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Abstract: Matheuristics have been gaining in popularity for solving combinatorial optimisation
problems in recent years. This new class of hybrid method combines elements of both mathematical
programming for intensification and metaheuristic searches for diversification. A recent approach
in this direction has been to build a neighbourhood for integer programs by merging information
from several heuristic solutions, namely construct, solve, merge and adapt (CMSA). In this study,
we investigate this method alongside a closely related novel approach—merge search (MS).
Both methods rely on a population of solutions, and for the purposes of this study, we examine
two options: (a) a constructive heuristic and (b) ant colony optimisation (ACO); that is, a method
based on learning. These methods are also implemented in a parallel framework using multi-core
shared memory, which leads to improving the overall efficiency. Using a resource constrained job
scheduling problem as a test case, different aspects of the algorithms are investigated. We find that
both methods, using ACO, are competitive with current state-of-the-art methods, outperforming them
for a range of problems. Regarding MS and CMSA, the former seems more effective on medium-sized
problems, whereas the latter performs better on large problems.

Keywords: merge search; construct, solve, merge and adapt; mixed integer programming; ant colony
optimisation; resource constrained job scheduling

1. Introduction

Large optimisation problems often cannot be solved by off-the-shelf solvers. Solvers based on exact
methods (e.g., integer programming and constraint programming) have become increasingly efficient,
though, they are still limited in their performance due to large problem sizes and their complexities.
Since solving such problems requires algorithms that can still identify good solutions in a time-efficient
manner, alternative incomplete techniques, such as integer programming decompositions, as well as
metaheuristics and their hybridisations, have been given a lot of attention.

Metaheuristics aim to alleviate the problems associated with exact methods, and have been shown
to be very effective across a rage of practical problems [1]. A number of the most effective methods
are inspired from nature—for example, evolutionary algorithms [2,3] and swarm intelligence [4,5].
Despite their success, metaheuristics are limited in their applicability as they are especially inefficient
when dealing with non-trivial hard constraints. Constraint programming [6] is capable of dealing
with complex constraints but does generally not scale well on problems with large search spaces.
Mixed integer (linear) programming (MIP) [7] can deal with large search spaces and also deal with
complex constraints. However, the efficiency of general purpose MIP solvers drops sharply when
reaching a certain, problem-dependent, instance size.
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Techniques for solving large problems with MIPs have been an active area of research in the
recent past. Decomposition methods such as Lagrangian relaxation [8], column generation [7] and
Benders’ decomposition [9] have proved to be effective on a range of problems. Hierarchical models [10]
and large neighbourhood search methods have also proven to be successful [11].

Recently, matheuristics, or hybrids of integer programming and metaheuristics, have been
gaining in popularity [12–16]. References [12,17] provide an overview of these methods and [13]
provide a survey of matheuristics applied to routing problems. The study by [14] shows that nurse
rostering problems can be solved efficiently by a matheuristic based on a large neighbourhood search.
Reference [15] apply an integer programming based heuristic to a liner shipping design problem with
promising results. Reference [16] show that an integer programming heuristic based on Benders’
decomposition is very effective for scheduling medical residents’ training at university hospitals.

This paper focuses on two rather recent novel MIP-based matheuristic approaches, which rely
on the concept of solution merging to learn from a population of solutions. Both of these methods
use the same basic idea: using a MIP to generate a “merged” solution in the subspace that is spanned
by a pool of heuristic solutions. The first is a very recent approach—Merge Search (MS) [18] and the
second method is Construct, Merge, Solve and Adapt (CMSA) [19–22]. The study by [18] shows that
MS is well suited for solving the constrained pit problem. Reference [19] apply CMSA to minimum
common string partition and to the minimum covering arborescence problem, ref. [20] investigate the
repetition-free longest common subsequence problem, and [21] examines the unbalanced common
string partition problem. The study by [22] investigates a hybrid of CMSA and parallel ant colony
optimisation (ACO) for resource constrained project scheduling. Both MS and CMSA aim to search for
high quality solutions to a problem in a similar way: (a) initialise a population of solutions, (b) solve
a restricted MIP to obtain a “merged” solution, (c) update the solution population by incorporating
new information and (d) repeat until some termination criteria are fulfilled. However, they differ in
the details in how they implement these steps.

In principle, a merge step could be added to any heuristic optimisation algorithm that randomly
samples the solution space. The question is whether this helps to improve the performance of a heuristic
search. Additionally, what type of merge step should be used, given that CMSA and MS use two
slightly different merge methods? This study attempts to provide some answers to these questions in
the context of a specific optimisation problem.

This study investigates MS and CMSA with the primary aim of comparing the effects of the
differences between these related algorithms to better understand what elements are important in
obtaining the best performance. The case study used for the empirical evaluation of the algorithms
is the Resource Constrained Job Scheduling (RCJS) problem [23]. The RCJS problem was originally
motivated by an application from the mining industry and aims to capture the key aspects of moving
iron ore from mines to ports. The objective is to minimise the tardiness of batches of ore arriving
at ports, which has been a popular objective with other scheduling problems [24,25]. Several algorithms
have been attempted on this problem, particularly hybrids incorporating Lagrangian relaxation,
column generation, metaheuristics (simulated annealing, ant colony optimisation and particle swarm
optimisation), genetic programming, constraint programming and parallel implementations of these
methods [23,26–32]. The problem is a relatively simple-to-state scheduling problem with a single
shared resource. Nevertheless, the problem is sufficiently well studied to provide a baseline for
performance while still having room for improvement with many larger instances not solved optimally.
The primary aim, though, is not to improve the state-of-the-art for this particular type of problem—even
though our approaches outperform the state-of-the-art across a number of problem instances—but to
get a better understanding of the behaviour of the two considered algorithms.

The paper is organised as follows. First, we briefly summarise the scheduling problem used as a
case study and provide some alternative ways of formulating this as a mixed integer linear program
(Section 2). Then, in Section 3 we provide the details of the two matheuristic methods MS and CMSA,
and we outline how they are applied to the RCJS problem, and discuss briefly the intuition behind these
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methods. We also discuss ways to generate the population, including a constructive heuristic, ACO and
their associated parallel implementations. We detail the motivations for this study in Section 4 and this
is followed by an experimental set-up and empirical evaluation in Section 5. Then, a short discussion
of the results is given in Section 6. Finally, the paper concludes in Section 7, where possibilities for
future work are discussed.

2. Resource Constrained Job Scheduling

The resource constrained job scheduling (RCJS) problem consists of a number of nearly
independent single machine weighted tardiness problems that are only linked by a single shared
resource constraint. It is formally defined as follows. A number of jobs J = {1, . . . , n}must execute
on machinesM = {m1, . . . , ml}. Each jobs i ∈ J has the following data associated with it: a release
time ri, a processing time pi, a due time di, the amount gi required from the resource, a weight wi,
and the machine mi to which it belongs. The maximum amount of resource available at any time is G.
Precedence constraints C may apply to two jobs on the same machine: i → j requires that job i
completes executing before job j starts. Given a sequence of jobs, π, the objective is to minimise the
total weighted tardiness:

T(ß) =
n

∑
i=1

wπi × T(πi), where T(πi) = max{0, cπi − dπi}, (1)

where cπi denotes the completion time of the job at position i of π, which—given π—can be derived in
a well-defined way.

2.1. Network Design Formulation

This problem can be thought of as a network design problem to create a directed, acyclic graph
representing a partial ordering of the job start times (see Figure 1). Here, node 0 represents the start
of the schedule. For any pair of jobs i → j that have a precedence there is an arc with duration pi
separating the start time of the two jobs. Additionally, for any job i that has a release time which is
not already implied by the precedence relationships, the graph contains arcs 0 → i of duration ri.
To capture the tardiness we also introduce an additional dummy node i′ for each i ∈ J .
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Figure 1. The precedence graph of an instance of the RCJS problem.

The problem can now be formulated as follows using variables si to denote the start time of node
(job) i with ui, the completion time or due date for job i (this associated with the dummy node i′).
Finally the binary variables yij are one if arc i→ j is to be added to the graph. Using these variables
we can write the network design problem:
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min ∑
i∈J

wi(ui − di)− (∑
i∈J

wi)s0 (2)

s.t. si − s0 ≥ ri ∀ i ∈ J (3)

ui − si ≥ pi ∀ i ∈ J (4)

ui − s0 ≥ di ∀ i ∈ J (5)

sj − si ≥ piyij −M(1− yij) ∀ i, j ∈ J : i 6→ j (6)

yij = 1 ∀ i, j ∈ J : i→ j (7)

yij + yji = 1 ∀ i, j ∈ J : mi = mj (8)

yij + yji ≤ 1 ∀ i, j ∈ J : mi 6= mj (9)

∑
i∈K

∑
j∈K\{i}

yij ≥ 1 ∀ K ∈ K (10)

yij ∈ {0, 1} ∀ i, j ∈ J .

Here K is the set of all minimal cliques K in the complement of the precedence graph (that is
collection of jobs that do not have a given precedence relationship) such that each of the jobs belongs
to a different machine and ∑i∈K gi > G. It should be noted that constraints (3)–(5), which capture the
release times, processing time and due date requirement, all have the same form of difference between
two variables greater than a constant. The same also applies for (6) for fixed values of the y variables.
Hence, for given y variables, this is simply the dual of a network flow problem. This means that,
for integer data, the optimal times ui and si will all be integers. Note that the objective (2) includes
a constant term (∑i widi) and has the variable s0 with a constant, such that adding a constant to all of
the s and u variables does not change the objective. (Without this the problem would be unbounded).
Alternatively we could arbitrarily fix s0 = 0. Constraints (7) fix in the given precedence arcs of the
network. The remaining constraints on y variables relate to the network design part of the problem.
Constraints (8) and (9) enforce a total ordering of jobs on the same machine and a partial ordering
amongst the remaining jobs, respectively. Finally, (10) prevents more jobs from running simultaneously
(without an ordering) than can be accommodated within the resource limit.

This formulation, while illustrating the network design nature of the problem, suffers from
somewhat poor computational performance. While (10) includes a lot of constraints, these can
be added as lazy constraints. However the main problem is due to the “big-M” constraints (6),
which are very weak. To make this problem more computationally tractable, we will look at time
discretization-based formulations next.

