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Abstract. In this paper we study the definition and axiomatisation of
non-falsity preserving and threshold preserving companions of several ex-
tensions of the Monoidal t-norm based fuzzy logic MTL. More in detail,
we first extend some recent preliminary results on non-falsity preserving
logics, and then we present a new study on threshold-preserving com-
panions of the main three fuzzy logics,  Lukasiewicz, Product and Gödel
logics.
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1 Introduction

Fuzzy logics are logics of graded truth that have been proposed as a suitable
tool for reasoning with imprecise information, in particular for reasoning with
propositions containing vague predicates. Their main feature is that they allow to
interpret formulas in a linearly ordered scale of truth-values, and this is specially
suited for representing the gradual aspects of vagueness. In particular, systems of
fuzzy logic have been in-depth developed within the frame of mathematical fuzzy
logic (MFL) [15, 8]. In deductive systems in MFL, mostly with semantics in the
real unit interval [0, 1], the usual notion of deduction is defined by requiring the
preservation of the truth-value 1 (full truth-preservation), which is understood
as representing the absolute truth. Namely, generalizing the classical notion of
consequence, in these systems a formula follows from a set of premises if every
algebraic evaluation that interprets the premises as 1-true also interprets the
conclusion as 1-true. All the fuzzy logics under the truth-preserving paradigm
are explosive in the sense of validating the ¬-explosion rule

φ ¬φ
ψ



where ¬ is the definable negation in systems of MFL. A logic not satisfying this
rule is called ¬-paraconsistent [9, 17, 4].

In the last years, there have been several works studying paraconsistent vari-
ants of fuzzy logics (see e.g. [11, 5, 7]), mainly by moving from the (full) truth-
preserving paradigm to the degree-preserving paradigm, in which a conclusion
follows from a set of premises if, for all evaluations, the truth degree of the con-
clusion is greater or equal than those of the premises, see e.g. [3]. Still, another
way of defining paraconsistent variants of a fuzzy logic is put forward in [1],
although for the particular case of  Lukasiewicz fuzzy logic. In this approach, the
notion of consequence at work is the non-falsity preservation, according to which
a conclusion follows from a set of premises whenever if the premises are non-false,
so must be the conclusion. In other words, assuming a [0, 1]-valued semantics,
this is the case when, for any evaluation, if truth degrees of the premises are
above 0, then the truth-degree of the conclusion is so as well. While this no-
tion of consequence is not weaker than the one in the truth-preserving logics, it
is stronger than the one of degree-preserving logics, and has been preliminary
studied in [12]. For instance, while all tautologies in a truth-preserving logic
keep being obviously valid in the non-falsity preserving variant, usually Modus
Ponens is not a valid inference rule any longer, e.g. in the case of  Lukasiewicz
logic. On the other hand, the excluded-middle axiom φ ∨ ¬φ is a valid formula
in the non-falsity variant (it always take a positive truth-value), while this is
neither a valid in the truth-preserving and degree-preserving variants.

In this paper, we first further explore non-falsity preserving companions of
two classes of extensions of the MTL logic, and second we address the question of
defining and syntactically characterising logics that preserve a given truth-value
threshold, that can be any real value a ∈ (0, 1], focusing the study on the three
most prominent extensions of MTL, namely  Lukasiewicz, Product and Gödel
fuzzy logics. In more detail, after this introduction, in Section 2 we gather some
preliminaries on various systems of t-norm based fuzzy logics and present basic
definitions about variants of these systems corresponding to logical matrices on
MTL-chains with lattice filters as sets of designated values. Then in Section 3
we focus on the paraconsistent non-falsity preserving companions of MTL logics,
overviewing basic results for the case of Involutive MTL logics from [12] and
providing new insights for MTL logics validating a suitable inference rule. Finally
in Section 4 we deal with threshold-preserving logics for the above mentioned
three particular cases. We conclude with some final remarks in Section 5.

