
Verifying Norm Consistency in Electronic Institutions

M. Esteva and J. A. Rodrı́guez-Aguilar and C. Sierra
Institut d’Investigació en Intel·ligència Artificial

Consell Superior d’Investigacions Cientı́fiques, Campus UAB
08193 Bellaterra, Spain

{marc,jar,sierra}@iiia.csic.es

W. Vasconcelos
Department of Computing Science

University of Aberdeen
AB24 3UE, Aberdeen, United Kingdom

wvasconc@csd.abdn.ac.uk

Abstract

Electronic institutions are a formalism to define and analyse
protocols among agents with a view to achieving global and
individual goals. In this paper we elaborate on the verification
of properties of electronic institutions based on the dialogues
that agents may hold. Specifically, we provide a computa-
tional approach to assess whether an electronic institution is
normatively consistent. In this manner, given an electronic in-
stitution we can determine whether its norms prevent norm-
compliant executions from happening. For this we strongly
rely on the analysis of the dialogues that may occur as agents
interact by exchanging illocutions in an electronic institution.

1. Introduction
An important aspect in the design of heterogeneous multi-
agent systems (MAS, henceforth) concerns the norms that
should constrain and influence the behaviour of its indi-
vidual components (Dignum 1999; López y López, Luck,
& d’Inverno 2002; Verhagen 2000). Electronic institutions
have been proposed as a formalism to define and analyse
protocols among agents with a view to achieving global
and individual goals (Esteva et al. 2001; Rodrı́guez-Aguilar
2001). In this paper we propose a definition for norms
and a means of assessing whether an electronic institu-
tion is normatively consistent. In other words, given an
electronic institution specification, we want to determine
whether its norms prevent norm-compliant executions from
taking place.

Electronic institutions define regulatory environments in
which agents interact. They are equally important in defin-
ing the underlying infrastructure of multiagent systems (Es-
teva et al. 2004). Designers specify their electronic in-
stitutions which may become arbitrarily complex. Tools
and mechanisms ought to ensure that certain properties of
electronic institutions hold before they can be enacted (i.e.
agents interact following the specified order and kind of
messages of an electronic institution). Some such proper-
ties are well-formedness and reachability of all parts of the
specification by agents (i.e., absence of “dead parts” that are
never used) (Vasconcelos 2004).

Norms are a central component of electronic institutions.
As such, it is fundamental to guarantee that they are not

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

wrongly specified, leading to unexpected executions of elec-
tronic institutions, and that an electronic institution indeed
complies with its norms. For this purpose we strongly rely
on the analysis of the dialogues that may occur as agents
interact by exchanging illocutions in an electronic institu-
tion. Since the execution of an electronic institution can be
regarded as a multiagent dialogue, we can analyse such dia-
logue to assess whether it abides by the institutional norms.
Hence, execution models of electronic institutions can be
obtained as dialogue models. Thus, our approach can be re-
garded as a model checking process based on the construc-
tion of models for the enactment of electronic institutions.
Hereafter, the purpose of the verification process is to eval-
uate whether such models satisfy the institutional norms.

In the next section we define the components of an elec-
tronic institution and formalise the notion of dialogues that
take place among the agents taking part in its enactments. In
Section 3 we introduce a precise definition for two kinds of
norms, viz. the integrity norms and obligations; the seman-
tics of these constructs are formally stated and used to define
norm consistency of electronic institutions. In Section 4 we
present our conclusions, compare our research with related
work and give directions for future work.

2. Electronic Institutions
In general terms, electronic institutions (EIs) structure agent
interactions, establishing what agents are permitted and for-
bidden to do as well as the consequences of their actions.
Next, we put forth definitions of the components of an
electronic institution – these are more thoroughly described
in (Esteva 2003). We assume in this paper the existence of
a finite and non-empty set Ag = {ag1, . . . , agn} of unique
agent identifiers ag i 6= agj , i 6= j, 1 ≤ i, j ≤ n.

2.1 Dialogic Frameworks and their Dialogues

In the most general case, each agent immersed in a multi-
agent environment is endowed with its own inner language
and ontology. In order to allow agents to interact with other
agents we must address the fundamental issue of putting
their languages and ontologies in relation. For this purpose,
we propose that agents share, when communicating, what
we call the dialogic framework that contains the elements
for the construction of the agent communication language

expressions. Furthermore the dialogic framework also de-
fines the roles that participating agents can play.

Def. 1 A dialogic framework is a tuple DF = 〈O,LO, P,
R〉 where O stands for an ontology (vocabulary); LO stands
for a content language to express the information exchanged
between agents using ontology O; P is the set of illocution-
ary particles; and R is the set of internal roles.

Within a dialogic framework the content language allows
for the encoding of the knowledge to be exchanged among
agents using the vocabulary offered by the ontology. The ex-
pressions of the agent communication language are defined
as below:

Def. 2 The language LDF of a dialogic framework DF =
〈O,LO, P,R〉 is the set of expressions ι(ag , r, ag ′, r′, p, t)
such that ι ∈ P ; ag, ag′ ∈ Ag, the set of agent identifiers;
r, r′ ∈ R; p ∈ LO, p being a variable-free expression of
LO; and t ∈ IN is a time tag.