2.2. Time Discretised Mixed Integer Programs

There are many ways of formulating this problem as a mixed integer linear program (MIP).
Different formulations can be expected to cause MIP solvers to exhibit different performances.
More importantly, the MIP formulation acts as a representation or encoding of our solutions and,
hence, impacts in more subtle ways on how the heuristics explore the solution space. Therefore,
we present two further alternative formulations of the problem. In this section, we restrict ourselves to
some basic observations regarding the characteristics of the formulations and defer the discussion of how
these interact with the meta-heuristic search until we have presented our search methods. Both of the
following formulations rely on data comprising integers so that only discrete times need to be considered.

2.3. Model 1

A common technique in the context of exact methods for scheduling is to discretise time [33].
Let T = {1, . . . , tmax} be a set of time intervals (with tmax being sufficiently large) and let xjt be a binary
variable for all j ∈ J and t ∈ T , which takes value 1 if the processing of job j completes at time t.
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By defining the weighted tardiness for a job j at time t as wjt := max{0, wj (t− dj)}, we can formulate
an MIP for the RCJS problem, as follows.

min ∑
j∈J

∑
t∈T

(wjt · xjt) (11)

s.t. ∑
t∈T

xjt = 1 ∀ j ∈ J (12)

xjt = 0 ∀ t ∈ {1, . . . , rj + pj − 1}, ∀ j ∈ J (13)

∑
t∈T

t · xbt − ∑
t∈T

t · xat ≥ pb ∀ (a, b) ∈ C (14)

t+pj

∑̂
t=t

xjt̂ +
t+pk

∑̂
t=t

xkt̂ ≤ 1 ∀ j, k ∈ J , t ∈ T (15)

∑
j∈J

t+di−1

∑̂
t=t

gj · xjt̂ ≤ G ∀ t ∈ T . (16)

Constraints (12) ensure that all jobs are complete. Constraints (13) ensure that the release times
are satisfied and are typically implemented by excluding all of these variables from the model.
Constraints (14) take care that the precedences between jobs a and b are satisfied and Constraints (16)
ensure that no more than one job is processed at the same time on one machine. Constraints (16) ensure
that the resource constraints are satisfied.

This model is certainly the most natural way to formulate the RCJS problem, though not
necessarily the computationally most effective. The linear programming (LP) bounds could be
strengthened by replacing each precedence constraint of the form (14), with a set of constraints
specifying that ∑t<τ+pb

xbt ≤ ∑t≤τ xat ∀τ ∈ T . Additionally, the branching behaviour for this
formulation tends to be very unbalanced: forcing a fractional variable to take value 1 in the branch and
the bound tree can be expected to have a large effect with the completion time of the job now fixed.
On the other hand, setting some xjt = 0 is likely to result in a very similar LP solution in the
branch-and-bound child node with perhaps xj,t−1 or xj,t+1 having some positive (fractional) value
with relatively little change to the completion time objective. Finally, the repeated uses of sums
over T in the constraint mean that the coefficient density is relatively high, potentially impacting
negatively on the solving time for each linear program within the branch and bound method. All of
these considerations typically lead to the following alternative formulation being preferred in the
context of branch and bound.

2.4. Model 2

Let zjt be a binary variable for all j ∈ J and t ∈ T , which takes value 1 if job j is completed at
time t or earlier; that is, we effectively define zjt := ∑s≤t xjs or xjt := zjt − zj,t−1. Substituting into the
above model, we obtain our second formulation:

min ∑
j∈J

∑
t∈T

wjt·(zjt − zjt−1) (17)

s.t. zjtmax = 1 ∀ j ∈ J (18)

zjt − zjt−1 ≥ 0 ∀ j ∈ J , t ∈ {1, . . . , tmax} (19)

zjt = 0 ∀ t ∈ {1, . . . , rj + pj − 1}, ∀ j ∈ J (20)

zbt − za,t−pb ≤ 0 ∀ (a, b) ∈ C, t ∈ T (21)

∑
j∈J i

zj,t+pj − zjt ≤ 1 ∀ i ∈ M, t ∈ T (22)

∑
j∈J

gj · (zj,t+pj − zjt) ≤ G ∀ t ∈ T . (23)
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Constraints (18) ensure that all jobs are complete. Constraints (19) make sure that a jobs stays
completed once it completes. Constraints (20) enforce the release times. Constraints (21) specify
precedences between jobs a and b and Constraints (22) require that no more than one job is executed on
a machine. Constraints (23) ensure that the resource constraints are satisfied. Previous work indicates
that this type of formulation tends to perform better for branch and bound algorithms to solve
scheduling problems [23,34,35].

3. Methods

In this section, we provide details of Merge search (MS), construct, solve, merge and adapt
(CMSA), ant colony optimisation (ACO) (we refer to the original ACO implementation for the RCJS
problem from [27]), and the heuristic used to generate an initial population of solutions.

Note that, in contrast to previous studies on CMSA, we study the use of ACO for generating the
population of solutions of each iteration. This is because in preliminary experiments we realized that
simple constructive heuristics are—in the context of the RCJS—not enough for guiding the CMSA
algorithm towards areas in the space containing high-quality solutions. ACO has the advantage of
incorporating a learning component, which we will show to be very beneficial for the application of
CMSA to the RCJS. Moreover, ACO has been applied to the RCJS before.

3.1. Merge Search

Algorithm 1 presents an implementation of MS for the resource constrained job scheduling
(RCJS) problem. The algorithm has five input parameters, which are (1) an RCJS problem instance,
(2) the number of solutions (ns), (3) the total computational (wall-clock) time (ttotal), (4) the wall-clock
time limit of the mixed integer programming (MIP) solver at each iteration (titer), and (5) the number
of random subsets generated from a set of variables (K). Note that our implementation of MS is
based on the MIP model from Section 2.4—that is, on Model 2. The reasons for that will be outlined
below. In the following section, V denotes the set of variables of the complete MIP model—that is,
V := {zjt | j = 1, . . . , n , t ∈ T }. Moreover, in the context of MS, a valid solution S to the RCJS
problem consists of a value for each variable from S (such that all constraints are fulfilled). In particular,
the value of a variable zjt in a solution S is henceforth denoted by Sjt. The objective function value of
solution S is denoted by f (S).

Algorithm 1 MS for RCJS.

1: INPUT: RCJS instance, ns, ttotal , titer, K
2: Initialisation: Sbs := NULL

3: while time limit ttotal not expired do
4: if Sbs 6= NULL then S := {Sbs} else S := ∅ end if
5: for i = 1, 2, . . . , ns do # note that this is done in parallel
6: S := GenerateSolution(Sbs)
7: S ← S ∪ S
8: end for
9: P := Partition(S)

10: P ′ := RandomSplit(P , K)
11: Sib := Apply_MIP_Solver(P ′,Sbs,titer)
12: if Sbs = NULL or f (Sib) < f (Sbs) then Sbs := Sib end if
13: end while
14: OUTPUT:Sbs

First, the algorithm initialises the best-so-far solution to NULL—that is, Sbs := NULL. The main
loop of the algorithm executes between Lines 3–12 until a terminating criteria is attained. For the
experiments in this study, we impose a time limit of one hour of wall-clock time. A number of feasible
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solutions (ns) is constructed between Lines 5 and 8 and all solutions found are added to the solution set
S , which only contains the best-so-far solution Sbs at the start of each iteration (if Sbs 6= NULL). In this
study, we consider two methods of generating solutions: (1) a constructive heuristic and (2) ACO.
The details of both methods are provided in the subsequent sections. Additionally, in both methods,
the ns solutions are constructed in parallel, leading to a very quick solution generating procedure.
In the case of ACO, ns threads execute ns independent of ACO colonies, leading to ns independent
solutions (see Section 3.3 for full details).

The variables from V are then partitioned on the basis of the solutions in S . In particular,
a partition P = {P1, . . . , Pp} is generated, such that:

1. Pi ∩ Pj = ∅ for all Pi, Pj ∈ P .
2.

⋃p
i=1 Pi = V.

3. Sjt = Srt, ∀ S ∈ S , ∀ zjt, zrt ∈ Pi, ∀ Pi ∈ P . That is, for each solution S ∈ S , the values of all the
variables in each partition of P have the same value.

Partition P is generated in function Partition(S) (see Line 9 of Algorithm 1).
Depending on the solutions in S , the number of the partitions in P can vary greatly. For example,

a large number of similar solutions will lead to very few partitions. Hence, an additional step is
used in function RandomSplit (P , K) to (potentially) augment the number of partitions depending on
parameter K. More specifically, this function randomly splits each partition from P into K disjoint
subsets of equal size (if possible), generating in this way an augmented partition P ′. The concepts of
partitioning and random splitting are further explained with the help of an example in the next section.

Next, an MIP solver is applied in function Apply_MIP_Solver(P ′,Sbs,titer) to a restricted, which is
obtained from the original MIP by adding the following constraints: z = z′, ∀ z, z′ ∈ Pi, ∀ Pi ∈
P ′—that is, the variables from the same partition must take the same value in any solution in S .
This ensures that any of the solutions in S are feasible to the restricted MIP. Moreover, solution Sbs is
used for warm-starting the MIP solver (if Sbs 6= NULL). Note that Sbs is always a feasible solution to
the restricted MIP because it forms part of the set of solutions used for generation P ′. The restricted
MIP is solved with a time limit of titer seconds. Since Sbs is provided as an initial solution to the MIP
solver, this always produces a solution that is at least as good as Sbs, but often producing an even better
solution in the neighbourhood of the current solution set S . Improved solutions lead to updating the
best-so-far solution (see Line 12) and, in the final step, the algorithm returns the best-so-far solution
(Line 14).

3.1.1. MS Intuition

The following example illustrates how partitioning and random splitting in MS is achieved.
Figure 2 deals with a simple example instance of the RCJS problem with three jobs that must be
executed on the same machine. Moreover, the graphic shows the values of the z-variables of three
different solutions, where for each job, each of the three rows of binary values represents the variable
values of a solution. Note that these three solutions lead to the set of variables V being partitioned into
six sets, as indicated by the background of the cells shaded in different levels of grey. More specifically,
the portion P corresponding to the example in Figure 2 consists of the following six sets (ordered from
the lightest shade of grey to the darkest shade of grey):

1. P1 := {z1,1, . . . , z1,3, z2,1, . . . , z2,4, z3,1, . . . , z3,3}
2. P2 := {z1,4, z2,5}
3. P3 := {z1,5, . . . , z1,7, z2,6, . . . , z2,8}
4. P4 := {z3,4, . . . , z3,6}
5. P5 := {z3,7}
6. P6 := {z1,8, . . . , z1,11, z2,9, . . . , z2,11, z3,8, . . . , z3,11}
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Figure 2. A simple example where three jobs have to execute on one machine. There are three
solutions and the completion times of the jobs on each machine are different for the three solutions
(first occurrence of a 1). The first row of binary values for each job shows the values of the variable
in the first solutions. In the first solution, for example, job 1 completes at time point 3, job 2 at time
point 4 and job 3 at time point 7. Moreover, the variable for job 1 at time point 5, for example, has value
1—that is, z1,5 = 1. The same holds for the second solution. However, variable z1,5 has value 0 for the
third solution.

