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Abstract

The aim of this short note is to report on a counter-example by Stefano
Aguzzoli (private communication) showing that a claim made in a recent
paper of ours [2, Proposition 5.2], stating that the class of states of a free
product algebra is closed, is in fact not true. That claim was used in turn
in the proof of one of the main results of the same paper [2, Theorem 5.4].
However, we also provide in this note an alternative proof for that result, so
that it keeps holding true.

1. The state space of a free product algebra is not closed

In our recent paper [2] we introduced states of free, finitely generated,
product-algebras. For the sake of completeness, let us recall that, letting
FP(n) be the free n-generated product algebra, a state of FP(n) is a map
s : FP(n)→ [0, 1] satisfying the following conditions [2, Definition 3.1]:

S1. s(1) = 1 and s(0) = 0,

S2. s(f ∧ g) + s(f ∨ g) = s(f) + s(g),
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S3. If f ≤ g, then s(f) ≤ s(g),

S4. If f 6= 0, then s(f) = 0 implies s(¬¬f) = 0.

For a better reading of this note, let us recall our main result of [2] which
shows an integral representation theorem for states of free, finitely generated,
product algebras.

Theorem 1.1 ([2, Corollary 4.10]). For every n ∈ N, and for every map
s : FP(n)→ [0, 1] the following are equivalent:

(1) s is a state,

(2) there is a unique regular Borel measure µ such that, for every f ∈
FP(n),

s(f) =

∫
[0,1]n

f dµ.

In [2, Proposition 5.2] we claimed that, for every n ∈ N, the class S(n)
of states of FP(n) is closed in the product topology of [0, 1]FP(n) ([2, Propo-
sition 5.2]). However, the following counter-example, pointed out by Stefano
Aguzzoli, shows that such claim is false:

• Let {µi}i∈N be the sequence of Dirac (and hence regular Borel) measures
on [0, 1] such that, for each i ∈ N and each A ⊆ [0, 1],

µi(A) = 1 if 1/(i+ 1) ∈ A, and µi(A) = 0 otherwise.

Define si : FP(1)→ [0, 1] as in Theorem 1.1: for all f ∈ FP(1),

si(f) =

∫
[0,1]

f dµi.

Then, the sequence {si}i∈N converges to a map s∗ : FP(1) → [0, 1]
which is not a state of FP(1). Indeed, take the identity map f : x 7→ x,
the single generator of FP(1). It is easy to check that, for each i ∈ N,
si(f) = 1/(i + 1), si(¬f) = 0 and si(¬¬f) = 1. Taking the limit
s∗ = limi si in the cube [0, 1]FP(1) endowed with the product topology,
one has:

s∗(f) = 0, s∗(¬f) = 0 and s∗(¬¬f) = 1.
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But it is clear that s∗ does not satisfy the axiom (S4) of [2, Definition
3.1], whence s∗ is not a state of FP(1).

Therefore, the state space S(n) of FP(n) is convex (see [2, §5]), but not
closed. As a direct consequence of this fact, we cannot apply Krein-Milman
theorem (see [3]) to show that S(n) coincides with the topological closure of
its extremal points. This observation invalidates an argument in the proof
of one of our main results [2, Theorem 5.4], and for which we now propose a
valid proof.

First of all, recall that a point c of a convex subset C of an Euclidean
space, is extremal provided that c cannot be expressed as nontrivial convex
combination of elements of C. In other words, if c = λc1 + (1 − λ)c2 with
c1, c2 ∈ C and λ ∈ [0, 1], and c is extremal, then necessarily either λ = 1 or
λ = 0.

In the next theorem, H(FP(n)) denotes the set of homomorphisms of
FP(n) to [0, 1]P, and δ : S(n) → M(n) is a bijective and affine map which
associates, to each state s ∈ S(n), the unique regular Borel measure µ ∈
M(n) (provided by Theorem 1.1) such that for every f ∈ FP(n), s(f) =∫
[0,1]n

f dµ (see [2, Proposition 5.3]).

Theorem 1.2 ([2, Theorem 5.4]). The following are equivalent for a state
s : FP(n)→ [0, 1]:

1. s is extremal;

2. µ = δ(s) is a Dirac measure (and hence it is extremal inM(n));

3. s ∈ H(FP(n)).