That is, the language of a dialogic framework is the col-
lection of all the grounded, variable-free expressions that
agents employing the dialogic framework may exchange.
Intuitively, the expression ι(ag , r, ag ′, r′, p, t) denotes that
agent ag incorporating role r sent to agent ag ′ incorporating
role r′ a message p at instant t.

We also need to refer to expressions which may contain
variables. We provide the following definition with this aim:

Def. 3 The pattern language L∗DF of a dialogic framework
DF = 〈O,LO, P,R〉 is the set of expressions ι(ag∗, r∗,
ag ′∗, r′∗, p∗, t∗) such that ι ∈ P ; ag∗, ag ′∗ are agent vari-
ables or agent identifiers from the set Ag; r∗, r′∗ are role
variables or role identifiers in R; p∗ ∈ LO is an expression
which may contain variables; and t∗ is either a time variable
or a value in IN .

Henceforth we shall refer to LDF expressions as illocutions,
represented generically as i, and to L∗DF expressions as il-
locution schemes, represented generically as i

∗. It follows
from the definitions above that LDF ⊆ L

∗
DF .

Although a dialogic framework defines a set of illocutions
that agents may exchange, we consider that agents, as hu-
man beings, engage in conversations. Conversations struc-
ture agents’ interactions, by imposing an order on the illocu-
tions exchange and represent the context where exchanged
illocutions must be interpreted. As a conversation evolves, a
dialogue, an ordered sequence of all illocutions exchanged
among agents, is generated.

Dialogues represent the history of conversations and the
analysis of the properties of a conversation can be conducted
on the basis of its dialogues. We hence formally introduce
the notion of dialogue as a core element upon which we
carry out the analysis of conversations and, ultimately, of
dialogic institutions:

Def. 4 Given a dialogic framework DF and its language
LDF , we define a dialogue over LDF as any non-empty,
finite sequence 〈i1, . . . , in〉 such that ii = ιi(ag i, ri, ag

′
i, r

′
i,

pi, ti) ∈ LDF , 1 ≤ i ≤ n, and ti ≤ tj , 1 ≤ i ≤ j ≤ n.

These dialogues do not consider individual agents’ ac-
count of time. Instead we rely on the institution infras-
tructure to time-stamp, and therefore order illocutions. We

rely on functionalities of the infrastructure, as described
in (Rodrı́guez-Aguilar 2003), to guarantee that time is lin-
ear, and thus illocutions are totally ordered.

¿From the definition above we obtain all the possible di-
alogues that a group of agents using a dialogic framework
may have. We next define the set of all possible dialogues of
a dialogic framework:
Def. 5 Given a dialogic framework DF , we define the dia-
logue set over LDF , noted asDDF , as the set containing all
possible dialogues over LDF .

Clearly, the set DDF of all possible dialogues is infinite,
even though the components of the corresponding dialogic
framework DF are finite – the very same illocution can
be uttered an infinite number of times with different time
stamps.

A dialogue contains only grounded illocutions. If we con-
sider instead a sequence of illocution schemes i

∗, the very
same sequence may produce multiple dialogues as values
are assigned to the free variables in the illocution schemes.
Therefore, we can employ a sequence of illocution schemes
for representing a whole set of dialogues that may occur. We
propose to undertake the analysis of a set of dialogues start-
ing from the sequence of illocution schemes that generates
them.
Def. 6 Given a dialogic framework DF and its pattern lan-
guage L∗DF , we define a dialogue scheme over L∗DF as any
non-empty, finite sequence 〈i∗1, . . . , i

∗
n〉 such that i∗i ∈ L

∗
DF ,

1 ≤ i ≤ n.

In order to relate dialogue schemes and dialogues we rely
on the concept of substitution, that is, the set of values for
variables in a computation (Apt 1997; Fitting 1990):
Def. 7 A substitution σ = {x0/T0, . . . , xn/Tn} is a finite
and possibly empty set of pairs xi/Ti, 0 ≤ i ≤ n, xi being
a first-order variable and Ti an arbitrary first-order term.

We assume that variables and terms are typed, and thus we
require that their types match.

A dialogue scheme and a dialogue are thus related:
Def. 8 Given a dialogic framework DF , we say that a di-
alogue scheme 〈i∗1, . . . , i

∗
n〉 ∈ L

∗
DF is a scheme of a di-

alogue 〈i1, . . . , in〉 ∈ LDF iff there is a substitution σ
that when applied to 〈i∗1, . . . , i

∗
n〉 yields 〈i1, . . . , in〉, that is,

〈i∗1, . . . , i
∗
n〉 · σ = 〈i1, . . . , in〉.

The application of a substitution to a dialogue scheme
〈i∗1, . . . , i

∗
n〉 · σ is defined as the application of the substi-

tution σ to each i
∗
i , that is, 〈i∗1, . . . , i

∗
n〉 · σ = 〈i

∗
1 · σ, . . . ,

i
∗
n · σ〉. The application of a substitution to i

∗
i follows the

usual definition (Fitting 1990):
1. c · σ = c for a constant c.

