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1 Introduction: vagueness, uncertainty and truthlikeness

For many years, classical logic has given a formal basis to the study of human reasoning. However,
during the last decades, it has become apparent that human practical reasoning demands more
than what traditional deductive logic can offer. For instance, classically, the truth of a statement q
with respect to a state of knowledge K is determined whenever every model of K is also model of
q. But nothing can be said about its truth value if only most of the models of K are also models of
q or when models of q are very “close” to models of our state of knowledge. Moreover, a statement
can only be either true or false, but some human expressions, such as “John is bald”, often fail to
be semantically determined with bivalued precision since they express gradual properties.

Minsky ([Min85]) and McDermott ([McD87]) suggested that classical logic is inappropriate for
modeling human reasoning because of the modeling“perfect” nature of the former. They remarked
that while classical logical reasoning is both sound (all conclusions reached are valid or true) and
complete (all true facts can be deduced), human reasoning does not possess either one of these
qualities. On the contrary, the modeling of human reasoning usually requires “imperfect” knowl-
edge to be taken into account in the form of uncertainty, vagueness, truthlikeness, incompleteness
and partial contradictions. These limitations of classical logic in accounting for human reasoning
motivated the study of alternative (or perhaps better, complementary) formalisations which al-
ready became one of the major research areas in the field of Artificial Intelligence in the recent
past.

A variety of approximate reasoning models have appeared as possible alternatives and have
generated an extensive literature in both Philosophy and Artificial Intelligence. Models of ap-
proximate reasoning aim at being more flexible than classical logic and basically work on three
“imperfections” information can be pervaded with: vagueness, uncertainty and truthlikeness. In-
formally, and roughly speaking, we can say that approximate reasoning deals with propositions and
“labels” associated to them, which are usually interpreted as degrees of truth, belief or proximity
to the truth. Each one of these units of measurement is respectively associated with the notions of
vagueness, uncertainty and truthlikeness. Unfortunately, this simplified view does not make clear
that each one of these “imperfections” responds to a different semantics. In what follows, we shall
try to give an “orthogonal” description of these three “imperfections” which we hope will make
clear the distinction among them and then we shall indicate how they may be combined.

The three axes correspond to: crisp vs. many-valued interpretations, complete vs. incomplete
information, and error-free vs. mistaken information.

Interpretation Problem:

Whenever we have (or fix) a representation language to describe our information about the world,
we should provide a form of interpreting the sentences in such a language, i. e. to establish a cor-
respondence between meaning and truth (or as Carnap says [Car37], between theoretical concepts
and observations). There is no consensus about what is the best (or most appropriate) theory to
define the truth: there are e. g. pragmatic, coherence, correspondence, redundancy or semantic
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theories. In our opinion, Tarski’s correspondence theory is the most adequate form to establish this
relationship. He considers that the truth of sentences, statements, judgments, propositions, beliefs
or ideas, consists of their “correspondence” with reality, world, or facts. The fundamental difficulty
for this theory is to specify what it means to say that a statement “corresponds” to reality. In
Tarski’s view ([Tar56]), the truth value of a sentence is determined by an interpretation function
e from language L to models Ω. One familiar objection to Tarski’s correspondence theory is that
his definition applies only (or at best) to formal languages, but not to natural languages. It is
well-known that most of the statements in natural language do not have a precise characterisation
of their meanings, i. e. they are not semantically determined (in last sense) because they contain
(among other things) different kinds of vague expressions, including predicates as ’big’, ’short’,
’large’, etc., modifiers as ’very’, ’more or less’, ’rather’, etc., and quantifiers as ’most’, ’some’,
’many’, ’few’, etc.

In brief, some expressions which refer to gradual properties are inherently or semantically
vague. In such cases, there are no suitable characterizations of their meaning in terms of true-false
interpretations. Hence, if we want to represent knowledge of the type “the mountain is high” we
need to increase the interpretation power and hence we have to give up classical logic principles
such as the excluded middle principle (p ∨ ¬p is always true) or the non-contradiction principle
(p ∧ ¬p is always false). In response to this necessity Lotfi Zadeh introduced in 1965 ([Zad65])
fuzzy set theory. His fundamental idea consists in understanding lattice-valued maps as generalised
characteristic functions of some new kind of objects, the so-called fuzzy sets, of a given universe.

In the context of fuzzy set theory, fuzzy logic (FL) was born as a logical system that aims at
the formalisation of the reasoning with vague propositions. The term fuzzy logic has been used
through the literature with two different meanings (see [Zad94]):

In the narrow sense fuzzy logic, FLn, is an extension of many-valued logic, where the notion
of “degree of membership” of an element x in an universe X with respect to a fuzzy set A
over X is regarded as the degree of truth of the statement “A(x)” (usually read as “x is
A). However, as it is pointed out by Zadeh in [Zad94], the agenda of FLn is quite different
from that of traditional many-valued logical systems, e. g.  Lukasiewicz’s logic. He states that
concepts such as linguistic variables, canonical forms, fuzzy if-then rules, fuzzy quantifiers and
such modes of reasoning as interpolative reasoning, syllogistic reasoning, and dispositional
reasoning, are not part of traditional many-valued logical systems.

In the broad sense fuzzy logic, FLb, is almost synonymous with fuzzy set theory which is a
general theory to represent and to reason over “classes” with unsharp boundaries. Fuzzy set
theory includes: fuzzy arithmetic, fuzzy mathematical programming, fuzzy topology, fuzzy
graph theory, and fuzzy data analysis.

In the last years, many works have been devoted to the development of the formal background
of fuzzy logic in narrow sense (as witnessed by a number of important monographs that have
appeared in the literature, e. g. [Haj98, NPM99, Got01, Ger01]), that is, to formal systems of
many-valued logics having the real unit interval as set of truth values, and truth functions defined
by fuzzy connectives that behave classically on extremal truth values (0 and 1) and satisfy some
natural monotonicity conditions. Actually, these connectives originate from the definition and
algebraic study of fuzzy set theoretical operations over the real unit interval.

In this paper we consider vagueness as an interpretation problem and it will be formally ad-
dressed by means of the use of some kind of many-valued logic. As in classical logic, in many-valued
logics sentences of the representation language get a truth-value, possibly an intermediate value
between 0 and 1, in every complete description of the world. But, as we discuss next, it may be
not always possible to determinate this value because in general we may not have (or/and it is
impossible to have) a complete knowledge about the real world.

Incomplete Information Problem:

In a classical logic, there is a clear distinction between a definition of truth (such as it was mentioned
above) and a criteria for recognizing the truth. In the latter sense, the truth or validity of a
conclusion C is often given in terms of a list of arguments Γ, called premises, knowledge base or
theory. Thus, if every interpretation that satisfies Γ (i.e. which is a model of Γ) it satisfies C as
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well, then we can say that in the context of Γ, C is true or is valid conclusion. On the other hand,
the falsehood of C is established when no model of Γ satisfies C. Any other situation (when only
some (but not all) models of Γ are also models of C) leaves uncertainty about the truth-value of
the conclusion C. Moreover, except for the case in which the theory that describes our knowledge
about the state of the world is complete it will not be possible in general to determine the truth or
falsehood of every possible conclusion. Therefore, even in classical logic, there are three (not two)
different epistemic attitudes on propositions with respect to a given theory modelling the world
[Gär88, DP01]. This indetermination caused by the third state (ignorance or indetermination) will
be referred to as the incomplete information problem.

In practice, it is usual that those dealing with the task of decision or prediction making do
not have complete information about the current state of affairs. This prevents from unequivocal
assessments of future states and limits the ability to precisely predict the consequence of the
possible choices. In such a situation, a classical logical approach as basic formalization of this kind
of reasoning would condemn us to “inaction”. Fortunately, it is often the case that the available
information, even if incomplete, is useful and sufficient for many purposes. For example, knowledge
about the laws of evolution of a physical system may be useful to derive that, given an ideal gas,
if its pressure P and temperature Temp are known then its volume Vol is determined by the
expression Vol = kTemp

P . Of course, if the gas is not ideal the result provided by this equation
will not be accurate. Hence, in a strict sense, it will not be possible to know the exact volume
of the gas, at least from that equation. So, this kind of precise laws have limited applicability
in real domains, where e. g. statistical mechanics gives an answer to these questions by using
probability theory, that aims at capturing the underlying uncertainty. In such a case, a probability
distribution over the possible values of the volume would be obtained, which provides a measure
(objective or subjective) of confidence on the accuracy in predicting a value of a physical property,
in our example the volume. Other popular theories used to formalize and quantify that uncertainty
are possibility theory and Dempster-Shafer theory of evidence.

In general, an uncertainty model attaches numbers to logical propositions which do not indicate
a degree of truth (as some authors usually point out) but a degree of confidence or belief in the
truth-value of these propositions. In this sense, the measure of uncertainty compensates the lack of
knowledge at the propositional level with information at a higher level of abstraction. At this point,
it is important to differentiate vagueness or imprecision at propositional level (as it was discussed
above) from vagueness at the model or interpretation level, as it is the case in possibilistic logic. In
the latter case, each (crisp) interpretation is attached a degree that estimates the extent to which it
may represent the real state of the world. Such an attachment defines a fuzzy set of interpretations
which is in fact a fuzzy set based modeling of our vague knowledge about what the real world is.
In this sense, the degrees of possibility and necessity in possibilistic logic may be understood as
uncertainty degrees induced by some kind of vague (and hence incomplete) information.

However, although notions of vagueness (at propositional level) and uncertainty are not the
same, there are close links between them and in many occasions they need to live together. For
example, as mentioned in [DP88], if all we know is that “John is tall” (i.e. a vague knowledge
about John’s height) then, about the truth of the sentence “John’s height is 1.80 m”, one can
only say that it is more or less possible. More formally, Dubois and Prade in [DP91a] propose to
understand each fuzzy assertion of the sort of “X is Tall” (where Tall is a fuzzy set of an universe
of discourse U and X is a variable taking values in U) as a constraint on the unknown possibility
of the crisp assertions X = x, with x ∈ U , of the form Π(X = x) ≤ µTall(x). This example makes
it clear that vague, incomplete information also produces uncertainty on conclusions.

As it is argued by Resconi, Klir and St. Clair [RKC92], uncertainty is an intensional or
metatheoretical notion. For this reason, modal logics provide a unified framework for representing
those uncertain theories [RKCH93, Hal03] and are naturally related to various generalisations
of the modal system S4.3. The well-known cases are probabilistic [Car50, Hal03], possibilistic
[FH91, HK94, LL96] and Dempster-Shafer logics [Rus87, Hal03].

Summarizing, we will associate the term uncertainty to a degree of belief regarding the truth
of a proposition, usually crisp but not necessarily so. Formally, the uncertainty should correspond
to intensional logics which are non-truth functional [DP01].

Mistaken Information Problem:
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In classical logic, falsity entails any statement. But, in many occasions, we may want to use “false”
theories, for instance, Newton’s Gravitational Theory. Although this theory is not true we may
accept it is a good approximation to truth. Note that we are not referring to self-contradictory
theories, but empirically or factually false ones, i. e. theories that correctly explain most of the
observations but have counter-examples. As a first approach, we could measure how close is a
theory to the truth according to its amount of counter-examples. According to this measure, it is
possible to affirm that there are good reasons to conjecture that Einstein’s Gravitational Theory,
which is also not true, is a better approximation to the truth than Newton’s Theory. In a more
general sense, we refer to the notion of “proximity to the truth” of a statement (even though it
may not be true or provable) as truthlikeness [Odd07].

Popper makes an observation which throws light over the distinction between uncertainty and
truthlikeness. He points out that by using the Bayesian inference to establish the strength of belief
in a hypothesis h from both a previous knowledge K and an observed evidence e, “ if the evidence
e contradicts the hypothesis h then the probability P (h | e,K) of h given e (in the context of K) is
zero; yet, h may be highly truthlike, since false theories (even theories known to be false) may be
‘close’ to the truth”. This point stresses the difference between incompleteness and “falsity” of a
theory. The first case indicates its failure to express the whole truth and the second one represents
the acceptance of an untrue proposition. For instance, a witness in court who does not lie but
conceals some “relevant”1 of facts, tells an incomplete information. On the contrary, a testimony
which is partially true, refers to false information.

In a more pragmatic sense, the concept of truthlikeness appears, for example, when we want
to give an answer to a query over a database: if we must match exactly the query against the
database, we will possibly need too much time or even we can fail. But, if we allow to match the
consult “approximately” enough then a lot of time may be saved. In this case, we also may say that
the answer to a query is close to the truth or truthlike. Note that the notion of “approximation”
to the truth is in correspondence to the one of error in numerical methods.