New proof. The proof of the equivalence between (2) and (3) is the same as
in [2, Theorem 5.4]. Thus, it suffices to prove the implications (2)⇒(1) and
(1)⇒(3).

(2)⇒(1). Let s ∈ S(n) and µ = δ(s), and assume, by way of contradic-
tion, that s = λe1 + (1 − λ)e2 with e1, e2 ∈ S(n) and 0 < λ < 1. Again
Theorem 1.1 applied to e1 and e2 provides unique regular Borel measures
µ1 = δ(e1) and µ2 = δ(e2) such that, for all f ∈ FP(n), e1 =

∫
[0,1]n

f dµ1 and

3



e2 =
∫
[0,1]n

f dµ2. Thus,

s(f) =

∫
[0,1]n

f dµ

= λ

∫
[0,1]n

f dµ1 + (1− λ)

∫
[0,1]n

f dµ2

=

∫
[0,1]n

f d(λµ1 + (1− λ)µ2).

Therefore δ(s) = µ = λµ1 + (1 − λ)µ2 is not Dirac and this contradicts the
hypothesis.

(1)⇒(3). Let s ∈ S(n) be extremal. Then, by Theorem 1.1, there exists
a regular Borel measure µ = δ(s) such that s(f) =

∫
[0,1]n

f dµ. Assume

now that s is not a product-homomorphism. Then, from (2)⇒(3), µ is not
extremal (and hence not Dirac). Therefore, let µ1, µ2 and 0 < λ < 1 such
that µ = λµ1 + (1− λ)µ2. The same argument as above shows that, letting
e1 and e2 be the integrals with respect to µ1 and µ2 (respectively), one has
s = λe1 + (1− λ)e2, proving that s is not extremal, a contradiction.

2. Kolmogorov maps and the closure of the state space

According to the notation used in [1], let us say that a map κ : FP(n)→
[0, 1] is a Kolmogorov map, if κ satisfies (S1)− (S3) of [2, Definition 3.1] and
let K(n) be the class of Komogorov maps of FP(n).

In [1] the authors proved that, for the case of free n-generated Gödel
algebras FG(n), K(n) coincides with the closure of the convex hull of the set
of homomorphisms of FG(n) to the standard Gödel algebra [0, 1]G (we invite
the reader to consult [1, Section 3] for further details). Here we analyze the
same problem in the realm of free product-algebras.

First of all notice that S(n) ⊆ K(n) and indeed the inclusion is proper
since, e.g., the map s∗ of the above example by Aguzzoli is a Kolmogorov
map but not a state. Further, we can prove the following.

Theorem 2.1. For every n, K(n) is closed in the product topology of [0, 1]FP(n).

Proof. Let us start showing that K(n) is closed.1 Let {si}i≥0 be a sequence
of states of FP(n) such that limi∈N si exists, and let us prove that such s =

1The proof of this claim is the first part of the proof of [2, Proposition 5.2]. We report
it here for the sake of completeness.
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limi∈N si is a state. Condition S1 is clearly verified. Let us show that s
respects condition S2. We need to prove that s(f∨g) = s(f)+s(g)−s(f∧g).
Since each sn is a state, we have that:

lim
i∈N

sn(f ∨ g) = lim
i∈N

(sn(f) + sn(g)− sn(f ∧ g)),

and also, it clearly holds that:

lim
i∈N

(sn(f) + sn(g)− sn(f ∧ g)) = lim
i∈N

sn(f) + lim
i∈N

sn(g)− lim
i∈N

sn(f ∧ g),

thus the claim directly follows. It is easy to prove condition S3, since given
f, g ∈ FP(n), if f ≤ g then sn(f) ≤ sn(g) for every n ∈ N. Thus,

s(f) = lim
i∈N

sn(f) ≤ lim
i∈N

sn(g) = s(g).

Therefore, since S(n) ⊆ K(n), it is immediate that the closure of the
states space of FP(n) is contained in K(n). Whether the other inclusion also
holds is an open problem that we shall consider in our future work.
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