2 Preliminaries

Most well known and studied system of mathematical fuzzy logic are the so-
called t-norm based fuzzy logics, corresponding to formal many-valued calculi
with truth-values in the real unit interval [0, 1] and with a conjunction and
an implication interpreted respectively by a (left-) continuous t-norm and its
residuum, and thus, including e.g. the well-known  Lukasiewicz, Gödel and Prod-
uct infinitely-valued logics, corresponding to the calculi defined by  Lukasiewicz,



min and product t-norms respectively. The most general t-norm based fuzzy logic
is the logic MTL (monoidal t-norm based logic) introduced in [14], whose the-
orems correspond to the common tautologies of all many-valued calculi defined
by a left-continuous t-norm and its residuum [16].

The language of MTL consists of denumerably many propositional variables
p1, p2, . . ., binary connectives ∧,&,→, and the truth constant 0. Formulas, which
will be denoted by lower case greek letters φ,ψ, χ, . . ., are recursively defined
from propositional variables, connectives and truth-constant as usual. Further
connectives and constants are definable, in particular: ¬φ stands for φ→ 0 and
1 stands for ¬0. A Hilbert-style calculus for MTL was introduced in [14] with
the following set of axioms:

(A1) (φ→ ψ) → ((ψ → χ) → (φ→ χ))
(A2) φ& ψ → φ
(A3) φ& ψ → ψ & φ
(A4) φ ∧ ψ → φ
(A5) φ ∧ ψ → ψ ∧ φ
(A6) φ& (φ→ ψ) → φ ∧ ψ

(A7a) (φ→ (ψ → χ)) → (φ& ψ → χ)
(A7b) (φ& ψ → χ) → (φ→ (ψ → χ))

(A8) ((φ→ ψ) → χ) → (((ψ → φ) → χ) → χ)
(A9) 0 → φ

and whose unique inference rule is modus ponens: from φ and φ→ ψ derive ψ.
In Table 1 we gather some of the main axiomatic extensions of MTL together

with their additional axioms. Of particular interest in this paper is the Involutive
MTL logic (IMTL for short), i.e. the axiomatic extension of MTL with the
axiom (INV) which enforces the negation ¬ to be involutive [14]. The well-
known  Lukasiewicz logic is the extension of IMTL with the divisibility axiom
(Div), Gödel logic is the extension of MTL with the contraction axiom (Con)
while Product logic is the extension of MTL with the (Div) and the cancellation
axiom (C) [15]. Both Gödel and Product logics are extensions of SMTL, the
extension of MTL with the axiom (PC). In this paper we will also consider
in Section 3.2 the extension of non-SMTL logics (i.e. MTL logics that are not
SMTL logics) with an additional rule of inference.

MTL is an algebraizable logic in the sense of Blok and Pigozzi [2] and its
equivalent algebraic semantics is given by the variety of MTL-algebras. MTL-
algebras can be equivalently introduced as commutative, bounded, integral resid-
uated lattices ⟨A,∧,∨, ∗,→, 0, 1⟩ further satisfying the following prelinearity con-
dition: (x→ y)∨(y → x) = 1. Algebras of IMTL are MTL-algebras satisfying the
equation x = ¬¬x, algebras of  L are usually called MV-algebras and are IMTL-
algebras further satisfying the equation x ∗ (x→ y) = x ∧ y, Gödel-algebras are
MTL-algebras satisfying the equation x ∗ y = x ∧ y, while Product algebras are
MTL-algebras satifsying x ∧ y = x ∗ (x→ y) and ¬x ∨ ((x→ x ∗ y) → y) = 1.

