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Abstract Recently, it has been proposed that Game Description Language (GDL) could
be used to define negotiation domains. This would open up an entirely new, declarative,
approach to Automated Negotiations in which a single algorithm could negotiate over any
domain, as long as that domain is expressible in GDL. However, until now, the feasibility
of this approach has only been demonstrated on a few toy-world problems. Therefore, in
this paper we show that GDL is a truly unifying language that can also be used to define
more general and more complex negotiation domains. We demonstrate this by showing that
some of the most commonly used test-beds in the Automated Negotiations literature, namely
Genius and Colored Trails, can be described in GDL. More specifically, we formally prove
that the set of possible agreements of any negotiation domain from Genius (either linear or
non-linear) can be modeled as a set of strategies over a deterministic extensive-form game.
Furthermore, we show that this game can be effectively described in GDL and we show
experimentally that, given only this GDL description, we can explore the agreement space
efficiently using entirely generic domain-independent algorithms. In addition, we show that
the same holds for negotiation domains in the Colored Trails framework. This means that
one could indeed implement a single negotiating agent that is capable of negotiating over a
broad class of negotiation domains, including Genius and Colored Trails.
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1 Introduction

One of the long standing goals of Artificial Intelligence has been to develop general intelli-
gence. That is, to develop algorithms that are capable of reasoning about virtually any kind
of problem, rather than just one pre-specified problem. One important achievement in this
direction was the development of Answer Set Programming (ASP) [46], which allows com-
binatorial problems to be solved using a ‘declarative approach’. This means that one only
needs to define the problem in a machine-readable language, after which it can be solved
automatically by a generic ASP solver.

Another successful application of the declarative approach, is in the field of General
Game Playing (GGP) [22], which aims to implement algorithms that are able to play games
of which the rules are only known at run-time. This means that such algorithms cannot be
implemented to play just one specific game, but instead have to be able to play any kind
of formally describable game. Just as in the case of ASP, this approach requires a machine-
readable language that allows to express a broad class of problem instances (games, in this
case). For this purpose the Game Description Language (GDL) [39] was developed.

Recently, de Jonge and Zhang [31] have proposed to apply the declarative approach
also to the field of Automated Negotiations, using GDL to specify negotiation domains.
The idea is that two agents are playing a non-zero-sum game described in GDL, but they
have the opportunity to negotiate binding agreements with each other about which moves
each will make. This idea was further developed in [32], which introduced an algorithm for
declarative automated negotiation, called Monte Carlo Negotiation Search (MCNS). This
algorithm is based on Monte Carlo Tree Search (MCTS), but extended with a negotiation
algorithm that allows a player to negotiate with its opponent. It is entirely generic in the
sense that it can be applied to any game expressible in GDL and it was tested on three
simple games, namely the Iterated Prisoner’s Dilemma [1], the Centipede Game [52], and
the Dollar Auction [60]. In each of these domains MCNS was able to make (near-)optimal
agreements with its opponent.

Although this work did shed light on the feasibility of the declarative approach for Auto-
mated Negotiations, it did not demonstrate to what extent it is applicable to more traditional
negotiation domains that do not involve games. Therefore, the aim of the current paper is to
take this idea a step further and show that this declarative approach can also be applied to two
of the most commonly used test-beds in the field of Automated Negotiations, namely Genius
and Colored Trails. Although the domains in Genius are not directly related to games, we
show that they can nevertheless be modeled as deterministic extensive-form games which
can be described efficiently in GDL.

Games are an important research topic in Artificial Intelligence because they provide a
controlled environment with clear-cut rules. They can be seen as simplified metaphors for
real-world problems. Any multiagent system in which each agent has its own private goals
is essentially a game. However, research on game-playing algorithms has mostly focused
on zero-sum-games, such as Chess, Poker, and Go. This is striking, because many problems
encountered in daily life are more similar to non-zero-sum games. For example, the concept
of a market economy is essentially a non-zero-sum game; each participant in the economy
has its own personal goals and by exchanging goods and services with one another those
participants mutually benefit. Typical examples of games where the outcome is inefficient
if players do not cooperate, are the three games mentioned above: the (Iterated) Prisoner’s
Dilemma, the Centipede Game, and the Dollar Auction. If we adapt these games to allow the
players to negotiate and make binding agreements then each individual player can achieve a
much better outcome than in the traditional setting without negotiations.
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The field of Automated Negotiations, on the other hand, does deal with non-zero-sum
situations. In this field one typically assumes that two or more purely self-interested agents
have to find mutually acceptable solutions which require cooperation, even though these
agents have conflicting goals. Although these agents are not targeting any form of social
welfare optimization, each agent is still willing to cooperate if (and typically only if) that
enables it to achieve a solution that is better than any solution it could realize on its own.

This field, however, traditionally has focused mainly on simpler domains that lack the
complexity of extensive-form games. Many papers published on this topic assume the utility
of any deal can be known almost instantaneously, and the process of evaluating a proposal
is largely abstracted away [13,14,4]. Typically, they assume the value of a deal can be cal-
culated with linear formula, which, we argue, is unrealistic for many real-world negotiation
scenarios. We therefore aim to study negotiation domains with much higher complexity,
similar to games like Chess and Go for which in most cases it is not feasible to determine
the exact value of any action taken.

Many testbeds have been developed to test and implement Automated Negotiation al-
gorithms. Most notably, the Genius framework. This framework contains many negotiation
domains, which can be divided into two main types, namely linear domains, and non-linear
hypercube domains. However, Genius still lacks the expressiveness to define more complex
negotiation domains with hard constraints between the issues under negotiation. For such
complex scenarios, a plethora of alternative test-beds have been developed, such as Colored
Trails [23], Diplomacy [12,27], The Negotiating Salemen Problem [28], Wi-Fi Channel
Assignment [9], and Settlers of Catan [65,69]. This is unfortunate, because it means that
entirely new algorithms need to be defined for every new domain. Algorithms implemented
for one domain cannot be reused for another, which makes it hard to compare them.

For these reasons we argue for the use of GDL as a unifying language to define nego-
tiation domains. It allows researchers to define negotiation domains with the complexity of
games like Chess or Go, and at the same time allows them to develop generic algorithms
that are reusable for different domains, similar to the field of GGP.

Yet another advantage of using games and GDL to model negotiation domains, is that
it allows to define domains in which the utility of an agent does not only depend on the
agreements it makes, but also on actions and decisions it takes outside the negotiations. We
think this is a more realistic model of how negotiations often work in the real world. For
example, suppose a customer negotiates with a car salesman to buy a car. If the customer
is unmarried and lives in the city then it may be a very good deal to buy a small car which
is easy to park and does not consume much fuel. However, if one year later the customer
does get married and decides to start a family, that deal suddenly is not so good anymore,
as he now needs a larger family car. Interestingly, we see that although the deal itself has
not changed, its utility certainly has changed as a consequence of some decisions taken long
after the negotiations have finished. A similar thing can happen when we allow agents to
negotiate their moves in a game. In that case the agents could, for example, make agreements
about only the first few moves they make while retaining the freedom to freely choose their
moves in later rounds, which will influence the outcome.

Similarly, an agent’s utility may also depend on actions taken by other agents. Imagine,
for example, renting a property to open a restaurant in a street with no other restaurants.
This might be a good deal at first, until one day multiple other restaurants also open in that
same street. This may present the restaurant owner with so much competition that they can
no longer afford the rent. Traditional negotiation domains do not take such ‘outside actions’
into account while they do play a key role in games such as Diplomacy.
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In summary, we argue that using GDL to define negotiation domains has the following
advantages over traditional domain descriptions:

– It allows for a ‘declarative approach’ to negotiations, in which all relevant domain
knowledge in encoded in the domain description, rather than in the algorithm itself.

– It allows us to use a single language to define a wide class of existing negotiation do-
mains, including Genius and Colored Trails.

– It allows us to write negotiation algorithms that can be applied to all negotiation do-
mains that belong to this class (instead of having to write a new algorithm for every new
domain).

– It allows us to define negotiation domains with hard constraints between the issues.
– It allows us to define negotiation domains with the complexity of large extensive-form

games such as Chess and Go.
– It allows us to define negotiation domains where the value of a deal does not only depend

on the deal itself, but also on actions taken outside the negotiations, either by the agent
itself or by its opponents.

In this paper, however, we mainly focus on the second point. Specifically, we aim to answer
the following main research question:
Can general negotiation domains be encoded in GDL, in an efficient manner, and such that
an entirely generic negotiation algorithm such as MCNS can be applied to them?

In order to answer this question we use Genius and Colored Trails as examples and we
present the following results:

– We classify negotiation domains into two broad classes, namely Cartesian domains and
Strategic domains, based on the structure of their agreement spaces.

– We define two notions of equivalence (isomorphism and weak isomorphism) between
negotiation domains.

– We formally prove that every Cartesian domain (which includes all domains in Genius)
is weakly isomorphic to some strategic negotiation domain.

– We show that, thanks to this weak isomorphism, any domain from the Genius framework
(either linear or non-linear) can be described efficiently in GDL.

– We show that the Colored Trails domains can also be described efficiently in GDL.
– We experimentally show that the agreement spaces of the linear Genius domains and the

Colored Trails domains can still be explored efficiently when described in GDL format.

We should remark that in some existing work the process of negotiation itself is mod-
eled as an extensive-form game, for example in [48]. In such work the action of proposing,
accepting, or rejecting an offer is considered a move in a game. However, that is not what we
are doing. In this paper, we consider negotiation domains in which agents negotiate which
moves they will make in some game that by itself may have nothing to do with negotiations.

2 Related Work

The earliest work on Automated Negotiations mainly focused on proving formal properties
of idealized scenarios. A seminal paper of this type is by Nash [45] which showed that under
certain axioms the rational outcome of a bilateral negotiation is the solution that maximizes
the product of the players’ utilities. Afterwards, many papers followed with generalizations
or adaptations of these axioms [59].
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Later, with the seminal work by Faratin et al. [13,14], focus shifted more towards heuris-
tic approaches for domains where one cannot expect to find any formal equilibrium results,
or where such equilibria cannot be determined in a reasonable amount of time. However,
Faratin et al. did not take into account that it may be computationally expensive to explore
the set of potential agreements and find the right proposal to make. They simply assumed
the negotiator could always find it without effort.

Another step forward was made with the development of the Genius framework [38],
and subsequently the introduction of the annual Automated Negotiating Agent Competi-
tion (ANAC) in 2010 [4], which was run on Genius. Genius is a comprehensive framework
that provides all components necessary for implementing a negotiating agent, defining ne-
gotiation scenarios, running tournaments and experiments, and analyzing their results. The
Genius platform has since become one of the most commonly used test-beds for research on
Automated Negotiations. For example, Sanchez-Anguix et al. [53] used it to test a model of
intra-team negotiations (negotiations between members of a single team that are to negoti-
ate with another team or opponent). Williams et al. [68] and Chen et al. [6] both used linear
domains from Genius to test their respective algorithms to predict their opponents’ negotia-
tion strategies. Ilany and Gal [24] used the linear domains from Genius to test a meta-agent
that applies machine learning techniques to select the best algorithm for a given negotiation
domain, from a set of available algorithms.

Unfortunately, the Genius framework and the first editions of ANAC still made several
simplifying assumptions. For example, they assumed there is only a small set of possible
agreements, and that the utility functions are linear additive. A next step in the direction
of more realistic settings was made with the introduction of the ‘hypercube’ model [25,42,
43], which allows for the definition of negotiation domains with non-linear utility functions.
Furthermore, these works were some of the first to tackle negotiation domains in which
the number of possible deals is too large for exhaustive exploration, so intelligent search
algorithms are needed to find good proposals. This hypercube model was later also adopted
by Genius and the 2014 edition of ANAC [19] and has become another commonly used
model for negotiations research. For example, Aydogan et al. [2], used it to experiment with
Machine Learning techniques to learn how to select the best negotiation protocol given a set
of characteristics of a negotiation domain.

Although the utility functions in the hypercube model are indeed non-linear over the
vector space that represents the set of possible deals, the value of any given deal can still
be calculated quickly by solving a linear equation. From a theoretical point of view one
can argue that this is not a restriction, because any non-linear function can be modeled
in such a way, but in practice the utility functions are not always given in this way (e.g.
there is no known closed-form expression for the utility function over the set of all possible
configurations of a chess game). Transforming the given expression of a utility function into
the hypercube model would in many cases be a computationally unfeasible task.

Therefore, the idea of complex utility functions was taken a step further in [28], which
studied a problem called the Negotiating Salesmen Problem. This problem is an adaptation
of the Traveling Salesman Problem that includes negotiations. The utility functions of this
negotiation domain are not only non-linear, but also computationally hard to calculate.

An even more complex negotiation scenario is the game of Diplomacy [12]. This is an
extensive-form game that involves negotiations before each round. These negotiations are
highly complex, because the players’ utility functions are not directly defined in terms of
the agreements they make, but more indirectly through the moves they make throughout the
game. The players negotiate with one another about which moves each will make, which
in turn influences the outcome of the game. Determining the effect of an agreement on the
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player’s final utility is a hard problem that involves game theory and constraint satisfaction.
Although the earliest work on negotiations in the game of Diplomacy was already conducted
as early as 1989 [37,36], new interest in this game as a test-bed for negotiations sparked with
the introduction of the DipGame framework [12] and its extension Bandana [30]. Several
negotiating agents have been developed on these platforms [11,15,41,30] and from 2017 to
2019 ANAC even hosted a Diplomacy League [27].

Other games that have been studied in combination with negotiations are Settlers of
Catan [65,69], and Werewolves [41]. In all these cases, however, the algorithms were de-
signed to play one particular game. The goal of our research, on the other hand, is to design
algorithms that negotiate over any possible game, similar to the field of General Game Play-
ing. In [33] we studied some of the theoretical properties of games with negotiations.

Another negotiation framework that has been used extensively is the Colored Trails
game [20,23]. This framework has traditionally been used mainly to study negotiations be-
tween humans and agents. For example, Mell et al. [44] used it for their research on repeated
negotiations between humans and virtual agents. Ficici and Pfeffer [16] used Colored Trails
to investigate how people reason strategically about others under uncertainty. Peled et al.
[50] used it to experiment with an agent that incorporates information revelation decisions
into its negotiation strategy and that tries to predict the behavior of its human opponent, and
Voynarovskaya et al. [67] even used it as a tool to monitor the mental stability of prospective
astronauts who were placed in long-term isolation as a test for a future mission to Mars. On
the other hand, de Weerd et al. [10] used Colored Trails in a setting with only automated
agents, to investigate the benefits of higher-order theory of mind for such agents.

The field of General Game Playing (GGP) started to draw widespread attention in the
AI community after the introduction of Game Description Language (GDL) [39] and the
first edition of the annual AAAI GGP competition in 2005 [22] (although earlier work on
this topic does exist). Common techniques applied by GGP players are minimax [66], alpha-
beta pruning [34] and Monte Carlo Tree Search (MCTS) [35]. Many of the winners of the
AAAI GGP competition applied variants of MCTS, such as FluxPlayer [56], Cadia Player
[17], Sancho,1 and Galvanise.2 MCTS is also the basic algorithm applied by the AlphaGo
program that recently defeated the world champion in Go [61].

Pure GDL can only be used to describe deterministic games with full information, but
an extension of this language, called GDL-II, was proposed by Thielscher [62] to allow
for games with randomness and imperfect information. Next, Thielscher showed that any
extensive form game can be described faithfully in GDL-II [63]. A further extension called
GDL-III was proposed to include epistemic games [64], which have rules that depend on the
knowledge of players. Another epistemic variant of GDL, called EGDL, was developed to
allow for reasoning about game information and players’ epistemic status [26]. Alternative
languages to describe video games [55] and card games [18] have also been developed, but
these languages are very different from GDL.

The idea that GDL can be used to describe multi-agent environments in general, rather
than just classical board games, was already mentioned in [57]. In [8], for example, it was
used to represent domain knowledge in mediated dispute resolution. The idea to combine
GGP and GDL with Automated Negotiations was put forward by us in [31] and in [32] we
presented the MCNS algorithm for such domains. This idea was then further extended by
Lv et al. [40], which proposed to use EGDL to model negotiation domains with imperfect
information. Another interesting approach to combine GGP and GDL with Automated Ne-

1 http://sanchoggp.blogspot.co.uk/2014/05/what-is-sancho.html
2 https://bitbucket.org/rxe/galvanise v2

http://sanchoggp.blogspot.co.uk/2014/05/what-is-sancho.html
https://bitbucket.org/rxe/galvanise_v2
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gotiation was taken by Chitizadeh and Thielscher [7]. In their work they focus on purely
cooperative games in which the two agents share the same utility function. They propose
an algorithm for the agents to develop a common language at runtime which allows them
to propose a mutually beneficial strategy. Note that this is different from our work, since
we assume domains in which the two agents have conflicting goals, but cooperation is still
better than not cooperating at all. Furthermore, in our case the common language is already
fixed in advance, so the agents only need to focus on which agreements to make.

3 Outline

In this paper we consider Automated Negotiation scenarios in which two purely self-interested
agents are playing a deterministic non-zero-sum game G. Although these agents are not in-
terested in any form of social welfare optimization, the fact that the game is non-zero-sum
means that they may both benefit if they coordinate their actions, so before making their
moves they have the opportunity to negotiate with each other about which moves they will
or will not play.3 We will denote this negotiation scenario by B(G) and we will call negoti-
ation domains of this form Strategic Negotiation Domains.