The sets from Figure 2 can now be used to generate the restricted MIP, potentially leading
to a better solution than the original three solutions used to generate it. However, the sets can be
limiting (since there could be very few) and hence random splitting may be used to generate more
sets in order to expand the neighbourhood around the current set of solutions that will be searched
by the restricted MIP. Figure 3 shows such an example, where the original set P3 was split further
(darkest shade) into subsets {z1,5, z1,6, z2,6} and {z1,7, z2,7, z2,8}, and the original set P4 was split into
subsets {z3,4, z3,5} and {z3,6} (black), that is, with a value 2 for parameter K. Solving the resulting
restricted MIP allows for a larger number of solutions and potential improvements. Note, however,
that splitting too many times—that is, with a large value of K—can lead to a very complex MIP.
For sufficiently large K each set Pi ∈ P is a singleton and the “restricted” MIP is simply the
original problem.

job 1

job 2

job 3

0 1 2 3 4 5 6 7 8 9 10 11

t

Figure 3. A larger number of sets generated compared to those in Figure 2. Two of the original sets
(indicated by bold borders) are split further into the dark grey and black sets.

3.1.2. Reasons for Choosing Model 2 in MS

The reasons for choosing Model 2 over Model 1 in the context of MS are as follows.
First, general-purpose MIP solvers are more efficient in solving Model 2. Second, the variables of
Model 2 adapt better to the way in which variables are split into sets in MS. Attempting the same
aggregation using Model 1 (the model defined in Section 2.3) would lead to several inefficiencies.
For example, it would only be possible to identify very few partitions, most of which would be
disjointed and random splitting would not be effective. By contrast, in Model 2 if multiple solutions
include zjt = 1 for some variables zjt, this simply means that, in all of the solutions, job j is completed
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at time t or earlier, even if these solutions differ in exactly when job j is completed. To make this more
concrete, consider the example in Figure 2 with the only requirements being that each job is scheduled
exactly once. Now, the merge neighbourhood of Model 2 permits any combination of starting times of
jobs 1 and 2 at (3,4), (4,5) or (7,8), respectively, combined with job 3 starting at times 3, 6 or 7 for a total
of nine possible solutions. By contrast, if we used Model 1 then the only binary patterns generated
by the xjt solutions would be (0,0,0), (1,0,0), (0,1,0) and (0,0,1) and the merge search neighbourhood
would only include the three original solutions.

3.2. Construct, Solve, Merge and Adapt

Algorithm 2 presents the pseudo-code of the CMSA heuristic for the RCJS problem. The inputs to
the algorithms are (1) an RCJS problem instance, (2) the number of solutions constructed per iteration
(ns), (3) the total computational (wall-clock) time (ttotal), (4) the wall-clock time limit of the MIP-solver
at each iteration (titer), and (5) the maximum age limit (amax). The algorithm maintains a set of variables,
V′, which is a subset of the total set of variables in the MIP model, denoted by V. In contrast to MS,
CMSA uses Model 1 for the restricted MIP solved at each iteration. In the context of CMSA, a valid
solution S to the RCJS problem is a subset of V—that is, S ⊆ V. The corresponding solution is obtained
by assigning the value 1 to all variables in S and 0 to all variables in V \ S. Again, f (S) represents the
objective function value of solution S.

Algorithm 2 CMSA for the RCJS problem.

1: INPUT: An RCJS instance, ns, ttotal, titer, amax
2: Initialisation: V′ := ∅, Sbs := ∅, ajt := 0 ∀ xjt ∈ V
3: while time limit ttotal not expired do
4: for i = 1, 2, . . . , ns do # note that this is done in parallel
5: Si := GenerateSolution()
6: V′ := V′ ∪ {Si}
7: end for
8: Sib ← Apply_MIP_Solver(V′,Sbs,titer)
9: if f (Sib) < f (Sbs) then Sbs := Sib end if

10: Adapt(V′, Sbs, amax)
11: end while
12: OUTPUT: Sbs

The algorithm starts by initialising relevant variables and parameters: (1) V′ := ∅, where V′ is the
subset of variables that should be considered by the restricted MIP, (2) Sbs := ∅—that is, no best-so-far
solution exists, (3) ajt := 0 ∀ xjt ∈ V, where ajt is the so-called age value of variable xjt. With this
last action, all age values are initialized to zero.

Between Lines 3 and 11, the main algorithm executes. The algorithm runs up to a time limit and,
as mentioned earlier, this is one hour of wall-clock time. As in MS, ns solutions are constructed at
each iteration. Remember that the variables contained in a solution S indicate the completion times of
every job. As specified earlier, for the purpose of this study, we investigate a constructive heuristic
and ACO. Each solution that is found is incorporated in V′ (Line 6) by setting a flag for the associated
variables to be free when solving the restricted MIP in function Apply_MIP_Solver(V′,Sbs,titer) (Line 8).
In other words, the restricted MIP is obtained from the original/complete one by only allowing the
variables from V′ to take on the value 1. As in the case of MS, solving the restricted MIP is warm-started
with the best-so-far solution Sbs (if any). The restricted MIP is solved with a time limit of titer seconds
and returns a possibly improved solution Sib. Note that this solution is at least as good as the original
seed solution. In Line 9, a solution improving on Sbs is accepted as the new best-so-far solution.
In Adapt (V′, Sbs, amax), the age parameter of all variables is incremented, except for those that appear
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in Sbs. If a variable’s age has exceeded amax, it is removed from V′. Moreover, its age value is set back
to zero after terminating, the best-so-far solution found is output by the algorithm.

3.2.1. Reasons for Choosing Model 1 in CMSA

As mentioned already above, CMSA makes use of Model 1, as defined in Section 2.3, in the context
of solving the restricted MIP. This is, indeed, the most natural formulation for CMSA, given that we
can exactly specify which variables should take value zero, or should be left free. However, note that
it would also be possible to use Model 2 instead. In this case, a range of variables would have to be
left free, including the earliest and latest times that a job can be completed. However, we found in
preliminary experiments that this results in very long run-times as there are many more open variables,
which leads to an inefficient overall procedure.

3.2.2. CMSA Intuition

Figure 4 shows the same solutions as in Figure 2. However, the variable values displayed in this
graphic are now according to Model 1—that is, only the variables corresponding to the finishing times
of the three jobs in the three solutions take value one. All other variables take value zero. When the
restricted MIP is solved, these are the only times that will be allowed for the jobs to complete.
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Figure 4. This example considers the same toy instance, as in Figure 2, in which three jobs have to
execute on three machines. The variable values (with respect to Model 1) are indicated for the same
three solutions as those displayed in Figure 2.

A size of the search space spanned by the restricted MIP in CMSA is controlled by the number
of solutions generated at each iteration (ns) and by the degree of determinism used for generating
these solutions. For example, the higher ns and the lower the degree of determinism, the larger
the search space of the restricted MIP. Similar ideas to those of random splitting could also be used
within CMSA, where more variables could be freed than only those that appear in the solution pool.
This may be useful for problems which require solving an MIP with a large number of variables to
find better solutions. However, the original implementation [19] did not use such a mechanism and
hence we do not explore it here.

3.3. Parallel Ant Colony Optimisation

An ACO model for the RCJS was originally proposed by [27]. This approach was extended to
a parallel method in a multi-core shared memory architecture by [29]. For the sake of completeness,
the details of the ACO implementation are provided here.

As in the case of the constructive heuristic, a solution in the ACO model is represented by
a permutation of all tasks (π). This is because there are potentially too many parameters if the ACO
model is defined to explicitly learn the finishing times of the tasks. Given a permutation, a serial
scheduling heuristic (see [35]) can be used to generate a resource and precedence feasible schedule
consisting of finishing times for all tasks in a well-defined way. This is described in Section 3.3.1,
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below. Moreover, based on the finishing times, the MS/CMSA solutions can be derived. The objective
function value of an ACO solution π is denoted by f (π).

The pheromone model of our ACO approach is similar to that used by [36]—that is, the set of
pheromone values (Φ) consist of values τij that represent the desirability of selecting job j for position
i in the permutations to be built. Ant colony system (ACS) [37] is the specific ACO-variant that
was implemented.

The ACO algorithm is shown in Algorithm 3. An instance of the problem and the set of pheromone
values Φ are provided as input. Additionally, a solution (πbs) can be provided as an input which
serves the purpose of initially guiding the search towards this solution. If no solution is provided,
πbs is initialised to be an empty solution.

Algorithm 3 ACO for the RCJS problem.

1: input: An RCJS instance, Φ, πbs (optional)
2: Initialise πbs (if given as input, otherwise not)
3: while termination conditions not satisfied do
4: for j = 1 to nants do π j := ConstructSolution(Φ)
5: πib := arg minj=1,...,nants

f (π j)
6: πib := Improve(πib)
7: πbs := Update(πib)
8: PheromoneUpdate(Φ, πbs)
9: end while

10: output: πbs (converted into a MS/CMSA solution)

The main loop of the algorithm at Lines 3–9 runs until a time or iteration limit is exceeded.
Within the main loop, a number of solutions (nants) are constructed (ConstructSolution(Φ)).
Hereby, a permutation π is built incrementally from left to right by selecting, at each step, a task
for the current position i = 1, . . . , n, making use of the pheromone values. Henceforth, Ĵ denotes the
tasks that can be chosen for position i—that is, Ĵ consists of all tasks not assigned already to an earlier
position of π. In ACS, a task is selected in one of two ways. A random number q ∈ (0, 1] is generated
and a task is selected deterministically if q < q0. That is, task k is chosen for position i of π using

k = argmax
j∈Ĵ

τij . (24)

Otherwise, a probabilistic selection is used where job k is selected according to

P(πi = k) =
τik

∑j∈Ĵ τij
. (25)

Every time a job k is selected at position i, a local pheromone update is applied:

τik ← max((1.0− ρ)× τik, τmin) , (26)

where τmin = 0.001 is a small value that ensures that a job k may always be selected for position i.
After the construction of nants solutions, the iteration-best solution πib is determined (Line 5).