2. [ι(ag∗, r∗, ag ′∗, r′∗, p∗, t∗)] ·σ = ι(ag∗ ·σ, r∗ ·σ, ag ′∗ ·σ,
r′∗ · σ, p∗ · σ, t∗ · σ).

3. x · σ = T · σ for a variable x such that x/T ∈ σ; if
x/T 6∈ σ then x · σ = x.

The first case defines the application of a substitution to a
constant c – the result is the constant itself. Case 2 de-
scribes the application of a substitution to a generic illocu-
tion scheme i

∗ = ι(ag∗, r∗, ag ′∗, r′∗, p∗, t∗): the result is

the application of σ to each component of the scheme. Case
3 describes the application of σ to a generic variable x: the
result is the application of σ to the term T to which x is as-
sociated (if x/T ∈ σ) or x itself if x is not associated to any
terms in σ.

2.2 Scenes and their Dialogues
Within the framework of an electronic institution, agent
conversations are articulated through agent group meetings,
called scenes, that follow well-defined interaction proto-
cols. Clearly, not all sequences in DDF make sense, so
some structure upon dialogues is required – scenes are the
means we offer for engineers to precisely structure dialogues
among the agents participating in an enactment of an elec-
tronic institution.

A scene protocol is specified by a directed graph whose
nodes represent the different states of a dialogic interaction
among roles. ¿From the set of states we differentiate an ini-
tial state (non reachable once left) and a set of final states
representing the different dialogue ends. In order to capture
that final states represent the end of a dialogue they do not
have outgoing arcs. The arcs of the graph are labelled with
illocution schemes (whose sender, receiver and time tags are
variables, whereas its content may contain variables).

At execution time agents interact by uttering grounded il-
locutions unifying with the specified illocution schemes, and
so binding their variables to values, building up the scene
context. A scene context can be regarded as the stack of a
push-down automaton in which bindings can be stored and
retrieved. We can refer to variables in two ways: when it is
preceded by the ’?’ symbol, it can be bound to any value
of its type (the binding is stored); and when the variable is
preceded by the ’!’ symbol, it refers to its last bound value
(the value is retrieved).

We formally define scenes as follows:

Def. 9 A scene is a tuple S = 〈s,R,DF,W,w0,Wf ,Θ, λ,
min,Max 〉 where

• s is the scene identifier;
• R is the set of scene roles;
• DF is a dialogic framework;
• W is the set of scene states;
• w0 ∈W is the initial state;
• Wf ⊆W is the set of final states;
• Θ ⊆W ×W is a set of directed edges;
• λ : Θ −→ L∗DF is a labelling function, which maps each

edge to an illocution scheme in the pattern language of
the DF dialogic framework;

• min,Max : R −→ IN min(r) and Max(r) are, respec-
tively, the minimum and maximum number of agents that
must and can play each role r ∈ R.

Scene identifiers are unique: given any two distinct scenes
S, S′, S 6= S′ of an electronic institution, then their identi-
fiers s, s′ must be different.

A scene is executed or enacted when a number of agents
taking up roles r ∈ R (the number of agents for each role
specified by min and Max) follow a path from the initial

state w0 to a final state in Wf , sending (and receiving) mes-
sages conforming to the labels on the edges. The execu-
tion of a scene may not terminate if it has loops or if there
are states in it from which there are no paths to a final state
(sinks). In (Vasconcelos 2004) we describe means to check
for desirable properties of scenes.

We can formally define the dialogue schemes of a scene:

Def. 10 The dialogue schemes D∗
S of a scene S = 〈s,R,

DF,W,w0,Wf ,Θ, λ,min,Max〉, is the set of sequences
〈(s, w2, λ(w1, w2)), . . . , (s, wn, λ(wn−1, wn))〉, w1 = w0,
and wn ∈Wf .

The dialogue schemes of a scene are the sequence of labels
λ(w,w′) of all paths connecting its initial state w0 to a fi-
nal state wn ∈ Wf . The s and w’s are required to pre-
cisely identify the context in which an illocution was uttered
– this is essential to our notion of norms, as we shall see be-
low. The labels are illocution schemes i

∗
i ∈ L

∗
DF , hence we

can also represent the dialogues of a scene as 〈(s, w1, i
∗
1),

. . . , (s, wn, i
∗
n)〉.

The dialogue schemes of a scene allow us to obtain all the
concrete dialogues accepted (or generated) by the scene via
appropriate substitutions assigning values to all variables of
the illocutions. We define the set of all (concrete) dialogues
of a scene as follows:

Def. 11 The dialogues DS of a scene S = 〈s,R,
DF,W,w0,Wf ,Θ, λ,min,Max〉, is the set of sequences
〈(s, w1, λ(w0, w1)), . . . , (s, wn, λ(wn−1, wn))〉 · σ, w1 =
w0, and wn ∈ Wf , and σ is a substitution providing val-
ues to all variables of the illocution schemes λ(w,w′).