Besides enjoying strong completeness as a consequence of their algebraiz-
ability, all the logics in Table 1, enjoy completeness with respect to their cor-
responding classes of algebras on the real-unit interval [0, 1], as proved e.g. in



Axiom schema Name

¬¬φ→ φ (Inv)

¬φ ∨ ((φ→ φ& ψ) → ψ) (C)

φ→ φ& φ (Con)

φ ∧ ψ → φ& (φ→ ψ) (Div)

¬(φ ∧ ¬φ) (PC)

¬(φ& ψ) ∨ (φ ∧ ψ → φ& ψ) (WNM)

φ ∨ ¬φ (EM)

Logic Additional axioms

Strict MTL (SMTL) (PC)

Involutive MTL (IMTL) (Inv)

Nilpotent Minimum (NM) (Inv) and (WNM)

Basic Logic (BL) (Div)

Strict Basic Logic (SBL) (Div) and (PC)

 Lukasiewicz Logic ( L) (Div) and (Inv)

Product Logic (Π) (Div) and (C)

Gödel Logic (G) (Con)

Classical Logic (CL) (EM)

Table 1. Some axiomatic extensions of MTL obtained by adding the corresponding
additional axiom schemata.

[16] for MTL and in [13] for IMTL. Furthermore,  Lukasiewicz logic, Gödel logic
and Product logic are even complete w.r.t. a single algebra over [0, 1], the stan-
dard MV-algebra, the standard Gödel algebra and the standard Product algebra
respectively, see e.g. [15].

In the following, given a left-continuous t-norm ∗, we will denote by [0,1]∗ the
standard MTL-algebra determined by ∗, i.e. [0,1]∗ = ([0, 1],min,max, ∗,→, 0, 1),
where → is the residuum of ∗ and the negation ¬ is defined as ¬x = x → 0.
In the systems of mathematical fuzzy logic considered above, the usual notion
of logical consequence has been defined as preservation of the truth, repre-
sented by the top element of the corresponding algebras. For instance let L
be any extension of MTL, which we assume to be complete w.r.t. the family
CL = {[0,1]∗ | [0,1]∗ is a L-algebra} of standard L-algebras. Then the typical
notion of logical consequence is the following for every set of formulas Γ ∪ {φ}:

Γ |=L φ if, for any [0, 1]∗ ∈ CL and any [0, 1]∗-evaluation e,
if e(ψ) = 1 for any ψ ∈ Γ , then e(φ) = 1 as well.

This can be generalised by considering logics defined by logical matrices
M = ⟨A, F ⟩, where A is a standard L-chain and F is a non-trivial lattice filter
of A i.e. F is either a closed interval Fa = [a, 1] with a ∈ (0, 1], or a semi-
open interval F(a = (a, 1] with a ∈ [0, 1). Considering the filters as sets of
designated values, then the companions of the logic L given by the classes of

matrices Ca
L = {⟨[0,1]∗, Fa⟩ | [0,1]∗ is a L-algebra} and C(a

L = {⟨[0,1]∗, F(a⟩ |
[0,1]∗ is a L-algebra} are defined respectively as follows:

Γ |=a
L φ if, for any [0, 1]∗ ∈ CL and any [0, 1]∗-evaluation e,

if e(ψ) ≥ a for any ψ ∈ Γ , then e(φ) ≥ a as well.

Γ |=(a
L φ if, for any [0, 1]∗ ∈ CL and any [0, 1]∗-evaluation e,

if e(ψ) > a for any ψ ∈ Γ , then e(φ) > a as well.



The extreme cases are the 1-preserving logic |=1
L = |=L, which is explosive,

and the non-falsity preserving logic |=(0
L , which is paraconsistent w.r.t. ¬. Observe

that the finitary versions of both logics are strongly related because, for any L-
evaluation e, the condition e(¬φ) = 1 if and only if e(φ) = 0 holds due to the fact
the implication in MTL is residuated and thus e(φ→ ψ) = 1 iff e(φ) ≤ e(ψ).

Lemma 1. For every pair of formulas φ,ψ the following relation holds:

φ |=(0
L ψ iff ¬ψ |=1

L ¬φ.