If we accept this notion, we will be able to say that a statement is almost true, nearly true
or approximately true, indicating thereby that it is false or unprovable but close to being true.
For instance, in this sense, the sentence “the height of Mount Everest is 8.800 m” is close to
the truth2. This concept of “close” to the truth presupposes some metric which allows us to
express the degree of approximate truth. Notice that this last concept is different from the two
previous: vagueness and uncertainty. The truth-value of our example “the height of Mount Ever-
est is 8.800 m” is certainly false and precisely formulated, therefore it is neither uncertain nor vague.

Summarising, we may say that vagueness, uncertainty and truthlikeness, until few years ago,
were not clearly differentiated from each other, possibly because they are usually coded by real
numbers from the unit interval [0, 1]. In the last years, much effort has been devoted to clarify the
conceptual differences between vagueness and uncertainty as it is witnessed in [BDG+99]. However,
the distinction between these two notions and truthlikeness is not so clear in the literature. For
instance, in [DPB99], similarity logic is classified as a non truth-functional logic dealing with
vagueness. We consider that it is useful to clarify the distinctive features of each notion, since they
are specially important when we aim to represent knowledge and reason with it.

We think that these three notions, vagueness, uncertainty and truthlikeness, constitute the basic
axes of approximate reasoning models. Also, we believe that they may be formalized and combined
under a homogeneous framework which should be, we understand, an appropriate extension of fuzzy
logic in the narrow sense. Several attempts have been made in this direction. For instance,

• Zadeh in [Zad86] combines fuzziness and probability by suggesting a definition of the prob-
ability of a fuzzy proposition.

• In [DP93], the authors extensively survey the literature concerning the relationship between
fuzzy sets and probability theories; again, besides pointing out the gaps between them,
the authors build bridges between both theories, stressing in this sense the importance of
possibility theory.

1Relevance is an important notion which we do not consider here, but that it should be taking account in a
thinner analysis of truthlikeness

2The height of Mount Everest that appears in dictionaries is 8,835m.
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• In Hájek et.al.’s paper [HGE95], and in some later elaborations [Haj98, GHE03], there is
a further contribution to this bridge building. They propose three different theories in
 Lukasiewicz-Pavelka’s logic to cope with probability, necessity and belief functions respec-
tively. The main idea behind this approach is that uncertainty measures of crisp propositions
can be understood as truth-values of some suitable fuzzy propositions associated to crisp
propositions (it is worth mentioning that although in this work the propositional variables
only take Boolean values it is easy to extend it to the many-valued case).

Truthlikeness is probably the least known of the above three notions. The aim of this paper
is to survey some logical formalisations of similarity-based reasoning models, where similarity is
understood as truthlikeness. To this end, the paper is structured is as follows. In the next section
we provide all necessary background about fuzzy similarity relations. In Section 3, we introduce
two different logical approaches, one syntactically and another semantically oriented, in order to
formalize fuzzy similarity reasoning. In Section 4 we describe the main ideas behind the syntactic
model based on the notion of approximate proof, while Section 5 is devoted to the semantical
model based on several notions of approximate entailments. In Section 6, we give four different
formalisations of these similarity entailments in terms of suitable systems modal and conditional
logics, including for each class a system of graded operators with classical semantics and a system
with many-valued operators. Finally, Section 7 explores some nonmonotonic issues of similarity-
based reasoning, by considering similarity, instead of distance, as a central notion with which to
define epistemic orderings and operators of theory revision.

2 Truthlikeness and graded similarity

As it was mentioned above, the dichotomy of the class of propositions into truths and falsehoods
should thus be supplemented with a more fine-grained criterion according to their closeness to
the truth. The problem of truthlikeness is to give an adequate account of such a concept and to
explore its logical properties and its applications to knowledge representation. While a multitude
of apparently different solutions to this problem has been proposed, it is now standard to classify
them into two main approaches: the content approach and the likeness approach. The first approach
is based on Popper’s idea that any theory (or knowledge base) K may be divided in two parts:
its truth content KT , and its falsity content KF . This partition into true and false propositions is
induced by the real world (obviously the epistemological problem is to know which is this world).
Following this idea, a knowledge base is closer to the truth than another if it has more truth
content (without engendering more falsity content) and less falsity content (without sacrificing
truth content). Unfortunately, this account suffers from a fatal flaw, it entails that no false theory
is closer to the truth than any other. This was shown independently by Tichý and Miller ([Tic74,
Mil74]). After the failure of Popper’s idea, the modern definition of truthlikeness follows the
likeness approach, and has emerged based on similarity and was proposed independently by Risto
Hilpinen within possible worlds semantics (see [Hil76]) and by Pavel Tichý within propositional
logic (see [Tic74]). The basic idea of this similarity approach is that the degree of truthlikeness
of a sentence ϕ depends on the similarity between the states of affairs that are compatible with ϕ
and the true state of the world (see e. g. [Nii87] p. 198). According to Niiniluoto ([Nii87]), we will
consider the truthlike value of a sentence as its degree of “proximity to the truth”, even though
it may not be true or provable. This degree should be given by the “distance” that separates (or
dually, by the similarity between) the models of this sentence and the models of the “reality”.

Thus, this notion of truthlikeness can be regarded as a special case of the more general concept of
similarity and its logical counterparts to some form of similarity-based reasoning, this last concept
being often associated with reasoning by analogy which is an important form of non-demonstrative
inference. Similarity-based reasoning aims at studying which kinds of logical consequence relations
make sense when taking into account that some propositions may be closer to be true than others.
A typical kind of inference which is in the scope of similarity-based reasoning responds to the
form “if ϕ is true then ψ is close to be true”, in the sense that, although ψ may be false (or
not provable), knowing that ϕ is true leads to infer that ψ is semantically close (or similar) to
some other proposition which is indeed true. Notice again that the fact of ψ being close to (or
approximately) true has nothing to do with a problem of uncertainty, i. e. with a problem of missing
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information not allowing us to know whether ψ is true or false [DP95]. Essentially, similarity-based
reasoning has been investigated from two different perspectives:

• Qualitative or comparative approaches, where the aim is formalizing e. g. expressions like
p is closer to q than r. The works independently developed by Nicod [Nic70], Williamson
[Wil88], and Konikowska [Kon97], belong to the first tradition. At the semantical level, Lewis
in [Lew73] uses sphere systems in order to formalize the counterfactual reasoning. Given a
possible world w, a sphere system is a set of sets of worlds centered on w, nested, and closed
under union and intersection. It is meant to carry information about the comparative overall
similarity of worlds. Any particular sphere around world w is to contain just those worlds
that resemble w to at least a certain degree. If one world lies within some sphere around w
and another world lies outside that sphere, then the first world is more closely similar to w
than the second.

• Quantitative approaches, that are based somehow on a numerical definition of degree of
truthlikeness or similarity, following the last tradition of truthlikeness as it is pointed out by
Niiniluoto in [Nii87] page. 203, and by [Wes87]. This kind of approach, although not always
within a formal logical framework, has blossomed after the introduction by Zadeh [Zad71] of
fuzzy similarity relations as graded modelings of similarity relations, originally to be used in
techniques of categorization and clustering. From then, similarity-based reasoning has taken
an important place in the context of fuzzy reasoning. In this second group, we may mention
works such as [Rus91], [DP94], [Yin94], [EGG94],[DEG+95], [Kla95],[BJ96], [DEG+97].

In this paper we will be mainly concerned with reviewing the logical formalizations of similarity-
based approaches based in one way or another on the notion of fuzzy similarity relations.

A (binary) fuzzy similarity relation S on a given domain D is a mapping S : D × D → [0, 1]
fulfilling some basic properties trying to capture the notion of similarity.

Reflexivity: S(u, u) = 1 for all u ∈ D

Separability: S(u, v) = 1 iff u = v

Symmetry: S(u, v) = S(v, u), for all u, v ∈ D

⊗-Transivity: S(u, v)⊗ S(v, w) ≤ S(u,w), for all u, v, w ∈ D

where ⊗ is a t-norm. The reflexivity property establishes that the similarity degree of any world
with itself has the highest value. Separability is a bit stronger since it forbids to have S(u, v) = 1
for u 6= v. Symmetry has a clear meaning, and ⊗-Transitivity is a relaxed form of transitivity
since it establishes S(u, v)⊗S(v, w) as a lower bound for R(u,w). Note that S(u, v) = S(v, w) = 1
implies S(u,w) = 1. Reflexive and symmetric fuzzy relations are often called closeness relations,
while those further satisfying ⊗-transitivity are usually called ⊗-similarity relations. Sometimes,
the name similarity relation is also used to denote in fact min-similarity relations. These relations
have the remarkable property that their level cuts Sα = {(u, v) ∈ D | S(u, v) ≥ α}, for any
α ∈ [0, 1], are indeed equivalence relations.

The question which set of the above properties better models the intuitive notion of similarity
has led to some interesting discussions in the literature (see e. g. the series of papers [DeCK03a,
Bod03, Boi03, Jan03, Kla03, DeCK03b]) related to the Poincaré paradox and the ⊗-transitivity
property, but such a matter is not in the scope of this paper.

Even though Zadeh introduced both the notions of fuzzy sets and fuzzy similarity relations,
only recently it has been remarked the duality between these two notions, which in turn generates
another duality between fuzzy reasoning and similarity-based reasoning. Moreover, as it is pointed
out by Klawonn and Castro [KC95], even if similarity is not the intended interpretation of fuzzy
sets, one can not avoid the effects of similarity which are inherent in fuzzy sets and in fuzzy
reasoning.

Indeed, a fuzzy similarity relation S : D ×D → [0, 1] defines, for each crisp subset E ⊆ D, a
corresponding fuzzy set approx E of those elements which are close to E (in the sense of being
close to some element of E), just by defining its membership function µapprox E : D → [0, 1] as

µapprox E(u) = sup{S(u, v) | v ∈ E}
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Note that the membership degree µapprox E(u) is taken as the (highest) similarity degree of u
to some element of E, in particular µapprox E(u) = 1 if u ∈ E (and conversely in the case S is
separating). Therefore, E ⊆ approx E, and hence approx E can be properly considered an upper
(fuzzy) approximation of E. Moreover, if E a set of typical elements satisfying some given property
P , µapprox E(u) can also be viewed as a typicality degree of u with respect to the property P (in
accordance with Niiniluoto’s proposal [Nii87]).

Conversely, a fuzzy subset A on a domain D, with membership function µA : D → [0, 1], can
be thought of as being defined by

(i) a set of prototypes EA = {u ∈ D | µA(u) = 1}, i. e. those elements that fully belong to A,
and

(ii) a fuzzy similarity SA such that the membership degree µA(u) for any u ∈ A is interpreted as
the (highest) similarity degree of u to some prototype of A, that is, µA(u) = sup{SA(u, v) |
v ∈ EA}. Indeed, it suffices to define

SA(u, v) = min(µA(u)⇒ µA(v), µA(v)⇒ µA(u))

for ⇒ being the residuum of some (left-continuous) t-norm.

Note, however, that the induced similarity SA is not unique, it depends on the fuzzy set A.

3 Logical approaches to formalize fuzzy similarity-based
reasoning

From a logical point of view, two different paths of research are upheld according to take as
primitive notion either a similarity relation between worlds (models), which is then used to define
approximate semantical entailments, or a similarity relation between formulas, which is then used
to define a notion of approximate (syntactical) proof, by allowing a partial matching mechanism
in the inference steps.

In the following, we mention works related to each approach:

• Ruspini presents in [Rus91] “a semantic characterisation of the major concepts and con-
structs of fuzzy logic in terms of notions of similarity, closeness, and proximity between
possible states (worlds) of a system that is being reasoned about”. Following Ruspini’s
conception, a family of entailments has been proposed and applied to Case-Based and In-
terpolative Reasoning ([DEG+95, DEG+97, DEG+98]). In those works, the characterisation
of entailments are strictly semantic. Ruspini’s perspective is intrinsically modal, although
he never produced a full-fledged modal logical framework. However, this gap may be easily
overcome by considering a definition of truthlikeness based on similarity measures between
worlds and used as accessibility relations in a Kripke’s semantics.

• Ming-Sheng Ying presents in [Yin94] “...a propositional calculus in which the truth values
of sentences are true or false exactly, but the reasoning may be approximate by allowing the
antecedent of a rule to match its premise only approximately”. Thus, he wants to give a
notion of an approximate proof like one of approximate calculus in, for example, resolution
of systems of equations. In [BG98] the authors generalise Ying’s proposal and reduce it to a
fuzzy logic in the Hilbert style as defined by Pavelka in [Pav79].