This solution is improved by way of local search (Improve(πib)), as discussed in [29]. The global
best solution πbs is potentially updated in function Update(πib): f (πib) > f (πbs) ⇒ πbs := πib).
Then, all pheromone values from Φ are updated using the solution components from πbs in function
PheromoneUpdate(πbs):

τiπ(i) = τiπ(i) · (1.0− ρ) + δ , (27)

where δ := Q/ f (πbs) and Q is a factor introduced to ensure that 0.01 ≤ δ ≤ 0.1. The value of the
evaporation rate ρ is set at 0.1—the same value used in the original study [35].
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3.3.1. Scheduling Jobs

Given permutation π of all jobs, a resource and precedence feasible solution specifying the
start times for every job can be obtained efficiently [23]. This procedure is also called the serial
scheduling heuristic.

Jobs are considered in the order in which they appear in the permutation π. A job is selected
and examined to see if its preceding jobs have been completed. If so, the job is scheduled as early
as possible, respecting the resource constraints. If not, the jobs are placed on a waiting list. If it is
possible to schedule a job, the waiting list is examined to see if any waiting job can be scheduled. If yes,
the waiting job is immediately scheduled (after its preceding job(s)) and the waiting list is re-examined.
This repeats until the waiting list is empty or no other job on the waiting list can be scheduled. At this
point the algorithm returns to consider the next job from π.

3.3.2. Using Parallel ACO within MS and CMSA

As mentioned earlier, parallelization is achieved by running each colony on its own thread,
without any information sharing. Since several colonies run concurrently, a larger (total) run-time
allowance can be provided to the solution construction components of MS and CMSA. Note that the
ACO algorithm may be seeded with a solution (see Algorithm 3). This effectively biases the search
process of ACO towards the seeding solution. In the case that this solution is not provided, the ACO
algorithm is run without any initial bias. Since the restricted MIPs of MS and CMSA benefit greatly
from diversity, one of the ns colonies is seeded with the current best-so-far solution of MS, respectively
CMSA, while the other colonies do not receive any seeding solution (Note, we performed tests where
two or more of the colonies were seeded with the best solution. We found that there was no significant
difference up to five colonies, after which the solutions were worse. Hence, we chose one colony to be
seeded with the best solution).

4. Motivation and Hypotheses

In this section we briefly outline the motivation behind the solution-merging-based approaches
and some hypotheses regarding the behaviour of the algorithms that were to be tested informally in
the empirical results. There are several interrelated aspects of the algorithms to be investigated and we
broadly categorise these by their similarities and differences.

Learning patterns of variable values: Given a population of solutions, both algorithms learn
information about patterns of variable values that are likely to occur in any (good) solution. This aspect
is similar to other population-based metaheuristics, such as genetic algorithms [38].

The main difference between construct, merge, solve and adapt (CMSA) and Merge search (MS) is
that the former focuses on identifying one large set of variables that have a fixed value in good solutions.
The remaining set of variables is subject to optimization. MS, on the other hand, looks for aggregations
of variables—that is, groups of variables that have a consistent (identical) value within good solutions.
However, their specific value is subject to optimization. In the case of MS, very large populations can
still lead to a restricted mixed integer program (MIP) with reasonable run-times, since the method uses
aggregated variables.

Static heuristic information vs learning: Constructive heuristics, such as greedy heuristics,
are typical methods for generating solutions to most scheduling problems and we investigate one such
method in this study. However, we are very interested to see if using a more costly learning mechanism
can lead to inputs for MS and CMSA, such that their overall performance improves. This aspect is
implemented with ant colony optimisation (ACO) in this paper. ACO is more likely to find good
regions in the search space. However, running an ACO algorithm is computationally much more
expensive than generating a single solution. We aim to identify if this trade-off is beneficial.

Strong bias towards improvements over time: Both methods generate, at each iteration, restricted
MIPs whose search space includes all the solutions that contributed to the definition of the MIPs,
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in addition to combinations of those. Hence, the solution generated as a result of the merge step
is at least as good as the best one of the input solutions. The question here in the absence of any
hill climbing mechanism, relying only on random solution generation is sufficient to prevent these
methods from becoming stuck in local optima.

Population size: As with any neighbourhood search or population based approach we expect there
to be a trade-off between diversification and intensification, which—in MS and CMSA—is essentially
controlled both by the size and by the diversity of the populations used in each merge step. Given the
difference in the merge operations, we can expect the best-working population size to be somewhat
different for the two algorithms. In fact, we expect it to be smaller for CMSA as compared to MS.

Random splitting in MS: This mechanism is nearly equivalent to increasing the search space by
throwing in more solutions, except that (a) it is faster than generating more solutions and (b) it provides
some extra flexibility that might be hard to achieve in problems that are very tightly constrained and,
hence, have relatively few and quite varied solutions.

Neighbourhood size: For a given set of input solutions, we expect the restricted MIPs in CMSA
to have a larger search space in the neighbourhood of the input solutions than the MIPs in MS
(with random splitting based on K = 2) leading to better solutions from the merge step, but leading to
longer computation times for each iteration. This aspect can change substantially with an increasing
value of K.

5. Experiments and Results

C++ was used to implement the algorithms, and the implementations were compiled
with GCC-5.2.0. The mixed integer programming (MIP) component was implemented using
Gurobi 8.0.0 [39] and the parallel ant colony optimisation (ACO) component using OpenMP [40].
The experiments were conducted on Monash University’s Campus Cluster with nodes of 24 cores and
256 GB RAM. Each physical core consisted of two hyper-threaded cores with Intel Xeon E5-2680 v3
2.5GHz, 30M Cache, 9.60GT/s QPI, Turbo, HT, 12C/24T (120W).

The experiments were conducted on a dataset from [23]. This dataset consists of problem instances
with 3 to 20 machines, with three instances per machine size. There is an average of 10.5 jobs
per machine. This means that an instance with 3 machines has approximately 32 jobs. Further details
of the problem instances, and how the job characteristics (processing times, release times, weights, etc.)
were determined, can be obtained from the original study.

To compare against existing methods for resource constrained job scheduling (RCJS), we ran
column generation and ACO (CGACO) of [28], column generation and differential evolution (CGDELS)
of [41], the MIP (Model 2—which is most efficient), column generation (CG) on its own and
parallel ACO. The results for the MIP, CG and ACO are presented in Appendix D and are not discussed
in the following sections as they prove not to be competitive.

Thirty runs per instance were conducted and each run was allowed one hour of wall-clock time.
Based on the results obtained in Section 5.4, 15 cores were allowed for each run (that is, Gurobi uses
15 cores when solving the involved MIPs and the ACO component is run with ns = 15). To allow
a fair comparison with CGACO and CGDELS, the same algorithm was run on the same infrastructure
using 15 cores per run. The parameter settings for the individual merge search (MS) and construct,
merge, solve and adapt (CMSA) runs were obtained by systematic testing (see Appendices B and C).
The detailed results are provided in the following sections. The parameter settings for each individual
ACO colony were the same as those used in [27,29]: ρ = 0.1, q0 = 0.9 and nants = 10.

The result tables presented in the next sections are in the following format. The first column
shows the name of the problem instance (e.g., 3–5 is an instance with 3 machines and id 5). For each
algorithm we report the value of the best solution found in 25 runs (Best), the average solution quality
across 25 runs (Mean), and the corresponding standard deviation (SD). The number of performed
iterations, as an average across the 25 runs, is also provided (Iter.). The best results in each table are
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marked in boldface. Moreover, all statistically significant results, obtained by conducting a pairwise
t-test and using a confidence interval of 95%, are marked in italics.

5.1. Study of Merge Search

MS relies on a “good” diverse pool of solutions to perform well. There are two approaches one
could take to this: (1) simply constructing a diversity of random solutions as quickly as possible,
or (2) searching for a population of good solutions in the neighbourhood of the best found. In the
literature, CMSA takes the first approach while MS takes the second. We conducted experiments with
a constructive heuristic (see Appendix A) and ACO (Table 1) for the first and second approaches,
respectively. The parameters for MS are the MIP time limit (titer = 120 s), the number of ACO iterations
(5000) and the value of the random splitting parameter (K = 2). Parameter values were chosen
according to parameter tuning experiments (see Appendix B).

Table 1. MS with ACO. For 25 runs conducted, the best (Best) and average (Mean) solution qualities
with associated standard deviations (SD) are provided. The table also shows the average number of
iterations (Iter.) conducted for each problem instance. Statistically significant results, using a pairwise
t-test, at the 95% confidence interval are highlighted in boldface.

Inst. MS-Heur MS-ACO

Best Mean SD Iter. Best Mean SD Iter.

3 -5 509.27 557.27 22.51 17,404.2 505.00 505.00 0.00 489.2
3 -23 151.83 161.71 5.03 20,000.6 149.07 149.07 0.00 619.5
3 -53 69.36 70.08 0.52 30,170.9 69.36 69.36 0.00 774.5
4 -28 25.62 28.57 1.41 17,529.3 23.81 23.81 0.00 398.7
4 -42 67.64 70.56 2.11 20,066.8 66.07 66.68 0.18 257.1
4 -61 45.96 49.18 2.24 16,211.5 45.96 45.96 0.00 362.2
5 -7 288.38 309.19 9.67 11,643.4 252.90 252.90 0.00 66.1

5 -21 168.63 177.50 3.57 10,962.0 168.63 168.63 0.00 293.6
5 -62 292.16 300.22 4.15 8095.0 249.50 255.42 3.21 20.2

6 -10 981.36 1031.48 21.78 2546.7 819.74 834.22 7.63 12.4
6 -28 261.38 290.74 9.51 10,087.2 218.37 218.37 0.00 39.4
6 -58 276.75 297.79 9.17 9739.5 236.05 237.87 1.30 17.7
7 -5 511.57 538.15 12.78 1549.9 419.52 430.83 6.42 28.5
7 -23 726.94 765.99 21.95 1006.2 540.40 561.70 8.46 27.0
7 -47 590.49 607.83 9.95 1224.2 412.60 438.96 10.86 27.0
8 -3 948.96 970.84 12.14 1376.2 615.93 648.25 15.46 23.8
8 -53 558.03 579.63 11.40 413.0 447.37 465.85 8.36 26.0
8 -77 1469.22 1548.06 29.05 1667.9 1186.69 1216.34 14.35 25.0

9 -20 1095.74 1135.18 18.01 25.2 905.02 926.73 11.41 24.0
9 -47 1579.50 1626.32 29.89 133.3 1200.87 1226.92 14.59 20.9
9 -62 1775.97 1819.71 24.57 371.2 1422.05 1449.17 12.95 22.0
10 -7 3187.99 3297.69 54.14 51.2 2522.62 2581.62 31.52 20.0