Apart from Strategic negotiation domains, we also consider what we call Cartesian
Negotiation Domains, which include all domains in Genius. We show that for any Cartesian
domain C, we can define a game GC , such that the corresponding strategic domain B(GC) is
essentially the same as C (we will formalize this, of course). This implies that a negotiation
algorithm such as MCNS which is designed for general strategic negotiation domains can
also be applied to any Cartesian domain, when provided with a GDL description of GC .
This is an important result, because the MCNS algorithm was not specifically designed
for Genius. It was designed to take any GDL description as its input, which means it is
applicable to a much broader class of domains.

The key insight of our work is that any Cartesian product of finite sets can be modeled as
a graph (e.g. compare Table 1 and Figure 3). This makes any Cartesian negotiation domain
essentially a graph with utility functions, which in turn is, roughly speaking, an extensive-
form game. However, the opposite does not hold: not every graph can be modeled as a
Cartesian product (e.g. Figure 4), and therefore the class of extensive-form games is more
general than the class of Cartesian negotiation domains.

Although everything in this paper can be generalized straightforwardly to multilateral
negotiations, we want to keep things simple and therefore always assume there are only two
agents, which we denote by α1 and α2.

The rest of this paper is organized as follows. In Section 4 we formally define the concept
of a Negotiation Domain and the concept of a Cartesian Negotiation Domain. In Section 5
we define the concept of a game, and related concepts such as the minimax value. Then,
in Section 6 we link games and negotiation domains together in the form of a Strategic
Negotiation Domain. Next, in Section 7 we give a short introduction to GDL, followed by
Section 8 in which we explain how Cartesian domains can be defined in GDL, and Section 9
in which we explain how Colored Trails domains can be described in GDL. Next, in Section
10 we present experimental results. In Section 11 we present the formal proof of our claim
that any Cartesian Negotiation Domain can be described in GDL. Finally, in Section 12 we
discuss a number of issues that we left open, as well as future work.

3 We assume that when the agents make an agreement this is considered strictly binding, so they are forced
to obey it. The question how the agreements can be enforced is beyond the scope of our work. We simply
assume there is some external mechanism that forces the agents to obey their agreements.
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4 Negotiation Domains

In a typical, classical domain for Automated Negotiations two agents α1 and α2 are bargain-
ing to agree on some contract. The agents have a fixed amount of time to make proposals to
one another according to some negotiation protocol, such as the Alternating Offers protocol
[51]. That is, each agent may propose a contract x from some predefined set of possible con-
tracts Ω (known as the contract space or agreement space) to the other agent and then the
other agent may either accept the proposal or reject it and make a counter proposal y ∈ Ω.
The agents continue making proposals to one another until either the deadline has passed,
or one of the agents accepts a proposal made by the other.

Each agent αi has a utility function Ui that assigns to each contract x ∈ Ω a utility
value Ui(x) ∈ R. If a contract x proposed by one agent is accepted by the other agent
then both agents receive their respective utility values, U1(x) and U2(x) corresponding to
this contract. On the other hand, if the negotiations fail because no proposal is accepted
before the deadline, then each agent αi will receive a pre-defined utility value which is
known as its reservation value. We refer to the case that no agreement is made as the conflict
outcome. A perfectly rational agent would never accept any proposal that yields less utility
than its reservation value, because it would be better off by not accepting any proposal at all.4

Therefore, typically we are only interested in those contracts for which both agents receive
a utility value that is at least as high as their reservation value, and for at least one of them
this utility should be strictly higher. Such contracts are in the literature called individually
rational.

A typical example of a negotiation domain would be the case of a car salesman and a
client negotiating over the price of the car. In that case the contract space would be the set
of all possible prices the customer could possibly pay. However, more complex negotiation
scenarios are possible in which the agreement space is multi-dimensional, meaning that they
do not only negotiate the price, but also other aspects of the deal, such as the type of engine,
the size of the wheels, or any additional features.

Definition 1 A (bilateral) Negotiation Domain is a tuple 〈Ω, c, U1, U2〉 where:

– Ω is the set of contracts (also known as agreements, or deals).
– c is the conflict outcome.
– U1 and U2 are two utility functions (one for each agent) which are maps from O to R,

where O := Ω ∪ {c}

We call O the set of possible outcomes of the negotiation. The utility values Ui(c) for the
conflict outcome are called the reservation values. Given an outcome o ∈ O we call the pair
(U1(o), U2(o)) the utility vector of o, and the set of all utility vectors is called the utility
space.

The utility space of a negotiation domain is typically displayed in a diagram such as in
Figure 1.

Definition 2 A contract x ∈ Ω is said to be individually rational if U1(x) ≥ U1(c) and
U2(x) ≥ U2(c) both hold, and at least one of those inequalities is strict.

We can distinguish between two types of negotiation domains, based on the structure of
the agreement space, namely Cartesian domains, for which the agreement space is a finite

4 In the case the negotiator is bounded rational we should say that it would never accept any proposal it
expects to yield utility less than its reservation value.
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Fig. 1: Utility space diagram of some negotiation domain. Every dot represents the utility vector of an out-
come (a contract xi or the conflict outcome c). The horizontal axis represents the utility of α1 and the vertical
axis represents the utility of α2. The two black lines represent the reservation values of the two respective
agents.
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Fig. 2: A classification of the various negotiation domains studied in the literature, based on the structure of
their agreement spaces.

Cartesian product of finite sets, and Strategic domains, for which the agreement space is
represented as a graph, or, more precisely, as an extensive-form game. This classification is
displayed in Figure 2.

Definition 3 A negotiation domain 〈Ω, c, U1, U2〉 is called a Cartesian negotiation do-
main if its contract space Ω is the Cartesian product of a finite number of finite sets Ω =
I1 × I2 · · · × In, which are called the issues of the domain.

Typical examples of Cartesian domains are the domains in Genius. The idea is that the agents
need to agree on a contract which is composed of several components whose values can be
freely combined. For example, when buying a computer the issues under negotiation could
be the type of CPU, the amount of RAM and the size of the hard disk. If we assume that
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each of these can be freely combined with one another then the entire agreement space is
indeed the Cartesian product of the issues.

Furthermore, within the Cartesian domains we can distinguish between domains with
linear and with non-linear utility functions. In the case of linear domains, each agent has a
preference relation over each issue, which is completely independent of the other issues.

Definition 4 A Cartesian negotiation domain is called a linear negotiation domain if its
utility functions Ui are given by:5

Ui(a1, a2, . . . an) =
n∑

j=1

di,j(aj) (1)

where each aj ∈ Ij and each di,j is a map from Ij to R.

Note that Eq. (1) does not completely define the utility functions, because it does not specify
the reservation values. So, to completely define a linear negotiation domain one must also
specify the reservation values Ui(c) separately.

An example of a linear negotiation domain is given in Table 1. This domain represents
the case where a customer with a fixed budget of, say, 500 euro wants to buy a phone and
negotiates with a salesperson about which phone can be purchased for that price. In this
example, there are three ‘issues’ under negotiation, namely the brand of the phone, the color
of the phone and the size of its memory. The first issue has three possible values: I1 =
{Samsung,Apple,Huawei}, while the other two issues have two possible values each. I2 =
{Black,Silver}, I3 = {16 GB, 32 GB}. This means there are 3x2x2 possible deals that the
negotiators can choose from. An example of a deal would be x = (Samsung,Black, 16 GB),
which yields a utility of U1(x) = 0+20+18 = 38 to the buyer and U2(x) = 40+30+10 =
80 to the seller. Note that in this particular example we assume that the customer wants to
buy the best possible phone within its budget, so the price is not part of the negotiations.
In general, however, it is perfectly possible that the price is also one of the issues under
negotiation.

The non-linear Cartesian domains in the Genius framework are so-called hypercube
domains. In the hypercube domains the agents’ preferences over the issues no longer have
to be independent. For example, if a customer chooses to buy an Apple phone he might
prefer it to be black, while if he chooses to buy a Samsung phone, he prefers it to be silver.
In that case, the issue ‘color’ depends on the issue ‘brand’. Hypercube domains were first
introduced in [25]. Here, we define them as follows.

Definition 5 LetΩ = I1×I2×. . . In be a Cartesian product of finite sets. Then a hypercube
(or hyperrectangle) h ⊆ Ω of this product is another Cartesian product J1 × J2 × . . . Jn
where each Ji is a non-empty subset of Ii (possibly equal to Ii).

For any hypercube h we define its associated Kronecker delta function δh : Ω → {0, 1} as
follows:

δh(~a) =

{
1 if ~a ∈ h
0 if ~a 6∈ h

5 In the literature the utility functions are usually defined as weighted sums. However, we can omit the
weights without loss of generality, because they can be absorbed into the di,j .
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Issues Values Utility Buyer Utility Seller
Samsung 0 40

Brand Apple 25 59
Huawei 39 0

Color Black 20 30
Silver 30 30

Memory 16 GB 18 10
32 GB 30 0

Reservation values: 10 35

Table 1: The Mobile Phone Domain. This is an example of a linear negotiation domain with 3 issues, namely
’Brand’, ’Color’, and ’Memory’. The first issue has 3 possible values, while the other two have 2 possible
values. Therefore, the agreement space contains a total of 3× 2× 2 = 12 possible deals. If the buyer buys a
silver Huawei phone with 32 GB memory he would receive a total utility of 39 + 30 + 30 = 99, which happens
to be the best possible deal. However, for the seller that would result in 0 + 30 + 0 = 30 utility, which is the
lowest possible. Moreover, this value is lower than the seller’s reservation value, which is 35. Therefore, for
the seller this deal would be even worse than not making any deal at all.

Definition 6 A Cartesian negotiation domain C is called a hypercube domain if its utility
functions Ui are given by:

Ui(~a) =
∑
h∈H

wh · δh(~a)

where ~a ∈ Ω, H is a set of hypercubes of Ω, and for every h ∈ H we have wh ∈ R. A pair
(h,wh) is called a constraint.

Although hypercube domains allow for soft constraints between the issues, they still do not
allow hard constraints. If there are hard constraints, the agreement space can no longer be
modeled as a Cartesian product of the issues, because some of the tuples would be invalid.
For example, suppose that the Samsung phone is only available in black and silver, while
the Apple phone is available in also in black, silver, and blue. Such a domain cannot be
represented as a Cartesian product. For such domains, we need a more complex structure,
such as a graph (see Figure 4). This is captured by the notion of a Strategic Negotiation
Domain, which we define in Section 6.

Regarding to our classification of Figure 2 we should remark that we are by no means
claiming this classification is exhaustive. It may certainly be possible to define negotiation
domains that are neither Cartesian, nor Strategic. Similarly, it may be possible to define
Cartesian domains that are neither linear, nor hypercube. However, we do think that these
classes represent the majority of the negotiation domains studied in the literature.

Another important remark is that the classification of a given negotiation domain may
depend on how exactly it is modeled. For example, if some domain A is a Cartesian negotia-
tion domain and some other domain B is a Strategic negotiation domain it means they have
very different mathematical structures. Nevertheless, it is perfectly possible that they both
represent exactly the same real-world negotiation scenario. In fact, one of the main results
of this paper is that we show that every Cartesian domain can just as well be modeled as a
Strategic domain.
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Fig. 3: Every Cartesian product can be modeled as a graph, and therefore every Cartesian Negotiation Domain
can be modeled as a game. This figure depicts the game G′

C corresponding to the linear negotiation domain
C displayed in Table 1.

v0

Samsung Apple Huawei

Black Silver Black Silver WhiteBlackBlue

Fig. 4: Not every graph can be modeled as a Cartesian product. For example this graph does not represent a
Cartesian product, because the values of the issue ‘color’ depend on the brand.

5 Extensive-Form Games

Before we can define Strategic Negotiation Domains we first need to define the concept
of a game. Technically speaking, the games we define here are deterministic two-player
extensive-form turn-taking games with perfect information and finite horizon [49]. How-
ever, we will simply refer to them as ‘games’. Typical examples of such games are chess,
checkers, and go. Again, we let α1 and α2 denote the two agents playing the game.

Definition 7 A game is a tuple 〈V,E, v0, T, p, A,m, u1, u2〉, where:

– 〈V,E〉 is a finite directed acyclic graph with vertices V (a.k.a. states) and edges E.
– v0 ∈ V is the initial state.
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– T ⊂ V is the set of terminal states. That is, the set of states that have no outgoing
edges.6

– p is a vertex-label function p : V \ T → {1, 2}, known as the active player function.
For any non-terminal state v the agent αp(v) is called the active player of that state.

– A is a set of actions (or moves).
– m is an edge-label function m : E → A, known as the move function, that assigns

an action to every edge. It must satisfy the constraint that for any vertex v, its outgoing
edges must all be labeled with a different move:7

∀(v, w), (v, w′) ∈ E : w 6= w′ → m(v, w) 6= m(v, w′)

– u1 and u2 are the players’ respective utility functions ui : T → R.

If the game is a classical board game like chess, then each state v ∈ V represents a particular
configuration of the pieces on the board, and the active player is the agent whose turn it is
to make a move. If v has an outgoing edge (v, w) labeled with an action a it means that if
the active player chooses to play a then the next state resulting from that move will be w.
The terminal states represent those configurations in which the game is finished (in chess
that would be a checkmate or a stalemate).

It is important to understand that a game according to this definition does not necessarily
have to be a board game. In fact, in this paper we are not so much interested in ‘games’ in
the informal sense of the word, but rather we see games as a purely abstract mathematical
concept. A game is just a graph decorated with utility functions, an active-player function
and a move-function.

As an example, we now define the Turn-Taking Prisoner’s Dilemma (TTPD), which
will turn out to be important later on in this paper. In the TTPD player α1 moves first, and
has two options: either to play ‘cooperate’ or to play ‘defect’. Next, player α2 moves, and
has the same two options. After this the game is over. Just as in the traditional Prisoner’s
Dilemma the utility functions are defined such that if the players are rational they will both
play ‘defect’ even though they would both be better off if they both played ‘cooperate’. Its
formal definition is as follows, but it may be easier to understand from Figure 5.

Definition 8 The turn-taking prisoner’s dilemma (TTPD) is the game
〈V,E, v0, p, A,m, u1, u2〉 defined as follows

– V = {v0, vd, vc, tdd, tdc, tcd, tcc}
– E = {(v0, vd), (vd, tdd), (vd, tdc), (v0, vc), (vc, tcd), (vc, tcc)}.
– T = {tdd, tdc, tcd, tcc}.
– p(v0) = 1, and p(vd) = p(vc) = 2.
– A = {defect , cooperate}
– m(v0, vd) = m(vd, tdd) = m(vc, tcd) = defect

m(v0, vc) = m(vc, tcc) = m(vd, tdc) = cooperate

– u1(tdd) = r1, u2(tdd) = r2
u1(tdc) = 100, u2(tdc) = 0
u1(tcd) = 0, u2(tcd) = 100
u1(tcc) = q1, u2(tcd) = q2
where r1, r2, q1 and q2 can be arbitrary real numbers, provided that they satisfy
∀i ∈ {1, 2} : 0 < ri < qi < 100.

6 Note that strictly speaking it is not necessary to include T in this tuple, because T is already implied in
the definition of the graph 〈V,E〉. However, we prefer to include it, for clarity.

7 Note that we use the notation m(v, w) as a shorthand for m((v, w)).
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tdd tdc tcd tcc

vd vc

v0

(100, 0) (0, 100)(r1, r2) (q1, q2)

�1

�2�2

Cooperate

CooperateCooperate

Defect

Defect Defect

Fig. 5: The turn-taking prisoner’s dilemma. The terminal states are indicated with a t. The values r1, r2, q1
and q2 can be any real numbers that satisfy 0 < ri < qi < 100.

If agents are to negotiate which moves they will play, they need to be able to determine
the utility they will obtain from such deals. More generally, we need to be able to answer the
following question: “if the game is in a state v, which utility values can the players expect
to achieve at the end of the game, if they both play perfectly rationally, and without making
any (further) agreements?”.

In order to answer this question we need to distinguish between two situations: the case
that each player only knows its own utility function, and the case that each player also
knows their opponent’s utility function. For the first case we use the well-known concept of
the minimax value, while for the second case we use a concept that we call the pessimistic
maximax value.

It is well-known that if a game is a zero-sum game with full information, then the min-
imax values of a state v are indeed exactly the utility values the players receive if they play
the Subgame Perfect Equilibrium (SPE) from that moment onward [49]. In this paper, how-
ever, we are dealing with non-zero-sum games. Nevertheless, we can still use the minimax
values, but their interpretation is slightly different. In our case, the minimax values are the
minimum values the two players can guarantee for themselves, assuming that each of them
does not know the other player’s utility [54]. In Fig. 6, for example, we see that the mini-
max values of the TTPD are r1 for player α1 and r2 for player α2, and that each player can
calculate its own minimax value, without knowing the other player’s utility.

Definition 9 Let G be a game. Then, for each state v and agent αi its minimax value ũi(v)
is defined as:

ũi(v) :=


ui(v) if v ∈ T (v is a terminal state)
ũi(v

max,i) if p(v) = i (it is αi’s turn)
ũi(v

min,i) if p(v) 6= i (it is the opponent’s turn)

where:

vmax,i ∈ argmax
v′

{ũi(v′) | (v, v′) ∈ E} (any child of v that maximizes αi’s utility).

vmin,i ∈ argmin
v′

{ũi(v′) | (v, v′) ∈ E} (any child of v that minimizes αi’s utility).
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The minimax values ũi(G) of a game are defined as the minimax values of its initial state,
i.e. ũi(G) := ũi(v0).