Besides these logical-oriented developments, other more fuzzy set based approaches to model
patterns of similarity-based reasoning have been developed. For instance, Klawonn et al. have de-
veloped interpolation methods to obtain fuzzy control functions which are modelled by similarity
relations between terms ([KK93, Kla94, Kla95, KC95, KGK95, KN96]). The notion of extensional-
ity appears as fundamental in their investigations. Independently, Boixader and Jacas [BJ98] have
proposed models of approximate reasoning through the same concept of extensionality with respect
to a natural ⊗-indistinguishability operator. They consider the degree of indistinguishability be-
tween fuzzy sets as a formal measure of its degree of similarity. Although of different nature, it is
also worth mentioning Hüllermeier’s probabilistic framework for similarity-based inference [Hül01]
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where he provides a formal model (called similarity profile) of the principle that “similar causes
bring about similar effects” which underlies most approaches to similarity-based reasoning and
based on a probabilistic characterization of the similarity between observed causes.

In the rest of the paper we overview the above two kinds of logical approaches and related
issues.

4 Fuzzy similarity and approximate proofs

Following [Yin94], [BGY00] and [Ses02], the idea is to consider inferences that may be approxi-
mated by allowing the antecedent clauses of a rule to match its premises only approximately. In
particular, the classical SLD Resolution is modified in order to overcome failure situations in the
unification process if the entities involved in the matching have a non-zero similarity degree. Such
a procedure allows us to compute numeric values belonging to the interval [0,1], named approxima-
tion degrees, which provide an approximation measure of the obtained solutions. This framework,
which we shall call Similarity Propositional Logic Programming (SPLP), is the propositional ver-
sion of that one proposed by Sessa in [Ses02] which is based upon a first order language. In [GS99b]
we find the first proposal to introduce similarity in the frame of the declarative paradigm of Logic
Programming. Logic programs on function-free languages are considered and approximate and
imprecise information are represented by introducing a similarity relation between constant and
predicate symbols. Two transformation techniques of logic programs are defined. In the under-
lying logic, the inference rule (Resolution rule) as well as the usual crisp representation of the
considered universe are not modified. It allows to avoid both the introduction of weights on the
clauses, and the use of fuzzy sets as elements of the language. The semantic equivalence between
the two inference processes associated to the two kinds of transformed programs has been proved
by using an abstract interpretation technique. Moreover, the notion of fuzzy least Herbrand model
has been introduced. In [Ses01] the generalization of this approach to the case of programs with
function symbols is provided by introducing the general notion of structural translation of lan-
guages. In [Ses02] the operational counterpart of this extension is faced by introducing a modified
SLD Resolution procedure which allows us to perform these kinds of extended computations ex-
ploiting the original logic program, without any preprocessing steps in order to transform the given
program. Some relations, which allow to state the computational equivalence between these dif-
ferent approaches, has been proved. Finally, for completeness sake, we also cite [FGS00] where a
first and different (it takes into account substitutions of variable with sets of symbols) generalized
unification algorithm based on similarity has been proposed.

Suppose, as it is the case in [Yin94, BG98, BGY00], that the starting point is a similarity
relation S (reflexive, symmetric and min-transitive relation) defined on the set Var of propositional
variables. A first problem is how to extend the similarity S over Var to a similarity over a
propositional language L built from Var . In Ying and Gerla’s papers the extension is done in two
steps:

(1) First S is extended to S on L by the following recursive definition,

S(p, q) =

 S(p, q), if p, q ∈ Var
S(s, s′) ∧ S(t, t′), if p = s→ t and q = s′ → t′

0, otherwise

Notice that S is not compatible with the logical equivalence. Take, for example, F → p ≡
p→ p for every p ∈ Var and a simple computation shows that S(F → p, p→ p) = 0.

(2) Second they define what is proved to be the minimal similarity relation Se over L compatible
with logical equivalence and containing S, as:

Se(p, q) =
sup{S(p1, p2) ∧ . . . ∧ S(p2n−1, p2n) | p1 = p, p2n = q and p2k ≡ p2k+1 for k = 1, n− 1}.

The main problem arising from this definition is that it is not evident how to practically compute
the relation Se. Moreover the following results can be proved:
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(i) There does not exist a functional extension of S compatible with logical equivalence.

(ii) Any similarity relation preserving logical equivalence defines a similarity relation between
classes of logical equivalent formulas and thus a similarity relation between subsets of in-
terpretations, i. e. subsets of Ω. Take into account that, in the finite case, there exists an
isomorphism between propositions and subsets of interpretations. Moreover any similarity
relation over the set of subsets of Ω defines a similarity relation over L compatible with logical
equivalence.

(iii) Relations Se obtained from a similarity relation S over the set Var by Ying-Gerla’s method
do not cover all similarity relations compatible with logical equivalence. For example, if
Se(p, q) = α 6= 0, then Se(p, p ∧ q) ≥ min(S(p, p),S(p ∧ p, p ∧ q)) = α and this is not
necessarily true in a similarity relation compatible with logical equivalence.

Based on Se, in [BG98] the authors define a consequence operator, Cone : F (L)×L→ [0, 1], F (L)
being the set of fuzzy subsets of L, by

Cone(Γ, q) =
∨
{Se(Taut ∪ Γ, B) | B ` q}

where Taut denotes the set of classical tautologies and Se is defined as,

Se(Γ, B) =
∧
q∈B

∨
p∈L

Γ(p) ∧ Se(p, q)

for all Γ ∈ F (L), B ⊆ L and p, q ∈ L. The relation Se is not symmetrical, it may be interpreted
as the degree in which B can be considered included in Γ. In fact, if Γ is a crisp set of formulas,
then Se(Γ, B) = 1 whenever B ⊆ Γ. An easy computation shows that a form of generalized Modus
ponens is preserved by this consequence operator, since the inequality

Cone({p→ q, p′}, q) ≥ Se(p, p′)

holds for any propositions p, q and p′.
In the rest of this section we briefly describe an application of these ideas in the framework

of logic programming developed in [GS99b, Ses02, FGS00]. For simplicity we only consider below
the propositional version. We start by recalling that a logic program P on L is a conjunction of
definite clauses of L, denoted as q ← p1, . . . , pn, n ≥ 0, and a goal is a negative clause, denoted
with← q1, . . . , qn, n ≥ 1, where the symbol “,” that separates the propositional variables has to be
interpreted as conjunction, where p1, . . . , pn, q, q1, . . . , qn ∈ Var . A SPLP-program is a pair (P , S),
where P is a logic program defined on L and S is a similarity on Var . Given P , the least Herbrand
model of P is given by MP = {p ∈ Var | P � p}, where � denotes classical logical entailment.
MP is equivalent to the corresponding procedural semantics of P , defined by considering the SLD
Resolution. In the classical case, a mismatch between two propositional constant names causes a
failure of the unification process. Then, it is rather natural to admit a more flexible unification in
which the syntactical identity is substituted by a Similarity S defined on Var . The modified version
of the SLD Resolution, which we shall call Similarity-based SLD Resolution, exploits this simple
variation in the unification process. The basic idea of this procedure for first order languages has
been outlined in [GS99a]. The following definitions formalize these ideas in the case of propositional
languages.

Definition 1 Let S : Var × Var → [0, 1] be a similarity and p, q ∈ Var be two propositional
constants in a propositional language L. We define the unification-degree of p and q with respect
to S the value S(p, q). p and q are λ-unifiable if S(p, q) = λ with λ > 0, otherwise we say that
they are not unifiable.

Definition 2 Given a similarity S : Var ×Var → [0, 1], a program P and a goal G0, a similarity-
based SLD derivation of P ∪ {G0}, denoted by G0 ⇒C1,α1 G1 ⇒ · · · ⇒Ck,αk

Gk, consists of
a sequence G0, G1, . . . , Gk of negative clauses, together with a sequence C1, C2, . . . , Ck of clauses
from P and a sequence α1, α2, . . . , αk of values in [0,1], such that for all i ∈ {1, . . . , k}, Gi is a
resolvent of Gi−1 and Ci with unification degree αi. The approximation degree of the derivation
is α = inf{α1, . . . , αk}. If Gk is the empty clause ⊥, for some finite k, the derivation is called a
Similarity-based SLD refutation, otherwise it is called failed.
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It is easy to see that when the similarity S is the identity, the previous definition provides the
classical notion of SLD refutation. The values αi can be considered as constraints that allow the
success of the unification processes. Then, it is natural to consider the best unification degree that
allows us to satisfy all these constraints. In general, an answer can be obtained with different SLD
refutations and different approximation degrees, then the maximum α of these values characterizes
the best refutations of the goal. In particular, a refutation with approximation-degree 1 provides
an exact solution. Let us stress that α belongs to the set λ1, λ2, . . . of the possible similarity values
in S.

In the sequel, we assume the leftmost selection rule whenever Similarity-based SLD Resolution
is considered. However, all the presented results can be analogously stated for any selection rule
that does not depend on the propositional constant names and on the history of the derivation
[Apt90]. Similarity-based SLD Resolution provides a characterization of the fuzzy least Herbrand
model MP,S for (P , S) defined in [GS99b], as stated by the following result.

Proposition 1 Let a similarity S and a logic program P (on a propositional language L) be given.
For any q ∈ Var, MP,S(q) = α > 0 iff α is the maximum value in (0,1] for which there exists a
Similarity-based SLD refutation for P ∪ {← q} with approximation degree α.

Intuitively, the degree of membership MP,S(q) of an atom q is given by the best “tolerance” level
α ∈ (0, 1] which allows us to prove q exploiting the Similarity-based SLD Resolution on P ∪{← q}.
Moreover, if S is strict and MP denotes the classical least Herbrand Model of the program P , then
q ∈MP iff MP,S(q) = 1.

5 Fuzzy similarity and approximate entailments

The starting point in the semantical approaches is to assume that a possible world or state of a
system may resemble more to some worlds than to another ones, and this basic fact may help us
to evaluate to what extent a partial description (a proposition) may be close or similar to some
other.

Under this perspective, an epistemic (in the sense of similarity) state may be modelled by a set
of propositions K, modelling the factual information about the world, together with a similarity
relation S : W × W → [0, 1] on the set of possible worlds W for some classical propositional
language, modelling how similar or close are worlds among them. Dually, one can think of δ = 1−S
as a kind of metric on worlds.

Then, using classical reasoning we may know what are the consequences we can infer from K,
i. e. those propositions p which logically follow from K, but we can also be interested in those
propositions which are approximate consequences of K, in the sense that they are close to some
other proposition which is indeed a classical consequence of K.

Since in classical logic we can identify propositions with sets of worlds (in a finitary setting),
the above problem reduces to how do we extend the similarity S between worlds to a measure of
similarity between sets of worlds. And as well-known, a metric between points does not univocally
extend to a meaningful metric between sets of points.

A first consideration is that such a metric has not to be necessarily symmetric, in fact, the
logical consequence relation is related to the subsethood relation on sets of worlds (K |= p iff
[K] ⊆ [p]), not on the equality relation. So, when trying to evaluate to what extent a proposition
p is an approximate consequence of K, one is led to measure to what extent the set of K-worlds
are close to be included into the set of p-worlds, and not the other way round. In this direction,
Ruspini defined the two measures

IS(p | q) = inf
ω|=q

sup
ω′|=p

S(ω, ω′) and CS(p | q) = sup
ω|=q

sup
ω′|=p

S(ω, ω′)

which are the lower and upper bounds respectively of the resemblance or proximity degree between
p and q. Indeed, IS is an implication (i.e. inclusion-like) measure, while CS is a consistency (i.e.
intersection-like) measure.

With these measures, he wants to capture inference patterns like so-called generalised modus
ponens. The value of IS(p | q) provides the measure of what extent p is close to be true given q for
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granted and the similarity between worlds represented by S. In particular, when S is separating
and the set of worlds is finite then, IS(p | q) = 1 iff q |= p. Moreover, if S is ⊗-transitive, for a
t-norm ⊗, then IS is ⊗-transitive as well [Rus91], i. e. the inequality

IS(r | p)⊗ IS(p | q) ≤ IS(r | q)

holds for any propositions p, q and r. This property can be seen as a kind of generalized resolution
rule

from: IS(r | p) ≥ α and IS(p | q) ≥ β
infer: IS(r | q) ≥ α⊗ β.

if one interprets IS(ϕ | ψ) as the truthlike degree of a (non-material) conditional “if ψ
then ϕ”. On the other hand, if we keep the conditioning part fixed, IS fails to cast a generalized
pattern of modus ponens of the following kind, given some proposition K:

from: IS(p→ q | K) ≥ α > 0 and IS(p | K) ≥ β > 0
infer: IS(q | K) ≥ α⊗ β > 0.