10 -13 2736.23 2839.93 44.65 29.9 2156.04 2217.89 29.63 20.0
10 -31 764.95 816.82 16.02 303.9 591.21 618.68 11.10 22.0
11 -21 1194.71 1246.61 22.19 57.1 997.39 1023.32 18.41 21.0
11 -56 2230.69 2321.07 34.10 329.5 1800.44 1851.90 26.64 18.0
11 -63 2386.59 2445.65 23.56 31.5 2003.32 2034.60 12.50 19.0

12 -14 2241.26 2335.04 34.55 46.4 1750.58 1803.95 18.14 18.0
12 -36 4021.57 4147.06 43.38 27.6 2991.41 3047.97 38.77 16.0
12 -80 3093.55 3197.13 43.97 21.1 2399.97 2430.03 16.96 16.4
15 -2 5372.02 5494.10 60.88 55.7 4003.67 4110.89 47.28 10.0
15 -3 6215.61 6360.31 68.50 51.7 4483.49 4558.71 32.51 11.3
15 -5 5311.44 5493.00 85.55 23.1 3541.96 3576.02 20.02 13.0
20 -2 9994.59 10,370.08 124.46 24.3 8831.20 8961.45 47.51 6.0
20 -5 17,213.70 18,168.91 578.03 38.8 14,708.02 14,951.71 102.72 5.0
20 -6 9616.81 9748.11 67.32 30.0 7890.31 8081.78 68.45 7.1

We see that using ACO within MS (called MS-ACO) is far superior to using the constructive
heuristic. ACO provides a distinct advantage across all problem instances, which must be due
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to the fact that the solutions for the generation of the restricted MIPs are very good, due to the
computation time invested in learning (made efficient via parallelization). Not surprisingly, the number
of iterations performed by MS-Heur is much larger than that by MS-ACO, within the given time limits.
This is mainly due to the fact that the solution construction in MS-ACO lasts more than 5000 times
longer than that of MS-Heur. This demonstrates conclusively that, for MS, having a set of good
solutions clustered around the best known solution is better than a diverse set of randomly generated
solutions. Next, we will test whether the same conclusion holds for CMSA.

5.2. Study of CMSA

As with MS, we can also use the constructive heuristic or ACO (labelled CMSA-ACO) within
CMSA to generate solutions. The parameters of CMSA, including the time limit for solving the
restricted MIPs (titer = 120 s), ACO iterations (5000) and the maximum age limit (amax = 5, for instances
with 8 or fewer machines and amax = 3, for instances with 9 or more machines) were determined as
a result of the parameter tuning experiments (See Appendix C). As in the case of MS, we can observe
that ACO (Table 2) provides a distinct advantage across all problem instances.

Table 2. CMSA with ACO. For 25 runs conducted, the best (Best) and average (Mean) solution qualities
with associated standard deviations (SD) are provided. The table also shows the average number of
iterations (Iter.) conducted for each problem instance. Statistically significant results, using a pairwise
t-test, at the 95% confidence interval are highlighted in boldface.

Inst. CMSA-Heur CMSA-ACO

Best Mean SD Iter. Best Mean SD Iter.

3 -5 594.31 610.85 13.03 110.0 505.00 505.00 0.00 324.2
3 -23 174.23 179.03 2.52 198.8 149.07 149.07 0.00 476.0
3 -53 69.36 69.36 0.00 624.1 69.36 69.36 0.00 755.5
4 -28 25.37 26.62 0.85 215.6 23.81 23.81 0.00 346.3
4 -42 88.12 96.82 3.49 67.9 66.07 66.26 0.25 27.3
4 -61 45.96 46.07 0.04 266.6 45.96 45.96 0.00 298.0
5 -7 396.81 423.44 14.83 33.1 252.90 252.90 0.00 19.1
5 -21 168.63 238.71 26.81 34.0 168.63 168.63 0.00 129.6
5 -62 273.95 290.95 15.57 33.2 249.50 254.42 3.69 13.0

6 -10 834.65 1086.32 93.43 33.0 825.64 837.68 5.71 12.4
6 -28 298.54 346.66 30.39 33.8 218.37 218.40 0.05 13.2
6 -58 350.63 391.62 25.49 33.7 236.05 238.50 1.11 13.0
7 -5 430.28 493.74 34.04 30.7 420.20 433.92 5.41 28.4
7 -23 704.54 760.36 26.65 33.1 553.02 562.97 6.39 27.0
7 -47 493.25 585.79 51.19 32.6 419.60 441.67 11.99 26.9
8 -3 1176.16 1350.22 148.12 33.0 621.74 658.87 15.50 23.9
8 -53 459.59 537.54 42.67 33.3 442.83 457.30 8.06 26.0
8 -77 2017.81 2144.72 81.62 33.1 1183.94 1211.27 13.94 25.0

9 -20 1068.60 1149.51 36.80 33.0 903.30 928.40 10.04 24.0
9 -47 1974.63 2200.42 146.16 33.0 1205.99 1226.62 11.03 20.4
9 -62 2055.12 2214.52 115.67 32.9 1410.96 1449.41 15.43 22.0
10 -7 3268.61 3551.05 143.94 33.1 2491.08 2557.32 33.20 20.0
10 -13 3380.87 3834.01 265.64 31.5 2149.49 2205.24 30.19 20.0
10 -31 730.47 838.64 46.29 33.0 592.08 610.79 8.33 22.3
11 -21 1298.52 1332.68 33.66 30.0 997.08 1011.50 8.38 21.0
11 -56 2832.30 2989.67 138.04 33.0 1793.48 1834.68 18.19 18.0
11 -63 2521.33 2723.58 137.40 33.0 1988.45 2025.39 18.71 19.0

12 -14 2154.49 2437.09 170.98 32.9 1737.87 1788.23 16.39 18.0
12 -36 4600.80 4832.21 111.99 33.0 2917.00 2989.84 38.90 16.1
12 -80 3336.94 3490.43 79.00 31.2 2363.39 2411.98 17.79 17.0
15 -2 5611.15 5851.75 116.12 32.2 3967.47 4041.84 38.95 10.0
15 -3 7484.49 7666.97 113.31 32.4 4352.50 4476.71 60.64 11.0
15 -5 4832.37 5311.91 202.94 33.0 3397.36 3520.99 40.72 13.0
20 -2 11,438.07 11,550.36 71.87 29.0 8733.86 8913.17 96.27 6.0
20 -5 20,478.46 20,891.89 237.81 30.4 14,588.81 14,894.91 159.12 5.0
20 -6 9791.88 9941.69 84.49 32.0 7800.87 7968.64 79.34 7.0
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Overall, constructing the solutions with ACO seems to help the iterative process of CMSA to
focus on very good regions of the search space. For RCJS, the results demonstrate that, irrespective
of the details of the merge method, solution merging works much better as an additional step to
improve results in a population based metaheuristics than as the main solution intensification method
on its own.

In contrast to the case of MS-Heur and MS-ACO, it is interesting to observe that the number
of iterations performed by CMSA-Heur is of the same order of magnitude as that of CMSA-ACO.
Even though CMSA-Heur usually performs more iterations than CMSA-ACO, in a small number of
cases—concerning the small problem instances with up to four machines, in addition to instance
5–21—there are fewer iterations conducted by CMSA-Heur. Investigating this more closely by
examining the restricted MIP models generated within the CMSA versions, we found that the
constructive heuristic provides slightly more diversity as several ACO colonies converge to the
same solution. In the context of CMSA, this leads to more variables in the restricted MIP and hence to
a significant increase in MIP solving time. This increase in time for the merge step consumes most of
the time saved in the faster time of the constructive heuristic compared to ACO.

5.3. Comparing CGACO, CGDELS, BRKGA, MS and CMSA

We now investigate how the best versions of MS and CMSA (both using ACO for generating
solutions) perform against the current state-of-the-art methods for the RCJS problem. Reference [28]
showed that the CGACO hybrid is very effective, while [41] (CGDELS) and [42] (BRKGA) are current
state-of-the-art approaches. For a direct comparison, we run these methods, allowing the same
computational resources with the same run time limits. The results are shown in Table 3.

The comparison here is with respect to upper bounds, as we are only interested in feasible solutions
in this study. We see that within one hour of wall clock time, CGACO is always outperformed by
MS and CMSA. With increasing problem size, the differences are accentuated. The comparison with
CGDELS shows that MS and CMSA perform better on 20/36 problem instances. For the smallest
problem instances (3–5 machines), MS and/or CMSA are best. The results are split for small to
medium-sized instances (6–9 machines) followed by a clear advantage of CGDELS for medium
to large sized instances (9–12 machines). For the largest instances, CMSA regains the advantage.
The best performing method is clearly BRKGA, but for the small to medium instances, MS and CMSA
are able to find better solutions (on 11/36 problem instances).

Comparing MS and CMSA, we can observe that both algorithms are very effective in finding
good solutions within the given time limit. MS finds best solutions (best in 17 out of 36 instances) for
nearly half of the instances. This is mainly the case for the problem instance of small and medium sizes
(up to 10 machines). CMSA, on the other hand, is very effective for small instances (up to 5 machines)
and then more effective again on the larger instances (≥10 machines), finding the best solution in
26 out of 36 cases. For instances of 10 machines and beyond, CMSA is clearly the best-performing
method. This aspect is also summarized in Figure 5, where, for each method, the average performance
across instances on the same number of machines is plotted, with respect to the percentage difference
to the best performance. CGACO is always outperformed by all other methods. CGDELS performs
the best for problem instances with 9, 10, 11 and 12 machines, and for the remaining machine sizes
(except 15 machines), MS and CMSA are best. The case with 15 machines is interesting because CMSA
or MS are generally more effective, but CGDELS is overwhelmingly more effective in one instance
(15–2), thereby skewing the average. We see that while MS is effective for instances with a low number
of machines and CMSA is more effective for the larger instances.

Comparing MS and CMSA in terms of iterations (Tables 1 and 2) show that there are many more
iterations performed by MS for problem instances of small and medium size (up to 8 machines). This is
due to very small restricted MIPs being generated at each iteration in MS, which—in turn—is due
to the large amount of overlap among the generated solutions. MS-ACO and CMSA-ACO are much
closer to each other in terms of the number of iterations performed, but we see that CMSA-ACO
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generally performs fewer iterations. This is again due to the larger solving times of the MIPs and
validates our hypothesis that the solution space induced by CMSA is larger when MS has very few sets.