Note that since a player can be indifferent between multiple actions, the argmax and
argmin operators each return a set of child states with the same minimax values. If such a
set contains more than one element it does not matter which of these we choose to be vmax,i

or vmin,i, since we only care about its minimax value anyway.
In the case that players do know their opponent’s utility (or they can reasonably estimate

it), then the minimax assumption is too strong, because we can assume the opponent will
pick the actions that maximize its own utility rather than those that minimize our agent’s
utility. The values obtained under that assumption are sometimes called the maximax val-
ues. Unfortunately, the maximax values are not always well-defined, because if the active
player is indifferent between several optimal actions, while the other player is not, then it
matters which action the active player will choose. If that happens we still need to make
the ‘pessimistic’ assumption that, among those actions that maximize our opponent’s utility,
he will choose the one that minimizes our own utility. We call the values we obtain under
this assumption the pessimistic maximax values. It is not hard to see that indeed they repre-
sent the minimum utility that rational players can guarantee themselves without any form of
coordination.

Definition 10 Let G be a game, then for any non-terminal state v and player αi, let Vmax,i

denote the set of children of v that maximize αi’s utility:

Vmax,i := argmax
v′

{ũi(v′) | (v, v′) ∈ E}

Furthermore, let vpess−max,i denote any state among Vmax,i that minimizes αj’s utility
(with i 6= j):

vpess−max,i ∈ argmin
v′

{ũj(v′) | v′ ∈ Vmax,i}

Then the pessimistic maximax value ũi(v) for state v and player αi is defined as:

ũi(v) :=


ui(v) if v ∈ T (v is a terminal state)
ũi(v

pess−max,1) if p(v) = 1 (it is α1’s turn)
ũi(v

pess−max,2) if p(v) = 2 (it is α2’s turn)

The pessimistic maximax values ũi(G) of a game are defined as the pessimistic maximax
values of its initial state, i.e. ũi(G) := ũi(v0).

In the rest of this paper we often just say ‘maximax’ when we mean ‘pessimistic maximax’
Note that we are using the same notation ũi both for the minimax values and for the

pessimistic maximax values, because it should be clear from context which one of the two
we mean (pessimistic maximax if the opponent’s utility is known, minimax if the opponent’s
utility is unkown).

For very large and complex games like chess and Go it is often computationally unfea-
sible to determine the minimax or maximax values exactly. In such cases, however, one can
apply approximation algorithms such as Monte Carlo Tree Search.

Finally, we should stress that we are not saying that we are assuming the players are
really playing according to a minimax or maximax strategy. We are only saying that, in
order to calculate the players’ minimum achievable utility, we have to reason as if both
players were using such strategies.
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tdd tdc tcd tcc

vd vc

v0

(100, ?) (0, ?)(r1, ?) (q1, ?)

(r1, ?)
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Defect Defect
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Fig. 6: The turn-taking prisoner’s dilemma from the point of view of α1 (left) and α2 (right) respectively,
if each agent only knows its own utility. The values next to the non-terminal states represent the minimax
values calculated by each agent. A thick solid arrow represents a move the agent would choose to maximize
its own utility. A thick dashed arrow represents a move the agent’s opponent would choose to minimize the
agent’s utility.

6 Strategic Negotiation Domains

In this section we link the concepts of a Game and a Negotiation Domain together. For a
game G we define a Strategic Negotiation Domain over G to be a negotiation domain in
which the agents negotiate which moves they will make in G. Formally, we say the agents
negotiate about which restriction of G they will play. A restriction R of G is a game that is
obtained from G by removing a number of edges while everything else remains the same.
An example of a restriction of the turn-taking prisoner’s dilemma is shown in Figure 7.

Definition 11 A game R = 〈V R, ER, vR0 , T
R, pR, AR,mR, uR1 , u

R
2 〉 is a restriction8 of a

game G = 〈V,E, v0, T, p, A,m, u1, u2〉 if all of the following hold:

– 〈V R, ER〉 is a subgraph of 〈V,E〉
– vR0 = v0
– TR ⊆ T
– pR(v) = p(v) for all v ∈ V R \ TR

– AR = A

– mR(v) = m(v) for all v ∈ V R

– uRi (t) = ui(t), for t ∈ TR.

We will use Rest(G) to denote the set of all restrictions of G.

If the agents agree to commit themselves to a restrictionR then the utility values they can
expect to obtain are the minimax or maximax values ũi(R) of R. In non-zero-sum games
such as the TTPD there may be restrictions for which ũi(R) > ũi(G) for both players,
meaning that both players would benefit from an agreement to commit themselves to R.

Definition 12 LetG be an unambiguous game. Then a Strategic Negotiation Domain over
G is a negotiation domain 〈Ω, c, U1, U2〉 for which the following holds:

– Ω ⊆ Rest(G),

8 One might be tempted to use the term subgame instead of restriction, but the term subgame already
has a different meaning in Game Theory. In [33] we used the concept of a strategy, instead of a restriction.
Although strategies and restrictions are defined differently, they represent essentially the same thing.
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Fig. 7: An example of a restriction of the turn-taking prisoner’s dilemma. This particular example corresponds
to the agreement that α2 will not play ‘defect’. However, many other restrictions of the TTPD are possible.

– c = G

– Ui(R) = ũi(R) for each restriction R ∈ Ω
– Ui(c) = ũi(G)

The statement Ω ⊆ Rest(G) means that in a strategic negotiation domain over G the agents
are proposing restrictions of G to one another. If they agree on a restriction R it means that
they are from that moment onwards only allowed to play moves that are in R. This means
that, if they are perfectly rational, the utility values they will receive at the end will be exactly
the minimax values ũi(R) of that restriction (or maximax if the opponent’s utility is known),
which is expressed as Ui(R) = ũi(R). The statement c = G expresses the idea that if they
do not come to any agreement, then they are not restricted at all, so they can freely choose
any move from the game G. This implies that in that case they will each end up with the
minimax or maximax value of G, which is expressed by the statement Ui(c) = ũi(G).

In other words, if N is a strategic negotiation domain over G, and the players do not
know each others’ utility functions, then the reservation values ofN are exactly the minimax
values of G. If the players do know each others’ utility functions, then the reservation values
of N are exactly the pessimistic maximax values of G

A good example where the notion of a Strategic Negotiation Domain naturally arises,
is the game of Diplomacy. In Diplomacy, each round of the game is preceded by a negotia-
tion stage in which the players negotiate about which moves they will or will not make. If
G denotes Diplomacy without negotiations (known as no-press Diplomacy) then each ne-
gotiation stage of the full Diplomacy game can be formalized as the Strategic Negotiation
Domain over G (see also [30]). Another example is Colored Trails.

In this paper we are mainly interested in a specific type of restriction, which we call a
branch. A branch of a game G is a restriction for which the underlying graph is just a path
from the initial state to some terminal state. An example of a branch of the TTPD is given
in Figure 8.

Definition 13 A branch B of a game G is a restriction of G for which every non-terminal
state has exactly one outgoing edge. The set of all branches of G is denoted Branch(G).
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tcc

vc
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(q1, q2)

�1

�2

Cooperate

Cooperate

Fig. 8: An example of a branch of the Turn-Taking Prisoner’s Dilemma. A branch is a restriction in which
each player always has exactly one possible action, so the underlying graph is just a path from the initial state
to a terminal state. In this particular example both players can only play ‘cooperate’.

Definition 14 For any game G its corresponding Branch Negotiation Domain B(G) is
the strategic negotiation domain over G for which the possible agreements are exactly the
branches of G. That is: Ω = Branch(G).

Example As an example, suppose that G is the Turn-Taking Prisoners Dilemma (Def. 8,
Fig. 5). The TTPD has four branches, respectively labeled with (defect, defect), (defect,
cooperate), (cooperate, defect), and (cooperate, cooperate). Therefore, the two agents in
the negotiation domain B(G) can propose these four branches to one another as the possible
deals. In case they do not come to an agreement the players have no reason to deviate from
the subgame perfect equilibrium, so they will each play defect, and the game ends in state
tdd, yielding the two players a utility of r1 and r2 respectively. On the other hand, if they
agree to play the branch labeled with (cooperate, cooperate) the game will end up at state
tcc, yielding the two players a utility of q1 and q2 respectively. This is for both players a
better outcome, since the definition of the TTPD states that ri < qi. Of course, this only
works if we assume that any agreement made is binding. So even though it would still be
rational for both players to play defect they are simply no longer allowed to do so.

The reason that we mainly focus on Branch Negotiation Domains, as opposed to Strategic
Negotiation Domains in general, is that we show they can be used to represent domains from
Genius. In Genius, the only choice the agents have, is which contract to agree upon. Indeed,
in a Branch Negotiation Domain, after the agents have agreed to play a certain branch B,
they also have no further choices to make. The outcome of the game is completely fixed. On
the other hand, if we allowed more general types of restrictions, the agents would be allowed
to make agreements that do not completely fix all their moves, and leave some room for the
agents to make their own choices. This is more common in Diplomacy and Colored Trails.

The main claim in this paper is that every Cartesian Negotiation Domain C can be mod-
eled as the Branch Negotiation Domain B(GC) over some game GC . To make this formal,
we define the notions of isomorphism and weak isomorphism between negotiation domains.
However, since the formal definitions require a number of technical preliminaries, we prefer
for now to only give informal definitions and defer the formal definitions until Section 11.
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Informally, two negotiation domains are isomorphic if there exists a one-to-one mapping
between all the possible outcomes of both domains that preserves the utility values (up to a
linear transformation). For two negotiation domains to be weakly isomorphic it is enough if
there is such a utility-preserving one-to-one mapping between only the individually rational
outcomes. We can then state our main claim as follows.

Theorem 1 For any Cartesian Negotiation Domain C there exists a game GC such that
B(GC) is weakly isomorphic to C.

This theorem implies that the MCNS algorithm should be able to negotiate over any domain
C from the Genius framework if we provide it with a GDL description of GC . This is an
important result, because the MCNS algorithm does not ‘know’ anything about Genius, and
has previously only been applied to entirely different domains.

Again, we do not want to go into technical details yet, so the proof is given in Section
11. The idea, however, can be demonstrated easily with an example. Say that C is the lin-
ear domain given in Table 1. Then it is easy to see that we can construct a game G′C as in
Figure 3 for which each branch corresponds to exactly one contract in the negotiation do-
main. Furthermore, the utility values of these branches are exactly the utility values of the
corresponding contracts in C.

However, there is one problem with this idea. The problem is that the reservation values
of C are not necessarily equal to the reservation values of B(G′C). After all, the reservation
values of C can be any arbitrary pair of values, independent of the values of the contracts. On
the other hand, the reservation values of B(G′C) cannot be chosen arbitrarily, because they
are equal to the minimax values of the underlying game G′C , which are fixed by the structure
of the graph and the utility values of the terminal states.

For this reason we need to apply a trick that allows us to adjust the minimax values.
This trick is visualized in Figure 9. The idea is that we define a game GC that starts as a
TTPD, and only if both players choose the cooperate move the game continues as the game
G′C we defined previously. The point is that if the players do not make any agreements, they
have no reason to play cooperate, and just as in the TTPD, the game will end with both
players playing defect, and they will respectively obtain the utility values r1 and r2 from
Def. 8, which can be chosen arbitrarily. Therefore, we can choose to set them equal to the
reservation values of C.

Although we have now solved the problem of setting the reservation values correctly,
by doing so we did introduce a new problem: we have also added three more branches
that do not correspond to any contract in C, namely the ones ending in tdd, tdc and tcd,
which means that B(GC) is not isomorphic to C. Luckily, however, this is not a big problem,
because none of these is individually rational (tdd yields exactly the reservation values for
both agents, while the other two each yield value 0 for one of the two agents). So at least
the two domains are still weakly isomorphic. We therefore argue that the two negotiation
domains are still essentially the same, because rational agents would never agree on an
irrational deal anyway (and even for bounded rational agents it is still easy to see these deals
are not rational, as we show later in our experiments).

7 Game Description Language

In this section we give a short introduction to GDL. For more details we refer to [39].
GDL is a first-order logical language that was designed to describe deterministic extensive-

form games. In principle, it can describe any game G defined according to Definition 7.



20 Dave de Jonge, Dongmo Zhang

v0'

v0

vd vc

tcdtdctdd

Cooperate

CooperateCooperate

Defect

DefectDefect

(10, 35) (100,0) (0,100)

(38 , 80) (50 , 70) (48 , 80) (60 , 70) (63 , 99) (75, 89) (77 , 40) (87 , 40)(73 , 99) (85 , 89) (89 , 30) (99 , 30)

Samsung Apple Huawei

Black Silver Black Silver SilverBlack

16GB

32GB

16GB

32GB 32GB

16GB16GB

32GB

16GB

32GB 32GB

16GB

Fig. 9: The gameGC corresponding to the linear negotiation domain C displayed in Table 1. If the players do
not make any agreements about their moves and they play rationally then they will both play Defect and end
up with 10 and 35 utility points respectively, which are exactly the reservation values of C.

Just as in classical first-order logic (FOL), statements in GDL are composed of constants,
variables, function symbols and relation symbols, which can be combined via conjunction,
implication and negation. Variables are denoted with a question mark, e.g. ?x. Just as in
FOL, variables and constants are called terms and any function symbol acting on a term
yields a new term. In classical FOL a function symbol f acting on a constant c or a variable
x is denoted as f(c) or f(x). In GDL, however, these terms would be denoted as (f c)
and (f ?x) respectively. Similarly, if r is a relation symbol and τ is a term, then r applied
to τ is denoted as (r τ), which is called an atom. An atom can be negated with the key-
word not, for example: (not (r τ)). An atom or a negated atom is called a literal. One
major difference between FOL and GDL is that negation in GDL is interpreted as negation-
by-failure. This means that a negative literal (not p) is considered true if and only if there
is no rule from which one can derive the truth of p.

Literals can be put together to form rules, which are of the form:

(<= h s1 s2 ... sn)

where each si is a positive or negative literal, and h is a positive literal. If the rule does not
contain any variables it can be roughly interpreted as the FOL statement s1∧s2∧. . . sn → h.
If it does contain variables, say ?x, ?y and ?z then it can be interpreted as the universally
quantified FOL formula ∀x, y, z

(
s1 ∧ s2 ∧ . . . sn → h

)
. The atom h is called the head of the

rule and the si’s are called the subgoals of the rule. The list of subgoals is called the body
of the rule. The body of a rule may be empty, so it has the form (<= h), meaning that h is
always true. Such a rule is called a fact, and may also be denoted simply as h.
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The idea behind GDL is that any state v of a game is represented as a set of atoms of
the form (true τ), where τ can be any ground term (i.e. a term without variables). For
example, in Tic-Tac-Toe the state in which the the center cell contains the marker X and the
left upper cell contains the marker O could be represented as:

v = { (true (cell 2 2 X)) , (true (cell 1 1 O)) }

where X and O are user-defined constants and cell is a user-defined function. On the other
hand, the relation true is a keyword of GDL. Other important keywords of GDL are the
relation symbols role, goal, next, init, legal, and terminal.

A game description is then nothing more then a set of GDL rules. For example, if the
game description contains the following rule:

(<= (next q) (true p) (does αi a))

it means that if the game is in any state v for which (true p) ∈ v and player αi plays ac-
tion a then in the next round the game will be in a state v′ for which (true q) ∈ v′ holds.
Similarly: (<= terminal (true p)) means that any state v for which true(p) ∈ v

holds is a terminal state. The fact (<= (init p)) means that for the initial state v0 we
have (true p)∈ v0. The rule (<= (legal α1 a) (true p)) means that for any
state in which (true p)∈ v holds it is legal for α1 to play the move a. The rule (<=
(goal α1 100) (true p)) means that in any state v for which (true p)∈ v holds
α1 receives a utility value of 100 (which is only meaningful if v is a terminal state). Finally,
we mention that in GDL anything following a semi-colon is a comment.

In order to parse a game from a GDL description and apply game-playing algorithms
like MCTS one needs to implement a so-called State Machine. This is a data structure that is
initialized with a set of GDL rules and that allows one to query for any given state whether
it is terminal or not, which are the legal actions in that state (if non-terminal), which are
the players’ utility values (if terminal), and what would be the next state if the active player
plays some given legal action. Such a state machine can be implemented in many ways, but
a common approach is to implement it based on a so-called PropNet [58].

8 Cartesian Domains in GDL

In Section 6 we argued that a generic algorithm such as MCNS should be able to negotiate
over Genius domains, as long as we provide it with a GDL description of the game GC .
The question, however, is whether it is actually possible to efficiently generate such a GDL
description, given a description of C in Genius format. After all, the size of the game GC
displayed in Figure 9 is exponential in the number of issues. In this section we show that this
is not a problem, because the GDL description of GC is still linear in size. Furthermore, we
show that the utility functions of the linear and the hypercube domains can both be described
in GDL.

8.1 Linear Domains

The graph underlying the game GC of Figure 9 has a very simple structure, and its active
player function and move function also follow simple patterns, so it is not difficult to im-
plement these structures in GDL. The main challenge is to implement the utility functions,
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; ; I f one p l a y e r d e f e c t e d and t h e o t h e r c o o p e r a t e d , t h e d e f e c t i n g p l a y e r g e t s 100 p o i n t s
; ; and t h e c o o p e r a t i n g one g e t s 0 p o i n t s .