Indeed, one can easily produce a counter-example in which we may have IS(p → q | K) =
IS(p | K) ≥ α, with 0 < α < 1 and α arbitrarily close to 1, but IS(q | K) = 0. For instance
consider L generated by only two propositional variables p and q, hence with only four interpre-
tations Ω = {w1 (= p ∧ q), w2 (= p ∧ ¬q), w3 (= ¬p ∧ q), w4 (= ¬p ∧ ¬q)}, and let S be such that
S(wi, wi) = 1, S(w2, w4) = S(w4, w2) = α, and S(wi, wj) = 0 otherwise. If we take K = {p ∧ ¬q},
then it is easy to check that IS(p→ q | K) = α and IS(p | K) = 1, but IS(q | K) = 0.

On the other hand, the value of CS(p | q) provides the measure of what extent p can be
considered compatible with the available knowledge q. In particular, in the finite case and with
S satisfying separation property, CS(p | q) = 1 iff q 6|= ¬p. Observe that, when the propositional
language is finitely generated and q is equivalent to a maximal consistent set of propositions, both
measures coincide because there is a unique world w such that w |= q3. In addition, it is easy
to show that, given a fixed r, the measure CS(· | r) is a possibility measure [DLP94] since the
following identities hold true:

1. CS(> | r) = 1

2. CS(⊥ | r) = 0

3. CS(p ∨ q | r) = max(CS(p | r), CS(q | r)).

Therefore, we also have CS(p | r) = max{CS(p ∧ q | r), CS(p ∧ ¬q | r)}. In particular, when
CS(p∧ q | r) > CS(p∧¬q | r), it results that CS(p | r) = CS(p∧ q | r). This can be interpreted as:
the p ∧ q-worlds are closer (consistent) to the known r-worlds than the p ∧ ¬q-worlds are. In this
context, the term “closer” is used in the sense of “more similar”. We return to this consideration
in Subsection 7.1.

Based on the IS and CS measures, a first logical system was introduced in [EGG94] where IS and
CS were used as lower and upper bounds for the truthlikeness degree with which a proposition can
be entailed in a given similarity-based epistemic state (K,S). Namely, formulas in this framework
are pairs of the form (p, [α, β]), with α ≤ β are from the unit interval [0, 1]. Then we define

(K,S) |= (p, [α, β]) iff IS(p | K) ≥ α and CS(p | K) ≤ β .

Here we shall go a bit further in this framework along this notion of logical entailment. If we
fix the similarity S, the above satisfaction relation can be extended to a consequence relation in
the usual way. Let Γ = {(qi, [αi, βi])}i∈I be a set of graded formulas, and say that (K,S) satisfies
Γ, written (K,S) |= Γ, when (K,S) |= (qi, [αi, βi]) for each i ∈ I. Then we define

Γ |=S (p, [α, β]) iff for each K, (K,S) |= (p, [α, β]) whenever (K,S) |= Γ .

Analogously to classical logic, this notion of logical consequence can be reduced to involving only
worlds. Indeed, if for each proposition p and each world w we define I(p | w) = sup{S(w′, w) |
w′ |= p}, then it can be shown that

3By an abuse of notation, in this case we will also write IS(p | w) or CS(p | w).
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Γ |=S (p, [α, β]) iff for each w, w |=S (p, [α, β]) whenever w |=S Γ,

where w |=S (p, [α, β]) iff α ≤ IS(p | w) ≤ β, and w |=S Γ iff w |=S (qi, [αi, βi]) for each
(qi, [αi, βi]) ∈ Γ.

Of particular interest are formulas of the kind (p, [α, 1]) referring only to lower bounds for IS ,
which seem to be more relevant for our purposes. In such a case we can just write (p, α). For this
subset of formulas one can define a consequence operator similar to the one defined by Biacino and
Gerla for fuzzy sets of formulas. Indeed, a set of graded formulas Γ = {(qi, αi)}i∈I can be seen as
a fuzzy set of classical formulas with membership function

Γ(q) =
{
αi, if q = qi
0, otherwise .

Then one can define a consequence operator CS based on S such that, for every fuzzy set of formulas
Γ, CS(Γ) is the fuzzy set of approximate consequences of Γ with the following membership function:

CS(Γ)(p) = sup{α | Γ |=S (p, α)},

for any proposition p.

Lemma 1 CS(Γ)(p) = min{IS(p | w) | w |=S Γ}.

In fact, one can show that, for any S, CS is a fuzzy consequence operator since it verifies:

(i) Γ ≤ CS(Γ)

(ii) if Γ ≤ Γ′ then CS(Γ) ≤ CS(Γ′)

(iii) CS(CS(Γ)) = CS(Γ)

The closure property (iii) is a direct consequence from the above lemma and of the fact that, for
any world w, w |=S Γ iff w |=S C(Γ). When Γ is not a fuzzy but a crisp set of formulas, then it is
easy to check that one has

CS(Γ)(p) = IS(p | ∧{q | q ∈ Γ}).

Another way of looking at the above similarity-based consequence operator is by means of a
notion of approximate entailment. Given a ∗-similarity relation S on the set W of classical inter-
pretations of a propositional language, one starts by defining a (graded) approximate satisfaction
relation |=α

S , for each α ∈ [0, 1] by

ω |=α
S p iff there exists a model ω′ of p

which is α-similar to ω, i. e. S(ω, ω′) ≥ α

If ω |=α
S p we say that w is an approximate model (at level α) of p. The approximate satisfaction

relation can be extended over to an approximate entailment relation in the following way: a propo-
sition p entails a proposition q at degree α, written p |=α q, if each model of p is an approximate
model of q at level α, that is,

p |=α
S q holds iff w |=α

S q for all model w of p, i. e. iff I(q | p) ≥ α

p |=α
S q means “p entails q, approximately” and α is a level of strength. The properties of this

graded entailment relation are:

(1) Nestedness: if p |=α q and β ≤ α then p |=β q;
(2) ⊗-Transitivity: if p |=α r and r |=β q then p |=α⊗β q;
(3) Reflexivity: p |=1 p;
(4) Right weakening: if p |=α q and q |= r then p |=α r;
(5) Left strengthening: if p |= r and r |=α q then p |=α q;
(6) Left OR: p ∨ r |=α q iff p |=α q and r |=α q;
(7) Right OR: if r has a single model, r |=α p ∨ q iff r |=α p or r |=α q.

The fourth and fifth properties are consequences of the transitivity property (since q |= r entails
q |=1 r) and express a form of monotonicity. The transitivity property is weaker than usual and the
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graceful degradation of the strength of entailment it expresses, when ⊗ 6= min, is rather natural.
It must be noticed that |=α does not satisfy the Right And property, i. e. from p |=α q and p |=α r
it does not follow in general that p |=α q ∧ r. Hence the set of approximate consequences of p in
the sense of |=α will not be deductively closed. The left OR shows how disjunctive information is
handled, while the right OR reflects the decomposability of the approximate satisfaction relation
with respect to the ∨ connective.

In the case where some (imprecise) knowledge about the world is known and described under
the form of some proposition K (i.e. the actual world is in the set of worlds satisfying K), then
an approximate entailment relative to K can be straightforwardly defined as

p |=α
S,K q iff p ∧K |=α

S q iff IS(q | p ∧K) ≥ α

See [DEG+97] for more details and properties of this derived notion of relative entailment.
The above approximate satisfaction relation w |=α

S p can be also extended over another entail-
ment relation |≡S among propositions as follows: p |≡α

Sq holds whenever each approximate model
of p at a given level β is also an approximate model of q but at a possibly lower level α ⊗ β.
Formally:

p |≡α
Sq holds iff for each w, w |=β

S p implies w |=α⊗β
S q

Now, p |≡α
Sq means “approximately-p entails approximately-q” and α is a level of strength, or in

other words, when worlds in the vicinity of p-worlds are also in the vicinity (but possibly a bit
farther) of q-worlds. This notion of entailment, called proximity entailment in [DEG+97], also
admits a characterization in terms of another similarity-based measure

JS(q | q) = inf
w
IS(p | w)⇒ IS(q | w)

where ⇒ is the residuum of the (left-continuous) t-norm ⊗ and IS(p | w) = supw′|=p S(w,w′).
Indeed, one can easily check that p |≡α

Sq holds iff JS(q | p) ≥ α. This notion of approximate
entailment relation can be easily made relative to a context, described by a set of propositions K
we know for sure to hold, sometimes called background knowledge, by defining

p |≡α
S,Kq holds iff for each w model of K, w |=β

S p implies w |=α⊗β
S q

One can analogously characterize this entailment by a generalized measure JS,K , namely it holds
that p |≡α

KS
q iff JK,S(q | p) ≥ α, where JK,S(q | q) = infw:w|=K IS(p | w)⇒ IS(q | w).

The entailment |≡α
K satisfies similar properties to those satisfied by |=α. Characterizations of

both similarity-based graded entailments in terms of these properties are given in [DEG+97]. It is
also shown there that |≡α and |=α actually coincide, i. e. when there is no background knowledge
K, or equivalently when K is a tautology. However, when K is not a tautology, |=α is generally
stronger than |≡α

K .

6 Modal and conditional logic accounts of the similarity-
based entailments

In the notions of approximate entailments described in the previous section, the key presence of a
similarity relation on the set of interpretations strongly suggests a modal logic setting for similarity-
based reasoning. Indeed, modal logic has always received a lot of attention from logicians and
after the publication of Kripke’s semantics ([Kri59a, Kri59b]), the notion of possible worlds and
of accessibility relation has been inseparably associated with modal logic. For instance, taking
classical propositional logic interpretations as possible worlds, each level cut Sα of the (fuzzy)
similarity relation S defines an accessibility relation: (w,w′) ∈ Sα if S(w,w′) ≥ α. Therefore it
makes sense to consider a modal approach to similarity-based reasoning based on Kripke structures
of the form

M = (W,S, e),

where W is a set of possible worlds, S : W×W → [0, 1] a similarity relation between worlds, and e a
classical two-valued truth assignment of propositional variables in each world e : W×Var → {0, 1}.
Then, for each α ∈ [0, 1] one can consider the accessibility relation Sα on W , which gives meaning
to a pair of dual possibility and necessity modal operators 3α and 2α:
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(M,w) |= 3αϕ if there is w′ ∈W such that (w,w′) ∈ Sα and (M,w′) |= ϕ.

This defines in fact, a multi-modal logical framework (with as many modalities as level cuts in the
similarity relations). Such a multimodal logic setting is systematically developed by Esteva et al.
[EGGR97] and will be reviewed in Section 6.1.

Note that, if W is the set of classical interpretations of a propositional language L, then the
above notion of modal satisfiability for the possibility operators 3α captures precisely the notion of
approximate satisfiability considered in Section 5, in the sense that, for any p ∈ L, (M,w) |= 3αp
holds iff w |=α

S p holds. Moreover, the approximate entailments p |=α
S q can also be captured by

the formula
p→ 3αq,

in the sense that p |=α
S q holds iff M |= p → 3αq, i.e. iff p → 3αq is valid in M = (W,S, e). As

for the proximity entailments |≡α, recall that p |≡α
Kq holds iff for all w model of K and for all

β, w |=β p implies w |=α⊗β q. Therefore, it cannot be represented in the multi-modal framework
unless the similarity relations are forced to have a fixed, predefined set of finitely-many different
levels, say G ⊂ [0, 1]. In that case, the validity of the formula

K → (
∧

β∈G

3αp→ 3α⊗βq)

in the model (W,S, e) is equivalent to the entailment p |≡α
S,Kq. Obviously, when C is not finite,

this representation is not suitable any longer.
Partly due to these difficulties, an alternative approach developed in [Rod02] is to consider

a graded conditional logic, where each (approximate and proximity) entailment is directly
represented in the object language by a family of binary operators indexed by degrees. Indeed, the
idea is to introduce in the language graded binary modalities >α and �α, for each α ∈ G, with
the following semantics: given a similarity Kripke model M = (W,S, e), the following satisfiability
conditions are defined:

(M,w) |= ϕ >α ψ iff for all w′ ∈W , (W,w′) |= ϕ implies (W,w′′) |= ψ
for some w′′ s.t. S(w′, w′′) ≥ α

(M,w) |= ϕ�α ψ iff for each β, (W,w′) |= ϕ for some w′ s.t. S(w,w) ≥ β implies
(W,w′′) |= ψ for some w′′ s.t. S(w,w′′) ≥ α⊗ β

Note that the first condition is actually independent from the world w, it is thus a global
condition which is indeed equivalent to the validity in M of ϕ→ 3αψ in the previous multi-modal
framework, and hence to the validity of the approximate entailment ϕ |=α

S ψ (when ϕ and ψ are
non modal). The second condition is indeed local, and it is easy to check that the condition of
ϕ �α ψ being valid in M is indeed captures the proximity entailment ϕ |≡α

ψ. The technical
details of this graded conditional approach will be described in Section 6.2.

