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Abstract. The main aim of this paper is defining a Logic of Formal Inconsis-
tency over the degree-preserving companion of Nelson logic with a consistency
operator. In this sense, we present a quasivariety of Nelson lattices enriched
with a suitable consistency operator and axiomatise the corresponding logic. As
main results we present necessary and sufficient conditions to prove a categorial
equivalence for the category for Nelson lattices with a consistency operator.

Resumo. O principal objetivo desse artigo é definir uma Lógica da Incon-
cistência Formal sobre a lógica que preserva gaus de verdade que acompanha
á lógica de Nelson com um conectivo de consistência. Nesse sentido, apre-
sentamos uma quase-variedade de reticulados de Nelson enriquecidos com um
operador de consistência adequado e axiomatizamos a lógica correspondente.
Como resultado principal, apresentamos as condições necessárias e suficientes
para demonstrar uma equivalência categorial para os reticulados de Nelson
com um operador de consistência.

1. Introduction
In the 1950’s, Constructive logic with strong negation (CLSN) was formulated indepen-
dently by Nelson and Markov as a result of certain philosophical objections to intuition-
istic negation. The criticism of intuitionistic negation concerns its disadvantageous non-
constructive property, namely, that the derivability of the formula ¬(α ∧ β) in an intu-
itionistic propositional calculus does not imply that at least one of the formulas ¬α or ¬β
is derivable.

More recently, in 2008, Spinks and Veroff have shown CLSN, also known in the
literature as Nelson logic, can be considered as a substructural logic. More precisely, they
have shown that the algebraic models of CLSN, Nelson algebras, are termwise equivalent
to certain involutive, bounded, commutative and integral residuated lattices, called Nelson
(residuated) lattices, see [6].

The main aim of this paper is defining a Logic of Formal Inconsistency (LFI)
based on Nelson logic, by considering the degree-preserving companion of Nelson logic
expanded with a consistency operator, in the style of [4]. To do so, we will first alge-
braically study the quasivariety of Nelson lattices with a consistency operator, then we
look at a categorial equivalence between Heyting algebras (with extra structure) and Nel-
son lattices with consistency operators, and finally we define and axiomatise the logic.



2. Preliminaries
Nelson algebras were introduced by Rasiowa (see, for instance, [7]), under the name
of N-lattices, as the algebraic counterpart of the constructive logic with strong negation
considered by Nelson and Markov. A Nelson algebra is an algebra N = (N,∨,∧,⇒
,¬,>,⊥) of type (2, 2, 2, 1, 0, 0) such that (N,∨,∧,¬,>,⊥) is a Kleene algebra, and the
implication⇒ satisfies the following equations:

x⇒ x = > x⇒ (y ∧ z) = (x⇒ y) ∧ (x⇒ z)
x ∧ (x⇒ y) = x ∧ (¬x ∨ y) x⇒ (y ⇒ z) = (x ∧ y)⇒ z

This definition of Nelson algebras is due to Brignole and Monteiro, and provides an equa-
tional characterization of the N-lattices introduced by Rasiowa.

On the other hand, as mentioned above, in [6], the authors have shown that Nel-
son algebras are termwise equivalent to a certain class of involutive residuated lattices,
called Nelson residuated lattices or Nelson lattices. Recall that a commutative, inte-
gral, bounded residuated lattice, that we will simply call residuated lattice, is an algebra
A = 〈A,∧,∨, ∗,→,⊥,>〉 of type (2, 2, 2, 2, 0, 0) such that 〈A, ∗,>〉 is a commutative
monoid, L(A) = 〈A,∧,∨,⊥,>〉 is a bounded lattice with least element > and greatest
element >, and such that the following condition holds: x ∗ y ≤ z iff x ≤ y → z, where
x, y, z denote arbitrary elements of A and ≤ is the order given by the lattice structure.
Since we assume the neutral element of the monoid reduct coincides with the greatest
element of L(A) we have that: x ≤ y iff x→ y = >.

It is well-known that the class RL of residuated lattices is a variety, which is related
to different and well-known varieties studied in substructural and fuzzy logics literature.
In fact RL coincides with the variety of FLew-algebras of [5]. We use the denotational
conventions of [5]: FL refers to the “Full Lambek calculus”, which is the base system and
associated algebras, and subindices indicate several axiomatic extensions with properties
such as exchange (e) or weakening (w).

A residuated lattice is called involutive if it satisfies the double negation equation:
¬¬x = x, where ¬x is x→ ⊥. Besides, it is possible to prove that: x ∗ y = ¬(x→ ¬y)
and x→ y = ¬(x ∗ ¬y).