The dialogues accepted by a scene are the ground versions
of its dialogue schemes, that is, the sequence of labels of a
path through the scene with all variables replaced with con-
stants. We can also represent the dialogues of a scene as
〈(s, w1, i1), . . . , (s, wn, in)〉. Given a dialogue scheme we
can derive infinite ground versions of it – however, as we
shall see below, we provide means to express constraints on
the values the illocutions’ variables may have. Extra con-
straints limit the number of possible applicable substitutions
and, hence, limit the number of possible concrete dialogues
agents are allowed to have.

2.3 Performative Structures and their Dialogues
While a scene models a particular multiagent dialogic activ-
ity, more complex activities can be specified by establishing
networks of scenes via performative structures. Performa-
tive structures organise sets of scenes, defining how agents
can legally move among the scenes (from activity to activ-
ity). Agents within a performative structure can participate
concurrently in different scenes.

Def. 12 Performative structures are defined as:

• A scene S is a performative structure.
• If PS 1 and PS2 are performative structures, PS1.PS2 is

a performative structure, where PS1.PS2 means that the
execution of PS1 is followed by the execution of PS2.

• If PS1 and PS2 are performative structures, PS1|PS2 is
a performative structure, where PS1|PS2 stands for the
interleaved execution of PS1 and PS2.

• If PS is a performative structure, PSn is a performa-
tive structure, where PSn stands for n executions of PS,
where n ∈ IN, n ≥ 0.

A performative structure defines all the dialogues that agents
may have within an electronic institution, by fixing the
scenes in which agents can be engaged and how agents can
move among them. Notice that the execution of a performa-
tive structure must be regarded as the execution of its dif-
ferent scenes. Moreover, executions of different scenes can
occur concurrently. An execution of a performative struc-
ture takes place when agents enact it, that is, when agents
enact one of the possible dialogues prescribed by the scenes
of a performative structure, following the way the scenes are
combined. For instance, if we use scene identifiers to specify
our performative structures, then the execution of construct
s1.(s2|s3)

5.s4 is the execution of scene s1 followed by 5
concurrent executions of scenes s2 and s3 followed by the
execution of scene s4.

We can define the dialogues accepted by a performa-
tive structure PS, denoted by DPS using the definition of
performative structures above. For that we must define
the operator ⊕ : DPS1

× DPS2
→ DPS1|PS2

that given
two input dialogues dPS1

and dPS2
merges their illocu-

tions taking into account their time stamps. More formally,
given dialogues d1 = 〈i

1
1, . . . , i

1
n〉 and d2 = 〈i

2
1, . . . , i

2
m〉,

d1 ⊕ d2 = 〈i1, . . . , in+m〉, where ii = i
1
j or ii = i

2
k, for

some j, k, 1 ≤ j ≤ n, 1 ≤ k ≤ m such that for any two
illocutions ii = ιi(ag i, ri, ag

′
i, r

′
i, pi, ti) and il = ιl(ag l, rl,

ag ′l, r
′
l, pl, tl), such that 1 ≤ i ≤ l ≤ n +m, then ti ≤ tl,

and ti, tl ∈ IN . We also define the concatenation operator
“◦” over sequences as:

〈 〉 ◦ 〈i1, . . . , in〉 = 〈i1, . . . , in〉

〈i1, . . . , in〉 ◦ 〈 〉 = 〈i1, . . . , in〉

〈i1, . . . , in〉 ◦ 〈i
′
1, . . . , i

′
m〉 = 〈i1, . . . , in, i

′
1, . . . , i

′
m〉

We can now define the dialogues accepted by each perfor-
mative structure.

Def. 13 The dialogues DPS of a performative structure PS
are thus obtained:

• If PS = S, i.e., a scene, then DPS = DS as in Def. 11.
• If PS = PS1.PS2 then DPS = {dPS1

◦ dPS2
|dPS1

∈
DPS1

, dPS2
∈ DPS2

}.
• If PS = PS1|PS2 then DPS = {dPS1

⊕ dPS2
|dPS1

∈
DPS1

, dPS2
∈ DPS2

}.
• If PS is of the form PSn then DPS = {d0 ◦ . . . ◦ dn|di ∈
DPS , 0 ≤ i ≤ n}.

3. Norms in Electronic Institutions
Agents’ actions within scenes may have consequences that
either limit or enlarge their future acting possibilities. Some
actions may create commitments for future actions, inter-
preted as obligations, and some actions can have conse-
quences that modify the valid illocutions or the paths that
a scene evolution can follow. These consequences are cap-
tured by a special type of rules called norms which contain
the actions that will activate them and their consequences.
Notice that we are considering dialogic institutions, and the

only actions we consider are the utterance of illocutions. In
order to express actions within norms and obligations we set
out two predicates:

• uttered(s, w, i∗) denoting that a grounded illocution uni-
fying with the illocution scheme i

∗ has been uttered at
state w of scene S identified by s.