Table 3. A comparison of CGACO, CGDELS and BRKGA against MS and CMSA. The results are
presented as the % difference from each method to the best known solution (column 2). The time
limits for solving the restricted MIPs within MS-ACO and CMSA-ACO were set to 120 s. The best
results are in bold. Statistically significant results, using a pairwise t-test, at the 95% confidence
interval are italicized.

Inst. Best CGACO CGDELS BRKGA MS-ACO CMSA-ACO

3 -5 505.0 0.1083 0.0000 0.0000 0.0000 0.0000
3 -23 149.1 0.0923 0.0012 0.0000 0.0000 0.0000
3 -53 69.4 0.0095 0.0027 0.0000 0.0000 0.0000
4 -28 23.8 0.2066 0.0038 0.0050 0.0000 0.0000
4 -42 66.1 0.0652 0.0148 0.0238 0.0092 0.0029
4 -61 46.0 0.0570 0.0000 0.0111 0.0000 0.0000
5 -7 252.9 0.2192 0.0022 0.0031 0.0000 0.0000
5 -21 168.6 0.0503 0.0000 0.0000 0.0000 0.0000
5 -62 249.5 0.2052 0.0197 0.0247 0.0237 0.0197

6 -10 811.6 0.2709 0.0162 0.0203 0.0278 0.0321
6 -28 218.4 0.3493 0.0068 0.0444 0.0000 0.0001
6 -58 236.1 0.2747 0.0255 0.0224 0.0077 0.0104
7 -5 418.1 0.2849 0.0220 0.0289 0.0305 0.0379
7 -23 533.8 0.4319 0.0382 0.0446 0.0524 0.0547
7 -47 406.4 0.5121 0.0345 0.0298 0.0803 0.0869
8 -3 615.9 0.5709 0.0305 0.0225 0.0525 0.0697
8 -53 442.2 0.3025 0.0318 0.0241 0.0535 0.0342
8 -77 1163.8 0.3272 0.0419 0.0262 0.0452 0.0408

9 -20 873.3 0.2936 0.0157 0.0102 0.0612 0.0631
9 -47 1158.3 0.4145 0.0570 0.0236 0.0593 0.0590
9 -62 1382.6 0.3072 0.0512 0.0123 0.0481 0.0483
10 -7 2384.0 0.3862 0.0341 0.0068 0.0829 0.0727
10 -13 2082.7 0.3612 0.0298 0.0116 0.0649 0.0588
10 -31 572.0 0.4260 0.0421 0.0258 0.0816 0.0678
11 -21 964.0 0.2939 0.0315 0.0098 0.0615 0.0492
11 -56 1674.5 0.3961 0.0698 0.0121 0.1059 0.0957
11 -63 1887.2 0.2990 0.0544 0.0136 0.0781 0.0732

12 -14 1636.4 0.4313 0.0517 0.0132 0.1024 0.0928
12 -36 2764.2 0.4965 0.0432 0.0119 0.1027 0.0816
12 -80 2226.7 0.4439 0.0532 0.0141 0.0913 0.0832
15 -2 3596.5 0.5376 0.0663 0.0086 0.1430 0.1238
15 -3 3948.2 0.6075 0.0715 0.0117 0.1546 0.1339
15 -5 3234.7 0.6981 0.0613 0.0124 0.1055 0.0885
20 -2 7755.3 0.3437 0.0712 0.0174 0.1555 0.1493
20 -5 12,899.2 0.4139 0.0857 0.0174 0.1591 0.1547
20 -6 6907.8 0.4101 0.0634 0.0131 0.1699 0.1536
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Figure 5. Comparison of the algorithms concerning the percentage difference to the best result,
averaged over the instances with the same number of machines. The scale of the vertical axis
is logarithmic.

The above experiments demonstrate the efficacy of MS-ACO and CMSA-ACO compared to the
state-of-the-art method for RCJS. It has been previously shown [28] that ACO on its own is not very
effective for this problem. However, so far it remains unclear how much of the improvement in solution
quality can be attributed to solution merging and to the ACO component of the search. To further
understand this aspect, we measured the relative contribution of the merge step of MS and CMSA
in the MS/CMSA hybrid—that is, the contribution obtained by solving the restricted MIPs. Table 4
shows these results as the percentage contribution of the merge step (MS/CMSA-MIP) relative to the
total improvement (MS/CMSA+ACO). For example, suppose we have the following steps in one run
of MS-ACO:

1. Solve MIP: starting objective 5000, final objective 4500: g1 = (5000−4500)
5000 × 100 = 10.0%.

2. Solve ACO: objective 4200.

3. Solve MIP: starting objective 4200, final objective 4000: g2 = (4200−4000)
5000 × 100 = 4.0%.

4. Solve ACO: objective 4000.

5. Solve MIP: starting objective 4000, final objective 3500: g3 = (4000−3500)
5000 × 100 = 10.0%.

The contribution of MS-MIP is g1 + g2 + g3 = 24% and MS+ACO is (5000−3500)
5000 × 100 = 30%.

This calculation shows that, in the example, the MIP component plays a more substantial role than the
ACO component in improving the solutions.

Table 4 provides the complete set of results for this solution improvement analysis. We see that,
for a number of instances, the contributions of the merge step and ACO are similar. However, the cases
in which the contribution of the merge step is more substantial concern the smaller and the
medium-sized instances (e.g., 5–7 and 6–28), whereas ACO contributes more substantially in the
context of the larger instances (e.g., with 12, 15, and 20 machines). This is not surprising, as ACO
actually consumes the majority of the runtime of the algorithm in those cases, in which only a small
number of iterations can be completed within the time limit.
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Table 4. The contribution of the merge step of MS-ACO and CMSA-ACO, relative to the total solution
improvement. The MIP results sum up the percentage improvement in the objective for every MIP
solve for an instance. The MS/CMSA+ACO result is the percentage difference of the first best solution
found to the best solution at the end of the run. Small instances where the best solution is the first one
found have been omitted.

Inst. MS-MIP MS + ACO CMSA-MIP CMSA + ACO

4 - 28 1.72 3.13 1.69 2.37
4 - 42 0.86 1.87 2.25 3.31
5 - 7 7.30 8.23 7.94 8.63

5 - 62 3.14 6.00 3.46 4.66

6 - 10 1.36 2.38 0.25 1.86
6 - 28 2.81 2.96 2.46 2.55
6 - 58 2.58 3.09 2.77 3.14
7 - 5 3.47 5.56 2.56 4.23

7 - 23 2.02 5.41 1.60 6.48
7 - 47 3.63 7.70 1.40 7.52
8 - 3 4.98 8.29 2.65 5.57

8 - 53 1.30 1.95 1.41 4.82
8 - 77 0.93 3.52 1.03 4.73

9 - 20 2.20 4.43 1.24 3.61
9 - 47 1.47 3.26 0.93 3.33
9 - 62 1.06 2.79 0.49 2.25
10 - 7 1.09 2.29 0.96 3.37
10 - 13 0.87 2.69 0.36 2.48
10 - 31 1.70 3.96 1.19 4.65
11 - 21 1.17 2.89 0.91 3.96
11 - 56 0.69 2.38 0.58 3.96
11 - 63 0.47 2.69 0.42 2.09

12 - 14 0.88 3.16 1.35 3.82
12 - 36 0.49 2.14 1.19 3.85
12 - 80 0.36 2.80 0.95 3.27
15 - 2 0.49 2.28 0.36 2.68
15 - 3 0.46 1.47 0.29 3.39
15 - 5 0.63 1.49 0.98 3.81
20 - 2 0.09 1.07 0.06 1.77
20 - 5 0.13 0.67 0.04 1.60
20 - 6 0.12 0.45 0.06 1.96

5.4. Study Concerning the Number of Cores Used

Remember that the number of allowed cores influences two algorithmic components: (1) the ACO
component, where the number of cores corresponds to the number of colonies and (2) the solution of
the restricted MIPs (which is generally more efficient when more cores are available). However, with a
growing number of allowed cores, the restricted MIPs become more and more complex, due to being
based on more and more solutions. In any case, the number of allowed cores should make a significant
difference to the performance of both MS-ACO and CMSA-ACO.

The results are presented in Figures 6 and 7. The figures show the average over all instances with
the same number of machines of 25 runs for the gap to the best solution found by any of the methods.
The results for MS-ACO show that using 15 or 20 cores is preferable compared to using only 10 cores.
The difference between 15 and 20 cores is small with a slight advantage using 20 cores.
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Figure 6. The performance of MS-ACO with 10, 15 and 20 cores. The results are averaged over
instances with the same number of machines and show the gap to the best solution found by MS-ACO
or CMSA-ACO.

Figure 7. The performance of CMSA-ACO with 10, 15 and 20 cores. The results are averaged over
instances with the same number of machines and show the gap to the best solution found by MS-ACO
or CMSA-ACO.

As mentioned already above, the diversity of the solutions generated when using 20 cores leads to
large restricted MIPs (many more variables) to be solved, which can be very time consuming and even
very inefficient. Hence, on occasion, 15 cores are preferable to 20 cores. Compared to using 10 cores,
using 15 or 20 cores cores provides sufficient diversity leading to good areas of the search space for the
restricted MIPs within the 120 s time limit.

The results for CMSA-ACO show that overall the use of 15 or 20 cores is preferable over only using
10 cores. In CMSA-ACO, several instances are solved more efficiently with 20 cores. Though, for the
large instances (10 or more machines), the use of 15 cores is most effective. For CMSA the effect of
increased number of solutions on increasing the size and complexity of the restricted MIP used in
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the merge step is even more pronounced than in MS. Hence, overall the use of 15 cores proves to be
most effective.

The conclusion of this comparison is that, while solution merging benefits from having a number
of different solutions available, a too large pool of solutions can also have a detrimental effect.
For RCJS, using 15 solutions is generally the best option irrespective of the type of merge step used
(MS vs. CMSA). To better understand the effect of the alternative solution merging approaches, we next
test these using exactly the same pools of solutions.

5.5. Comparing MS and CMSA Using the Same Solution Pool

To remove the randomness associated with the generation of a population of solutions,
we investigated the alternative merge steps of MS and CMSA using the same solution pool. For this
direct comparison we carried out just one algorithm iteration for each instance. The solutions were
obtained using ACO, using the same seed—that is, leading to exactly the same solutions available
for generating the MIPs of both methods. The time limit provided for solving the restricted MIPs
was again 120 s. Random splitting in MS-ACO was set as before to K = 2, while the age limit in
CMSA-ACO had no effect in this case.