A Nelson residuated lattice, or simply Nelson lattice, is an involutive residuated
lattice that satisfies the following identity:

(((x ∗ x)→ y) ∧ ((¬y ∗ ¬y)→ ¬x))→ (x→ y) = >.

Nelson lattices will be also called in the paper NL-algebras.

In [2] the authors show that, given a Nelson algebra N = (N,∨,∧,⇒,¬,>,⊥),
then the algebra R(N) = (N,∧,∨, ∗,→,⊥,>) is a Nelson residuated lattice, where the
operations ∗ and→ are defined as follows:

x ∗ y := ¬(x⇒ ¬y) ∨ ¬(y ⇒ ¬x), x→ y := (x⇒ y) ∧ (¬y ⇒ ¬x),

and moreover it holds ¬x = x → ⊥ for each x ∈ N . Conversely, consider now a
Nelson lattice A = 〈A,∧,∨, ∗,→,⊥,>〉 and define a binary operation→N by specifying
x→N y := (x ∗ x)→ y. Then, N (A) = 〈A,∧,∨,→N ,¬,⊥,>〉 is a Nelson algebra.

For a given a Heyting algebra H and a Boolean filter F of H, let us define
N(H,F ) := {(x, y) ∈ H × H : x ∧ y = ⊥, x ∨ y ∈ F}. Then we have that



N(H, F ) = (N(H,F ),∨,∧,⇒,¬, ∗⊥,>) is a Nelson lattice, where the operations are
defined as follows:

(x, y) ∨ (s, t) = (x ∨ s, y ∧ t),
(x, y) ∧ (s, t) = (x ∧ s, y ∨ t),

(x, y) ∗ (s, t) = (x ∧ s, (x→ t) ∧ (s→ y)),

(x, y)⇒ (s, t) = ((x→ s) ∧ (t→ y), x ∧ t),
¬(x, y) = (y, x),

> = (>,⊥),

⊥ = (⊥,>).

Finally, we briefly recall the notion a Logic of Formal Inconsistency, LFI for short,
see e.g. [3]. Let Σ′ be a propositional signature and assume a denumerable set V =
{p1, p2, . . .} of propositional variables. The propositional language generated by Σ′ from
V will be denoted by LΣ′ . On the other hand, let L = 〈Σ′,`〉 be a Tarskian, finitary and
structural logic defined over the propositional signature Σ′, which contains a negation ¬,
and let ◦ be a primitive or defined unary connective. Then, L is said to be a Logic of
Formal Inconsistency with respect to ¬ and ◦ if the following holds:

(i) ϕ,¬ϕ 0 ψ, for some ϕ and ψ;
(ii) there are two formulas α and β such that ◦α, α 0 β and ◦α,¬α 0 β;

(iii) ◦ϕ, ϕ,¬ϕ ` ψ, for every ϕ and ψ.

3. Nelson residuated lattices with a consistency operator ◦
We start by formally defining the class of Nelson lattices with a consistency operator.

Definition 3.1 NL◦-algebras are expansions of Nelson lattices with a new unary opera-
tion ◦ satisfying the following equation and quasi-equation:

(◦1) x ∧ ¬x ∧ ◦(x) = 0
(◦2) if x ∧ ¬x ∧ y = 0 then y ≤ ◦(x)

In the following, we will use the expression (A, ◦) to denote the NL◦-algebra whose
Nelson lattice reduct is A.

From this definition, it is clear that the class of NL◦-algebras is a quasivariety.
Now, we have the following easy properties of NL◦-algebras are displayed in the next
lemma.

Lemma 3.2 The following properties hold in a NL◦-algebra (A, ◦):

(i) ◦x = max{z ∈ A | x ∧ ¬x ∧ z = 0}
(ii) ◦(x) = ◦(¬x) = ◦(x ∧ ¬x) = ◦(x ∨ ¬x)

(iii) ◦(1) = ◦(0) = 1

It follows from (i) of Lemma 3.2 that if a consistency operator is definable in
a Nelson lattice it is uniquely determined. Moreover, it also tells us that a consistency
operator is always definable in every finite Nelson lattice. However it is not always the
case in infinite Nelson lattices as we can see in the next example.