(<= ( g o a l ? d 1 0 0 ) ( t r u e ( d e f e c t e d ? d ) ) ( n o t ( t r u e ( d e f e c t e d ? c ) ) ) ( r o l e ? c ) )
(<= ( g o a l ? c 0 ) ( t r u e ( d e f e c t e d ? d ) ) ( n o t ( t r u e ( d e f e c t e d ? c ) ) ) ( r o l e ? d ) )

; ; I f bo th p l a y e r s d e f e c t e d t h e y r e c e i v e t h e i r r e s p e c t i v e r e s e r v a t i o n v a l u e s .
(<= ( g o a l ? d ? rv ) ( t r u e ( d e f e c t e d p l a y e r 1 ) ) ( t r u e ( d e f e c t e d p l a y e r 2 ) ) ( r e s v a l ? d ? rv ) )

; ; Here , ( s u m u t i l ? p ? k ? u ) r e p r e s e n t s t h e f a c t t h a t t h e sum of t h e u t i l i t y from t h e f i r s t ? k i s s u e s e q u a l s ? u
(<= ( g o a l ? p ? g ) ( s u m u t i l ? p ? n ? g ) ( numIssues ? n ) ( n o t ( t r u e ( d e f e c t e d p l a y e r 1 ) ) ) ( n o t ( t r u e ( d e f e c t e d p l a y e r 2 ) ) ) )
(<= ( s u m u t i l ? p 1 ? u ) ( u t i l c u r r e n t v a l u e ? p 1 ? u ) )
(<= ( s u m u t i l ? i ? k ? sn ) ( succ ?m ? k ) ( s u m u t i l ? i ?m ?sm ) ( u t i l c u r r e n t v a l u e ? i ? k ? u ) ( p l u s ?sm ? u ? sn ) )

; ; t h e u t i l i t y ? u t h a t p l a y e r ? p o b t a i n s when t h e i s s u e wi th i n d e x ? j
(<=( u t i l c u r r e n t v a l u e ? p ? j ? u ) ( t r u e ( c u r r e n t C o n t r a c t ? j ? v ) ) ( u t i l ? p ? j ? v ? u ) )

Fig. 10: GDL rules for linear utility functions.

because GDL only has very limited support for arithmetics. Nevertheless, we have managed
to implement linear utility functions of Equation (1) in GDL, as displayed in Figure 10.

The first three rules define the utility functions of the TTPD at the start of the game. The
predicate (sum util ?i ?k ?sn) represents the partial sum sni,k =

∑k
j=1 di,j(aj)

consisting of the first k terms of Equation (1). More precisely, the fifth rule defines sni,1 =
di,1(a1), and the sixth rule defines the recursive relation sni,k = sni,k−1 + di,k(ak).

Note that these rules are completely generic, in the sense that they are the same for any
linear domain. In order to fully specify the utility functions for a specific domain, we only
need to plug in the values di,j(a) for every issue-value a ∈ Ij (which we have represented
in GDL by (util ?r ?j ?v ?u)). Therefore, we need to include a list that specifies
all these values one by one, as follows:

(util player1 1 1 0)
(util player1 1 2 25)
(util player1 1 3 39)
...

These three example propositions represent the statements d1,1(a1) = 0, d1,1(a2) = 25,
and d1,1(a3) = 39 where a1, a2 and a3 are all elements of I1. Clearly, if there are n
issues, and each issue has m values, and there are 2 agents, then there are in total 2mn such
rules required. Furthermore, we need to add two more propositions to define the reservation
values:

(resval player1 10)
(resval player2 35)

All the other rules that are necessary to fully specify the structure of the graph underlying
the game GC are completely domain-independent. Therefore, we have been able to create a
template GDL file which can be used for any linear domain, and for which one only needs to
plug in the 2mn propositions of the form above and the 2 propositions stating the reservation
values, in order to obtain the full description of GC . An example of such a complete GDL
description is given in Appendix A.

In Genius, the linear domains are described as a table in xml format. This table simply
lists the values of each di,j(a), as well as the two reservation values. This roughly looks as
follows:

< i s s u e i n d e x =” 1 ” name=” Maker ”>
<i t em i n d e x =” 1 ” v a l u e =” Apple ” e v a l u a t i o n =” 0 ”>< / i t em>
<i t em i n d e x =” 2 ” v a l u e =” Samsung ” e v a l u a t i o n =” 25 ”>< / i t em>
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<i t em i n d e x =” 3 ” v a l u e =” Huawei ” e v a l u a t i o n =” 39 ”>< / i t em>
< / i s s u e>

Theorem 2 Let C be a linear negotiation domain with n issues, and for which the largest
issue has sizem. Then, a description of C in the format of Genius can be converted to a GDL
description of GC in O(mn) time and this GDL description will have O(mn) size.

Proof In order to perform the conversion, we simply need to convert every xml tag of the
form <item index="3" value = "..." evaluation="12"/>, into a GDL rule of the
form (util player1 2 3 12). Clearly, the conversion of one such tag can be done
in constant time. We need to do this for every value of every issue, and for both players,
so there are at most 2mn such xml tags to convert (plus two more tags for the reservation
values). Next, we need to plug them into the template GDL file. This template only needs
to be created once and can be reused every time we wish to convert a linear domain, so the
creation of the GDL template does not contribute to the conversion time. ut

We have verified that the resulting GDL file is indeed a correct description of GC by
letting the MCNS algorithm negotiate within the Genius framework with a number of exist-
ing agents. In order to make this possible we wrapped our algorithm in a “Genius Adapter”,
which translated all communication between our agent and Genius back and forth between
GDL and Genius format. Indeed, our algorithm was able to make correct proposals and
come to profitable agreements with its opponents.

There is, however, one caveat. In Genius the utility values can take on any rational
number between 0 and 1, while In GDL they can only be represented as integers between
0 and 100. Of course, we can linearly rescale the utilities to map the values from [0, 1] to
[0, 100], but we still need to round the results off to integers, causing some loss of precision.

Another detail we should point out, is that in most negotiation domains described in
the literature, including those in Genius, the opponent’s utility is unknown, while in Game
Theory and GGP the opponent’s utility is usually assumed perfectly known. In our case, we
can choose either way, because we can choose whether or not to include the rules that define
the opponent’s utility in the GDL description.

8.2 Hypercube Domains

To convert the Hypercube Domains of Genius to GDL format we take the same approach as
for the linear domains. We use a template GDL file in which we only need to plug in a few
domain-dependent propositions that define the parameters of the domain.

The template is almost identical to the one for linear domains, except that the rules
of Figure 10 that define the utility functions have been replaced by the rules displayed in
Figure 11. We see they look very similar. The main difference is that the summation is not
over issues, but rather over constraints. The constraints themselves need to be be plugged
in for every new domain. Figure 12 shows an example of two such constraints. In Genius
format the same two constraints would look like the ones in Figure 13.

Theorem 3 Let C be a hypercube domain with n issues, and with k constraints. Then, a
description of C in the format of Genius can be converted to a GDL description of GC in
O(nk) time and this GDL description will have O(nk) size.
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; ; Only one of t h e two p l a y e r s d e f e c t e d
(<= ( g o a l ? d 1 0 0 ) ( t r u e ( d e f e c t e d ? d ) ) ( n o t ( t r u e ( d e f e c t e d ? c ) ) ) ( r o l e ? c ) )
(<= ( g o a l ? c 0 ) ( t r u e ( d e f e c t e d ? d ) ) ( n o t ( t r u e ( d e f e c t e d ? c ) ) ) ( r o l e ? d ) )

; ; Both p l a y e r s d e f e c t e d
(<= ( g o a l ? d ? rv ) ( t r u e ( d e f e c t e d p l a y e r 1 ) ) ( t r u e ( d e f e c t e d p l a y e r 2 ) ) ( r e s v a l ? d ? rv ) )

; ; Both p l a y e r s c o o p e r a t e d
; ; a p l a y e r wi th no c o n s t r a i n t s w i l l a lways have g o a l 0 .

(<= ( g o a l ? c 0 ) ( n u m C o n s t r a i n t s ? c 0 ) ( n o t ( t r u e ( d e f e c t e d p l a y e r 1 ) ) ) ( n o t ( t r u e ( d e f e c t e d p l a y e r 2 ) ) ) )

; ; Here , ( s u m u t i l ? p ? n ? u ) r e p r e s e n t s t h e f a c t t h a t t h e sum of t h e u t i l i t y from t h e f i r s t ? n c o n s t r a i n t s e q u a l s ? u
(<= ( g o a l ? p ? g ) ( s u m u t i l ? p ? n ? g ) ( n u m C o n s t r a i n t s ? p ? n ) ( n o t ( t r u e ( d e f e c t e d p l a y e r 1 ) ) ) ( n o t ( t r u e ( d e f e c t e d p l a y e r 2 ) ) ) )
(<= ( s u m u t i l ? p 1 ? u ) ( u t i l c u r r e n t v a l u e ? p 1 ? u ) )
(<= ( s u m u t i l ? p ? n ? sn ) ( succ ?m ? n ) ( s u m u t i l ? p ?m ?sm ) ( u t i l c u r r e n t v a l u e ? p ? n ? u ) ( p l u s ?sm ? u ? sn ) )

; ; t h e u t i l i t y ? u t h a t p l a y e r ? p o b t a i n s when c o n s t r a i n t ? c i s s a t i s f i e d .
(<=( u t i l c u r r e n t v a l u e ? p ? c ? u ) ( s a t i s f i e d ? p ? c ) ( v a l u e ? p ? c ? u ) )
(<=( u t i l c u r r e n t v a l u e ? p ? c 0 ) ( n o t ( s a t i s f i e d ? p ? c ) ) ( c o n s t r a i n t E x i s t s ? p ? c ) )

(<= ( c o n s t r a i n t E x i s t s ? p ? c ) ( n u m C o n s t r a i n t s ? p ? n ) ( s m a l l e r O r E q u a l ? c ? n ) )

Fig. 11: GDL rules for nonlinear ’hypercube’ utility functions.

; ; CONSTRAINT 1 :
( <= ( s a t i s f i e d p l a y e r 1 1 )

( t r u e ( c u r r e n t C o n t r a c t 2 ? x1 ) ) ( g r e a t e r O r E q u a l ? x1 7) ( s m a l l e r O r E q u a l ? x1 9)
( t r u e ( c u r r e n t C o n t r a c t 4 ? x2 ) ) ( g r e a t e r O r E q u a l ? x2 2) ( s m a l l e r O r E q u a l ? x2 7)

)
; ; c o n s t r a i n t 1 o f p l a y e r 1 y i e l d s 50 p o i n t s , i f s a t i s f i e d .
( v a l u e p l a y e r 1 1 50)

; ; CONSTRAINT 2 :
( <= ( s a t i s f i e d p l a y e r 1 2 )

( t r u e ( c u r r e n t C o n t r a c t 7 ? x3 ) ) ( g r e a t e r O r E q u a l ? x3 0) ( s m a l l e r O r E q u a l ? x3 6)
)
; ; c o n s t r a i n t 2 o f p l a y e r 1 y i e l d s 30 p o i n t s , i f s a t i s f i e d .
( v a l u e p l a y e r 1 2 30)

Fig. 12: Two constraints for a hypercube domain defined in GDL.

<h y p e r R e c t a n g l e u t i l i t y =” 50 ”>
<INCLUDES i n d e x =” 2 ” min=” 7 ” max=” 9 ” />
<INCLUDES i n d e x =” 4 ” min=” 2 ” max=” 7 ” />

< / h y p e r R e c t a n g l e>
<h y p e r R e c t a n g l e u t i l i t y =” 30 ”>

<INCLUDES i n d e x =” 7 ” min=” 0 ” max=” 6 ” />
< / h y p e r R e c t a n g l e>

Fig. 13: Two constraints for a hypercube domain defined in Genius.

Proof In Genius, each constraint contains one xml tag for each issue that is involved in the
constraint, so it can consist of at most n tags. This means that we need to convert at most nk
tags. Converting a tag of the form <INCLUDES index="2" min="7" max="9"/>

into the following three GDL predicates
(true (currentContract 2 ?x1))(greaterOrEqual ?x1 7)(smallerOrEqual ?x1 9)

clearly can be done in constant time, and it has constant size. ut

9 Colored Trails in GDL

The Colored Trails game was designed to model complex negotiation domains for which
the contract space is not simply an unconstrained Cartesian product of finite sets. The ne-
gotiation domain of Colored Trails is a typical example of a Strategic Negotiation Domain.
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Fig. 14: Example of a 6x6 colored trails board. The two players have their pawns at the top-left and bottom-
right corners respectively. Their respective goal squares are at the center of the board, indicated with G1 and
G2.

It is important to understand, however, that it is not a single uniquely defined game with
a unique ruleset, but rather a parametrized family of games, which leaves researchers with
enough freedom to tweak the details of the game for the purpose of their own research.

9.1 General Description of Colored Trails

A Colored Trails game Gct is a game that takes place on a square m × m grid, in which
each square of the grid has a color assigned to it from some predefined set of colors, say
{red , blue, yellow , green}. Each player is endowed with a number of chips and each of these
chips also has a color, from the same set. Furthermore, each player has an initial square and
a goal square on the grid (see Figure 14). Each player aims to move a pawn from their initial
square to their goal square. However, each time a player moves their pawn, that player loses
a chip of the same color as the square the pawn is moving to. If the player does not have any
chip of that color then they cannot make that move.

The idea is that the players initially do not have the chips of the right colors to be able to
reach their respective goals, but they can acquire the right chips by trading them with each
other. This trading of chips can be seen as a Strategic Negotiation Domain over Gct.

Although the general aim of the players is to reach their goal squares, there is no unique
generally accepted utility function for Colored Trails that is used by all researchers. Instead,
researchers are free to define any kind of utility functions they like. Typically, however, they
would satisfy the following two conditions:

– The closer a player’s pawn gets to the goal square, the higher that player’s utility.
– The more chips the player owns at the end of the game, the higher that player’s utility.

Also, there is no general termination criterion, but typically a game would end if neither of
the two players is able or willing to move their pawn any further, and neither of the two
players is willing to exchange any more chips.

This means that in order to uniquely define an instance of a Colored Trails game which
can be described in GDL one needs to choose the following parameters:

– the grid size
– the set of colors
– the assignment of colors to squares
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– the players’ initial squares
– the players’ goal squares
– the players’ chip endowments
– the players’ utility functions
– the termination conditions

Furthermore, in order for agents to be able to negotiate in this domain, one also needs to fix
the following:

– which types of agreements can be made (i.e. a definition of the agreement space)
– when the negotiations take place (e.g. before each turn, or only before the first turn).

9.2 Colored Trails as an Extensive Form Game

We now explain how we model Colored Trails as an extensive-form game in the sense of
Definition 7.

A state, in our model, consists of the grid, with colors assigned to its squares, the lo-
cations of the targets and the pawns, and a set of colored chips for each player. We define
three types of actions: a pawn move, a chip donation, and a waive. A pawn move means
that a player moves its pawn to one of the four squares adjacent to its current position. A
chip donation means that a player gives a chip to the other player. A ‘waive’ means that the
player decides to do nothing.9

For the utility functions we have chosen the following expression:

ui(t) =

{
5ci + 50− 10si if si ≤ 3

5ci otherwise

where ci is the number of chips owned by player αi in terminal state t and si is the number
of steps the player’s pawn is away from its goal (so if the pawn is at its goal square then
si = 0).

In order to ensure that the game terminates after a finite number of rounds we impose
the rule that the game ends after a fixed number of rounds (e.g. after 40 moves), or if both
players play the ‘waive’ action in two consecutive rounds.

We have implemented a number of such instances of Colored Trails in GDL. An example
of such a GDL description is given in Appendix B. To generate such a GDL description we
follow the same recipe as with the Genius domains: we use a template that contains all the
rules that are identical for all instances of Colored Trails, and then we plug in a small set of
rules which define the parameters of that specific instance.

Theorem 4 Suppose we have an instance of Colored Trails with a grid of size m×m, with
c colors. Then the size of the GDL description of that instance will be O(m2 + c).

Proof As one can see in Appendix B, the domain-dependent rules that need to be plugged
into the template contain one rule to indicate the color of each square of the grid, so there are
m2 such rules. Furthermore, they contain one rule to define each color, one rule to indicate
how many chips player 1 has of that color, and another such rule for player 2, so there are
3c such rules. ut

9 This is not exactly the same as a noop-move that is commonly used in GDL to model turn-taking games.
A noop-move represents the case that the player does not move because it is not their turn, while the waive
move means that it is that player’s turn, but the player chooses to do nothing.
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We are not aware of any standard format to describe Colored Trails instances, so we will not
make any formal claims about conversion to GDL. However, if we can encode an instance
in GDL in O(m2 + c) size, then any other existing format should be able to do the same, so
it is reasonable to believe it could be converted to GDL in O(m2 + c) time.

9.3 Negotiations over a Colored Trails Game

As explained above, the Colored Trails framework in general does not specify what exactly
the players are allowed to propose to one another. In order to keep everything as similar as
possible to the other domains in this paper we model the negotiations as a Branch Negotia-
tion Domain B(Gct) where Gct is an instance of Colored Trails as described in Section 9.2.
This means that a player may propose to the other player a sequence of ‘chip donations’,
‘pawn movements’, and ‘waives’. There is, however, nothing that prevents us from using
any other type of Strategic Negotiation Game over Gct. For example, one could choose to
only allow the negotiation of chip-exchanges.

Another question is when exactly the players are allowed to negotiate. Can they only
negotiate and exchange chips before they start moving their pawns? Or, are they allowed
to restart negotiations each time after either of the two players moves its pawn (e.g. similar
to the game of Diplomacy)? Again, any choice is fine and for our experiments it does not
matter, so we leave this question open.