Moreover, if [0,1]∗ is a standard IMTL-algebra, with c being the fixpoint of
the involutive negation n(x) = x→ 0, then it is easy to check that

(i) The logic of the matrix Ma = ⟨[0,1]∗, Fa⟩ is paraconsistent iff a ≤ c,
(ii) The logic of the matrix M (a = ⟨[0,1]∗, F(a⟩ is paraconsistent iff a < c.

3 Non-falsity preserving companions of two classes of
MTL extensions

3.1 The case of extensions of IMTL

In this section we recall from [12] the characterisation of logics defined by (sets of)
matrices of the form ⟨[0,1]∗, F(0⟩, with [0,1]∗ being a standard IMTL-algebra.
We remind that this means that ∗ is a left-continuous t-norm such that the
residual negation ¬, defined as ¬x = x→ 0 = sup{y ∈ [0, 1] | x ∗ y = 0} satisfies
the involutivity condition ¬(¬x) = x. Notable examples of such t-norms are
 Lukasiewicz t-norm (which is continuous) and Nilpotent Minimum t-norm.

Assume L is an axiomatic extension of IMTL, complete with respect to a class
of standard algebras CL, and whose corresponding notion of proof is denoted ⊢L.
It is immediate to observe that in the case of a IMTL logic L, Lemma 1 can be
strengthened in the sense that the 1-preserving logic |=1

L and the non-falsity

preserving logic |=(0
L become interdefinable. Namely, in this case we have both:

(i) φ |=1
L ψ iff ¬ψ |=(0

L ¬φ, (ii) φ |=(0
L ψ iff ¬ψ |=1

L ¬φ .

In order to syntactically characterise |=(0
L , defined by the class of matrices

C(0
L = {⟨[0, 1]∗, F(0⟩ | ⟨[0, 1]∗, F1⟩ ∈ CL},

the following system nf-L, called the non-falsity preserving companion of L, is
defined in [12] as follows.

Definition 1. The calculus nf-L is defined by the axioms of L and the following
rules:

– Rule of Adjunction: (Adj)
φ, ψ

φ ∧ ψ
– Reverse Modus Ponens: (MPr)

¬ψ ∨ χ
¬φ ∨ ¬(φ→ ψ) ∨ χ



– Restricted Modus Ponens: (r-MP)
φ, φ→ ψ

ψ
, if ⊢L φ→ ψ

The corresponding notion of proof will be denoted by ⊢nf-L.

The above (MPr) rule captures the following form of reverse of modus ponens:
if ¬ψ is non-false then either ¬φ is non-false or ¬(φ → ψ) is non-false. The
addition of the disjunct χ both in the premise and in the conclusion of the rule
is needed for technical reasons. On the other hand, note the usual Modus Ponens

rule is not valid in |=(0
L (e.g. we may have e(φ) = e(¬φ) = e(φ → 0̄) = a > 0,

with a being the negation fix point in [0, 1]∗, while e(0̄) = 0), thus we need to
have the above restricted form.

The following is a syntactic counterpart of part of Lemma 1.

Proposition 1. [12] If ψ ⊢L φ then ¬φ ⊢nf-L ¬ψ.

Thanks to this relation, the logic nf-L has been shown to be complete in [12]
with respect to the intended semantics.

Theorem 1. Let L be an axiomatic extension of IMTL. The calculus nf-L is

sound and complete w.r.t. to the class of matrices C(0
L .

Note that, as a direct corollary, Definition 1 provides us with complete ax-
iomatisations of non-falsity preserving companions of prominent IMTL logics
like  Lukasiewicz or Nilpotent Minimum logics.