Example 3.3 Let A be the Nelson lattice over [0, 1] \ {1
2
} with the Nilpotent Minimum

operations: x ∗ y = min(x, y) if x + y > 1 and x ∗ y = 0 otherwise; and ¬x = 1 − x.
Let B be the subalgebra of A×A defined on the sublattice consisting of the elements of
the form (x, y) with x, y being positive elements of A (i.e. such that 1 ≥ x, y > 1

2
) and

their negations (1− x, 1− y). Take an element (x, 1) ∈ B such that 1 > x > 1
2
. An easy

computation shows that ◦((x, 1)) does not exist.

As is well-known, an implicative filter of a bounded residuated latticeA is a subset
F ⊆ A such that> ∈ F and it is closed under modus pones: x ∈ F and x→ y ∈ F imply
y ∈ F . For each implicative filter F , the binary relation Θ(F ) defined by (x, y) ∈ Θ(F )
if and only if x → y, y → x ∈ F is a congruence of the residuated lattice A, and
F = {z ∈ A : (z,>) ∈ Θ(F )}. This is actually a one-one correspondence between
the lattice of congruences and the lattice of implicative filters for the variety of bounded
residuated lattices. However, since the class of expanded Nelson lattices with a consis-
tency operator involves not only equations but also a quasi-equation, it is a quasivariety.
In a quasivariety, congruences that allow for the decomposition of an algebra as a sub-
direct product of subdirectly irreducible components are required to satisfy an additional
condition: the quotient of an algebra by a congruence has to belong to the quasivariety.
This condition is automatically satisfied in varieties but not in quasivarieties. Congru-
ences satisfying this condition are usually called Q-congruences. Similarly, filters that are
in a one-one correspondence between Q-congruences are implicative filters ‘closed’ by
the quasiequations of the quasivariety, and are called Q-filters.

Therefore, a filter F of a NL◦-algebra, besides being implicative, has to addition-
ally satisfy the following two conditions:

(F1) if x→ y, y → x ∈ F then ◦x→ ◦y, ◦y → ◦x ∈ F
(F2) if x ∨ ¬x ∨ ¬y ∈ F then y → ◦x ∈ F .

We shall call such a filter a ◦-filter. Note that from (F1) it follows in particular that ◦-filters
are closed by ◦: if x ∈ F then ◦x ∈ F as well.

Lemma 3.4 If (A, ◦) is NL◦-algebra such that A is a subdirectly irreducible Nelson
lattice, then ◦ is such that ◦(1) = ◦(0) = 1 and ◦(x) = 0 otherwise, and hence (A, ◦) is
a simple NL◦-algebra.

In the following, if A is a Nelson lattice, we will denote by B(A) the set of its
Boolean elements, i.e. B(A) = {x ∈ A | x ∧ ¬x = 0}.

Theorem 3.5 Let (A, ◦) be a subdirectly irreducible NL◦-algebra. ThenB(A) = {0, 1}.

When the algebra is finite, then we can prove more.

Theorem 3.6 Let (A, ◦) be a finite NL◦-algebra. Then the following conditions are
equivalent:

(i) (A, ◦) is a s.i. NL◦-algebra,
(ii) B(A) = {0, 1},

(iii) (A, ◦) is a simple NL◦-algebra.

Theorem 3.7 Let (A, ◦) be a NL◦-algebra, then the following conditions are equivalent:
(i) (A, ◦) is subdirectly irreducible but not simple,

(ii) B(A) = {0, 1} and there is a non-trivial ◦-filter F such that (◦(x))2 6= 0 for
every x ∈ F .



4. A categorial equivalence
In this section we show an equivalence between a category that involves Heyting alge-
bras (with extra structure) and the algebraic category of Nelson lattices with consistency
operators.

For convenience, let us represent A as N(H, F ) for H being a Heyting algebra
and F being a Boolean filter of H. So, every x ∈ A is of the form (a, b) for a, b ∈ H
such that a ∧ b = ⊥ and (a ∨ b) ∈ F . Thus, condition (i) of Lemma 3.2 which indeed
characterizes the ◦ in a Nelson lattice, can be reformulated in the following way: for all
(a, b) ∈ A,

o(a, b) = max{(z, z′) ∈ A | (⊥, a ∨ b ∨ z′) = (⊥,>)}

where the equality holds because a ∧ b = ⊥ (in H) for all (a, b) ∈ A. The order on A is
defined, with respect to the order of H , as (a, b) ≤ (c, d) iff a ≤ c and b ≥ d.

Lemma 4.1 For every Heyting algebra H, for every Boolean filter F of H and for every
a ∈ H , a ∨ ¬a ∈ F .

Let us recall from that a unary operation � on a Heyting algebra H is called a dual
pseudocomplement, provided that the following equations are satisfied:

(D1) x ∨ �(x ∨ y) = x ∨ �y,
(D2) x ∨ �1 = x,
(D3) ��1 = 1.