10 Experiments

In Sections 8 and 9 we have shown that it is possible to generate GDL descriptions of Genius
and Colored Trails instances efficiently. The next question we want to answer is whether
these GDL descriptions can also be parsed efficiently by a negotiation algorithm. For this,
we have designed a number of experiments with which we aim to answer the following two
questions. Given only the GDL description of a game G,

– how quickly can an agent detect its reservation value for the negotiation domain B(G)?
– how quickly can an agent discover and evaluate possible agreements in B(G)?

We repeated these experiments for three types of domains: linear Genius domains, non-
linear (hypercube) Genius domains, and Colored Trails domains.

The first question is important, because extracting the reservation values of B(G) from
a GDL description is a non-trivial task. Recall from Section 5 that they are the minimax
or maximax values of G, and determining these values is, in general, an exponential prob-
lem, so we cannot simply apply a brute-force minimax algorithm. Furthermore, we should
stress that we need to use an algorithm that works for any game so it cannot use any knowl-
edge specific to the type of domains. For example, if an agent knows that a given GDL
description represents a linear domain C it could use knowledge of the structure of GC to
find the minimax values, but in our experiments we do not do that, because that would be
cheating, since the whole point of the declarative approach is that one cannot use any such
meta-information. A typical domain-independent algorithm that meets these requirements
is MCTS [35]. Furthermore, MCTS can be used just as well to calculate the pessimistic
maximax values, in case the opponent utility is known.

We therefore implemented a Score-Bounded MCTS algorithm [5], with UCT [35] heuris-
tics. The UCT constant was set to 40, as this seems to be commonly chosen value in GGP
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(e.g. [17]). Although many improvements on these heuristics have been proposed in the
literature, such as RAVE [21], MAST, FAST and PAST [17], we did not use any of these
techniques and for the random playouts we just used ordinary, uniform, sampling. After all,
the purpose of this work is not to explore state-of-the-art MCTS algorithms, but rather to
show that the reservation values of negotiation domains described in GDL can be determined
with a relatively simple algorithm.

The second question is important, because it tells us how fast any search algorithm
can explore the agreement space. The more deals an agent can evaluate within the limited
time it has, the more likely it is that it finds any good ones. To answer this question we
implemented a simple depth-first search (DFS) algorithm that iterates over all branches ofG.
Again, this is of course a very simplistic approach, but this is intentional. More sophisticated
algorithms like Genetic Algorithms or Simulated Annealing would typically still need to
evaluate thousands of deals, so we want to have an idea of the speed that can be achieved.

We should stress that the two algorithms we used in these experiments (MCTS and
DFS) were used on all three types of domains, without changing even a single parameter.
The implementations of both algorithms are based on a PropNet (see Section 7). Although
this PropNet was implemented by ourselves, it was largely based on the one that comes with
the GGP Java code base.10

We did not use a full negotiation algorithm (like MCNS) for our experiments, and we did
not compare our algorithms with any existing negotiating agents, because that would highly
depend on details such as its bidding-, acceptance-, and opponent-modeling strategies (a.k.a.
BOA strategies [3]), which have nothing to do with the subject of this paper. In principle,
any existing BOA strategies can be used in combination with our GDL-based exploration
algorithms. Therefore, instead of using the full MCNS algorihtm, we just extracted its main
components that can be used to answer our two questions. Specifically, the MCTS algorithm
we use to determine reservation values is exactly the same as the one underlying the MCNS
algorithm. Furthermore, our depth-first algorithm generates move sequences using exactly
the same PropNet and StateMachine implementations as the MCNS algorithm.

All experiments were implemented in Java and executed on a laptop with Intel Core
i7-8750H@2.20Ghz CPU and 32 GB RAM.

10.1 The Linear Domains from ANAC 2012

We have converted each of the 24 linear Genius domains that were used for ANAC 2012
into GDL, according to the recipe of Section 8.1 and we applied both our MCTS algorithm
and our depth-first search to all these domains. The results are displayed in Table 2. We only
show the 5 largest domains, because the results for the smaller domains were negligible.

We see that in all cases the equilibrium value could be found in less than a millisecond,
independent of the size of the domain.

The reason that MCTS can do this so quickly, is that it only needs to evaluate a few
states to come to this conclusion. As can be seen in Fig. 6 it is enough to know that the
values r1, r2, q1, and q2 are all between 0 and 100 (which is a standard assumption in GGP)
to determine the minimax values of the TTPD. This same principle applies to games of the
form of Fig. 9, so it is sufficient for the algorithm to evaluate only the three terminal nodes
at depth 2.

10 https://github.com/ggp-org/ggp-base

https://github.com/ggp-org/ggp-base
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Domain Size Exploration (ms.) R.V. (ms.)
Energy 390,625 3,135 ± 8 < 1
Travel 188,160 1,324 ± 4 < 1
Supermarket 112,896 791 ± 2 < 1
EnergySmall 15,625 120 ± 1 < 1
Car 15,625 106 ± 1 < 1

Table 2: The five largest domains of ANAC 2012. Size: the number of possible deals in each domain. Ex-
ploration: The time to discover and evaluate all possible deals (averaged over 600 repetitions) plus standard
error. R.V.: The time to determine the reservation value of α1 (60 repetitions). All times are indicated in
milliseconds.

We also see that even in the largest domain the depth-first search was able to find and
evaluate all possible deals in just over 3 seconds. For comparison, the deadlines in ANAC
2012 were set at 3 minutes.11

10.2 The Hypercube Domains from ANAC 2014

We have repeated the above experiments with the hypercube domains used for ANAC 2014.
However, in this case the domains were much too large for exhaustive exploration of all
possible deals, because the number of deals varied between 1010 and 1050. Therefore, in-
stead, we measured the time required to explore 1 million deals. The results are displayed in
Table 3.

We see that evaluating potential deals in these domains is a lot slower than with the linear
domains (most of them between 20,000 and 50,000 deals per second, versus 100,000 deals
per second in the linear case) and that the time to evaluate those deals varies highly between
the instances. Overall, the required time seems to increase with the size of the contracts (in
these domains each issue always had exactly 10 values, so if a domain has size 1030 it means
that each contract involved 30 issues). Indeed, one would expect the time to evaluate a single
deal (or a million deals) to be linear in the number of issues, because each deal corresponds
to a branch and the algorithm needs to iteratively generate the branch state-by-state until
it reaches a terminal state, and, as shown in Figure 9, the length of a branch is exactly the
number of issues plus 2. Unfortunately, Genius does not have enough domains of various
sizes for us to verify this expected linear behavior.

We also see that the time necessary to determine the reservation values is again very
small, albeit a bit larger than in the case of the linear domains. Interestingly, we see this time
that the time required does increase for larger instances. We argue that this is caused not so
much because domain is larger, but rather because the representation of the states is larger.
After all, just as for the linear domains, the number of states that need to be explored to find
the reservation values is independent of the domain size, but the representation of the states
does get larger with increasing number of issues, which means that the PropNet needs more
time to determine the legal actions. In our experiment with the linear domains this was not
apparent, because the number of issues in those domains was simply too small to notice this.

11 http://anac2012.ecs.soton.ac.uk/

http://anac2012.ecs.soton.ac.uk/
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Domain Size Exploration (ms.) R.V. (ms.)
10issuesDiscounted profile-1 1010 22,485 ± 544 < 1
10issuesDiscounted profile-2 1010 19,119 ± 475 < 1
10issuesDiscountedwithRV profile-1 1010 21,302 ± 703 < 1
10issuesDiscountedwithRV profile-2 1010 22,498 ± 773 < 1
10issues profile-1 1010 18,419 ± 453 2
10issues profile-2 1010 16,066 ± 286 1
10issueswithRV profile-1 1010 12,880 ± 296 < 1
10issueswithRV profile-2 1010 25,215 ± 1,308 < 1
30issuesDiscounted profile-1 1030 36,786 ± 1,485 5
30issuesDiscounted profile-2 1030 25,681 ± 1,590 4
30issuesDiscountedwithRV profile-1 1030 35,430 ± 1,505 5
30issuesDiscountedwithRV profile-2 1030 50,302 ± 2,897 4
30issues profile-1 1030 30,590 ± 1,163 4
30issues profile-2 1030 29,339 ± 1,592 4
30issueswithRV profile-1 1030 35,728 ± 1,688 4
30issueswithRV profile-2 1030 19,299 ± 878 5
50issuesDiscounted profile-1 1050 61,884 ± 2,457 7
50issuesDiscounted profile-2 1050 56,864 ± 3,083 8
50issuesDiscountedwithRV profile-1 1050 49,426 ± 2,752 8
50issuesDiscountedwithRV profile-2 1050 40,819 ± 1,259 8
50issues profile-1 1050 45,807 ± 2,540 8
50issues profile-2 1050 43,459 ± 1,821 9
50issueswithRV profile-1 1050 27,528 ± 1,670 7
50issueswithRV profile-2 1050 36,458 ± 2,188 8

Table 3: The hypercube domains from ANAC 2014. Size: the number of possible deals in each domain.
Exploration: The time in milliseconds to discover and evaluate 1,000,000 deals (averaged over 20 repetitions)
plus standard error. R.V.: The time in milliseconds to determine the reservation value of α1 (averaged over
50 repetitions). In all cases the standard error was smaller than 1, so we do not display it.

10.3 Colored Trails

Finally, we performed the same experiments on the Colored Trails game. In this case, instead
of using an existing database of Colored Trails instances we randomly generated a number
instances ourselves. Each domain consisted of a 6 × 6, 7 × 7, or 8 × 8 grid, with 4 colors,
and for each domain with grid size m×m both players had m+1, or m+2 chips assigned
to them. The maximum number of rounds was always set to 40. The initial squares of the
two players were set at the top-left and bottom-right squares respectively, while their goal
squares were set at the center of the grid (as in Fig. 14). The colors of each square and
each chip were chosen randomly. However, we did make sure that each instance satisfied
the following two criteria:

1. If the players did not make any agreement then the theoretically highest possible score
could only be obtained by not moving at all.

2. There was always at least one possible deal in the agreement space that allowed each
player to reach their target.

In [23] such domains were called all dependent boards. This was ensured by simply gener-
ating random domains, then checking for each of them whether by coincidence it satisfied
these criteria, and discarding those that did not. Unlike the experiments with the Genius do-
mains, we assumed that the players knew each others’ utility functions, since that seems to
be the more common approach with Colored Trails. We performed our experiments on 30
such domains. The results are shown in Table 4.
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We see that the time to evaluate 1 million deals in Colored Trails is comparable to
the time it takes in a Hypercube domain. In fact, the time for these Colored Trails instances
seems to fall roughly between the times for hypercube domains with 30 issues and hypercube
domains with 50 issues. This makes sense, because most branches in the Colored Trails
game have a length of 40 rounds, so this seems consistent with our earlier stated hypothesis
that the evaluation time increases linearly with the length of each branch.

Evaluating the reservation values also takes a lot more time than with the Genius do-
mains. This is no surprise, because for Colored Trails we did not apply the same trick of
using the TTPD to set the reservation values, as we did with the Cartesian domains. This
means that in the worst case the algorithm may need to explore the entire game tree in order
to find the reservation values (although this clearly did not happen in the experiment).

Furthermore, we note that the MCTS algorithm always found the correct reservation
values, except for the fifth instance with grid size 6 × 6 and 7 chips per player. For this
instance it only converged to the correct values in 5 out of 10 times. In the cases it did
converge to the right value it did so in around 5 seconds. In the other cases it also converged
in roughly the same time, but to the wrong value. At this point it is not clear to us what makes
this instance so special that the algorithm only fails on that one (and only some times). We
leave this for future work.

Finally, it is worthy to note that the time necessary to find the reservation values varies
wildly among the domains but it does not seem to have any correlation with the grid size
or the number of chips. Again, we leave the question why this is the case open for future
investigation.

11 Formal Proofs

The purpose of this section is to prove Theorem 1. In order to do this, however, we first need
to state a number of formal definitions, and prove a number of intermediate lemmas.

The following lemma is not very surprising, and its proof is just a straightforward appli-
cation of the well-known technique of backward induction. Furthermore, this result can also
be seen easily from Figure 6. Nevertheless, we think it is important to state it here, because
it plays a role later on in the proof of Theorem 1.

Lemma 1 The minimax values of the Turn-Taking Prisoner’s Dilemma are given by ũi(G) =
ri.

Proof We first calculate ũ1(G). That is, the value that α1 would obtain if α2 tried to mini-
mize u1 (the left-hand side of Fig. 6).

At vd the active player α2 can choose between tdd and tdc as the next state. For these two
states we have u1(tdc) = 100 and u1(tdd) = r1. Since r1 < 100 we have vmin,1

d = tdd.
This means we have:

ũ1(vd) := ũ1(v
min,1
d ) = u1(tdd) = r1.

At vc α2 can choose between tcd and tcc. For these two states we have u1(tcd) = 0 and
u1(tcc) = q1. Since 0 < q1 we have vmin,1

c = tcd. This means we have:

ũ1(vc) := ũ1(v
min,1
c ) = u1(tcd) = 0.
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Grid Size Chips Instance ID Exploration (ms.) R.V. (ms.)
instance 1 42,378 ± 1,031 4,037 ± 103
instance 2 41,575 ± 835 4,989 ± 119

6× 6 7 instance 3 40,864 ± 458 9,884 ± 218
instance 4 43,440 ± 1,044 4,003 ± 141
instance 5 44,596 ± 933 –
instance 1 41,195 ± 800 5,380 ± 108
instance 2 41,050 ± 576 4,725 ± 127

6× 6 8 instance 3 41,193 ± 870 5,659 ± 144
instance 4 41,533 ± 756 7,782 ± 146
instance 5 42,264 ± 858 5,426 ± 193
instance 1 43,155 ± 779 4,721 ± 299
instance 2 42,797 ± 847 3,940 ± 145

7× 7 8 instance 3 45,915 ± 1,451 6,314 ± 163
instance 4 42,025 ± 765 3,248 ± 213
instance 5 43,569 ± 917 10,155 ± 120
instance 1 42,504 ± 637 7,563 ± 241
instance 2 42,284 ± 775 5,107 ± 216

7× 7 9 instance 3 43,135 ± 621 5,639 ± 242
instance 4 42,124 ± 1,006 8,814 ± 236
instance 5 41,675 ± 511 4,729 ± 170
instance 1 44,938 ± 1,038 3,340 ± 156
instance 2 42,841 ± 783 7,786 ± 370

8× 8 9 instance 3 42,970 ± 604 5,484 ± 429
instance 4 44,489 ± 427 7,388 ± 245
instance 5 43,683 ± 532 9,705 ± 211
instance 1 44,005 ± 819 3,296 ± 202
instance 2 42,591 ± 462 5,486 ± 249

8× 8 10 instance 3 43,862 ± 750 3,747 ± 243
instance 4 43,363 ± 716 3,023 ± 154
instance 5 45,317 ± 861 6,489 ± 237

Table 4: Thirty randomly generated instances of Colored Trails. Grid Size: the number rows and columns of
the grid. Chips: The number of chips initially assigned to each player. Instance ID: For each grid size and
chip number we created 5 different instances, which we identify with a number from 1 to 5. Exploration:
The time to discover and evaluate all possible deals (averaged over 20 repetitions) plus standard error. R.V.:
the time to determine the reservation value of α1 (10 repetitions). All times are indicated in milliseconds.

Finally, at v0 the the active player α1 can choose between vd and vc. We have shown
above that ũ1(vd) = r1 and ũ1(vc) = 0, and Since 0 < r1 we have vmax,1

0 = vd. This
means we have:

ũ1(v0) := ũ1(v
max,1
0 ) = ũ1(vd) = r1. (2)

Next, in a similar fashion we calculate ũ2(G). That is, the value that α2 would obtain if α1

tried to minimize u2 (the right-hand side of Fig. 6).
At vd the active player α2 can choose between tdd and tdc. For these we have u2(tdd) =

r2 and u2(tdc) = 0. Since 0 < r2 we have vmax,2
d = tdd. This means we have:

ũ2(vd) := ũ2(v
max,2
d ) = u2(tdd) = r2.

At vc α2 can choose between tcd and tcc. For these two states we have u2(tcd) = 100
and u2(tcc) = q2. Since q2 < 100 we have vmax,2

c = tcd. This means we have:

ũ2(vc) := ũ2(v
max,2
c ) = u2(tcd) = 100.

Finally, at v0 the the active player α1 can choose between vd and vc. We have shown
above that ũ2(vd) = r2 and ũ2(vc) = 100, and Since 0 < r1 we have vmin,2

0 = vd. This
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means we have:
ũ2(v0) := ũ2(v

min,2
0 ) = ũ2(vd) = r2. (3)

The lemma then follows from Equations (2) and (3) and the definition that ũi(G) := ũi(v0).
ut

Lemma 2 If B is a branch of some game G then its minimax values are exactly the utility
values of its unique terminal state t, i.e. ũi(B) = ui(t).

Proof Each branch B obviously has a unique terminal state t (Def. 13) and therefore, obvi-
ously, the utility values ui(t) are the only possible values the players can obtain.

11.1 Isomorphism and Weak Isomorphism

In the following we define several notions of equivalence between negotiation domains.
Intuitively, when we say that two negotiation domains A and B are equivalent, we mean
that for a negotiation algorithm it should not make any difference whether it receives a
description of domain A or domain B as its input. In both cases it should make exactly
the same proposals (in practice, however, one of the two representations might allow for a
more efficient exploration of the agreement space than the other, which could still lead to
differences).

Let A = 〈ΩA, cA, UA
1 , U

A
2 〉 and B = 〈ΩB , cB , UB

1 , U
B
2 〉 be two negotiation domains.