3.2 The non-falsity preserving variant of non-SMTL logics
validating the rule (R¬¬)

In this section we show that to prove the results in the previous section the
requirement of the negation ¬ to be involutive, as it happens in IMTL logics, can
be significantly weakened. Indeed, let MTL¬¬ be the (non-axiomatic) extension
of MTL with the rule

(R¬¬)
¬¬φ
φ

,

introduced in [5]. The algebraic semantics of MTL¬¬ consists of the quasi-variety
generated by the class of MTL-chains A whose negation ¬ is such that, for any
a ∈ A, ¬a = 0 iff a = 1, or equivalently ¬a > 0 iff a < 1.

If L is an axiomatic extension of MTL, let us denote by L¬¬ the extension
of L with the rule (R¬¬). If L is complete w.r.t. a class of standard matrices CL
over the real unit interval [0, 1], then L¬¬ is complete w.r.t. the class of matrices
CL¬¬ = {⟨[0, 1]∗, {1}⟩ | ⟨[0, 1]∗, {1}⟩ ∈ CL s.t. for all x,¬x = 0 iff x = 1}, see [5].

In L¬¬ we keep having at the semantical level the equivalence between the
1-preserving logic and the non-falsity preserving logic, in the following sense.

Lemma 2. For any logic L extension of MTL, the following conditions hold:

(i) φ |=1
L¬¬ ψ iff ¬ψ |=(0

L¬¬ ¬φ, (ii) φ |=(0
L¬¬ ψ iff ¬ψ |=1

L¬¬ ¬φ.



Proof. Straighforward: (ii) is Lemma 1, and to prove (i), note that if [0, 1]∗ is
a standard MTL¬¬-algebra then “x = 1 implies y = 1” is equivalent to “y < 1
implies x < 1”, and this is in turn equivalent to “¬y > 0 implies ¬x > 0”. □

Then one can define the non-falsity preserving companion of a MTL¬¬-logic
and prove its completeness as follows. In fact, we can restrict ourselves to exten-
sions of non-SMTL logics with the rule (R¬¬). By a non-SMTL logic we mean
a MTL logic that does not satisfy the axiom (PC) ¬(φ∧¬φ). Indeed, note that
if L is a SMTL logic, then L¬¬ collapses into classical logic. This is so because,
using the rule (R¬¬), from axiom (PC), which can be equivalently expressed in
MTL as ¬φ ∨ ¬¬φ, L¬¬ then derives the Excluded-Middle axiom ¬φ ∨ φ.

Theorem 2. Let L be a non-SMTL logic. Then the calculus nf-L¬¬, defined by
the axioms of L following rules:

– The rule (R¬¬)
– The rule of Adjunction (Adj)
– The rule of Reverse Modus Ponens (MPr)
– The rule of Restricted Modus Ponens (r-MP)

is a sound and complete axiomatisation w.r.t. to the class of matrices C0
L¬¬ .

The proof is an easy adaptation of the proof of Theorem 1 for IMTL logics
in [12].

4 Threshold-preserving logics

In this section we turn our attention to logics preserving lower bounds of truth-
values, in other words, logics whose semantic consequence relations are of the

form |=a
L and |=(a

L for some positive value a ∈ (0, 1] (as introduced in Section
2) for some logics L extensions of MTL that are complete with respect to some
class of standard L-algebras CL.

We state two general but sufficient conditions for a logic L to guarantee a
finitary axiomatisation |=a

L. Consider the following two conditions on L:

(C1) L satisfies a form of global Deduction Theorem in the sense that there exists
a term t such that:

Γ ∪ {φ} ⊢L ψ iff Γ ⊢L t(φ) → ψ

(C2) The logic |=a
L is interpretable in L, that is, there exists a term r such that:

φ |=a ψ iff r(φ) |=L r(ψ)

Theorem 3. Let L be an extension of MTL satisfying conditions (C1) and (C2).
Then the calculus La defined syntactically by the axioms of L and the following
rules:



– the rules of L restricted to theorems of L,
– the rule of Adjunction, and

– the restricted rule: (Rt,r)
φ, ⊢L t(r(φ)) → r(ψ)

ψ

is a sound and complete axiomatisation of the finitary |=a
L.