• uttered(s, i∗) denoting that a grounded illocution unify-
ing with the illocution scheme i

∗ has been uttered at some
state of scene S identified by s.

Therefore, we can refer to the utterance of an illocution
within a scene or when a scene execution is at a concrete
state.

3.1 Boolean Expressions
In some cases the activation of a norm will depend on the
values assigned to the variables in the illocution schemes and
on the context of the scene (the previous bindings) where the
illocution is uttered. With this aim, we incorporate boolean
expressions using illocution schemes’ variables as means to
restrict the possible values such variables may have.

Def. 14 A boolean expression e is defined by the following
BNF specification:

e ::= a | s
a ::= a opa a
a ::= x | c | f(a, . . . , a)

opa ::= < | ≤ | ≥ | > | = | 6=
s ::= x ops

1 Set | Set1 ops
2 Set2

ops
1 ::= ∈ | 6∈

ops
2 ::= ⊂ | ⊆ | = | 6=

Where x is a variable from an illocution schema, c is a con-
stant, f is an arbitrary arithmetic expression and Set,Set1,
Set2 are names of sets.

Illocutions are tagged with the time at which the illocution
is uttered. We consider such tags as numeric, and so, we
can apply to them the same operations of numeric expres-
sions. Hence, order among the utterance of illocutions can
be expressed via numeric operators over them.

Moreover, when a scene is executed we keep all the bind-
ings produced by the uttered illocutions. Therefore, we can
make reference to the last one or to a set of bindings for a
giving variable(s) and use this in the expressions mentioned
above. Concretely, we can apply the following prefix opera-
tors to obtain previous bindings:

• !x: stands for the last binding of variable x.

• !kwiwj
x: stands for the vector of all the bindings of variable

x in the k, k ∈ IN , last sub-dialogues between wi and wj .
!1wiwj

x is noted as !wiwj
x for simplicity.

• !∗wiwj
x: stands for the vector of the bindings of variable x

in all sub-dialogues between wi and wj .

• !kwiwj
x (cond): stands for the vector of all the bindings of

variable x in the k, k ∈ IN , last sub-dialogues between
wi and wj such that the substitution σ where the binding
appears satisfies the cond boolean expression.

The first operator above returns the empty set if there is no
binding for x. The rest of operators return the empty set

when requesting the binding(s) of variables not appearing in
the illocution scheme λ(wi, wj).

3.2 Integrity Norms and Obligations
We now put forth formal definitions for two types of
norms in electronic institutions, the integrity norms and
obligations. In both definitions below we can also have
uttered(s, i∗) subformulae.
Def. 15 Integrity norms are first-order formulae of the form

n
∧

i=1

uttered(si, wki
, i∗li) ∧

m
∧

j=0

ej

→ ⊥

where si are scene identifiers, wki
is a state ki of scene si,

i
∗
li

is an illocution scheme li of scene si and ej are boolean
expressions over variables from the illocution schemes i

∗
li

.
Integrity norms define sets of actions that must not oc-
cur within an institution. The meaning of these norms is
that if grounded illocutions matching the illocution schemes
i
∗
l1
, . . . , i∗ln are uttered in the corresponding scene states, and

expressions e1, . . . , em are satisfied, then a violation occurs
(⊥).
Def. 16 Obligations are first-order formulae of the form
(

∧n

i=1
uttered(si, wki

, i∗li) ∧
∧m

j=0
ej

)

→
(

∧n′

i=1
uttered(s′i, w

′
ki
, i′∗li) ∧

∧m′

j=0
e
′
j

)

satisfying that

t∗ ≥ t∗i , 1 ≤ i ≤ n, t′∗ ≤ t′∗j , 1 ≤ j ≤ n′, t∗ < t′∗

where si, s
′
i are scene identifiers; wki

, w′
ki

are states of
si and s′i respectively; i

∗
li
, i′∗li are illocution schemes li of

scenes si and s′i respectively, and t∗, t∗i and t′∗, t′∗j are the
time stamps of, respectively, i

∗
i and i

′∗
j , t∗ being the great-

est value of time stamp on the left-hand side illocutions (that
is, the time stamp of the latest illocution) and t′∗ the low-
est value of time stamp on the right-hand side illocutions
(that is, the time stamp of the earliest illocution); ej , e

′
j

are boolean expressions over variables from the illocution
schemes i

∗
li

and i
′∗
li

, respectively.
The intuitive meaning of obligations is that if grounded il-

locutions matching i
∗
l1
, . . . , i∗ln are uttered in the correspond-

ing scene states, and the expressions e1, . . . , em are satis-
fied, then, grounded illocutions matching i

′∗
l1
, . . . , i′∗ln′

sat-
isfying the expressions e

′
1, . . . , e

′
m′ must be uttered in the

corresponding scene states.

3.3 Semantics of Norms
In order to define the semantics of our norms and obli-
gations we need first to define the meaning of the predi-
cates uttered(s, w, i∗) and uttered(s, i∗). We shall employ
a function K : i

∗ × D × σ 7→ {true, false}, that maps
illocution schemes, dialogues and substitutions to true and
false1.