If for each contract x ∈ ΩA there is a corresponding contract y ∈ ΩB which yields exactly
the same utility values for both players, and vice versa, and the reservation values are also
the same, that is:

∀i ∈ {1, 2} ∀o ∈ OA : UA
i (o) = UB

i (f(o))

then clearly we should consider A and B equivalent. In that case we say there is a utility
preserving bijection fromOA toOB (recall thatOA := ΩA∪{cA} andOB := ΩB∪{cB}).
See Figure 15 for an example.

This notion of equivalence is, however, too strict for us, because we argue that applying
a strictly increasing linear transformation to the utility functions does not essentially change
a negotiation domain. After all, it should not matter whether you measure utility on a scale
from 0 to 1 or on a scale from 0 to 100. In fact, this is even one of the axioms that Nash
used to derive his famous Nash Bargaining Solution [45]. We therefore provide a somewhat
more general definition of ‘utility preserving’ which allows for linear rescaling (for a short
discussion on non-linear rescalings, see Section 12.5).

Definition 15 A linear rescaling function is a function λ : R → R defined by λ(x) =
a · x+ b for some a, b ∈ R with a > 0.

Definition 16 Let O be some non-empty subset of OA and let f be a map from O to OB .
We say that f is utility preserving if there exist two rescaling functions λ1 and λ2, such
that:

∀i ∈ {1, 2} ∀o ∈ O : UA
i (o) = λi(U

B
i (f(o)))

Note that the identity function x 7→ x is also a rescaling function, so if f satisfies ∀i ∈
{1, 2} ∀o ∈ O : UA

i (o) = UB
i (f(o)) then it is also utility preserving.
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Definition 17 A map f from OA to OB is called an isomorphism between A and B if it
is bijective, utility preserving, and maps the conflict outcome of A to the conflict outcome
of B (i.e f(cA) = cB). If there exists an isomorphism between A and B then we say that A
and B are isomorphic.

See Figure 16 for an example of two isomorphic domains.
It turns out, however, that isomorphism is a form of equivalence that is still somewhat

too strict for our purposes, because we argue that, when comparing A and B, we may just
as well ignore those deals that are not individually rational, because for such deals at least
one of the two negotiators would never agree to it anyway (assuming perfect rationality). To
take this into account, we define the notion of a weak isomorphism which is only required
to be utility preserving on the set of individually rational deals (see Def. 2). We will denote
the set of individually rational contracts as Ωrat and we define Orat = Ωrat ∪ {c}.

Definition 18 Let OA and OB be two sets such that OA
rat ⊆ OA ⊆ OA and OB

rat ⊆ OB ⊆
OB . Then a map f from OA to OB is called a weak isomorphism between A and B if it is
bijective, utility preserving, and f(cA) = cB . If there exists a weak isomorphism between
A and B then we say that A and B are weakly isomorphic.

See Figure 17 for an example of two weakly isomorphic domains. Also, for comparison, in
Figure 18 we show an example of two negotiation domains that are not equivalent in any of
the above senses at all.

0

100

0 1000 100
0

100 y1

U1

U2

y4

y2

y3

cY

x1

U1

U2

x4

x2

x3

cX

Fig. 15: Two negotiation domains X and Y which are clearly equivalent. The domain on the left has four
contracts: x1, x2, x3 and x4. For each of these contracts xi there is exactly one contract yi in the domain
on the right with exactly the same utility vector, and vice versa. Furthermore, the reservation values are also
exactly the same in both domains.

11.2 Definition of GC

In order to prove Theorem 1 we will here define the game GC (Figure 9) for which we argue
that B(GC) is weakly isomorphic to GC . This will then be proven in the next subsection.

Intuitively, GC starts out like the TTPD, but with the difference that if both players
play ‘cooperate’ the game continues for n more rounds, where n is the number of issues
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Fig. 16: Two isomorphic negotiation domains. For each contract xi the corresponding contract yi does not
have the same utility vector, because the two negotiation domains measure utility on different scales. The
utility vectors on the left are all in the range [0, 100] × [0, 100], while on the right they are in the range
[0, 10]×[0, 20] However, the second can be transformed into the first by means of the two rescaling functions
λ1, λ2 defined by: λ1(r) = 10 · r and λ2(r) = 5 · r
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Fig. 17: Two weakly isomorphic negotiation domains. Although there is no bijection between the two
full outcome spaces, there is a bijection, which is also utility preserving, if we ignore the irrational con-
tracts. That is, there is a utility preserving bijection between OX

rat = {cX , x1, x2, x3, x4} and OY
rat =

{cY , y1, y2, y3, y4}.

of C. In each of these rounds the active player chooses a value for one of the issues of the
domain. Specifically, in round j+2 the active player picks a value aj for issue Ij , so that the
sequence of actions played between round 2 and round n+2 represents a complete contract
(a1, a2 . . . an) ∈ ΩC of C.

For the following, we define a tree as a directed acyclic graph such that there is exactly
one vertex with no incoming edges (the root) and all other vertices have exactly one incom-
ing edge. A path is a sequence of vertices (v0, v1, . . . vn) such that every pair of consecutive
vertices is connected by an edge in the graph, (i.e. (vj , vj+1) ∈ E) and the depth of a vertex
v is the number of edges that need to be traversed, starting at the root, to arrive at v.
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Fig. 18: Two negotiation domains that are not equivalent in any of the senses above. Although the two domains
have the same size (6 contracts each) so there is a bijection between the two, this bijection is not utility-
preserving because the two domains have entirely different utility vectors.

Definition 19 For any game G let M denote the map that maps every path of G to the set
of moves along that path. That is:

M(v0, v1, . . . vn) = (m(v0, v1) , m(v1, v2) , . . . , m(vn−1, vn) )

For example, if G is the TTPD, then M(v0, vc, tcc) = (cooperate, cooperate)

Definition 20 Let C = 〈ΩC , cC , UC1 , UC2 〉 be a Cartesian negotiation domain with n issues.
Then we define G′C = 〈V

′, E′, v′0, T
′, p′, A′,m′, u′1, u

′
2〉 to be the unique game that satisfies

the following conditions (see Table 1 and Figure 3 for an example).

– The underlying graph 〈V,E〉 is a tree.
– v′0 is the root of the tree.
– if a vertex v of the tree has depth j with j < n then:

– v has exactly |Ij+1| outgoing edges.
– each outgoing edge (v, w) is labeled with a different value from issue Ij+1, i.e.
m(v, w) ∈ Ij+1

– p(v) = j(mod 2) + 1 (players alternate turns)
– if a vertex v has depth n then it has no outgoing edges (i.e. the set of terminal states T ′

consists of exactly the vertices with depth n).
– If (v′0, v1, . . . vn) denotes a path from v′0 to some terminal state vn, then the utility of

that terminal state is given by:

u′i(vn) := UCi (M(v′0, v1, . . . vn)). (4)

Note that M(v′0, v1, . . . vn) is a tuple (a1, a2, . . . an) for which each aj is an element of
Ij . Therefore, it is an element of I1 × I2 × . . . In, which by definition is ΩC . In other
words, every path from v0 to a terminal state vn is associated with a contract of C and the
utility values u′i(vn) associated with the state vn are defined to be exactly the utility values
UCi (a1, a2, . . . an) of that contract.

We can now formally define the game GC from Figure 9 as follows, by ‘gluing’ together
the TTPD with G′C .
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Definition 21 Let us here denote the TTPD asGpd = 〈V pd, Epd, vpd0 , ppd, Apd,mpd, upd1 , upd2 〉
andG′C is the game defined above (Def. 20). Then we defineGC = 〈V,E, v0, p, A,m, u1, u2〉
as

– V = V ′
⋃
V pd \ {tcc}

– E = E′
⋃
Epd⋃ {(vc, v′0)} \ {(vc, tcc)}

– v0 = vpd0

– p(v) =

{
p′(v) if v ∈ V ′

ppd(v) if v ∈ V pd

– A = A′
⋃
Apd

– m(e) =


m′(e) if e ∈ E′

mpd(e) if e ∈ Epd

cooperate if e = (vc, v
′
0)

– ui(t) =


updi (t) if t ∈ {tdc, tcd}
λi(u

′
i(t)) if t ∈ T ′

λi(U
C
i (c
C)) if t = tdd

where the rescaling functions λi are chosen such that 0 < ui(t) < 100 for all t ∈ T ′ as well
as for t = tdd.

11.3 Proof of Theorem 1

We are now finally ready to prove our main theorem. In order to prove it we will define a
map f and then prove that it is a weak isomorphism between B(GC) and C.

First note that the set of outcomes OB(GC) of B(GC) can be divided into three types of
outcomes:

– The conflict outcome.
– Branches B of GC that start with both players cooperating, i.e. for which:

M(B) = (cooperate, cooperate, a1, . . . an)

We will call these the long branches
– The three other branches, that end in tdd, tdc, and tcd respectively. We will call these the

short branches.

We then define f as follows:

f(o) =


cC if o is the conflict outcome of B(GC)
(a1, . . . an) if o is a long branch, with M(o) = (coop., coop., a1, . . . an)

undefined if o is a short branch

(5)

We now need to prove that f is indeed a weak isomorphism. That is, we need to show the
following:

– f maps the conflict outcome of B(GC) to the conflict outcome cC of C.
– For the domain dom(f) of f we have that OB(GC)

rat ⊆ dom(f) ⊆ OB(GC).
– f is a bijection between dom(f) and some set O for which OCrat ⊆ O ⊆ OC .
– f is utility preserving
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The first of these points does not need to be proved, because f is simply defined to map the
conflict outcome of B(GC) to the conflict outcome cC . We will now prove the other three
points one by one.

Lemma 3 For the domain dom(f) of f we have that OB(GC)
rat ⊆ dom(f) ⊆ OB(GC)

Proof The domain of f consists of the conflict outcome and the long branches which are
indeed elements of OB(GC), so we have dom(f) ⊆ OB(GC). The only outcomes that are
not in the domain are the short branches, which are all irrational. Therefore, all rational
outcomes are in the domain of f , so we also have OB(GC)

rat ⊆ dom(f). ut

Lemma 4 f is a bijection between dom(f) and some set O for which OCrat ⊆ O ⊆ OC

Proof We can split this lemma up in two parts: 1) f is injective, 2) for its image Im(f)
we have OCrat ⊆ Im(f) ⊆ OC . The fact that f is injective can be seen directly from its
definition. The second part is true, because we can in fact show that Im(f) = OC . To prove
this, we have to show that for every contract (a1, a2, . . . an) of C there is a long branch
(cooperate, cooperate, a1, a2, . . . an) in the game GC . This proof goes by induction.

Let (a1, a2, . . . an) ∈ I1 × I2, · · · × In. First, note that there must exist at least one
path (v0, v1, . . . ) in 〈V,E〉 for which m(v0, v1) = a1 ∈ I1. This is because by defi-
nition of G′C the initial state v0 has |I1| outgoing edges, and each outgoing edge must
have a different label chosen from I1. So v0 must have exactly one outgoing edge la-
beled with a1. Next, suppose that for some integer k it is proven that there exists a path
(v0, v1, . . . vk . . . ) such that M(v0, v1, . . . vk . . . ) starts with (a1, a2, . . . ak). We can then
repeat the same argument to argue that there must be a path (v0, v1, . . . vk, vk+1 . . . ) such
that M(v0, v1, . . . vk, vk+1 . . . ) starts with (a1, . . . ak, ak+1).

So, any contract of C is indeed in the image of f . Furthermore the conflict outcome cC

is clearly also in the image of f , so all outcomes of C are in the image. In other words, we
have Im(f) = OC . ut

Lemma 5 f is utility preserving.

Proof We need to prove that for all outcomes o in the domain of f we have: UB(GC)
i (o) =

λi(U
C
i (f(o))). Recall that the domain of f consists of the long branches and the conflict

outcome, so we first prove this equality for the long branches, and then for the conflict
outcome.

First, suppose that o is a long branch, with o = (v0, vc, v
′
0, v1, . . . vn), and M(o) =

(coordinate, coordinate, a1, a2, . . . an). Then we have:

U
B(GC)
i (o) = ũi(o) = ui(vn) = λi(u

′
i(vn)) = λi(U

C
i (M(v′0, v1, . . . vn))) = λi(U

C
i (f(o)))

where the first equality is simply by definition of a Strategic Negotiation Game (Def. 12), the
second equality is by Lemma 2, the third equality is by the definition ofGC (Def. 21), and the
fourth equality is by Eq. (4). Then, noting that M(v′0, v1, . . . vn) is equal to (a1, a2, . . . an),
which in turn is exactly f(o), we obtain the last equality.

Second, suppose that o is the conflict outcome of B(GC), that is: o = cB(GC) = GC . In
this case we need to prove:

U
B(GC)
i (o) = ũi(GC) = ui(tdd) = λi(U

C
i (c
C)) = λi(U

C
i (f(o))).

The first equality is by the definition of a Strategic Negotiation Game (Def. 12). For the
second equality, first note that λi was chosen such that for any terminal state t that can be
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reached from v′0 (i.e. each t ∈ T ′) we have 0 < ui(t) < 100. This, in turn, implies that
we have 0 < ũi(v

′
0) < 100. Furthermore, we also have 0 < ui(tdd) < 100. Knowing this,

the proof of this equality is analogous to the proof of Lemma 1. The third equality is by
definition of GC (Def. 21), and the last equality is simply by plugging in f(o) = cC from
the definition of f . ut

These three lemmas together prove that f is indeed a weak isomorphism between B(GC)
and C, and therefore our main theorem is proven.

12 Discussion and Future Work

In this paper we have shown that every Cartesian Negotiation Domain C there is a game GC
such that the Strategic Negotiation Domain B(GC) is equivalent to C and that in the case of
the Genius domains, the game GC can be described efficiently in GDL. Similarly, we have
shown that the Colored Trails game Gct can be described efficiently in GDL. This means
that any negotiation algorithm that is written for strategic domains in general, can also be
applied to the existing domains from Genius as well as the Colored Trails game.

The fact that C is only a weakly isomorphic to B(GC) means that there will be some
contracts in the strategic domain that do not exist in the Cartesian domain, but since they are
irrational anyway their presence should not matter.

In the following subsections we discuss a number of issues that we left unanswered in
the text, as well some issues that we leave for future work.

12.1 Proposing General Restrictions

In this work we have restricted our attention to Branch Negotiation Domains, which form
a subclass of the Strategic Negotiation Domains. This is because we wanted to simulate
the Genius domains in GDL and in Genius it is assumed that agents make agreements that
completely fix every aspect of the contract and that yield a well-defined unique utility value
for each player, which corresponds exactly to the notion of a branch.

However, we think it could be much more interesting to study Strategic Negotiation
Domains in which the agents can propose any kind of restriction. This essentially means
they are allowed to make partial agreements that only specify, for example, the first few
moves, or that specify that only one particular move can never be made, while the agents
still keep the freedom to choose between several other moves.

In order to make this generalization we need to have a language that allows the agents
to specify such general contracts. One language that could be used for this purpose is the
recently introduced language SGL [70]. Furthermore, we would need some way to com-
municate to the agents which types of restrictions they are allowed to propose (e.g. any
restriction, or only branches, or some other subset of Rest(G)). We leave it as future work
to explore how to do this.

12.2 Negotiations in Multiple Rounds

Apart from the question what the agents can negotiate, another important question is when
the agents can negotiate. Is there a negotiation stage before every round (like in the game
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of Diplomacy), or only before the first round? If the aim is to correctly simulate the Ge-
nius domains then negotiations should only take place before the first round. But for other
domains, like Colored Trails, it is more interesting to allow agents to continue negotiating
before every new round.

The MCNS algorithm was designed specifically for negotiations before every new round,
and it makes less sense to apply it if negotiations only take place before the first round.
Therefore, if we want to implement a more general algorithm that is able to negotiate under
either scenario we need a way of indicating to the agents when they are allowed to negoti-
ate. This can actually be done quite easily, by extending GDL with just one keyword, say
negotiate. We could then write rules of the form

(<= (negotiate) (true P))

which would mean that for any state in which the proposition P is true, the players are
allowed to negotiate before making their moves.

12.3 Arithmetic GDL

One of the main disadvantages of GDL is that it does not have direct support for arithmetics.
In order to calculate utility values we needed to perform summations, and such summations
have to be hard-coded in the GDL description. For example the statement 0 + 1 = 1 is
explicitly included in the listing in Appendix A, as the proposition (plus 0 1 1). In
fact, we had to include every possible statement of the form a+ b = c for all values of a, b
and c between 0 and 100, yielding a list of 5151 such propositions. Although this solution
is clearly inelegant, in practice it does not yield any big problems. It just makes the parsing
of the domain and the calculation of the utility values slightly inefficient.

A bigger problem, is that in this way we are only able to handle integers, and that these
integers have to be within reasonably small bounds (e.g. between 0 and 100). This means
that the conversion from Genius to GDL is not always exact, due to rounding errors.

In order to overcome this problem, we propose to extend GDL with arithmetical opera-
tors. For example, we could define plus to be a keyword, so that our algorithm immediately
understands that the statement (plus 0 1 1) is always true, without this having to be
stated explicitly in the GDL description. We could then also do the same with multiplication
and division, and we may even be able to use fractional numbers. This means that we would
have to adapt our algorithms to understand such an extension of GDL (if it is even feasible
at all to define such an extension). Another major challenge would be to define a number of
restrictions of the use of these new keywords, to ensure that the number of true propositions
remains finite and small enough that algorithms can still process the GDL efficiently. We
leave this as future work.