Proof. The following is a sketch of the proof:

(i) φ1, . . . , φn |=a
L ψ iff

(i) φ1 ∧ . . . ∧ φn |=a
L ψ iff

(ii) r(φ) |=L r(ψ) iff –by condition (C2), where φ = φ1 ∧ ... ∧ φn

(iii) |=L t(r(φ)) → r(ψ) iff –by condition (C1)
(iv) ⊢L t(r(φ)) → r(ψ) iff –by completeness of L
(v) in L there is a proof ⟨Π1, ...,Πn⟩ where Πn = t(r(φ) → r(ψ) iff

(vi) in La there is a proof ⟨Π0, Π1, ...,Πn, Πn+1⟩, where the steps Π1, ...,Πn (with
applications of the rules restricted to theorems) are as above and where Π0

is an initial step to obtain φ by the adjunction rule from φ1, ..., φn, and a
final step Πn+1 = ψ, where ψ is obtained from Π0 and Πn by the application
of the rule (Rt,r). □

4.1 The case of  Lukasiewicz logics

A particular instantiation of the above setting is for finite-valued  Lukasiewicz
logics1  Ln and for the infinite-valued  Lukasiewicz logic  L expanded with Baaz-
Monteiro ∆ operator  L∆.

Finite-valued  Lukasiewicz logics  Ln are complete with respect to the matri-
ces ⟨MVn, {1}⟩, where MVn is the MV-chain over the n-element set MVn =
{0, 1/(n− 1), . . . , (n− 2)/(n− 1), 1}, and they satisfy the above conditions (C1)
and (C2). Namely, as is well-known, Baaz-Monteiro operator ∆ is definable in
 Ln as ∆φ := φ& n. . . &φ and  Ln enjoys a global deduction theorem: φ ⊢ Ln

ψ iff
⊢ Ln

∆φ→ ψ. On the other hand, it is also well-known that, for every a ∈MVn,
there is a McNaughton term ra(x) such that ra(x) = 1 iff x ≥ a. Therefore,
it holds that φ ⊢a

 Ln
ψ iff ra(φ) |= Ln ra(ψ). As a consequence, according to

Theorem 3, the logic  La
n defined there provides a complete axiomatisation of the

semantic consequence relation |=a
 Ln

. In this case the rule (Rt,r) takes this form:

φ, ⊢ Ln ∆(ra(φ)) → ra(ψ)

ψ
.

Note that for n = 3 and a = 1/2, the resulting logic  L
1/2
3 provides an alternative

axiomatisation (in the language of  Ln) of the well-known D’Ottaviano and da
Costa’s paraconsistent logic J3 [10].

When we move to the case of infinite-valued  Lukasiewicz logic  L, condition
(C2) keeps holding at least for every rational a thanks to the McNaughton terms,

1 This case was partially studied in [6], here we provide more elegant axiomatisations.



but (C1) fails since  L does not have a global deduction theorem. To overcome this
problem we can consider the logic  L∆, the expansion of  L with the ∆ operator,
already axiomatised by Hájek in [15]. Then in  L∆ condition (C2) keeps holding
for rational values a, while now condition (C1) is satisfied as well taking t = ∆.
Therefore, Theorem 3 can be applied to  L∆ to get axiomatisations of  La

∆ for
every rational a.

In particular, if we are interested on the logic to reason with half-true propo-
sitions, it is enough to instantiate Theorem 3 with a = 1/2, t(φ) = ∆φ and
r(φ) = φ⊗ φ.

4.2 The cases of Gödel and Product logics

In this final section we consider the cases of Gödel and Product logics. These
logics fall outside the scope of Theorem 3, and hence they require a specific
consideration.