1We distinguish between the constants “>” and “⊥” which are
part of the syntax of formulae and the truth-values true and false.
Clearly, K(>,D, σ) = true and K(⊥,D, σ) = false for any D
and σ.

Def. 17 The semantics of u = uttered(s, w, i∗) or u =
uttered(s, i∗) wrt a set of dialogues D and a substitution
σ, K(u,D, σ) 7→ {true, false}, is:

1. K(uttered(s, w, i∗),D, σ) = true iff there is a dialogue
〈(s, w1, i

∗
1), . . . , (s, wn, i

∗
n))〉 · σ ∈ D with (s, wi, i

∗
i) =

(s, w, i∗), for some i, 1 ≤ i ≤ n.
2. K(uttered(s, i∗),D, σ) = true iff K(uttered(s, w, i∗),
D, σ) = true for some w ∈W .

Our predicates are true if there is at least one dialogue
〈(s, w1, i

∗
1), . . . , (s, wn, i

∗
n)〉 · σ in D with an element

(s, wi, i
∗
i) (an illocution of the dialogue without its substi-

tution σ applied to it) in it that is syntactically equal to
(s, w, i∗). In the case of uttered(s, i∗) we do not care what
the value of w is.

In the definition above, we can understand σ as parameter
whose value is determined, confirmed or completed by the
function. The substitution σ plays an essential role in finding
the truth value of our boolean expressions.

We also need to define a semantic mapping for our
boolean expressions e over illocution scheme variables. We
shall use the same K function introduced above, extending
it to cope with expressions e as introduced previously.

Def. 18 The semantics of a boolean expression e wrt a set
of dialogues D and a substitution σ, K(e,D, σ) 7→ {true,
false}, is

• K(a1 op
a a2,D, σ) = true iff K′(a1, σ) opa

K
′(a2, σ)

holds.
• K(x ops

1 Set,D, σ) = true iff K
′(x, σ) ops

1 K
′(Set, σ)

holds.
• K(Set1 ops

2 Set2,D, σ) = true iff K
′(Set1, σ) ops

2

K
′(Set2, σ) holds.

The “op” operators are all given their usual definition. For
instance, K(x ∈ Ag ,PS , σ) = true iff K′(x, σ) ∈ K

′(Ag ,
σ), that is, the expression is true iff the value of variable x
in σ belongs to the set of values comprising set Ag .

The auxiliary mapping K
′ : e × σ 7→ =, where = is the

union of all types in the ontology, is defined below.

Def. 19 The value of a non-boolean expression e wrt a sub-
stitution σ, K′(e, σ) 7→ =, is:

1. K
′(c, σ) = c for a constant c.

2. K
′(x, σ) = T ′,K′(T, σ) = T ′, x/T ∈ σ.

3. K
′(f(T1, . . . , Tn), σ) = f(K′(T1, σ), . . . ,K

′(Tn, σ)).
4. K

′(Set, σ) = {c0, . . .}, Set/{c0, . . .} ∈ σ.

Case 1 defines the value of a constant as the constant itself.
Case 2 describes how to obtain the value of an arbitrary vari-
able x appearing in illocution schemes. Case 3 describes
how functions are evaluated: the meaning of a function is
given by the application of the function to the value of its
arguments. Finally, case 4 defines the value of a set as the
set of values associated with the set name in the substitution
σ – sets are treated like any other ordinary constant.

We finally define the meaning of our norms, depicting
how the logical operators “∧” and “→” are handled in our
formalisation. Our atomic formulae are u or e, denoted
generically as Atf ; Atfs denotes a conjunction of atomic

formulae, Atfs = Atf 1 ∧ · · · ∧ Atf n. The logical operators
are defined in the usual way:

Def. 20 The semantics of a norm is given by

1. K(Atfs1 → Atfs2,D, σ) = true iff K(Atfs1,D, σ) =
false or K(Atfs1,D, σ) = K(Atfs2,D, σ) = true

2. K(Atfs1 ∧ Atfs2,D, σ) = true iff K(Atfs1,D, σ) =
K(Atfs2,D, σ) = true

Case 1 depicts the semantics of the “→” operator: it yields
true if the formulae on its left and right side evaluate to the
same truth-value. Case 2 captures the semantics of the con-
junction “∧”: it yields true if its subformulae yield true.
The base cases for the formulation above are u and e, whose
semantics are represented in Defs. 17 and 18 above.

3.4 Verification of Norms
We want to verify that the set of dialogues DPS of a per-
formative structure PS satisfies a set of norms N . In our
approach an electronic institution is norm consistent if there
exists at least one dialogue in DPS such that

• All integrity norms are satisfied, that is, the performative
structure does not contain situations in which a violation
occurs.

• There are no pending obligations, that is, all acquired
obligations (right-hand side of an obligation) are fulfilled.

We notice that the verification of norms in electronic in-
stitutions as formalised in this work amounts to a restricted
kind of first-order theorem proving. The restriction is syn-
tactic, as our norms are assembled only with connectives
“→” and “∧”. This restriction does not affect much the com-
plexity of the task and attempts to automate it are limited by
the semi-decidability of first-order theorem proving (Ender-
ton 2001; Fitting 1990).