12.4 Domains with Imperfect Information

Another interesting question in the field of Automated Negotiations, which has not been
studied much, is how to implement negotiating agents in domains with incomplete or imper-
fect information about the environment. In order to define such domains we could GDL-II
[62], the extension of GDL for games with incomplete information. This is another issue we
leave for future work.
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12.5 Non-linear Rescaling of Utility Functions

In Section 11 we argued that if we rescale a utility function by a linear transformation, the
negotiation domain remains essentially the same. A legitimate question now, is whether we
could also allow more general transformations.

Of course, one could argue that non-linear, but monotonous, transformation should also
be allowed, because they preserve the preference ordering between the potential agreements.
However, it is highly debatable whether the transformed domain in that case could still be
considered ‘equivalent’ to the original one. For example, the new domain would in general
have a different Nash Bargaining solution than the original one, and also other notions such
as social welfare would change. Especially, we do not think that most existing algorithms
would behave in exactly the same way on two domains if those domains differed by a non-
linear transformation.

Finally, if we allowed a larger class of transformations, it would just make our notion of
equivalence weaker, while our aim is to have the strongest notion of equivalence as possible.
Therefore, the conclusion is that we have no reason to allow non-linear transformations.

12.6 Negotiation Domains with Hard Constraints

We have argued that one of the main reasons to use GDL is that it allows us to define
negotiation domains with hard constraints between the issues. However, apart from Colored
Trails, and the toy-world games in [32] we have not studied any such domains. Therefore,
we aim for the future to implement several such domains. For example, we could take the
linear domains from Genius and adapt them by adding a number of hard constraints.

12.7 Hypercubes with Hard Constraints

We have argued that Hypercube domains can only be used to define soft constraints between
the issues, but not hard constraints. However, we should note that hypercubes can be used to
describe hard constraints if we make just one small adaptation. That is, we could allow the
utility functions to also take the value −∞.

For example, in the Mobile Phone domain displayed in Figure 4 we could assume that
the ‘color’ issue has 4 values: {Black ,White,Silver ,Blue}, and whenever a contract in-
volves a brand and a color that are incompatible, such as (Samsung,Blue, 16GB), we set its
utility to −∞.

This approach, however, has several disadvantages in comparison to the use of GDL.
For example, suppose that each phone is available in two colors, but the two available colors
are different for each brand, so in total there are six different colors. This would mean the
entire domain has 3×6×2 = 36 contracts, but only 3×2×2 = 12 of them are valid, which
is only 33% of the entire domain. This could make it very difficult for any generic algorithm
to explore such a domain, because it would mainly find invalid contracts. We definitely think
this problem occurs in the real world, and it is not hard to see that in some domains these
numbers can be much more extreme, especially if this problem also occurs with the other
issues of the domain. After all, the fraction of valid contracts decreases exponentially with
the number of such issues.

Furthermore, some of the other advantages of GDL that we mentioned before would not
apply to this ‘Hypercube with negative infinity’ approach.



42 Dave de Jonge, Dongmo Zhang

12.8 Exploring Large Strategic Domains

Arguably the most important question that has been left open, is how to find good proposals
in very large strategic domains. In our experiments with the hypercube domains we showed
that we were able to explore over a million possible deals in less than a minute, but 1 million
is still only a tiny fraction of the entire agreement space, if the total size is 1050.

The agents that participated in ANAC 2014 used intelligent search algorithms such as
Genetic Algorithms [29] or Simulated Annealing [47] to overcome this problem, but such
algorithms are specifically targeted to Cartesian domains. For example, if we use a straight-
forward genetic algorithm that samples branches of the game and we apply cross-over to
combine two such branches into a new one, then the resulting new branch might not repre-
sent a legal sequence of moves of the game.12

This same question also plays a very important role in the game of Diplomacy. Although
many researchers have published work on this game [15,30,41], still, to date no one has been
able to implement an agent that has convincingly solved this problem and is able to strongly
outplay any non-negotiating agent [27].

We therefore argue that the question how to find good proposals in a large strategic do-
main is one of the main open questions in the field of Automated Negotiations, and we think
that the use of GDL to define such domains will help answering this question, as it allows
researchers to incrementally build more and more complex domains and it will allow them
to test their algorithms across many different instances of such domains.

12.9 Multilateral Domains

To keep the proofs and notation simple we have restricted ourselves to bilateral negotiation
domains. However, almost everything in this work was independent of the number of agents,
so all of this should equally work for multilateral domains. The only real difference is that
we would need to replace the Turn-Taking Prisoners Dilemma with a variant involving more
than two agents.

12.10 Other Domain Description Languages

Of course, GDL is only one example of a language that is capable of describing a large
class of problem instances and we are by no means claiming that GDL is the best candidate
to describe negotiation domains. Therefore, in the future we would also like to experiment
with other languages and compare there usefulness with GDL. Other languages that we
could consider are, for example, ASP, STRIPS, and PDDL.

12.11 Category Theory

Finally, an interesting question is whether our theorems and their proofs can be formulated
in the language of Category Theory. We note, for example, that the operator B is in fact
a functor from a certain category of Games to a category of Negotiation Domains. The
isomorphisms of this category of Negotiation Domains could either be the isomorphisms

12 Of course, there may exist more sophisticated Genetic Algorithms that are able to avoid this problem,
but to the best of our knowledge no one has ever tried to apply those to automated negotiations.
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as defined by Def. 17, or the weak isormorphisms as defined by by Def. 18. Also, we have
defined a functor in the opposite direction, which takes any Cartesian negotiation domain C
to the game GC . Although such an investigation may not directly have much practical use
for the implementation of negotiation algorithms, we still think it could be very interesting
for purely theoretical reasons.
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Appendix A: GDL Code for Linear Domains

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; DEFINE THE ROLES
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
( r o l e p l a y e r 1 )
( r o l e p l a y e r 2 )
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; DEFINE THEIR POSSIBLE ACTIONS
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

; ; Remain s i l e n t
(<= ( i n p u t ? r noop ) ( r o l e ? r ) )

; ; The two a c t i o n s f o r t h e i n i t i a l p r i s o n e r ’ s dilemma .
(<= ( i n p u t ? r c o o p e r a t e ) ( r o l e ? r ) )
(<= ( i n p u t ? r d e f e c t ) ( r o l e ? r ) )

; ; S e t t h e v a l u e o f a c o n t r a c t p r o p e r t y
; ; We can on ly a s s i g n t h e v a l u e V t o p r o p e r t y P i f V i s i n d e e d a p o s s i b l e v a l u e f o r P .
(<= ( i n p u t ? r ( s e t V a l u e ? p ? v ) ) ( r o l e ? r ) ( v a l u e E x i s t s ? p ? v ) )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; DEFINE THE BASE PROPOSITIONS
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

(<= ( base ( s t e p ? x ) ) ( number ? x ) )
(<= ( base ( c o n t r o l ? r ) ) ( r o l e ? r ) )

(<= ( base ( d e f e c t e d ? r ) ) ( r o l e ? r ) )

(<= ( base ( c u r r e n t C o n t r a c t ? p ? v ) ) ( v a l u e E x i s t s ? p ? v ) )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; SET THE INITIAL STATE .
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
( i n i t ( s t e p 0 ) )
( i n i t ( c o n t r o l p l a y e r 1 ) )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; DEFINE WHO CAN DO WHAT AND WHEN.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; The non−a c t i v e p l a y e r has t h e r i g h t t o remain s i l e n t .
( <= ( l e g a l ? r noop ) ( r o l e ? r ) ( n o t ( t r u e ( c o n t r o l ? r ) ) ) )
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; ; In t h e f i r s t two ro un ds t h e y p l a y a p r i s o n n e r ’ s dilemma .
( <= ( l e g a l ? r c o o p e r a t e ) ( r o l e ? r ) ( t r u e ( c o n t r o l ? r ) ) ( t r u e ( s t e p 0 ) ) )
( <= ( l e g a l ? r d e f e c t ) ( r o l e ? r ) ( t r u e ( c o n t r o l ? r ) ) ( t r u e ( s t e p 0 ) ) )
( <= ( l e g a l ? r c o o p e r a t e ) ( r o l e ? r ) ( t r u e ( c o n t r o l ? r ) ) ( t r u e ( s t e p 1 ) ) )
( <= ( l e g a l ? r d e f e c t ) ( r o l e ? r ) ( t r u e ( c o n t r o l ? r ) ) ( t r u e ( s t e p 1 ) ) )

; ; In t h e p−t h t u r n t h e a c t i v e p l a y e r may s e t t h e v a l u e o f t h e p−t h i s s u e .
( <= ( l e g a l ? r ( s e t V a l u e ? p ? v ) ) ( t r u e ( c o n t r o l ? r ) ) ( t r u e ( s t e p ?m) )

( succ ? p ?m) ( v a l u e E x i s t s ? p ? v ) )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; DEFINE THE EVOLUTION OF THE STATE .
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; Le t t h e s t e p c o u n t e r i n c r e a s e e v e r y round .
(<= ( n e x t ( s t e p ? y ) ) ( t r u e ( s t e p ? x ) ) ( succ ? x ? y ) )

; ; Once a p l a y e r has d e f e c t e d t h i s s h o u l d be r e c o r d e d , and t h i s f a c t r e m a i n s t r u e .
; ; Th i s i s so t h a t a f t e r 2 ro un ds we can t e r m i n a t e t h e game whenever one o f t h e
; ; two p l a y e r s has d e f e c t e d .
(<= ( n e x t ( d e f e c t e d ? r ) ) ( does ? r d e f e c t ) )
(<= ( n e x t ( d e f e c t e d ? r ) ) ( t r u e ( d e f e c t e d ? r ) ) )

; ; I t ’ s a t u r n−t a k i n g game .
(<= ( n e x t ( c o n t r o l ? r1 ) ) ( t r u e ( c o n t r o l ? r2 ) ) ( d i s t i n c t ? r1 ? r2 ) ( r o l e ? r1 ) )

; ; The v a l u e o f a p r o p e r t y r e m a i n s t h e same , u n l e s s some a g e n t c u r r e n t l y s e t s
; ; some v a l u e f o r t h a t p r o p e r t y .
( <= ( n e x t ( c u r r e n t C o n t r a c t ? p ? v ) ) ( t r u e ( c u r r e n t C o n t r a c t ? p ? v ) ) ( n o t ( va lueChanged ? p ) ) )
( <= ( va lueChanged ? p ) ( does ? r ( s e t V a l u e ? p ? v ) ) )
( <= ( n e x t ( c u r r e n t C o n t r a c t ? p ? v ) ) ( does ? r ( s e t V a l u e ? p ? v ) ) )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; ; DEFINE THE TERMINAL CONDITIONS
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; ’ s t e p ’ s t a r t s c o u n t i n g a t 0 , so i t r e p r e s e n t s t h e number o f moves t h a t have been made .
; ; i f t h e r e a r e 10 i s s u e s , t h e n t h e r e a r e 12 rounds , so when t h e s t e p c o u n t e r i s 12
; ; t h e game has t e r m i n a t e d .
(<= t e r m i n a l ( t r u e ( s t e p ? n ) ) ( numIssues ?m) ( p l u s ?m 2 ? n ) )
(<= t e r m i n a l ( t r u e ( s t e p 2 ) ) ( t r u e ( d e f e c t e d ? r ) ) )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; GOAL RELATIONS
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; Only 1 p l a y e r d e f e c t e d
(<= ( g o a l ? r 1 0 0 ) ( t r u e ( d e f e c t e d ? r ) ) ( n o t ( t r u e ( d e f e c t e d ? q ) ) ) ( r o l e ? q ) )
(<= ( g o a l ? q 0 ) ( t r u e ( d e f e c t e d ? r ) ) ( n o t ( t r u e ( d e f e c t e d ? q ) ) ) ( r o l e ? q ) )

; ; Both p l a y e r s d e f e c t e d
(<= ( g o a l ? r ? rv ) ( t r u e ( d e f e c t e d p l a y e r 1 ) ) ( t r u e ( d e f e c t e d p l a y e r 2 ) ) ( r e s v a l ? r ? rv ) )

; ; Here , ( s u m u t i l ? r ? n ? u ) r e p r e s e n t s t h e f a c t t h a t t h e sum of t h e u t i l i t y
; ; from t h e f i r s t ? n i s s u e s e q u a l s ? u

(<= ( g o a l ? r ? g ) ( s u m u t i l ? r ? n ? g ) ( numIssues ? n )
( n o t ( t r u e ( d e f e c t e d p l a y e r 1 ) ) ) ( n o t ( t r u e ( d e f e c t e d p l a y e r 2 ) ) ) )

(<= ( s u m u t i l ? r 1 ? u ) ( u t i l c u r r e n t v a l u e ? r 1 ? u ) )
(<= ( s u m u t i l ? r ? n ? sn ) ( succ ?m ? n ) ( s u m u t i l ? r ?m ?sm )

( u t i l c u r r e n t v a l u e ? r ? n ? u ) ( p l u s ?sm ? u ? sn ) )

; ; t h e u t i l i t y ? u t h a t p l a y e r ? r o b t a i n s when t h e i s s u e wi th i n d e x ? p



GDL as a Unifying Domain Description Language for Declarative Automated Negotiation 45

(<=( u t i l c u r r e n t v a l u e ? r ? p ? u ) ( t r u e ( c u r r e n t C o n t r a c t ? p ? v ) ) ( u t i l ? r ? p ? v ? u ) )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; PARAMETERS
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; ( v a l u e E x i s t s 2 3 ) means t h a t t h e r e e x i s t s an i s s u e wi th i n d e x 2 and
; ; i t has t h e v a l u e 3 i n i t s domain .
; ; t o check t h a t t h i s i s t r u e we s im p ly need t o check whe the r some
; ; u t i l i t y v a l u e i s a s s i g n e d t o i t .
(<= ( v a l u e E x i s t s ? p ? v ) ( u t i l ? r ? p ? v ? u ) )

; ; ( numIssues 5 ) means t h a t t h e r e a r e 5 i s s u e s . To check t h i s , we need t o check
; ; t h a t some i s s u e−v a l u e p a i r e x i s t s w i th i s s u e−i n d e x 5 ,
; ; and t h a t t h e r e i s no such i s s u e−v a l u e p a i r w i th i s s u e−i n d e x 6 .
(<= ( numIssues ?m) ( v a l u e E x i s t s ?m ? v ) ( n o t ( e x i s t s H i g h e r ?m) ) )
(<= ( e x i s t s H i g h e r ?m) ( v a l u e E x i s t s ? n ? v ) ( succ ?m ? n ) )

; ; START OF DOMAIN DEPENDENT RULES

; ; S e t t h e r e s e r v a t i o n v a l u e s .
( r e s v a l p l a y e r 1 10)
( r e s v a l p l a y e r 2 35)

; ; For each p l a y e r , a s s i g n a u t i l i t y v a l u e t o each i s s u e−v a l u e p a i r
; ; Here , t h e r e a r e 2 p l a y e r s , and 3 i s s u e s . The f i r s t i s s u e has 3 v a l u e s and t h e o t h e r two i s s u e s have 2 v a l u e s each .