The case of Gödel logic. The analysis of Gödel logic turns out to be very
simple. Gödel logic can be seen as the axiomatic extension of MTL with the ax-
iom (Con), see Table 1. In fact, Gödel logic is standard complete with respect to
the single matrix M1 = ⟨[0,1]G, {1}⟩, where [0,1]G denotes the standard Gödel
algebra ([0, 1],min,max, ∗G,→G, 0, 1), with ∗G = min and →G is its residuum.

For a ∈ (0, 1), let us denote by |=a
G and |=(a

G the logics defined by the logical
matrices Ma = ⟨[0,1]G, [a, 1]⟩ and M (a = ⟨[0,1]G, (a, 1]⟩ respectively. We will
also denote the logic |=1

G simply as |=G.
As is well-known, a distinctive characteristic of Gödel logic is that, for any

a ∈ [0, 1], the mapping ga : [0, 1] → [0, 1], defined by ga(x) = x for x ∈ [0, a) and
ga(x) = 1 for x ∈ [a, 1], is a morphism of Gödel-algebras, analogously with the
mapping g(a : [0, 1] → [0, 1] defined by ga(x) = x for x ∈ [0, a] and ga(x) = 1 for
x ∈ (a, 1]. Note that, in particular, g(0 maps [0, 1] into {0, 1}. These well-known
facts allow us to prove the following result, see also the left-hand lattice of logics
in Fig. 1.

Proposition 2. |=(0
G coincides with classical logic, while for any a ∈ (0, 1],

|=a
G = |=(a

G = |=G.

The case of Product logic. Product logic is defined as the axiomatic extension
of MTL with axioms (Div) and (C), see Table 1. Product logic is standard
complete with respect to the single matrix M1 = ⟨[0,1]Π, {1}⟩, where [0,1]Π
denotes the standard product algebra ([0, 1],min,max, ∗Π ,→Π , 0, 1), with ∗Π
being the product t-norm and →Π is its residuum.

For a ∈ (0, 1), let us denote by |=a
Π and |=(a

Π the logics defined by the logical
matrices Ma = ⟨[0,1]Π, [a, 1]⟩ and M (a = ⟨[0,1]Π, (a, 1]⟩ respectively. We will
also denote the logic |=1

Π simply as |=Π .
In the following we will make use of a known result about automorphisms of

the standard product algebra [0,1]Π. Namely, let α ∈ R+ and define the mapping



hα : [0, 1] → [0, 1] by h(x) = xα. Then hα is an automorphism of [0,1]Π.2

This means that, for ⊗ ∈ {min,max, ∗Π ,→Π} and every α, hα(e(φ ⊗ ψ)) =
hα(e(φ)) ⊗ hα(e(ψ)), for any formulas φ,ψ, every [0, 1]Π -evaluation e.

Now we can prove a series of results that we will allow to completely char-

acterise all the |=a
Π and |=(a

Π logics.

Proposition 3. The following conditions hold:

(1) For any a ∈ (0, 1), |=Π φ iff |=a
Π φ.

(2) For any a, b ∈ (0, 1), |=a
Π = |=b

Π .

(3) |=(0
Π coincides with classical logic, and for a ∈ (0, 1], |=a

Π = |=(a
Π

(4) For any a ∈ (0, 1), φ |=a
Π ψ iff |=a

Π φ→ ψ.

Proof. We prove the above conditions:
(1) It is clear that if |=Π φ then |=a

Π φ. Conversely, assume ̸|=Π φ. Then
there is e such that e(φ) < 1. Let b = e(φ). Then ̸|=a

Π φ for all a such that
b < a < 1. Hence, by (i), ̸|=a

Π φ for any a ∈ (0, 1) as well.
(2) Indeed, assume φ ̸|=a

Π ψ. Then there exists an evaluation e such that
e(φ) ≥ a and e(ψ) < a. We know there exists α ∈ R+ such that aα = b. Then,
if we let e′ = hα ◦ e, we have that e′(φ) ≥ aα = b and e′(ψ) < aα = b, hence
φ ̸|=b

Π ψ.

