-based dis-
tance measure performs reasonably well for intra-recording
discovery. However, we require better melodic similarity
measures for searching occurrences across recordings. This
is a clear direction for future works. Our results also indicate
that patterns which find close matches within a recording
have a larger number of repetitions across recordings. As
mentioned before, the data and the code used in this study
are available online.

Future work includes the improvement of the melodic
similarity measure, finding musically meaningful pattern

boundaries and making melodic similarity invariant to trans-
positions across octaves. We also plan to perform a similar
analysis in an Hindustani audio music collection.
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