In both the graded modal and conditional logical frameworks, the following classes of models
will be considered:

Σ0 = {M = (W,S, e) | S is a fuzzy relation },
Σ1 = {M = (W,S, e) | S is a serial fuzzy relation },
Σ2 = {M = (W,S, e) | S is a reflexive fuzzy relation },
Σ3 = {M = (W,S, e) | S is a reflexive and symmetric fuzzy relation },
Σ4 = {M = (W,S, e) | S is a reflexive and ⊗-transitivity fuzzy relation },
Σ⊗ = {M = (W,S, e) | S is a ⊗-similarity relation }.

where we assume the fuzzy relations to take values on some given countable C ⊂ [0, 1],
i. e. S : W × W → C, and in the class Σ⊗ we are also assuming that the t-norm ⊗ is closed
on C. Furthermore, the notations Σ∗

i and Σif will be used to denote the subclasses of Σi

(i ∈ {1, 2, 3, 4,⊗}) where the fuzzy relation is separating as well, and where the set of worlds is
finite, respectively. As it is obvious, we have that Σ0 ⊇ Σ1 ⊇ Σ2 ⊇ Σ3,Σ4 ⊇ Σ⊗ and therefore,
their corresponding sets of valid formulas satisfy the inverse inclusion.

Yet another line of modeling, alternative to the two above multi-modal frameworks, has been
proposed in the literature. It consists in understanding the grades of the modal and conditional
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operators as truth-values of some related syntactic many-valued objects. For instance, if p is
a proposition, one can consider another (fuzzy) proposition 3p, read as “approximately p” and,
given a similarity Kripke frame (W,S), define the truth-value of 3p in a world w as the value
e(w,3p) = IS(p | w) ∈ [0, 1], i. e. the greatest α for which (M,w) |= 3αp. Then one can use a
suitable t-norm based fuzzy logic [Haj98, GH05], like Gödel or  Lukasiewicz logics, expanded with
truth-constants [EGGN07] as base logic to reason about the modalities. In such a framework, the
evaluation e(w,α→ 3p) of a formula of the form α→ 3p, where α is a truth-constant representing
the value α and→ is interpreted as the residuum of a t-norm, takes value 1 iff e(w,3p) ≥ α. Hence,
the 1-validity of α→ 3p in (W,S) is again equivalent to the validity of 3αp.

Analogously, one may introduce (fuzzy) modalities > and� in such a way that the truth values
of p > q and p � q in a world w ∈ W be e(w, p > q) = IS(q | p) and e(w, p � q) = JS,w(q | q).
These approaches, fully developed in [Rod02], are recalled in Sections 6.3 and 6.4 respectively.

In what follows we will use the special symbol MS to denote the similarity Kripke model
(Ω, S, e) where Ω is the set of all boolean interpretations of L, S : Ω×Ω→ C ⊂ [0, 1] is a similarity
relation (of some of the above types), and e : Ω×Var → {0, 1} is the truth-evaluations of variables
naturally induced by the elements of Ω, i. e. e(w, p) = w(p) for any w ∈ Ω and any propositional
variable p.

6.1 Multi-modal logic approach

The use of graded modalities is a very well known tool in Philosophy and Computer Science.
Several authors, for instance Goble [Glo70], Fine [Fin72], Fattorosi-Barnaba and De Caro [FD85],
provide graded modal operators 2n (with n ∈ N) interpreted as “there are more than (or at
least) n accessible worlds such that...”. Graded languages with this interpretation were applied to
the areas of epistemic logic [HM92] and of generalised quantifiers [HR91]. Here, the conceptual
framework and technical features are very different.

A general formalization of the similarity-based graded modal logic, as proposed in [EGGR97],
can be summarized as follows:

• Modal Language: The new language L is built over L by adding modal operators 3c
α and

3o
α for every rational α ∈ C, where {0, 1} ⊆ C ⊆ [0, 1].

• Formulae: They are built from a set V (not necessarily finite) of propositional variables using
the classical binary connectives ∧, ∨ and→, and the unary operators ¬, 3c

α and 3o
α for every

rational α ∈ C, in the usual way.

• Satisfiability: Let M = (W,S, e), ω ∈W and ϕ be a formula of L. Then, we define:

(M,ω) |= 3c
αϕ if IS(ϕ | ω) ≥ α,

(M,ω) |= 3o
αϕ if IS(ϕ | ω) > α.

The rest of the conditions are the usual ones. Note that this notion of satisfiability
needs a definition of implication measure for modal formulas since the definition given
above is only valid for non modal formulas. Nevertheless, the implication measure for modal
formulas ϕ is defined as a natural extension in the following way,

IS(ϕ | ω) = sup{S(ω, ω′) | (M, ω′) |= ϕ}.

we shall also introduce the corresponding family of dual modal operators 2c
α and 2o

α as
¬3c

α¬ and ¬3o
α¬ respectively, and whose satisfiability conditions are:

(M,ω) |= 2c
αϕ if IS(¬ϕ | ω) < α,

(M,ω) |= 2o
αϕ if IS(¬ϕ | ω) ≤ α.

It is easy to see that whenever W is finite, 3c
α and 2c

α have the usual Kripke seman-
tics with respect to the accessibility relation Sc

α defined as

ωSc
αω

′ iff S(ω, ω′) ≥ α.

In contrast, the strict cuts So
α of S, i.e. ωSo

αω
′ iff S(ω, ω′) > α, always provide the modal

operators 3o
α and 2o

α with the usual Kripke semantics, even when W is not finite.
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• Axioms: For the axiomatic characterization of the different multi-modal systems, let us con-
sider the following schemes, where, as usual, C denotes the range of the fuzzy relations and
it is assumed to be of the form {0, 1} ⊆ C ⊆ [0, 1] and closed with respect to the operation ⊗:

Kc: 2c
α(ϕ→ ψ)→ (2c

αϕ→ 2c
αψ), ∀α ∈ C

Ko: 2o
α(ϕ→ ψ)→ (2o

αϕ→ 2o
αψ), ∀α ∈ C

D: 2c
1ϕ→ 3c

1ϕ
T c: 2c

αϕ→ ϕ, ∀α ∈ C
T o: 2o

αϕ→ ϕ, for α < 1
Cc: ϕ→ 2c

1ϕ
Bc: ϕ→ 2c

α3c
αϕ, for α > 0

Bo: ϕ→ 2o
α3o

αϕ, ∀α ∈ C
4c: 2c

α⊗βϕ→ 2c
β2c

αϕ, ∀α, β ∈ C
4o: 2o

α⊗βϕ→ 2o
β2o

αϕ, ∀α, β ∈ C
N c: 2c

αϕ→ 2c
βϕ, for β ≥ α,

No: 2o
αϕ→ 2o

βϕ, for β ≥ α
EXc: 3c

0ϕ,
EXo: ¬3o

1ϕ,
CO: 2c

αϕ→ 2o
αϕ, ∀α ∈ C

OC: 2o
αϕ→ 2c

βϕ, for α < β,

and the following inference rules

MP : From ϕ and ϕ→ ψ infer ψ.
RN c: From ϕ infer 2c

αϕ, for α > 0.
RNo: From ϕ infer 2o

αϕ, ∀α ∈ C.

• Completeness: The following completeness results, where PL stands for propositional tau-
tologies, have been proved in [EGGR97]:

– The axiom system MS5(C, ⊗)++ = PL + Kc + Ko + CO + OC + EXc + EXo+
T c + Bo + Bc + 4o + 4c + Cc is complete with respect to the subclass of finite models
of Σ∗

⊗ when C is a dense and denumerable and ⊗ = min.
– If C is finite, then the axiom system MS5(C, ⊗)+ consisting of PL, Kc, Bc, 4c,
Cc, N c, EXc, plus MP and RN c is complete with respect to the class of models Σ∗

⊗,
for any t-norm ⊗. In this case we shall see that the open and closed modalities are
interdefinable, and the resulting modal system can be simplified.

– If we remove axiom Cc from the system MS5(C, ⊗)++ we get a complete system with
respect to the subclass of models Σ⊗f when C is dense and denumerable and ⊗ = min.

– If C is finite and we remove axiom Cc from the system MS5(C, ⊗)+ we get a complete
system with respect to Σ⊗.

– If C is finite and we remove axiom 4c (+ Cc resp.) from the system MS5(C, ⊗)+ we
get a complete system with respect to Σ∗

2 (with respect to Σ2 resp.).

Once the presentation of the logics is done, we are able to formally claim that the basic similarity-
based graded consequence relation proposed in [DEG+95] is fully captured inside these multi-modal
systems. Namely, given a similarity relation S on the set of interpretations Ω of a propositional
language L, if p and q are non-modal formulas, then we have that the approximate entailment
corresponds to

p |=α
S q iff MS |= p→ 3c

αq.

If C is finite, then proximity entailments can be captured as well:

p |≡α
S,Kq iff MS |= K →

∧
β∈C

(3c
βp→ 3c

β⊗αq).

Finally, we briefly describe some modal systems in the literature which are close to the above
mentioned ones:
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• In [LL92, LL95] Liau and Lin define a multi-modal system like the one presented here.
One goal of that paper is the relationship of their modal system with possibilistic logic and
therefore they consider models such that the relation R only satisfies the so-called serial
property, i. e. for all ω ∈ W , supω′∈W R(ω, ω′) = 1. Obviously this property is weaker than
reflexivity, but to model truthlikeness does not seem meaningful to consider serial relations
which are not reflexive, since in that case the corresponding mapping might be such that the
approximation p∗ of a proposition p would not contain the set [p] of interpretations of p. In
their works, Liau and Lin propose a Quantitative modal logic (QML) with C = [0, 1] and
prove the following completeness results:

– The axiom system SK consisting of PL, Kc, Ko, CO, OC, EXc, EXo, together with
the MP and RNo inference rules is complete with respect to the class of models Σ0.

– The axiom system SKD = SK + D is complete with respect to the class of models Σ1.

– The axiom system SKT = SK + T c is complete with respect to the class of models Σ2.

• In a very interesting work, Suzuki [Suz97] proposes a more general semantics by considering
a partial fuzzy accessibility function instead of a total fuzzy function, as it is the case with
our fuzzy similarity relations. He also describes almost all families of modal systems that
we considered above. But, he only gives a logic of similarity relations when they are min-
transitive. Besides, he only establishes completeness results for the cases that the range of
the partial fuzzy function is an arbitrary finite subset of [0, 1]. Moreover, strong completeness
is not available in the general case. However, we think this work is important because some
other general results which are natural extensions of well-known ones in classical modal logic,
are presented in his work, as for instance, the definition of F -filtration, Craig’s interpolation
theorem, etc.

• Finally, another similar logic is proposed in [CF92]. The logic is called lattice-based graded
logic and contains modal operators 2α which are formed for all α from a finite lattice structure
instead of the countable set C considered above where {0, 1} ⊆ C ⊆ [0, 1]. They adopt a
semantics which involves a family of accessibility relations Rα for each α in the lattice (also
called multi-relational model in [FH91]). In the finite case, when Rα’s are nested equivalence
relations, their semantics is equivalent to the one with min-transitive similarity relations.

6.2 Multi-conditional logic approach

The idea of the graded conditional logic approach is to encode in the language syntactical ob-
jects representing both approximate and proximity entailments p |=α q and p |≡α

q. To do so,
binary (graded) modal operators are introduced (under some restrictions, e. g. nested modal for-
mulas are not allowed, and the language is finitely generated) and given appropriate semantics in
terms of similarity Kripke structures. Following [Rod02], the main notions involved in the graded
conditional logical framework to model similarity-based reasoning can be summarized as follows:

• Conditional Language: The propositional language Lf generated from a finite set Var of
propositional variables is extended by two families {>α}α∈C and {�α}α∈C of binary opera-
tors, where {0, 1} ⊆ C ⊆ [0, 1].

• Conditional Formulae:

– If p is a propositional formula then it is also a conditional formula.

– If p and q are propositional formulas in Lf then for every α ∈ C : p >α q and p �α q
are conditional formulas.

– If ϕ and φ are conditional formulas then ϕ ◦ φ is a conditional formula, where ◦ ∈
{∧,∨,→}

– If ϕ is a conditional formula then ¬ϕ is a conditional formula.

Note that in this language, nested modal formulas are not allowed.
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• Satisfiability: Given a model M = (W,S, |=), a world ω ∈ W and formulas p and q of Lf ,
we define:

(M, ω) |= p >α q if IS(q | p) ≥ α,
(M, ω) |= p�α q if IS,ω̄(q | p) ≥ α,

where ω̄ is the maximal elementary conjunction4 corresponding to ω5. The rest of
the conditions are the usual ones. Note that the notion of satisfiability for >α is independent
of any particular world, i. e. it is a global notion. The last conditions of satisfiability make
clear that in the object language p >α q and p�α q represent lower bounds of IS(q | p) and
IS,ω̄(q | p) respectively.