(3) That |=(0
Π coincides with classical logic is a direct consequence of the fact

that the mapping k : [0, 1] → {0, 1] such that h(0) = 0 and h(x) = 1 for x ∈ (0, 1]
is a morphism of product algebras.

To show that |=a
Π = |=(a

Π , first assume φ ̸|=a
Π ψ, and hence there is e such that

e(φ) ≥ a > e(ψ). Let α < 1 such that (e(ψ))α = a, then (e(φ))α ≥ aα > a =

(e(ψ))α. Therefore, for e′ = hα◦e, we have e′(φ) > a ≥ e′(ψ), and hence φ ̸|=(a
Π ψ.

Conversely, assume φ ̸|=(a
Π ψ. Then there is e such that e(φ) > a ≥ e(ψ). Let

α > 1 be such that (e(φ))α = a and hence we have a = (e(φ))α > (e(ψ))α. This
means that e′(φ) ≥ a > e′(ψ), where e′ = hα ◦ e, that is, φ ̸|=a

Π ψ. □
(4) Assume φ ̸|=a

Π ψ. Then there is e such that e(φ) ≥ a > e(ψ). It follows
that 1 > e(φ→ ψ) = e(ψ)/e(φ), and thus there is α such that (e(ψ)/e(φ))α < a,
that is, e′(φ→ ψ) < a, where e′ = hα ◦ e. Thus, ̸|=a

Π φ→ ψ. Conversely, assume
̸|=a

Π φ → ψ. Then there is e such that e(φ → ψ) < a, hence e(ψ)/e(φ) < a,
that is, e(ψ) < a · e(φ). Let α such that (e(φ))α = a. Then we have (e(ψ))α <
aα · (e(φ))α = aα · a < a. Hence, we have e′(φ) = a while e′(ψ) < a, where again
e′ = hα ◦ e. Therefore, φ ̸|=a

Π ψ. □

The intersection of all the logics |=b
Π for all b ∈ (0, 1] is what is known as the

degree-preserving companion of |=Π , and is denoted as |=≤
Π , see [3]. Then as a

consequence of (1) and (2) of Proposition 3 we have that |=≤
Π = |=Π ∩ |=a

Π for
any a ∈ (0, 1). Next is the final summary result, which is also graphically shown
in the right-hand lattice of logics in Figure 1.

Theorem 4. – For every a ∈ (0, 1), |=a
Π = |=≤

Π .

2 In fact, all the automorphisms of [0,1]Π are of form hα [18].



– |=(0
Π is classical logic, while for any a ∈ (0, 1], |=a

Π = |=(a
Π ⊊ |=Π .

Proof. The inclusion |=≤
Π ⊆ |=a

Π is clear. Assume φ ̸|=≤
Π ψ. Then there exists

e such that e(φ) > e(ψ). Let α such that (e(φ))α = a, hence (e(ψ))α < a.
Therefore, if e′ = hα ◦ e, then e′(φ) = a > e′(ψ), and thus φ ̸|=a

Π ψ. Therefore

|=a
Π ⊆ |=≤

Π . □

Fig. 1. Lattice of threshold-preserving Gödel and Product logics

5 Conclusions

In this paper we have been concerned with the definition and axiomatisation
of both non-falsity preserving and threshold preserving companions of several
extensions of the Monoidal t-norm based fuzzy logic MTL, extending some pre-
liminary results in the recent paper [12]. All the axiomatisarions provided make
use of restricted inference rules. The question whether we could find axiomati-
sations with “pure” inference rules is currently an open problem. On the other
hand, while the study and characterisation of non-falsity preserving compan-
ions of MTL logics is already quite exhaustive, the general study of threshold-
preserving companions is only partial, with the exception of the main three fuzzy
logics,  Lukasiewicz, Product and Gödel logics. In future work we aim at filling
this gap, and consider possible applications of these logics to reasoning under
uncertainty or with preferences.
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