Notwithstanding this theoretical result, we can adopt
some practical simplifications to make the verification de-
cidable: if we assume the sets from our ontology are all fi-
nite, then the verification process amounts to theorem prov-
ing with propositional logics, which is decidable. Our pre-
vious formalisation naturally accommodates the proposed
simplification: an initial substitution

σ0 = {Set1/{c
1
1, . . . , c

1
n1
}, . . . ,Setm/{c

m
1 , . . . , c

m
nm
}}

formally represents all sets from our ontology – it is essential
to our approach that all sets be finite collections of constants.
We can define our finite verification of a norm N wrt the set
of dialogues D of a performative structure as K(N,D, σ0 ∪
σ) = true, that is, we would like to obtain a substitution σ
which (added to the initial σ0) makes N hold inD. Since the
value of all variables should ultimately come from a set Seti

in our ontology and given that all these sets are finite and
part of the initial substitution σ0, then we can obtain σ that
assign values to each illocution scheme variables – provided
there are such values that satisfy the boolean expressions in
N . We can extend this definition to cover sets of normsN =
{N1, . . . , Np}: K(N ,D, σ0∪σ) = true iff K(N1,D, σ0∪
σ) = · · · = K(Np,D, σ0 ∪ σ) = true.

The substitution σ0 ∪ σ functions as a model: by using
its values for the illocution scheme variables, we can con-
struct a subset D′

PS
⊆ DPS , |D′

PS
| = 1 (i.e. exactly one

dialogue scheme), such that D′
PS
|= N . The only dialogue

scheme in D′
PS

consists of a single path through the scenes
of the performative structure. This dialogue, together with
its substitution σ provides a norm-compliant execution for
the institution.

The complexity of our verification is an exponential func-
tion on the number of values for each variable, in the worst
case. The verification works by choosing a value for the il-
locution scheme variables from the appropriate sets and then
checking the boolean expressions which might relate and
constrain such values. A similar technique has been em-
ployed in (Vasconcelos 2003) to obtain models for the en-
actment of electronic institutions. This process can be made
more efficient by using standard techniques from constraint
logic programming (Jaffar & Maher 1994).

We can now define means to obtain models D′
PS
⊆ DPS

for a given performative structure and set of norms. We em-
ploy the relationships D and K for that:

model(PS ,N ,D′
PS
)←

D′
PS
⊆ DPS ∧ |D

′
PS
| = 1 ∧ K(N ,D′

PS
, σ)

That is, we obtain individual dialogue schemes from DPS

(one at a time) and then check via K if it satisfies the set of
norms N .

The correctness of our definitions can be formulated as:

if model(PS ,N ,D′
PS) then D′

PS |= N

Whereas the completeness can be stated as:

if D′
PS |= N then model(PS ,N ,D′

PS)

It is important to notice that if σ0 contains only finite sets,
then our model relationship is correct and complete, and
its complexity is an exponential function on the number of
illocution scheme variables and their possible values.

4. Conclusions, Related Work and Directions
of Research

We have presented a formal definition of norms and shown
how norms can be employed to verify electronic institu-
tions. Our approach is based on the dialogues agents may
have when enacting the institution. We have put forth two
different notions of norms, the integrity norms and obliga-
tions. Both kinds of norms are formulae prescribing illocu-
tion schemes from the set of dialogues and specifying con-
straints on the possible values their variables may have.

Electronic institutions provide an ideal scenario within
which alternative definitions and formalisations of norms
can be proposed and studied. In (Esteva, Padget, & Sierra
2001) we find an early account of norms relating illocu-
tions of an electronic institution. In (Ibrahim, Kotsis, &
Schwinger 2003) we find a first-order logic formulation of
norms for electronic institutions: an institution conforms to
a set of norms if it is a logical model for them.

Our work is an adaptation and extension of (Esteva, Pad-
get, & Sierra 2001) but our approach differs in that we

do not explicitly employ any deontic notions of obligations
(Dignum 1999). Our norms are of the form Pre → Obls ,
that is, if Pre holds then Obls ought to hold. The com-
ponents of Pre and Obls are utterances, that is, messages
the agents participating in the electronic institution send.
This more pragmatic definition fits in naturally with the
view of electronic institutions as a specification of regula-
tory environments which can be checked for properties and
then used for synthesising agents (Vasconcelos et al. 2004;
Vasconcelos, Sierra, & Esteva 2002). This is another step to-
wards endowing engineers with means to specify and anal-
yse social aspects of multiagent systems prior to their de-
ployment, supported by agent infrastructures as reported
in (Esteva et al. 2004). Moreover, it is our aim not only
to obtain a model that satisfies an institution’s norms, but
also to detect and diagnose unsuccessful partial dialogues.

We are aware of the simplification introduced when con-
sidering dialogues composed of fully grounded illocutions.
It is our intention to relax this restriction in future work. Fur-
thermore, we notice too that we consider finite sets in order
to make the verification process computationally feasible.
We will also rely on the types of variables in order to deter
the complexity of our verification process.