• Axioms: The following schemes will be used to characterise the different classes of models
(Σi) above mentioned, where p and q are propositional formulas in Lf , and α and β represent
any element in the range C of fuzzy relations.

N : p >α q → p >β q if β ≤ α.
p�α q → p�β q if β ≤ α

CS: p >1 q → (p→ q).
p�1 q → (p→ q)

EX: p >0 q.
p�0 q

B: r >α r
′ → r′ >α r, if r and r′ are m.e.c.’s

4: (p >α q) ∧ (q >β r)→ p >α⊗β r
(p�α q) ∧ (q �β r)→ p�α⊗β r

LO: (p ∨ q >α r) ↔ (p >α r) ∧ (q >α r)
(p ∨ q �α r) ↔ (p�α r) ∧ (q �α r)

RO: (r >α p ∨ q) ↔ (r >α p) ∨ (r >α q), if r is a m.e.c.
(s�α p ∨ q) ↔ (s�α p) ∨ (s�α q)

and the following inference rules:

MP : From ϕ and ϕ→ ψ infer ψ
RK: From p1 ∧ · · · ∧ pn → q infer p1 ∧ · · · ∧ pn >α q

From p1 ∧ · · · ∧ pn → q infer p1 ∧ · · · ∧ pn �α q

• Completeness: The following completeness results have been proved [Rod02] for different
classes of models Σ in which the set W is fixed to the set of all boolean interpretations of Lf ,
for any t-norm ⊗ and range C. From now on, PL will stand for propositional tautologies.
Here, two kinds of logical systems: CSI and CSJ. In the first, the operators �α do not
appear and in the second, the operators >α are not used. We split the completeness results
for a CSI logic and for a CSJ logic.

– The approximate conditional system CSI(C,⊗) = PL+N+EX+LO+RO and closed
under MP and RK is complete with respect to Σ2f . Furthermore, it is possible to prove
completeness with respect to the subclasses of models Σ3f , Σ4f and Σ⊗f if we add to
CSI(C,⊗) the axioms B, 4 and both B and 4, respectively.

– The system CSI(C,⊗)+, the extension of CSI(C,⊗) with axiom CS, is complete with
respect to the subclass of models Σ∗

2f . Again, it is possible to extend this result of
completeness for the subclasses of models Σ∗

3f , Σ∗
4f and Σ∗

⊗f
by adding to CSI(C,⊗)+

the axioms B, 4 and both B and 4, respectively.
– The proximity conditional system CSJ(C,⊗) = PL + N + EX + LO + RO + 4 and

closed under MP and RK is complete with respect to Σ4f .
– The system CSJ(C,⊗)+, the extension of CSJ(C,⊗) with axiom CS, is complete with

respect to the subclass of models Σ∗
4f .

4A maximal elementary conjunction, m.e.c. for short, is a conjunction where each propositional variable in Var
appears either in positive or negative form (remember that we are assuming Var be finite).

5That is, the conjunction ω̄ =
V

pi∈Var :ω(pi)=1 pi ∧
V

pi∈Var :ω(pi)=0 ¬pi .
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Graded approximate and proximity entailments are captured in CSI(C,⊗) and CSJ(C,⊗) as
follows:

approximate entailment: p |=α
S,K q iff MS |= K → p >α q

proximity entailment: p |≡α
S,Kq iff MS |= K → p�α q

where MS is the similarity Kripke model over the set of all Boolean interpretations of the
finitely generated language Lf .

Regarding related work, let us mention that Liau [Lia98] defines what he calls residuated im-

plication operators α=⇒ and α+

=⇒ corresponding to �α and its strict counterpart, respectively. He
shows how to capture the approximate and proximity entailments proposed in [DEG+95] with these
implication operators. However, his considerations are purely semantical. Besides, his motivation
is very different because he aims at defining a logical system where quantitative and qualitative
uncertainty may be combined. According to this author, probabilistic, Dempster-Shafer and pos-
sibilistic theories are included in the first kind of uncertainty, and rough sets and nonmonotonic
theories belong to the second class. In fact, his residuated implication operators may be seen
as graded generalisations of qualitative possibility relations [Dub86]. We also mention that Liau
and Lin [LL96] define a logic for conditional possibility (LCP) based on Dempster’s conditional
rule, but LCP is able to model similarity-based entailment only when the similarity relation is
min-transitive. Besides, although an axiomatic system for LCP is exhibited in its appendix, com-
pleteness results are not established. They mention that their main difficulty in order to obtain a
completeness result lies in the infiniteness of the language. This problem is however different from
the above conditional logics: the need of considering a finite language was due to properly cope
with the Symmetry and Right-Or properties.

6.3 Many-valued modal logic approach

As already mentioned in the introduction of this section, a possibly more elegant way of formal-
ising similarity-based reasoning in a modal framework is to shift from a family of graded classical
modalities 3α (one for each α ∈ G) to a single many-valued modality 3. The idea is that, even if p
is a two-valued formula, 3p, to be read as approximately p, is a many-valued formula which takes
IS(p | w) = sup{S(w,w′) | (M,w′) |= p} as truth-value in a world w from a model M = (W,S, e),
i. e. such that e(w,3p) = IS(p | w). Therefore one needs to choose a suitable (t-norm based)
fuzzy logic as base logic to reason about the modal formulas. If one also wants to reason explicitly
with truthlikeness degrees, then the base fuzzy logic has to be expanded with truth constants, for
instance by adding a constant α for each α ∈ C. These expansions have been studied for instance
in [EGGN07] for the case of logics of continuous t-norms (thus including  Lukasiewicz, Gödel and
Product fuzzy logics).

However, with the above semantics, one would be led to define a language without nested modal
operators. If one wants to be as general as possible, one has to generalize the above semantics and
allow to deal with modal formulas of the form 3ϕ, where ϕ may be in turn a many-valued formula.
Indeed, there have been many attempts in the literature to mix many-valued (or fuzzy) and modal
logic semantics, obeying to very different motivations. These logics consider the fuzzification of
either the valuation function or the accessibility relation in the Kripke model (or both). A complete
analysis of all alternative semantics is provided by Thiele in [Thi93]. As it is reported there, there
are different ways to face with the problem of how the truth values of a formula p in two worlds ω
and ω′ can be combined with the “degree of accessibility” of ω′ from ω, expressed as the value of
a fuzzy relation R(ω, ω′).

Most of the alternatives have appeared as a direct generalisation of the classical definitions
of possibility and necessity. It is easy to see that the classical definitions are equivalent to the
following ones:

e(ω,3p) = supω′∈W R(ω, ω′) ∧ e(ω′, p)
e(ω,2p) = infω′∈W R(ω, ω′)⇒ e(ω′, p)

where the existential and universal quantifiers are interpreted by supremum and infimum
operators, respectively. When we shift from {0, 1}-valued to [0, 1]-valued evaluations e and
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accessibility relations R, following the tradition of fuzzy logics the and connective ∧ is usually
associated to a (left-continuous) t-norm (e. g. Gödel,  Lukasiewicz or Product), and the implication
connective ⇒ has is associated to its residuum (although other interpretations exist, see e. g.
[Yin88]).

This is the alternative taken by Fitting (see [Fit91, Fit92, Fit95]) in his many-valued modal
logic. His many-valued modal logic includes truth constants that are the syntactical counterpart
of truth values, but it is confined to the case where the set of truth values is finite and the t-norm
is min. As another example of this alternative, although somehow particular, we mention Hájek
and Harmancová’s work [HH96] (see also [Haj98] for a further elaboration) where they study a
modal logic over a Pavelka-like extension of the infinitely valued  Lukasiewicz’s logic. Their logic
is a many-valued counterpart of the well-known classical system S5 and proved to complete with
respect to Kripke models with the universal accessibility relation (i.e. ∀ω, ω′ : R(ω, ω′) = 1).

But probably the most interesting work for the purposes of modelling similarity-based reasoning
is [CR07] where Caicedo and Rodŕıguez define a very general many-valued modal logic over Gödel
fuzzy logic by introducing independently a possibility modal operator 3 (with the intended meaning
of 3p as approximately-p) and a necessity modal operator 2 (since they are are not dual). Moreover,
to explicitly deal with similarity degrees in the language they take as base logic the expansion of
Gödel logic with rational truth-constants, called RG in [EGN06], but with only a finite set of
truth-constants. In the following we summarize the most interesting features of the 3-fragment of
that related modal systems

• Language: propositional variables, truths constant ᾱ for each rational α ∈ C (where {0, 1} ⊆
C ⊂ [0, 1] is finite) logical connectives of Gödel fuzzy logic ∧,→ (other connectives are
definable, e. g. ¬ϕ is ϕ→ 0̄) and one modality 3.

• Formulae: they are built in the usual way from a set Var of propositional variables using the
binary connectives ∧, →, truth-constants and the unary operator 3

• Satisfiability: models are Gödel similarity Kripke models M = 〈W,S, eG〉, in which W 6= ∅ is
a set of possible worlds, S is a similarity relation on W ×W and e represents an evaluation
assigning to each atomic formula pi and each interpretation w ∈ W a truth value e(pi, w) ∈
[0, 1] of pi in w. e is extended to formulas by means of Gödel logic truth functions by defining

e(ϕ ∧ ψ,w) = min(e(ϕ,w), e(ψ,w)),
e(ϕ→ ψ,w) = e(ϕ,w)⇒G e(ψ,w),

where ⇒G is the well-known Gödel implication function6, and

e(r, w) = r, for all r ∈ C,
e(3ϕ,w) = supw′∈W min{S(w,w′), e(ϕ,w′)}.

• Axioms: we include here below the axioms of Rational Gödel logic and a list of modal axioms

Axioms of Rational Gödel logic (RG):
(ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
ϕ→ (ψ → ϕ)
(ϕ ∧ ψ)→ (ψ ∧ ϕ)
(ϕ ∧ (ψ ∧ χ))→ ((ψ ∧ ϕ) ∧ χ)
(ϕ→ (ψ → χ)) ≡ ((ϕ ∧ ψ)→ χ)
((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
0̄→ ϕ
ϕ→ (ϕ ∧ ϕ)
¬ϕ ≡ ϕ→ 0̄
r ∧ s ≡ min{r, s}, for r, s ∈ C
r → s ≡ r ⇒ s, for r, s ∈ C

Modal Axioms:
6⇒G is defined as x ⇒G y = 1 if x ≤ y and x ⇒G y = y, otherwise
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D3: 3(ϕ ∨ ψ)→ (3ϕ ∨3ψ)
Z+

3 : 3¬¬ϕ→ ¬¬3ϕ
T3: ϕ→ 3ϕ
B3: ϕ→ ¬3¬3ϕ
43: 33ϕ→ 3ϕ
R1: 3r → r
R2: 3(r → ϕ)→ (r → 3ϕ)
R3: 3((ϕ→ r)→ r)→ ((3ϕ→ r)→ r)

and the following inference rules:

RN+
3 : From ϕ→ ψ infer 3ϕ→ 3ψ

MP : From ϕ and ϕ→ ψ, infer ψ

• Completeness:

According to [CR07], the system FMTG,3(C,min) = RG + D3 + Z+
3 + T3 + R1 + R2 +

R3 is complete with respect to the class of Gödel similarity Kripke models with reflexive
similarity relations; the system FMTBG,3(C,min) = FMTG,3(C,min) + B3 is complete
with respect to the class of Gödel similarity Kripke models with reflexive and symmetric
similarity relations, and the system FMS5G,3(C,min) = FMTBG,3(C,min)+43 is complete
with respect to the class of Gödel similarity Kripke models with min-transitive similarity
relations.

It is worth mentioning that if one adds the axiom

Bool: ϕ ∨ ¬ϕ, if ϕ is not modal.

to the above systems, one gets completeness with respect to the corresponding class of models
restricted to those where all the propositional (non-modal) formulas are classical (e. g. two-
valued), and hence, only the modal formulas can get intermediate truth-values.