In every Heyting algebra H and for every x ∈ H , if is the dual pseudocomplement of x
exists, then it is defined as

�x = min{z ∈ H | x ∨ z = 1}. (1)

Proposition 4.2 Let H be a Heyting algebra, F a Boolean filter of H and A the Nelson
lattice N(H, F ). If �(a ∨ b) exists in H , then ◦(a, b) exists and ◦(a, b) = (¬d, d), where
d = �(a ∨ b). Besides, for any (a, b) ∈ A, ◦(a, b) ∈ A.

Corollary 4.3 Let H be a Heyting algebra, F a Boolean filter of H and A the Nelson lat-
tice N(H, F ). Then the operation ◦ exists in A if and only if the dual pseudo-complement
exists for all the elements of F . In particular, if A = N(H, H), then ◦ exists in A if and
only if the dual pseudo-complementation is definable in the whole H.

4.1. A categorial equivalence for Nelson lattices with a consistency operator

To ease the notation, let us denote by BPF (H) the set of the Boolean filters F of a
Heyting algebra H that further satisfy the following property:

(DP) For every x ∈ F , �x exists in H.

Thus, BPF (H) is the set of Boolean filters F of H such that every element x ∈ F has a
dual pseudocomplement in H.

Definition 4.4 Consider the set HBP containing pairs (H, F ) such that H is a Heyt-
ing algebra, F ∈ BPF (H) and maps defined as follows: given two pairs (H, F ) and
(H′, F ′) a map h between them is such that:

(m1) h is a Heyting homomorphism between H and H′,



(m2) h(F ) ⊆ F ′,
(m3) for all x ∈ F , h(�x) = �′h(x).

It is not difficult to see that HBP is a category and hence we will respectively call objects
and morphisms the pairs (H, F ) and the maps h : (H, F )→ (H′, F ′) of HBP defined as
above.

Moreover, let NC be the algebraic category of Nelson lattices with a consistency
operator as in Definition 3.1 and let us consider the map NC : HBP → NC defined in
the following way:

- For every object (H, F ) ∈ HBP, NC(H, F ) = (N(H, F ), ◦), where N(H, F )
is the Nelson algebra of pairs (a, b) ∈ H ×H such that a ∧ b = ⊥ and a ∨ b ∈ F
as in the above section, and ◦(a, b) = (¬�(a ∨ b),�(a ∨ b)) as in Proposition 4.2.

- For every morphism h : (H, F ) → (H′, F ′) of HBP, NC(h) : NC(H, F ) →
NC(H′, F ′) is so defined: for all (a, b) ∈ NC(H, F ),

NC(h)(a, b) = (h(a), h(b)).

For every object (H, F ),NC(H, F ) is an object in NC. Analogously, if h is a morphism
of HBP, NC(h) is a morphism of NC. The we can prove the following

Proposition 4.5 The map NC : HBP→ NC is a functor.

Recall that a functor between two categories yields a categorial equivalence iff it
is full, faithful and essentially surjective.

Theorem 4.6 The functor NC establishes a categorial equivalence between HBP and
NC.

5. Adding a consistency operator to Nelson logic and its paraconsistent
companion

Let L be the logic of a variety of residuated lattices, that is, an axiomatic extension of
FLew. For each such a logic L, in [1] the authors introduce a companion logic denoted
L≤ , whose associated consequence relation has the following semantics: for every set of
formulas Γ ∪ {ϕ},

Γ `L≤ ϕ iff for every L-algebra A, every a ∈ A, and every A-evaluation e,
if a ≤ e(ψ) for every ψ ∈ Γ, then a ≤ e(ϕ).

For this reason L≤ is known as the degree-preserving companion of L.

Now, let us consider the logic NL corresponding to the variety of Nelson lattices
and its degree-preserving companion NL≤ . Since the negation in NL is involutive, and
hence it does not satisfy the pseudo-complementation axiom ϕ∧¬ϕ→ 0, the logic NL≤

is paraconsitent, i.e. in general
ϕ,¬ϕ 6`NL≤ 0

However, NL≤ is not a logic of formal inconstency (LFI) since we cannot define in the
language of NL a consistency operator ◦ satisfying {◦ϕ, ϕ,¬ϕ} ` ψ for every ϕ and ψ.
Therefore, we consider next the expansion of NL with a suitable consistency operator ◦,
that we will call NL◦, so that its degree-preserving companion NL≤◦ is a LFI.