Electronic institutions have a non-deterministic feature:
all possible behaviours of agents that will perform within
it are captured. However, this feature causes an exponen-
tial number of possibilities to be considered when verifying
and analysing electronic institutions – the behaviours of the
agents are paths of a non-deterministic finite-state machine.
The functionalities described in this paper all have the same
undesirable property: in the worst case, their computational
complexity is exponential as they have to consider all possi-
ble behaviours.

We can use our verification process to extract portions of
the electronic institution in which a norm (or set of norms) is
never committed to by any of its agents. Such partial insti-
tutions provide different views to participants which would
allow them to avoid paths that ultimately would lead them to
be committed to obligations. Alternatively, partial dialogues
or partial dialogue schemes could be obtained and supplied
to engineers designing their agents – these could be seen as
agendas to help agents deliberate when given choices of be-
haviour.

Acknowledgements
This work was partially supported by project Web-i(2) (TIC-
2003-08763-C02-01). We thank Pere Garcia for his helpful
comments on this paper.

References
Apt, K. R. 1997. From Logic Programming to Prolog.
U.K.: Prentice-Hall.
Dignum, F. 1999. Autonomous Agents with Norms. Arti-
ficial Intelligence and Law 7(1):69–79.
Enderton, H. B. 2001. A Mathematical Introduction to
Logic. Mass., USA: Harcourt/Academic Press, 2nd edition.
Esteva, M.; Rodrı́guez-Aguilar, J.-A.; Sierra, C.; Garcia,
P.; and Arcos, J. L. 2001. On the Formal Specification

of Electronic Institutions. volume 1991 of LNAI. Springer-
Verlag.
Esteva, M.; Rodrı́guez-Aguilar, J. A.; Rosell, B.; and Ar-
cos, J. L. 2004. AMELI: An Agent-based Middleware for
Electronic Institutions. In 3rd International Joint Confer-
ence on Autonomous Agents and Multi-agent Systems (AA-
MAS).
Esteva, M.; Padget, J.; and Sierra, C. 2001. Formalizing
a Language for Institutions and Norms. volume 2333 of
LNAI. Springer-Verlag.
Esteva, M. 2003. Electronic Institutions: from specification
to development. Ph.D. Dissertation, Universitat Politècnica
de Catalunya (UPC). IIIA monography Vol. 19.
Fitting, M. 1990. First-Order Logic and Automated Theo-
rem Proving. New York, U.S.A.: Springer-Verlag.
Ibrahim, I. K.; Kotsis, G.; and Schwinger, W. 2003. Map-
ping Abstractions of Norms in Electronic Institutions. In
12th. Int’l Workshop on Enabling Technologies: Infras-
tructure for Collaborative Enterprise (WETICE’03). Linz,
Austria: IEEE Computer Society.
Jaffar, J., and Maher, M. J. 1994. Constraint Logic Pro-
gramming: A Survey. Journal of Logic Programming
19/20:503–581.
López y López, F.; Luck, M.; and d’Inverno, M. 2002.
Constraining Autonomy Through Norms. In Proceedings
of the 1st Int’l Joint Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS). ACM Press.
Rodrı́guez-Aguilar, J. A. 2001. On the Design and Con-
struction of Agent-mediated Electronic Institutions. Ph.D.
Dissertation, IIIA-CSIC, Spain.
Rodrı́guez-Aguilar, J. A., ed. 2003. On the design and
construction of agent-mediated electronic institutions, vol-
ume 14 of Monografies de l’Institut d’Investigaci en In-
tel.ligència Artificial. Consejo superior de investigaciones
cientı́ficas. ISBN: 84-00-08053-X.
Vasconcelos, W. W.; Robertson, D.; Sierra, C.; Esteva, M.;
Sabater, J.; and Wooldridge, M. 2004. Rapid Prototyp-
ing of Large Multi-Agent Systems through Logic Program-
ming. Annals of Mathematics and A.I. Special Issue on
Logic-Based Agent Implementation, to appear.
Vasconcelos, W. W.; Sierra, C.; and Esteva, M. 2002. An
Approach to Rapid Prototyping of Large Multi-Agent Sys-
tems. In Proc. 17th IEEE Int’l Conf. on Automated Soft-
ware Engineering (ASE 2002), 13–22. Edinburgh, UK:
IEEE Computer Society, U.S.A.
Vasconcelos, W. W. 2003. Expressive Global Protocols
via Logic-Based Electronic Institutions. In Proc. 2nd Int’l
Joint Conf. on Autonomous Agents & Multi-Agent Systems
(AAMAS 2003). Melbourne, Australia: ACM, U.S.A.
Vasconcelos, W. W. 2004. Norm Verification and Anal-
ysis of Electronic Institutions. to be presented at the AA-
MAS’04 Workshop on Declarative Agent Languages and
Technologies (DALT’04).
Verhagen, H. 2000. Norm Autonomous Agents. Ph.D.
Dissertation, Stockholm University.