As for the question of capturing the approximate and proximity entailments in this many-valued
modal framework, it is easy to check that the following statements hold for any Boolean proposi-
tions p and q:

approximate entailment: p |=α
S q iff ᾱ→ (p→ 3q) is valid in MS

proximity entailment: p |≡α
Sq iff ᾱ→ (3p→ 3q) is valid in MS

whereMS = (Ω, S, eG) is the Gödel similarity Kripke model with Ω being the set of Boolean inter-
pretations of the propositional variables Var . In other words, p |=α

S q iff e(w, ᾱ → (p → 3q)) = 1
for all w ∈ Ω, and p |≡α

Sq iff e(w, ᾱ→ (3p→ 3q)) = 1 for all w ∈ Ω.
It turns out that the main difficulty for defining similar many-valued modal logics over a t-

norm-based fuzzy logic different from Gödel logic is the fact that the resulting logics are generally
not normal (they do not satisfy axiom K). In particular, this is the case with  Lukasiewicz logic
with general Kripke semantics (see [GR98] for an attempt), even though in such a case the modal
operators 3 and 2 are dual (2 can be defined as ¬3¬), in contrast to Gödel-based many-valued
modal logics . One possibility to avoid this difficulty is to introduce graded modalities 2t (where
t ∈ C) corresponding to the cuts of the many-valued accessibility relation, i.e. using a semantics
of the form

e(w,2tϕ) = inf{e(ϕ,w′) : R(w,w′) ≥ t}

to extend the valuation. Then, it is easy to see that all modalities 2t are normal. We notice that
in some particular cases, axiomatizations for these graded modalities can be found in the literature
(see for instance [EGGR97, Suz97, BEGR07]). The case considered in [BEGR07] corresponds to
considering the n-valued  Lukasiewicz logic  Ln as base logic and having constants in the language
for every element in the standard n-valued  Lukasiewicz algebra A Ln = {0, 1/n, ..., (n − 1)/n, n}.
An interesting fact about this case is that 2 is definable in the new language as

2ϕ := (1/n→ 21/nϕ) ∧ . . . ∧ ((n− 1)/n→ 2(n−1)/nϕ) ∧21ϕ
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Finally, let us mention a recent paper by Hansoul and Teheux [HT06] where they axiomatize a
modal system over the infinitely-valued  Lukasiewicz logic. The proof is based on the construction
of a classical canonical model. Surprisingly this proof does not need the presence in the language
of constants for every truth value. The trick to avoid the introduction of constants is based on a
result of [Ost88] (see [HT06, Definition 5.3]).

6.4 Many-valued conditional logic approach

Combining the approaches of Sections 6.2 and 6.3, the main idea behind a many-valued conditional
logic approach is that the truthlikeness degree with which a (classical) proposition q is an approxi-
mate or proximity consequence of another (classical) proposition p is understood as the truth-value
of a (many-valued) conditional formula that has p as its antecedent and q as its consequent. There-
fore one needs to make use of a suitable fuzzy logic to reason about the conditional formulas. The
choice of the particular fuzzy logic is determined by the class of similarity Kripke models defining
the intended semantics. Namely, if the intended semantics is the class of ∗-transitive similarity
Kripke models, for some (left-continuous) t-norm ∗, then the fuzzy logic to be chosen will be the
t-norm fuzzy logic L∗, extension of MTL or BL, which is complete with respect to the standard
MTL-algebra over [0, 1]∗ = ([0, 1], ∗,⇒,min,max, 0, 1) defined by t-norm ∗ and its residuum ⇒.
Such logics have been axiomatized for the whole family of continuous t-norms [EGM03] as well
as for other left-continuous t-norms [GH05]. Moreover if one needs to explicitly deal with degrees
then such logics have to expanded by a countable set of truth-constants [EGGN07]. We will denote
by L∗(C) the logic of the t-norm ∗ with truth-constants from a suitable countable set C ⊂ [0, 1].

In the following we summarize the main characteristics of the many-valued conditional logic
built over the logic L∗(C).

• Language: the language is built from a finite set of propositional variables Var plus two
binary operators >,� and a constant r̄ for each element r in the range C. The set of
propositional formulas built from Var is denoted as usual by Lf

• Conditional Formulas: The set of conditional formulas L is built as follows:

– Every propositional formula is also a conditional formula.

– If p and q are propositional formulas in Lf then p > q and p� q are (atomic) conditional
formulas.

– Truth-constants r̄, with r ∈ C, are conditional formulas.

– If ϕ and φ are conditional formulas then ϕ ◦ φ is a conditional formula where ◦ ∈
{∧, ,&,→} (connectives ¬, ∨ and ↔ are definable).

• Satisfiability: A L∗(C)-similarity Kripke model is just a usual similarity Kripke model M =
(W,S, e), where now e(w, ·) is a {0, 1}-valued interpretation of propositional variables for
each w ∈W , and is extended to atomic conditional formulas as follows:

e(ω, p > q) = IS(q | p)
e(ω, p� q) = IS,ω̄(q | p)

and to compound conditional formulas as usual ones in t-norm-based logics, i. e.

e(ω, ϕ ∧ ψ) = min(e(ω, ϕ), e(ω, ψ))
e(ω, ϕ&ψ) = e(ω, ϕ) ∗ e(ω, ψ)
e(ω, ϕ→ ψ) = e(ω, ϕ)⇒ e(ω, ψ)

Again, notice that the notion of satisfiability for a conditional formula of the kind
p > q is independent of the particular world, i.e. it is global notion, but is not the case with
the conditional formulas of the form p� q. In this case it is also clear that a formula p > q
directly represents IS(q | p) whilst p� q represents IS,ω̄(q | p).

• Axioms:

Besides the axioms of L∗(C), the following axioms will be used to characterise our many-
valued conditional logic:
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Bool: p ∨ ¬p, for p propositional (non conditional).
B: p > q → q > p, if p and q are m.e.c.
4: (p > q)&(q > s)→ p > s.

(p� q)&(q � s)→ p� s.
LO: (p ∨ q) > r ↔ (p > r) ∧ (q > r).

(p ∨ q)� r ↔ (p� r) ∧ (q � r).
RO: (r > p ∨ q) ↔ (r > p) ∨ (r > q), if r is a m.e.c.

(s� p ∨ q) ↔ (s� p) ∨ (s� q)

and the following inference rules:

MP : From ϕ and ϕ→ ψ infer ψ
RK: From p→ q infer p > q

From p→ q infer p� q

• Completeness: Again, two kinds of systems are considered: approximate fuzzy conditional
systems FCSI and proximity fuzzy conditional systems FCSJ. In the first case only the
operator > is used and in the second case, the operator � is the only used.

The completeness results may be summarised as follows:

– The system FCSI(C,⊗), which has as axioms: L⊗(C) +Bool+LO+RO and is closed
under MP and RK, is complete with respect to the class of models Σ2f . Moreover, we
obtain completeness with respect to the subclasses of models Σ3f , Σ4f and Σ⊗f if we
add to FCSI(C,⊗) the axioms B, 4 and both B and 4, respectively.

– The system FCSJ(C,⊗) = L⊗(C) + Bool + LO + RO + 4 and closed under MP and
RK is complete with respect to Σ4f .

Note that these conditional logics do not have the axiom CS as in the multi-conditional frame-
work and hence they cannot be complete for the classes of models Σ∗

i (with i ∈ {1, 2, 3, 4,⊗}).
To be so, one would need to introduce in the logics Baaz’s projection connective ∆.

If S is ⊗-transitive similarity relation on the set Ω of all Boolean interpretations of the propo-
sitional language Lf , the corresponding approximate and proximity entailments are captured by
the FCSI(C,⊗) and FCSJ(C,⊗) systems in the following sense:

approximate entailment: p |=α
S q iff α→ (p > q) is valid in MS

proximity entailment: p |≡α
S,Kq iff α→ (K → (p� q)) is valid in MS

where MS = (Ω, S, e) is defined as in the previous section.

7 Other issues in similarity-based reasoning

Traditional entailments are always monotonic: adding new premises never invalidate old conclu-
sions, i. e. the set of conclusions increases monotonically with the set of premises. In this sense,
the approximate and proximity entailments are also monotonic, because due to their definitions of
satisfiability, for any similarity relation S, the following occurs:

p |=α
S q implies p ∧ r |=α

S q
p |≡α

S,Kq implies p ∧ r |≡α
S,Kq

However, in some kinds of reasoning like approximate, case-based or interpolative where the notion
of similarity between situations plays a central role, sometimes it is necessary to have nonmonotonic
entailments based on similarity like Lehmann’s Stereotypical reasoning [Leh98], or a most recent
proposal to provide a logical interpretation (in terms of nonmonotonic inferences) of dilation and
erosion operators used in mathematical morphology techniques [BL02]. Essentially, this kind of
reasoning tries to “jump” to conclusions without having complete information about the state of

23



the world, i. e. since the descriptions of complex domains are naturally incomplete it is necessary
to resort to assumptions, “defaults” , etc. in order to “fill up” holes of ignorance with assumptions
which are taken as valid while there is not any evidence against them. They are nonmonotonic
in the sense that the increase of the amount of available information as premises may sometimes
lead to the loss of some of previously drawn conclusions. This is in contrast with the situation for
purely deductive reasoning.

In this section we describe some forms of nonmonotonic inference based on similarity measures
between situations as discussed in [GR02], in particular, those that can be interpreted in terms
of consistency and implication measures. Finally, we also consider the relation between similarity
reasoning and a very close topic to nonmonotonic reasoning which is belief revision.

7.1 Similarity-based nonmonotonic reasoning

In the recent past, a lot of efforts have been devoted for developing various approaches to combine
uncertain and nonmonotonic reasoning. For instance, probabilistic semantics for defaults have
been developed by Geffner [Gef88] and Pearl [Pea88] on the basis of Adam’s logic of conditionals,
and the relation between possibilistic logic and nonmonotonicity was early established by Dubois
and Prade [DP91c].

In [GR02], the authors consider the issue of combining both similarity-based and nonmonotonic
reasonings. Namely, they study which kinds of nonmonotonic inference relations naturally arise
when using implication and consistency measures to rank propositions à la Gärdenfors and Makin-
son [GM94]. These measures generate two different types of nonmonotonic inferences, namely
pessimistic and optimistic inferences. The approach based on consistency measures is indeed very
close to Possibility theory, and we refer to it as optimistic because it takes into account the “clos-
est” or “best” situations. On the contrary, the approach based on implication measures is based
on two new ideas: a new kind of orderings between sentences called inclusion orderings and a new
implication-like measure, which is called counter-implication measure, where LS(p | K) indicates
the degree to how close is ¬p to imply ¬K. This approach may be called pessimistic because it
considers the worst situation in order to make an assumption. These two notions are combined to
obtain a new form to define comparative entailments.

In both cases, the starting point is to use an ordering between formulas to determinate when
a proposition p nonmonotonically implies another proposition q meaning that q follows from p
together with all the propositions that are expected in the light of p. In order to formalise this
notion of expectation, Makinson and Gärdenfors in [GM94] assume that there is an ordering ≤E

of the sentences in a given language L. Thus, given two sentences p and q, p ≤E q should be
interpreted as “q is at least as expected as p” or “p is at least as surprising as q” (we shall
write“p <E q” as an abbreviation for “not q ≤E p”). Makinson and Gärdenfors propose three
properties which, they argue, must be satisfied by any reasonable ordering. They are:

transitivity: If p ≤E q and q ≤E r, then p ≤E r.

dominance: If p |= q, then p ≤E q.

conjunctiveness: p ≤E (p ∧ q) or q ≤E (p ∧ q).

The authors point out that the first postulate on expectation ordering is very natural for an
ordering relation, the second postulate says that a logically stronger sentence is always less expected
and the third constraint concerns the relation between the degrees of expectation of a conjunction
p ∧ q and the corresponding degrees of p and q respectively. Note that the three conditions imply
reflexivity (p ≤E p) and connectivity (either p ≤E q or q ≤E p). By way of comparison, it may be
mentioned that these axioms are three of the five conditions used in [Gär88] and [GM94] to define
the notion of epistemical entrenchment for the logic of theory change (see next section).

Now this ordering can be used to determine when p nonmonotonically implies q in the case q
follows from p together with all the propositions that are expected in the light of p. The natural
idea, according to Makinson and Gärdenfors, is to require that the added sentences must be those
which are strictly more expected than ¬p. This motivates the following definition of comparative
entailment |∼:

p |∼ q iff p |= q or there is a proposition r such that p ∧ r |= q and ¬p <E r, (1)
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where ≤E is an ordering satisfying transitivity, dominance and conjunctiveness.

It has been proven in [GM94] that comparative entailments satisfy the desirable properties
of Supraclassicality (SC), Left Logical Equivalence (LLE), And, Consistency Preservation (CP),
Cut, Or and Rational Monotony (RM) (see [GM94] for their definitions) and vice-versa. So these
properties characterize comparative entailments.