Definition 5.1 We define the logic NL◦ as the expansion of NL in a language which in-
corporates a new unary connective ◦ with the following additional axioms and rules:

(A1) ◦1̄
(A2) ◦0̄
(A3) ¬(ϕ ∧ ¬ϕ ∧ ◦ϕ)

and the following inference rules:

(CNG)
ϕ↔ ψ

◦ϕ↔ ◦ψ
(Max)

ϕ ∨ ¬ϕ ∨ ¬ψ
ψ → ◦ϕ

Lemma 5.2 The following derivabilities hold in NL◦:
i) ϕ ∨ ¬ϕ `L◦ ◦ϕ, (ii) L◦ ` ◦ϕ→ ¬ϕ ∨ ϕ, (iii) ϕ ∨ ¬ϕ a`L◦ ◦ϕ.

It is easy to check that, due to the (Cong) rule for ◦, NL◦ is a Rasiowa implicative
logic and hence it is algebraizable. The equivalent algebraic semantics is given by the
quasi-variety of NL◦-algebras. As a direct consequence we have the following general
completeness result.

Proposition 5.3 NL◦ is strongly complete w.r.t the class of NL◦-algebras.

Definition 5.4 The degree-preserving companion of the logic NL◦ is the logic NL≤◦ de-
fined by the following axioms and rules:

• Axioms of NL≤◦ are those of NL◦
• Rules of NL≤◦ are:

(Adj-∧) from ϕ and ψ derive ϕ ∧ ψ
(MP-r) if `NL◦ ϕ→ ψ, then from ϕ and ϕ→ ψ, derive ψ
(CNG-r) if `NL◦ ϕ↔ ψ, then from ϕ↔ ψ derive ◦ϕ↔ ◦ψ
(Max-r) if `NL◦ ¬(ϕ ∧ ¬ϕ ∧ ψ), then from ¬(ϕ ∧ ¬ϕ ∧ ψ) derive ψ → ◦ϕ

It is clear that the degree-preserving companion NL≤◦ is a LFI.

Let L be a paraconsistent logic with a consistency operator ◦. Then we say that
◦ satisfies the propagation property in L with respect to a subset X of connectives of the
language of L if {◦ϕ1, . . . , ◦ϕn} `L ◦#(ϕ1, . . . , ϕn), for every n-ary connective # ∈ X
and formulas ϕ1, . . . , ϕn built with connectives from X .

In particular, checking whether NL≤◦ satisfies the propagation property for the con-
nectives X = {0̄,∧,&,→} amounts to check the following conditions: `NL◦ ◦0̄ and
`NL◦ (◦ϕ ∧ ◦ψ)→ ◦(ϕ#ψ) for each binary # ∈ X (Prop*).

The first condition is obviously satisfied since ◦0̄ is an axiom of the logic. Next
proposition shows that, in fact, the other conditions are also satisfied.

Proposition 1 NL◦ satisfies (Prop*).

In the context of LFIs, it is a desirable property to recover the classical reasoning
by means of the consistency connective ◦ (see [3]). Specifically, let CPL be classical
propositional logic. If L is a given LFI such that its reduct to the language of CPL is a
sublogic of CPL, then a DAT (Derivability Adjustment Theorem) for L with respect to



CPL is as follows: for every finite set of formulas Γ∪ {ϕ} in the language of CPL, there
exists a finite set of formulas Θ in the language of L, whose variables occur in formulas
of Γ ∪ {ϕ}, such that:

(DAT) Γ `CPL ϕ iff ◦ (Θ) ∪ Γ `L ϕ.
When the operator ◦ enjoys the propagation property in the logic L with respect to the
classical connectives then the DAT takes the following, simplified form: for every finite
set of formulas Γ ∪ {ϕ} in the language of CPL,

(PDAT) Γ `CPL ϕ iff {◦p1, . . . , ◦pm} ∪ Γ `L ϕ
where {p1, . . . , pm} is the set of propositional variables occurring in Γ ∪ {ϕ}.

The fact that ◦ has the propagation property it allows us to prove the following
PDAT theorem for NL≤◦ .

Theorem 5.5 (PDAT for NL≤◦ ) Let Γ∪{ϕ} be a finite set of formulas in the language of
CPL and let {p1, . . . , pm} the set of propositional variables appearing in Γ ∪ {ϕ}. Then

Γ `CPL ϕ iff Γ `
NL≤◦

((
n∧

i=1

◦(pi)) ∗ (
n∧

i=1

◦(pi)))→ ϕ.
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