With increasing neighbourhood size, the quality of the solution that can be found in this
neighbourhood can be expected to improve. Hence, we use the solution quality as a proxy for the
size of the space searched by the MIP subproblems in the two algorithms. Figure 8 shows the gap
( UBMS − UBCMSA

UBCMSA
) or difference in performance (in percent) after one algorithm iteration.

Figure 8. Comparing the solution quality obtained by MS and CMSA when they are provided with the
same set of solutions for one iteration. The boxes show the improvement in MS over CMSA (in percent),
with a positive value indicating that CMSA performed better.

A positive value indicates that CMSA-ACO performed better than MS-ACO, whereas a negative
value means the opposite. We see that CMSA-ACO is generally more effective for smaller problems,
but this difference reduces in the context of the larger problems, where sometimes MS-ACO can be
more effective.
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Figure 9 shows a similar comparison, as in Figure 8, but instead considers the time
required to solve the restricted MIPs. We see that, for small problems, MS-ACO is a lot faster
(except, for instance, 4–61). This further validates the hypothesis that the CMSA-ACO solution space
is larger than that of MS-ACO. From seven machines onwards, the MIP-solving exhausts the time limit
both in MS-ACO and in CMSA-ACO, hence we see no difference.

Figure 9. Comparing the computing time needed by MS and CMSA for solving the restricted MIPs
when they are provided with the same set of solutions for one iteration. The boxes show the percentage
difference of MS and CMSA, with a positive value indicating that MS took more computation time.

6. Discussion

From the experiments conducted, we make the following observations regarding the use of
solution merging in the context of heuristic search for the RCJS problem. Both MS and CMSA are more
effective when the populations contain solutions from good regions of the search space. While good
solutions can be found with heuristics, the results show that the learning mechanism of ACO is critical
to the performance of both algorithms. Despite ACO requiring substantially more computational effort,
the quality of the solutions used to build the restricted MIPs are vital to the performance of the overall
algorithm. This contrasts with the way CMSA was originally proposed using a simple randomised
heuristic to generate a pool of solutions.

Both algorithms are very effective and achieve almost the same performance on the smallest
problem instances. MS is more effective for medium-size problem instances, whereas CMSA is more
effective for the large instances. A key aspect of this is that the solutions generated by ACO are often
very good for the problem instances of small and medium size. Thus, the smaller search space of the
restricted MIPs in MS, achieved through aggregating variables, allows solving the MIPs much more
quickly than in CMSA. However, for the large problem instances, the restricted MIPs in CMSA are more
diverse, and hence enable the algorithm to find better quality solutions. Comparing with CGACO,
MS and CMSA perform significantly better across all problem instances given the run-time limits.

Given the stopping criteria of one hour of wall-clock time, a large amount of random splitting
in MS does not seem beneficial. In fact, the time limit for solving the restricted MIPs (120 s) is too
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low for solving the increasingly large-scale restricted MIPs obtained from increasing the amount
of random splitting (even in the context of problem instances with eight machines, for example).
However, increasing this time limit does not prove useful, because more and more of the total
computational allowance will be spent on solving fewer and fewer restricted MIPs (leading to fewer
algorithm iterations) without necessarily finding improving solutions.

As we hypothesized (Section 4), the way of generating the restricted MIPs in CMSA leads to
a larger search space when compared to that of MS. This is validated by the run-times: the restricted
MIPs of CMSA usually take longer to be solved than the restricted MIPs of MS (if the 120 s time limit
is not exhausted).

Analysing the parallel computing aspect, we were able to observe that—with a total wall-clock
time limit of one hour—using 15 cores leads to the best results for both MS and CMSA.
Parallel computing is particularly useful when using a learning mechanism such as ACO, where more
computational effort is needed to achieve good diverse solutions. However, with too many cores (20),
the performance of both methods generally drops. This is because the mechanism for utilising the
additional cores results in a larger, more diverse set of solutions. CMSA in particular is severely
affected for the large problem instances, where often the process of trying to solve the restricted MIPs
is unable to find improvements over the seeding solutions.

Finally, we would like to remark that, in the context of a discrete time MIP formulation of
a scheduling problem with a minimum Makespan objective, the restricted MIP could never produce
any solution better than the best of the input solutions. This is because improvements in the objective
function are limited to values available in the inputs. Hence, an alternative MIP modelling approach
should be considered in these cases—for example, based on the order of the jobs (sequencing) without
any fixed completing times. This might even be beneficial for the problem considered in this work.
Investigating this effect of solution representation for solution merging of RCJS is beyond the scope of
the current work, but represents a promising avenue for future research.

7. Conclusions

This study investigates the efficacy of two population-based matheuristics—Merge search (MS)
and construct, merge, solve & adapt (CMSA)—for solving resource constrained job scheduling (RCJS).
Both methods are shown to be more effective when hybridized with a learning mechanism—i.e., ant
colony optimisation (ACO). Furthermore, the whole framework is parallelized in a multi-core shared
memory architecture, leading to large gains in run-time. We find that both hybrids are overall
more effective than both the individual methods on their own, and better than previous attempts to
combine ACO with integer programming, which used column generation and Lagrangian relaxation in
combination with ACO. Furthermore, MS and CMSA are competitive with the state-of-the-art hybrid of
column generation and differential evolution, especially outperforming this method on small-medium
and large problem instances. Comparing MS and CMSA, we see that both methods easily solve
small problems (up to five machines), while MS is more effective for medium-sized problem instances
(up to eight machines) and CMSA for large problem instances (starting from 11 machines).

We investigate in detail several aspects of the algorithms, including their parallel components,
the search spaces considered at each iteration, and algorithm specific components (e.g., random
splitting in MS). We find that parallel ACO is very important for identifying good areas of the search
space, within which MS and CMSA can very efficiently find improving solutions. The search spaces
considered by CMSA at each iteration are typically larger than those of MS, which is advantageous for
large problem instances but generally disadvantageous for problem instances of medium size.

Future Work

The generic nature of MS and CMSA mean that they can be applied to a wide range of problems.
There are two main requirements: (1) a method of generating good (and diverse) feasible solutions and
(2) an efficient model for an exact approach. Given these aspects, both algorithms are capable of being
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applied to other problems with little overhead and the promise of good results. Individually, they
are already proven on some problems [18–21], with more studies having been conducted with CMSA.
Hence, there are several possibilities of applying both approaches to different problems. We are
currently investigating the efficacy of MS and CMSA on the resource constrained project scheduling
maximising the net present value [33,43–45].

The parallelisation is effective for both methods. Extending this aspect to a message passing
interface framework [46] can be of great potential. In particular, running multiple MSs or CMSAs
concurrently and passing (good) solutions between the nodes could lead to the possibility of exploring
much larger search spaces. We are currently investigating a parallel MS approach for open pit
mining [47,48] with promising preliminary results.

We have briefly discussed the possibility of investigating additional mixed integer programming
(MIP) models for their use in MS and CMSA (Section 6). As we pointed out, a sequence-based
formulation could be very effective for the RCJS problem. Moreover, given that several problems can
be modelled by similar sequence-based formulations, it can be expected that this aspect can transfer to
those problems in a straightforward manner. Furthermore, different solvers could be attempted instead
of the MIP solvers. For example, for very tightly constrained problems, constraint programming could
prove very useful.

The similarities between MS and CMSA suggest that both algorithms can be combined into
one high-level algorithm as a generic procedure for solving combinatorial optimisation problems.
This approach combines the relative strengths of both methods and can prove to be very beneficial
on a wide range of applications. For example, a straightforward extension to CMSA is to incorporate
random splitting of the search space, and conversely, the age parameter could be incorporated in MS.
In fact, this method can be included within state-of-the-art commercial solvers to provide good heuristic
solutions during the exploration of the branch and bound search tree.

Finally, note that computational intelligence techniques other than the ones utilized and studied
in this work might be successfully used to solve the considered problem. For a recent overview
on alternative techniques with a special focus on bio-inspired algorithms we refer the interested
reader to [49].
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Abbreviations

MIP Mixed Integer Program
CMSA Construct, Solve, Merge and Adapt
MS Merge search
ACO Ant Colony Optimisation
RCJS Resource Constrained Job Scheduling
TWT Total Weighted Tardiness
J ,M, C The set of jobs, machines and precedences, respectively
G Maximum available resource
T The time horizon
r, p, d, w, g The release time, processing time, due time, weight and resource consumption of a job,

respectively
c Completion time of a job
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s, u Variables that represent start and completion time in the Network Flow model
y Variable to include arcs in the Network Flow model
x Variable that represents completion time of a job in MIP model 1
z Variable that represents completion time of a job in MIP model 2
CMSA-Heur CMSA with constructive heuristic
MS-Heur Merge search with constructive heuristic
CMSA-ACO CMSA ACO
MS-ACO Merge search with ACO
BRKGA Biased Random Key Genetic Algorithm
CGACO Column Generation and ACO
CGDELS Column Generation, Differential Evolution and Local Search
π A solution represented by a permutation of jobs
πib The iteration best solution
πbs The global best solution
φ The pheromone trails
nants Number of solutions to be constructed per iteration
f (π) TWT of solution π

τ Pheromone value
ρ Learning rate

Appendix A. Construction Heuristic

Using a constructive heuristic (in a probabilistic way) is one of the options of generating solutions
at each iteration. The constructive heuristic that we developed builds a sequence of all jobs from left to
right. For that purpose it starts with an initially empty sequence π. At each construction step it chooses
exactly one of the so-far unscheduled jobs, and it appends this job to π. Henceforth, let Jπ ⊆ J be the
set of jobs that are already scheduled with respect to a partial sequence π. For the technical description
of the heuristic, let maxt := maxn

j=1 rj + ∑n
j=1 pj.

Note that maxt is a crude upper bound for the Makespan of any feasible solution. Moreover, let Cj
be the set of jobs that—according to the precedence constraints in C—must be executed before j, and let
Mmh ⊆ J be the subset of jobs that must be processed on machine mh, h = 1, . . . , l. Furthermore,
given a partial solution π, let gπ,t ≥ 0 be the sum of the already consumed resource at time t.