An alternative form to define an ordering ≤F between sentences is proposed by [FHL94], it is
called possibility ordering and it is required to satisfy the axioms of transitivity, dominance together
with:

disjunctiveness p ∨ q ≤F p or p ∨ q ≤F q

In this case, p ≤F q denotes that q is at least as possible as p.
As pointed out in [FHL94], the dual of a possibility ordering, defined as p ≤F q iff ¬q ≤E ¬p,

is an expectation ordering in the above sense of Gärdenfors and Makinson. So, if the condition
¬p <E r is changed by ¬r <F p in (1), we shall obtain an equivalent comparative entailment.
Furthermore, in [FHL94] it is shown that the following three clauses are equivalent for a possibility
ordering ≤F :

1. there is a proposition r such that p ∧ r |= q and ¬r <F p.

2. p ∧ ¬q <F p.

3. p ∧ ¬q <F p ∧ q.

These conditions allow us to give different (but equivalent) versions of (1) in terms of possibility
orderings, e. g. p |∼F q iff either p |= q or p ∧ ¬q <F p ∧ q.

Now, we are in condition to focus on the orderings on propositions that a body of evidence
K and a similarity measure S on worlds induce when the corresponding consistency measure
CS(· | K) is used to rank propositions. As it was mentioned in Section 5, since the consistency
measure CS(· | K) is also a possibility measure, the ordering induced on formulas defined by:

p ≤C q iff CS(p | K) ≤ CS(q | K), (2)

read as “q is at least as consistent (with K) as p”, is is a qualitative possibility relation in the
sense of Dubois [Dub86], i. e. the qualitative counterpart of a possibility measure. A qualitative
possibility relation is a possibility ordering (as defined above) together with this further axiom

non-triviality: ⊥ <C >

where<C is the strict part of the ordering≤C . According to the previous section, the corresponding
comparative entailment |∼C is then defined as

p |∼C q iff either p |= q or p ∧ ¬q <C p ∧ q.

Although some are stronger than the others, in [FHL94] it is shown that qualitative possibil-
ity relations and possibility orderings generate the same family of nonmonotonic entailments 7.
Consequently, a consequence relation |∼ satisfies SC, LLE, And, CP, Cut, Or and RM iff there
exists a proposition K and a similarity S on possible worlds such that p |∼ q iff p |= q or
CS(p ∧ q | K) > CS(p ∧ ¬q | K). Indeed, although the orderings of sentences defined by con-
sistency measures ≤C are qualitative possibility orderings, they have a different meaning because
p ≤C q means q is at least as consistent with K as p, where the level of consistency is understood as
a degree of closeness to K. This way of interpreting the ordering is different to the ones based on
preference or possibility. Next, we consider another way to define nonmonotonic inference relations
from a more interesting perspective because the ordering is induced taking into account the most
distant worlds instead of the closest ones.

As it is pointed out by Makinson in [Mak94, pag. 46], if we want to abandon monotony then
we will also have to abandon contraposition. However, in many occasions, the information we get

7However, the non-triviality property will become relevant when we will analyse the relationship between simi-
larity logic and belief revision
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is in a different way from the one we need it. For instance, we know for sure that if the battery
is discharged the car will not start, thus a very common trouble shooting rule is the following:
“if a car engine does not start up then it is possible that its battery is discharged”. And from
this rule of thumb, one can derive, by contraposition, another rule, in this case a predictive rule:
“If the car battery is charged up then probably the engine will start up”. Note that this last
rule (like the first one) is nonmonotonic because it is not intended to assert that the antecedent
alone is a sufficient condition of the consequent, but jointly with a set of assumptions commonly
accepted in the context of this rule. In order to capture this intuition, we now consider a notion
of nonmonotonic consequence p |∼ q that it is based in the degree of implication of ¬p by ¬q.

As we have already mentioned, an implication measure IS(· | K) does not verify any interesting
decomposability property and this makes it quite difficult to grasp which properties may satisfy
an ordering on propositions defined as

p ≤I q iff IS(p | K) ≤ IS(q | K)

However, in [GR02] they find a way out by contrapositive reasoning. Namely, if IS(p | K) measures
to what extent p is implied by K, one can also consider another implication-like index LS(p | K)
measuring to what extent ¬p implies ¬K defined by:

LS(p | K) = IS(¬K | ¬p).

LS is called a counter-implication measure. It is easy to show that, given a fixed consistent K, the
measure LS(· | K) fulfills the following properties:

1. LS(> | K) = 1

2. LS(p ∧ q | K) = min(LS(p | K), LS(q | K))

but fails to satisfy LS(⊥ | K) = 0. This means that LS(· | K) is very close to a necessity measure8.
So close, that the ordering induced by it,

p ≤L q iff LS(p | K) ≤ LS(q | K), (3)

is a genuine expectation ordering, that is, it satisfies transitivity, dominance and conjunctiveness.
Indeed, the ordering ≤L will be a qualitative necessity relation (i.e. the dual of a qualitative
possibility relation) and the condition ⊥ <L > will hold, if S is separating . Therefore we can also
prove that an inference relation |∼ satisfies SC, LLE, And, Or, RM, CP, Cut, Or and RM iff there
exists a proposition K and a similarity S on possible worlds such that p |∼ q iff either p |= q or
LS(p→ q | K) > LS(p→ ¬q | K).

Finally, it is interesting to also express |∼L in terms of the graded approximate entailment |=α

introduced in Section 2. Just by applying the definitions, it turns out that the following condition
holds:

p |∼L q iff either p |= q
or there exists α ∈ [0, 1] such that p ∧ ¬q |=α ¬K and p ∧ q 6|=α ¬K.

In other words, q nonmonotonically follows from p, in a context of K and S, when ¬K is
approximately entailed by ¬(p → q) to a higher degree than by ¬(p → ¬q), or roughly speaking,
when falsifying p→ q falsifies K more than when falsifying p→ ¬q.

7.2 Belief revision and similarity logic

Theory change formalisms deal with mechanisms for adding (or retracting) a proposition to (from)
an existing knowledge base. The natural question addressed by these formalisms is what should
the resulting theory be. In particular, one of the basic problems is whether the new information to
be added is inconsistent with the given knowledge base. Concerning this problem, most relevant
works take as a departure point the postulates proposed by Alchourrón, Gärdenfors and Makinson
([AGM85] ) for the so-called belief revision operators. More specifically, in [AGM85], the authors

8A formal study of a weaker notion of necessity which it is not required to satisfy that the measure of ⊥ should
be 0 is given in [BG92]
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proposed eight postulates which, they argued, must be satisfied by any reasonable revision operator
?. In what follows, given a knowledge base K and a formula ϕ, K ?ϕ denotes the result of adding
ϕ to K. The postulates consist of 9:

• six basic postulates

Closure: K ? ϕ = Cn(K ? ϕ)

Success: ϕ ∈ K ? ϕ

Inclusion: K ? ϕ ⊆ Cn(K ∪ {ϕ})
Vacuity: If ¬ϕ 6∈ Cn(K), then Cn(K ∪ {ϕ}) ⊆ K ? ϕ

Consistency: If ¬ϕ 6∈ Cn(∅) then ⊥ 6∈ Cn(K ? ϕ)

Extensionality: If ϕ↔ ψ ∈ Cn(∅), then K ? ϕ = K ? ψ

• and two supplementary postulates.

Superexpansion: K ? (ϕ ∧ ψ) ⊆ Cn((K ? ϕ) ∪ {ψ})
Subexpansion: If ¬ψ 6∈ Cn(K ? ϕ), then Cn((K ? ϕ) ∪ {ψ}) ⊆ K ? (ϕ ∧ ψ)

Gärdenfors [Gär90] has suggested that nonmonotic reasoning and belief revision are two sides of
a same coin. This is specially true for nonmonotonic logic based on expectation orderings. In fact,
while the above postulates leave the choice of the revision operator quite open, Gärdenfors proves
[Gär88] that any a such operator underlines an ordering ≤EE on the formulas of a knowledge base
that guides the revision procedure. He calls this ordering epistemic entrenchment, and it is an
expectation ordering (i.e. it satisfies the transitivity, dominance and conjunctiveness properties)
which additionally satisfies two further properties:

Minimality: If ⊥ 6∈ Cn(K), then ϕ /∈ Cn(K) iff ϕ ≤EE ψ for all ψ

Maximality: If ψ ≤EE ϕ for all ψ, then ϕ ∈ Cn(∅)

The connections between epistemic entrenchment orderings and revision operators is witnessed by
the following relationships [Gär88, LR91, Rot91]:

• given an epistemic entrenchment ordering ≤ on a consistent belief set K the operator ?
defined by

(EBR) ψ ∈ K ? ϕ iff either (ϕ→ ¬ψ) < (ϕ→ ψ) or ϕ ` ⊥.

is a belief revision that satisfies the eight AGM postulates.

• conversely, if ? is an operation on a consistent belief set K that satisfies the eight AGM
postulates, then the relation ≤ defined from ? by

(C ≤) ϕ ≤ ψ iff: If ϕ ∈ K ? ¬(ϕ ∧ ψ) then ψ ∈ K ? ¬(ϕ ∧ ψ).

is an epistemic entrechment ordering.

According to these relationships between orderings and belief revision, and taking account the
previous subsection, it is not surprising then that there is also a connection between similarity-based
logical formalism and belief revision. Indeed, in [DP92], Dubois and Prade have pointed out that
the relation ≤EE has exactly the same properties as a qualitative necessity relation. Hence, the only
numerical counterpart of epistemic entrenchment orderings are exactly those induced by necessity
measures. Taking this into account, the above two relationships also hold when the ordering
is an ≤C- (or ≤L)-ordering, as defined in (2) and in (3) respectively, induced by a separating
similarity relation S. As a final remark, let us notice that, actually, the symmetry and transitivity
properties of the similarity relations are not needed to generate the orders for defining revision
operators. Therefore it is possible to consider models with a fuzzy binary relation, representing
some more general notion of similarity or “closeness”, for which only the reflexivity and separating
(discriminant) properties would be required.

9where Cn is any consequence operator which includes classical propositional logic, is compact and satisfies the
deduction theorem.
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8 Summary and conclusions

In this paper we have surveyed different approaches to formalize similarity-based reasoning, in
the sense of logical systems that provide a formal account of the graded notion of truthlikeness.
For this, we have first clarified the differences between the notion of truthlikeness and the better
known notions of uncertainty and vagueness and we have introduced fuzzy similarity relations as the
main tool used to model a graded notion of truthlikeness. In fact, fuzzy similarity relations can be
used, either syntactically or semantically, to define notions of approximate proofs or approximate
entailments respectively. Although both have been addressed in the paper, we have put more
emphasis on the semantical approach where the starting point is to assume there are possible worlds
or situations that resemble more than others, and this is reflected by a given fuzzy similarity relation
between worlds. Indeed, we have shown how similarity relations on possible worlds can be used
to extend the classical notion of logical consequence leading to new notions of graded entailments,
basically the so-called approximate and proximity entailments. These ideas go back to Ruspini
[Rus91] and are captured by similarity-based Kripke structures. Based on these semantics, we have
described in detail four formalisations, based on different modal and conditional logical frameworks,
capturing different aspects of these similarity entailments. Finally, we also have addressed the issue
of exploring nonmonotonic aspects in similarity-based reasoning. By following ideas of Gärdenfors
and Makinson [GM94], where they reduce the notion of nonmonotonic reasoning to the notion of
ordering between formulas, we have described some approaches that consider different kinds of
similarity-based orderings to define nonmonotonic consequence relations and operators of theory
revision.

As concluding remarks we may point out that similarity-based reasoning is a research topic
that has many different and interesting facets. In this paper we have addressed only some issues in
the task of logical formalisation of different notions of approximate consequence that make sense in
this framework. Therefore we have not covered many other reasoning models where the notion of
similarity or truthlikeness plays a key role, like case-based reasoning or case-based decision. Finally,
regarding open problems, we note a couple of questions. In subsection 6.3, we have described a
many-valued modal system, based on Gödel logic semantics, only for a 3 operator. This logic is
very important because it allows us to formalize other related notions, like interpolative reasoning
([DEG+97]), similarity-based SLD resolution ([BGR05]), and fuzzy description logic ([Haj05]).
However, Gödel logic is only one of prominent fuzzy logics. One of the main open problems in this
field is the search for axiomatization for similar many-valued modal systems based on other fuzzy
logics. The difficulty is essentially due to their lack of normality, i. e. they do not satisfy the K
axiom. In Section 7 we have considered two kinds of nonmonotonic inference based on similarity
orderings. Another approach would be to follow Schlechta’s ideas in [Sch97] where he reduces the
notion of nonmonotonic reasoning to the notion of distance. The use of similarity relations instead
of distances seems an interesting line for future research.
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[FH91] L. Fariñas del Cerro and A. Herzig. A modal analysis of possibility theory. volume 535
of Lecture Notes in Computer Sciences, pages 11–18. Springer Verlag, Berlin, 1991.
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