Given a partial sequence π, the set of feasible jobs—that is, the set of jobs from which the next job
to be scheduled can be chosen—is defined as follows: Ĵ := {j ∈ J \ Jπ | Cj ∩ Jπ = Cj}. In words,
the set of feasible jobs consists of those jobs that (1) are not scheduled yet and (2) whose predecessors
with respect to P are already scheduled. A time step t′ ≥ 0 is a feasible starting time for a job j ∈ Ĵ ,
if and only if

1. t′ ≥ sk + pk, for all k ∈ Jπ ∩ Cj;
2. t′ ≥ sk + pk, for all k ∈ Mmj ∩ Jπ (remember that mj refers to the machine on which job j must

be processed);
3. gπ,t + gj ≤ G, for all t = t′, . . . , t′ + pj.

Here, T′ is the set of feasible starting times for a job j ∈ Ĵ and the earliest starting time sj is
defined as sj := min{t′ | t′ ∈ T′}. Finally, for choosing a feasible job at each construction step, the jobs
from j ∈ Ĵ are ordered in the following way. First, a job j has priority over a job k, if sj < sk. In the
case of a tie, job j has priority over job k if wj > wk. Finally, in the case of a further tie, job j has priority
over job k if dj < dk. If there is still a tie, the order between j and k is randomly chosen. The jobs from
Ĵ are ordered in this way, and this job order is stored in sequence π′. The first job in π′ is then chosen
to be scheduled next. A pseudo-code of the heuristic is provided in Algorithm A1.

Finally, note that a solution constructed by the heuristic can be easily transformed into a Merge
search (MS) (respectively, construct, merge, solve and adapt (CMSA)) solution. This is because the
heuristic derives starting times for all jobs. The finishing time of each job is calculated by adding
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its processing time to its starting time. The corresponding variable values of both mixed integer
programming (MIP) models can then be derived on the basis of the finishing times.

This heuristic is used in a probabilistic way, as follows. Instead of choosing, at each construction
step, the first job from π′ and appending it to π, the following procedure is applied. First, a random
number r ∈ [0, 1] is produced. If r ≤ drate, the first job from π′ is chosen and appended to π.
Hereby, drate is a parameter which we set to value Y for all experiments. Otherwise, the first lsize jobs
from π′ are placed into a candidate list, and one of these candidates is chosen uniformly at random
and appended to π.

Algorithm A1 Constructive Heuristic.

1: input: An RCJS instance
2: Initialise an empty permutation π

3: gπ,t := 0, for all t = 0, . . . , maxt
4: while Jπ 6= J do
5: Let j∗ be the first job from π′ with earliest start time sj∗

6: gπ,t := gπ,t + gj∗ , for all t ∈ {sj∗ , . . . , sj∗ + pj∗}
7: Append j∗ to π

8: end while
9: output: π together with the earliest starting times of each job

Appendix B. Merge Search Parameter Value Selection

The Merge search (MS) parameters of interest are the mixed integer program (MIP), time limit
(120 and 300 s), the number of iterations in ant colony optimisation (ACO) (500, 1000, 2000 and
5000 iterations) and the number of random sets to split into (2, 4 and 8 sets) (Note that a larger number
of split sets implies more diversity, especially since the sets are obtained randomly.) Ten runs per
instance were conducted and all runs were conducted for 30 min with 10 cores. (The number of cores
is also a parameter of interest, but these experiments are conducted in Section 5.4 instead). The results
are presented in Table A1. For each parameter of interest, the results are averaged across the results
obtained with all values of all the other parameters.

Regarding the MIP time limit, we see that, overall, 120 s is preferable, particularly for eight
machines or more. For four and six machines, there are not many differences in the results, but 300 s is
slightly preferable for six machines.

The results concerning the number of iterations in ACO are straightforward, with a setting of 5000
iterations providing the best average results across all machines. This suggests that a higher number
of ACO iterations could be considered. However, for the 20 machine problem instances, only four
iterations of MS complete with 5000 iterations. More ACO iterations will cause—in these cases—that
the MS component does not contribute significantly to the final solutions.

The amount of random splitting is almost independent of machine size. Marginally, the smallest
number of sets is most beneficial (three out of six problem instances).

Table A1. The results of experiments conducted to determine which set of parameter values lead to the
best solutions for MS. For each parameter, the results are averaged across the results obtained by the
settings of all other parameters.

Machines

4 6 8 10 12 20

ACO Iter.

500 66.76 240.34 790.28 703.33 2729.48 9700.10
1000 66.73 239.38 727.79 671.92 2636.11 9631.67
2000 66.73 238.90 692.31 644.35 2546.22 9411.80
5000 66.73 238.68 670.24 633.83 2454.07 9026.49
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Table A1. Cont.

Machines

4 6 8 10 12 20

MIP Time

120 66.73 238.75 665.19 633.44 2444.98 9013.80
300 66.73 238.60 675.29 634.23 2463.16 9039.19

Split Sets

2 66.73 238.55 664.28 641.77 2441.72 9000.46
4 66.73 238.73 666.12 631.06 2443.5 9015.77
6 66.73 238.51 665.18 627.48 2449.73 9025.16

Appendix C. Construct, Merge, Solve and Adapt Parameter Value Selection

The construct, merge, solve and adapt (CMSA) parameters of interest are the mixed integer
program (MIP) time limit (120 and 300 s), the number of iterations in ant colony optimisation (ACO)
(500, 1000, 2000 and 5000 iterations) and the maximum age limit (3, 5 and 10). Ten runs per instance
were conducted and all runs were conducted for 30 min with 10 cores. The results are presented in
Table A2. For each parameter of interest, the results averaged across the results obtained by all possible
settings of all the other parameters.

Table A2. The results of experiments conducted to determine which set of parameter values leads to
the best performance of CMSA. For each parameter, the results are averaged across the results of all the
settings for all other parameters.

Machines

4 6 8 10 12 20

ACO Iter.

500 66.58 239.87 736.98 672.92 2656.52 9709.08
1000 66.50 239.59 702.92 650.48 2568.98 9613.49
2000 66.49 239.46 675.86 633.32 2489.59 9321.38
5000 66.54 238.68 663.95 627.48 2431.25 8997.16

MIP Time

120 66.62 239.22 662.23 623.99 2426.16 8976.99
300 66.46 238.14 665.66 630.96 2436.35 9017.34

Age

3 66.50 238.33 667.08 620.13 2423.19 8953.46
5 66.27 238.40 656.76 621.92 2429.5 8986.49
10 66.60 237.69 662.86 629.93 2425.78 8991.02

Regarding the MIP time limit, we see that, overall, 120 s is preferable, particularly for eight
machines or more. For four and six machines, 300 s is preferable; however, the results are close here.

The results concerning the number of ACO iterations show that, generally, 5000 iterations provide
the best average results across all machines. It is only for the instance with four machines that
2000 iterations works better. However, for these instances, the results are very close across all
possible settings. As with MS, more ACO iterations could be considered, but this would lead to
very few CMSA iterations being completed within the total time limit.

The results concerning the maximum age parameter are not as clear. A low maximum age (3)
seems the best option overall.
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Appendix D. Results of the Mixed Integer Program, Column Generation and Ant
Colony Optimisation

Table A3 shows the results for the mixed integer program (MIP) (a single run per instance),
column generation (CG) on its own CG and parallel ant colony optimisation (ACO) [29]. Since the
MIP is deterministic, a single run per instance was conducted. For CG and ACO, which are stochastic,
thirty runs per instance were conducted.

Table A3. MIP, CG and ACO for the RCJS problem. UB is the upper bound; Best is the best solution
found across 25 runs; Mean is the average solution quality across 24 runs. The best results are
highlighted in boldface.

Instance MIP CG ACO

UB Best Mean SD Best Mean SD

3 - 5 505.00 558.81 558.81 0.00 505.00 505.36 1.08
3 - 23 149.07 151.91 156.90 3.27 149.07 149.07 0.00
3 - 53 67.42 76.87 76.87 0.00 69.36 69.36 0.00
4 - 28 23.81 27.78 27.78 0.00 23.94 24.55 1.33
4 - 42 66.73 99.46 99.46 0.00 67.64 68.19 1.47
4 - 61 42.42 55.97 55.97 0.00 45.96 45.96 0.00
5 - 7 315.46 291.02 291.02 0.00 255.03 272.09 12.93

5 - 21 174.83 235.72 235.72 0.00 168.63 170.63 4.36
5 - 62 372.97 289.55 289.55 0.00 264.97 271.10 5.39

6 - 10 - 980.76 988.62 4.74 828.92 860.86 23.17
6 - 28 213.58 276.29 278.20 1.15 218.37 226.91 4.13
6 - 58 254.07 275.50 282.17 11.06 236.05 248.55 10.43
7 - 5 563.85 483.98 491.58 11.61 433.53 453.70 11.90

7 - 23 - 639.37 643.91 2.50 553.45 597.02 26.85
7 - 47 - 574.14 574.14 0.00 446.10 469.30 18.87
8 - 3 - 761.38 769.90 5.46 671.12 703.81 27.67

8 - 53 - 529.67 545.01 10.04 464.28 488.41 11.66
8 - 77 - 1408.13 1424.62 24.39 1232.72 1291.09 30.83

9 - 20 - 1017.12 1040.28 18.91 925.65 961.86 27.72
9 - 47 - 1416.23 1416.23 0.00 1243.27 1275.26 27.42
9 - 62 - 1587.65 1587.65 0.00 1455.66 1512.09 33.61
10 - 7 - 2730.18 2779.31 37.38 2549.46 2704.64 107.84
10 - 13 - 2446.87 2454.69 10.28 2245.94 2302.92 39.89
10 - 31 - 679.91 679.91 0.00 611.71 643.65 25.05
11 - 21 - 1119.51 1119.51 0.00 1008.00 1057.38 26.02
11 - 56 - 1926.50 1956.86 17.84 1845.93 1875.65 25.62
11 - 63 - 2209.79 2214.59 7.96 2032.36 2092.44 47.81

12 - 14 - 1935.00 1967.10 28.07 1830.31 1882.37 26.23
12 - 36 - 3248.84 3275.53 15.08 3033.78 3138.60 66.32
12 - 80 - 2683.73 2684.36 0.38 2433.86 2495.55 61.31
15 - 2 - 4274.77 4403.93 70.53 3961.82 4121.60 106.77
15 - 3 - 4655.97 4775.44 146.92 4368.66 4514.54 121.22
15 - 5 - 3799.43 3823.09 73.36 3512.33 3618.10 67.65
20 - 2 - 9173.91 9249.91 49.75 8788.97 8935.63 119.47
20 - 5 - 16,033.40 16,192.51 170.12 14,779.80 15,050.51 137.54
20 - 6 - 8273.11 8273.11 0.00 7865.08 8048.25 156.97
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