; ; PLAYER 1 :
( u t i l p l a y e r 1 1 1 0) ; ; p l a y e r 1 , i s s u e 1 , v a l u e 1 −−> u t i l i t y v a l u e 0
( u t i l p l a y e r 1 1 2 25) ; ; p l a y e r 1 , i s s u e 1 , v a l u e 2 −−> u t i l i t y v a l u e 25
( u t i l p l a y e r 1 1 3 39)

( u t i l p l a y e r 1 2 1 20)
( u t i l p l a y e r 1 2 2 30)

( u t i l p l a y e r 1 3 1 18)
( u t i l p l a y e r 1 3 2 30)

; ; PLAYER 2 :
( u t i l p l a y e r 2 1 1 40) ; ; p l a y e r 2 , i s s u e 1 , v a l u e 1 −−> u t i l i t y v a l u e 40
( u t i l p l a y e r 2 1 2 59) ; ; p l a y e r 2 , i s s u e 1 , v a l u e 2 −−> u t i l i t y v a l u e 59
( u t i l p l a y e r 2 1 3 0)

( u t i l p l a y e r 2 2 1 30)
( u t i l p l a y e r 2 2 2 30)

( u t i l p l a y e r 2 3 1 10)
( u t i l p l a y e r 2 3 2 0)

; ; END OF DOMAIN DEPENDENT RULES

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; ARITHMETICS
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
( number 0 )
(<= ( number ? y ) ( p l u s 1 ? x ? y ) )

(<= ( succ ?m ? n ) ( p l u s 1 ?m ? n ) )
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; ; d e f i n e a d d i t i o n ( s im p ly e x p l i c i t l y l i s t a l l p o s s i b l e a d d i t i o n s o f
; ; non−n e g a t i v e i n t e g e r s t h a t l e a d t o a sum s m a l l e r t h a n or e q u a l t o 1 0 1 . )
( p l u s 0 0 0) ; ; 0 + 0 = 0
( p l u s 0 1 1) ; ; 0 + 1 = 1
( p l u s 0 2 2) ; ; 0 + 2 = 2
( p l u s 0 3 3) ; ; 0 + 3 = 3
. . .
. . . ( t h e l i s t i s t o o long t o f u l l y i n c l u d e i n t h i s p a p e r . )
. . .
( p l u s 99 1 100) ; ; 99 + 1 = 100
( p l u s 99 2 101)
( p l u s 100 0 100)
( p l u s 100 1 101)
( p l u s 101 0 101)

Appendix B: GDL Code for Colored Trails

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; DEFINE THE ROLES
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
( r o l e p l a y e r 1 )
( r o l e p l a y e r 2 )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; DEFINE THEIR POSSIBLE ACTIONS
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

; ; g i v e a c h i p o f c o l o r c t o t h e opponen t .
(<= ( i n p u t ? r ( g i v e ? c ) ) ( r o l e ? r ) ( c o l o r ? c ) )

; ; move t o t h e g i v e n s q u a r e .
(<= ( i n p u t ? r ( moveTo ? x ? y ) ) ( r o l e ? r ) ( r o w i n d e x ? x ) ( co lumn index ? y ) )

; ; t h e a c t i v e p l a y e r c h o o s e s t o do n o t h i n g .
(<= ( i n p u t ? r waive ) ( r o l e ? r ) )

; ; t h e un iq ue a c t i o n f o r t h e non−a c t i v e p l a y e r .
(<= ( i n p u t ? r noop ) ( r o l e ? r ) )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; BASE R e l a t i o n s
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; c u r r e n t p o s i t i o n s o f t h e p l a y e r s :
(<= ( base ( p o s i t i o n ? r ? x ? y ) ) ( r o l e ? r ) ( c e l l ? x ? y ) )

; ; number o f c h i p s owned of a s p e c i f i c c o l o r .
(<= ( base ( owns ? r ? c ? n ) ) ( r o l e ? r ) ( c o l o r ? c ) ( number ? n ) )

; ; t o t a l number o f c h i p s owned .
(<= ( base ( ownsTota l ? r ? n ) ) ( r o l e ? r ) ( number ? n ) )

; ; ’ c o n t r o l ’ d e f i n e s t h e a c t i v e p l a y e r
(<= ( base ( c o n t r o l ? r ) ) ( r o l e ? r ) )

; ; ’ s t e p ’ c o u n t s how many ro un ds have been p l a y e d .
(<= ( base ( s t e p ? n ) ) ( number ? n ) )
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; ; WaiveCounter c o u n t s how many c o n s e c u t i v e t i m e s t h e ’ waive ’ a c t i o n has been p l a y e d .
; ; I t i s i n c r e a s e d when t h e a c t i v e p l a y e r p l a y s ’ waive ’
; ; I t i s r e s e t t o 0 e v e r y t ime t h e a c t i v e p l a y e r makes a move o t h e r t h a n waive .
; ; The game ends when t h e c o u n t e r i s 2 ( i . e . bo th p l a y e r s have p l a y e d waive ) .
(<= ( base ( wa iveCoun te r ? n ) ) ( number ? n ) )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; INIT R e l a t i o n s
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; p o s i t i o n s o f t h e p l a y e r s :
(<=( i n i t ( p o s i t i o n ? r ? row ? column ) ) ( i n i t p o s ? r ? row ? column ) )

; ; owner sh ip o f c h i p s :
(<= ( i n i t ( owns ? r ? c ? n ) ) ( i n i t o w n s ? r ? c ? n ) )
(<= ( i n i t ( ownsTota l ? r ? n ) ) ( i n i t o w n s T o t a l ? r ? n ) )
; ; The i n i t r e l a t i o n s a r e d e f i n e d i n t e r m s of t h e f u n c t i o n s i n i t o w n s
; ; and i n i t o w n s T o t a l , which a r e s e t below , i n t h e PARAMETERS s e c t i o n .
; ; Th i s i s t o make s u r e t h a t a l l p a r a m e t e r s o f t h e game a r e s e t a t t h e same p l a c e .

; ; s t a t u s o f t h e t u r n−t a k i n g game
( i n i t ( c o n t r o l p l a y e r 1 ) )
( i n i t ( s t e p 0 ) )
( i n i t ( wa iveCoun te r 0 ) )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; LEGAL R e l a t i o n s
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

; ; i t i s l e g a l f o r p l a y e r r t o move from ( x1 , y1 ) t o ( x2 , y2 ) i f :
; ; − r i s t h e a c t i v e p l a y e r i n t h e c u r r e n t round .
; ; − ( x1 , y1 ) i s t h e c u r r e n t p o s i t i o n o f r
; ; − ( x2 , y2 ) can be r e a c h e d i n one h o r i z o n t a l o r v e r t i c a l s t e p ( t h e move i s ’ v a l i d ’ )
; ; − r owns a t l e a s t one c h i p o f t h e same c o l o r a s t h e t a r g e t c e l l .
(<= ( l e g a l ? r ( moveTo ? x2 ? y2 ) ) ( t r u e ( c o n t r o l ? r ) ) ( t r u e ( p o s i t i o n ? r ? x1 ? y1 ) )
( va l idMove ? x1 ? y1 ? x2 ? y2 ) ( ownsColor ? r ? c ) ( c e l l H a s C o l o r ? x2 ? y2 ? c ) )

; ; i t i s l e g a l f o r p l a y e r r t o g i v e a c h i p o f c o l o r c t o t h e o t h e r p l a y e r i f :
; ; − p l a y e r r owns a t l e a s t one c h i p o f t h a t c o l o r
; ; − r i s t h e a c t i v e p l a y e r i n t h e c u r r e n t round .
(<= ( l e g a l ? r ( g i v e ? c ) ) ( ownsColor ? r ? c ) ( t r u e ( c o n t r o l ? r ) ) )

; ; a p l a y e r r ’ owns ’ a c o l o r c i f t h e number o f c h i p s i t owns o f t h a t c o l o r i s n o t 0 .
(<= ( ownsColor ? r ? c ) ( t r u e ( owns ? r ? c ? n ) ) ( d i s t i n c t ? n 0 ) )

(<= ( val idMove ? x1 ? y1 ? x1 ? y2 ) ( succ ? y1 ? y2 ) ( c e l l ? x1 ? x2 ) ( c e l l ? y1 ? y2 ) ) ; ; move up
(<= ( val idMove ? x1 ? y1 ? x1 ? y2 ) ( succ ? y2 ? y1 ) ( c e l l ? x1 ? x2 ) ( c e l l ? y1 ? y2 ) ) ; ; move down
(<= ( val idMove ? x1 ? y1 ? x2 ? y1 ) ( succ ? x1 ? x2 ) ( c e l l ? x1 ? x2 ) ( c e l l ? y1 ? y2 ) ) ; ; move r i g h t
(<= ( val idMove ? x1 ? y1 ? x2 ? y1 ) ( succ ? x2 ? x1 ) ( c e l l ? x1 ? x2 ) ( c e l l ? y1 ? y2 ) ) ; ; move l e f t

; ; a p l a y e r r can make t h e ’ waive ’ a c t i o n i f r i s t h e a c t i v e p l a y e r .
(<= ( l e g a l ? r waive ) ( r o l e ? r ) ( t r u e ( c o n t r o l ? r ) ) )

; ; a p l a y e r r can make t h e ’ noop ’ a c t i o n i f r i s n o t t h e a c t i v e p l a y e r .
(<= ( l e g a l ? r noop ) ( r o l e ? r ) ( n o t ( t r u e ( c o n t r o l ? r ) ) ) )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; NEXT R e l a t i o n s
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; moving c a u s e s t h e p l a y e r t o change p o s i t i o n
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(<= ( n e x t ( p o s i t i o n ? r ? x ? y ) ) ( does ? r ( moveTo ? x ? y ) ) )

; ; keep p o s i t i o n when n o t moving
(<= ( n e x t ( p o s i t i o n ? r ? x1 ? y1 ) ) ( t r u e ( p o s i t i o n ? r ? x1 ? y1 ) ) ( n o t ( i sMoving ? r ) ) )
(<= ( isMoving ? r ) ( does ? r ( moveTo ? x ? y ) ) )

; ; a d j u s t c h i p c o u n t f o r s p e c i f i c c o l o r :
(<= ( n e x t ( owns ? r ? c ? n ) ) ( t r u e ( owns ? r ? c ?m) ) ( i n c r e a s e C h i p s ? r ? c ) ( succ ?m ? n ) )
(<= ( n e x t ( owns ? r ? c ?m) ) ( t r u e ( owns ? r ? c ? n ) ) ( d e c r e a s e C h i p s ? r ? c ) ( succ ?m ? n ) )
(<= ( n e x t ( owns ? r ? c ? n ) ) ( t r u e ( owns ? r ? c ? n ) ) ( n o t ( i n c r e a s e C h i p s ? r ? c ) )

( n o t ( d e c r e a s e C h i p s ? r ? c ) ) )
; ; i f t h e number o f c h i p s o f a g i v e n c o l o r i s n e i t h e r i n c r e a s i n g nor d e c r e a s i n g
; ; t h e n keep t h e same amount .

; ; moving c a u s e s t h e p l a y e r t o l o s e a c h i p :
(<= ( d e c r e a s e C h i p s ? r ? c ) ( does ? r ( moveTo ? x ? y ) ) ( c e l l H a s C o l o r ? x ? y ? c ) )

; ; g i v i n g away a c h i p :
(<= ( d e c r e a s e C h i p s ? r ? c ) ( does ? r ( g i v e ? c ) ) )

; ; r e c e i v i n g a c h i p :
(<= ( i n c r e a s e C h i p s ? r2 ? c ) ( does ? r1 ( g i v e ? c ) ) ( d i s t i n c t ? r1 ? r2 ) ( r o l e ? r2 ) )

; ; a d j u s t t o t a l c h i p c o u n t :
(<= ( n e x t ( ownsTota l ? r ? n ) ) ( t r u e ( ownsTota l ? r ?m) ) ( i n c r e a s e C h i p s ? r ? c ) ( succ ?m ? n ) )
(<= ( n e x t ( ownsTota l ? r ?m) ) ( t r u e ( ownsTota l ? r ? n ) ) ( d e c r e a s e C h i p s ? r ? c ) ( succ ?m ? n ) )
(<= ( n e x t ( ownsTota l ? r ? n ) ) ( t r u e ( ownsTota l ? r ? n ) ) ( n o t ( i n c r e a s e C h i p s T o t a l ? r ) )

( n o t ( d e c r e a s e C h i p s T o t a l ? r ) ) )
; ; i f t h e number o f t o t a l c h i p s i s n e i t h e r i n c r e a s i n g nor d e c r e a s i n g , t h e n keep t h e same amount .

; ; i n c r e a s e / d e c r e a s e t h e t o t a l c h i p c o u n t i f t h e r e i s any c o l o r f o r which t h e
; ; c h i p c o u n t i s i n c r e a s e d / d e c r e a s e d .
(<= ( i n c r e a s e C h i p s T o t a l ? r ) ( i n c r e a s e C h i p s ? r ? c ) )
(<= ( d e c r e a s e C h i p s T o t a l ? r ) ( d e c r e a s e C h i p s ? r ? c ) )

; ; t u r n−t a k i n g :
(<= ( n e x t ( c o n t r o l ? r2 ) ) ( t r u e ( c o n t r o l ? r1 ) ) ( d i s t i n c t ? r1 ? r2 ) ( r o l e ? r2 ) )
(<= ( n e x t ( s t e p ? n ) ) ( t r u e ( s t e p ?m) ) ( succ ?m ? n ) )

; ; r e s e t t h e ’ waiveCounte r ’ when t h e a c t i v e p l a y e r does n o t p l a y ’ waive ’ .
(<= ( n e x t ( wa iveCoun te r 0 ) ) ( n o t ( does ? r waive ) ) ( t r u e ( c o n t r o l ? r ) ) )

; ; i n c r e a s e t h e ’ waiveCounte r ’ when t h e a c t i v e p l a y e r p l a y s ’ waive ’ .
(<= ( n e x t ( wa iveCoun te r 1 ) ) ( t r u e ( wa iveCoun te r 0 ) ) ( does ? r waive ) ( t r u e ( c o n t r o l ? r ) ) )
(<= ( n e x t ( wa iveCoun te r 2 ) ) ( t r u e ( wa iveCoun te r 1 ) ) ( does ? r waive ) ( t r u e ( c o n t r o l ? r ) ) )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; TERMINAL R e l a t i o n s
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

; ; The game ends when t h e maximum number o f ro un ds have been p l a y e d . .
(<= t e r m i n a l ( t r u e ( s t e p ?ms ) ) ( max s t ep ?ms ) )

; ; o r when bo th p l a y e r s have p l a y e d ’ waive ’ i n two c o n s e c u t i v e r oun ds .
(<= t e r m i n a l ( t r u e ( wa iveCoun te r 2 ) ) )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; GOAL R e l a t i o n s
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; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

; ; The u t i l i t y ( ’ goa l ’ ) o f a p l a y e r i s t h e number o f p o i n t s m u l t i p l i e d by 5 .
(<= ( g o a l ? r ? g ) ( p o i n t s ? r ? p ) ( t i m e s F i v e ? p ? g ) )

; ; p l a y e r s g e t p o i n t s from two s o u r c e s : t h e number o f c h i p s owned and
; ; t h e d i s t a n c e t o t h e t a r g e t .
(<= ( p o i n t s ? r ? p ) ( d i s t a n c e p o i n t s ? r ? dp ) ( t r u e ( ownsTota l ? r ? cp ) ) ( sum ? dp ? cp ? p ) )

; ; ’ d i s t a n c e p o i n t s ’ d e c r e a s e s wi th t h e d i s t a n c e t o t h e t a r g e t .
; ; Reach ing t h e t a r g e t y i e l d s 10 p o i n t s .
; ; ( s i n c e t h e u t i l i t y o f a p l a y e r i s 5 t i m e s i t s p o i n t s , r e a c h i n g t h e g o a l y i e l d s
; ; a u t i l i t y v a l u e o f 5 0 ) .
(<= ( d i s t a n c e p o i n t s ? r 10) ( d i s t a n c e t o t a r g e t ? r 0 ) )
(<= ( d i s t a n c e p o i n t s ? r 8 ) ( d i s t a n c e t o t a r g e t ? r 1 ) )
(<= ( d i s t a n c e p o i n t s ? r 6 ) ( d i s t a n c e t o t a r g e t ? r 2 ) )
(<= ( d i s t a n c e p o i n t s ? r 4 ) ( d i s t a n c e t o t a r g e t ? r 3 ) )
(<= ( d i s t a n c e p o i n t s ? r 0 ) ( n o t ( c l o s e t o t a r g e t ? r ) ) ( r o l e ? r ) )

(<= ( c l o s e t o t a r g e t ? r ) ( d i s t a n c e t o t a r g e t ? r ? d ) ( i s s m a l l ? d ) )
( i s s m a l l 0 )
( i s s m a l l 1 )
( i s s m a l l 2 )
( i s s m a l l 3 )

; ; c a l c u l a t e s t h e p l a y e r ’ s d i s t a n c e t o t h e t a r g e t , g i v e n t h e p l a y e r ’ s c u r r e n t
; ; p o s i t i o n t h e p o s i t i o n o f t h e p l a y e r ’ s t a r g e t .
(<=( d i s t a n c e t o t a r g e t ? r ? d ) ( t r u e ( p o s i t i o n ? r ? x1 ? y1 ) )

( t a r g e t ? r ? x2 ? y2 ) ( d i s t a n c e ? x1 ? y1 ? x2 ? y2 ? d ) )

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; PARAMETERS
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

; ; START OF DOMAIN−DEPENDENT RULES

; ; t h e game ends a f t e r 40 ro un ds
( max s t ep 40)

; ; t h e g r i d has 5 rows
( r o w i n d e x 1)
( r o w i n d e x 2)
( r o w i n d e x 3)
( r o w i n d e x 4)
( r o w i n d e x 5)

; ; t h e g r i d has 5 columns
( co lumn index 1)
( co lumn index 2)
( co lumn index 3)
( co lumn index 4)
( co lumn index 5)

; ; we d e f i n e 4 c o l o r s .
( c o l o r b l u e )
( c o l o r g r e e n )
( c o l o r r e d )
( c o l o r ye l l ow )

; ; t h e p l a y e r s s t a r t a t t h e top− l e f t and bottom−r i g h t c o r n e r , r e s p e c t i v e l y .
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( i n i t p o s p l a y e r 1 1 1)
( i n i t p o s p l a y e r 2 5 5)

; ; bo th p l a y e r s have t h e i r t a r g e t a t t h e c e n t e r o f t h e g r i d .
( t a r g e t p l a y e r 1 3 3)
( t a r g e t p l a y e r 2 3 3)

; ; t h e i n i t i a l c h i p endowment o f p l a y e r 1 .
( i n i t o w n s p l a y e r 1 b l u e 2 )
( i n i t o w n s p l a y e r 1 g r e e n 4 )
( i n i t o w n s p l a y e r 1 r e d 0 )
( i n i t o w n s p l a y e r 1 ye l l o w 1)
( i n i t o w n s T o t a l p l a y e r 1 7 ) ; ; t h e sum of t h e p r e v i o u s v a l u e s

; ; t h e i n i t i a l c h i p endowment o f p l a y e r 2 .
( i n i t o w n s p l a y e r 2 b l u e 0 )
( i n i t o w n s p l a y e r 2 g r e e n 2 )
( i n i t o w n s p l a y e r 2 r e d 3 )
( i n i t o w n s p l a y e r 2 ye l l o w 2)
( i n i t o w n s T o t a l p l a y e r 2 7 ) ; ; t h e sum of t h e p r e v i o u s v a l u e s

; ; The c o l o r s o f t h e s q u a r e s o f t h e g r i d .
( c e l l H a s C o l o r 1 1 b l u e )
( c e l l H a s C o l o r 1 2 r e d )
( c e l l H a s C o l o r 1 3 r e d )
( c e l l H a s C o l o r 1 4 b l u e )
( c e l l H a s C o l o r 1 5 ye l l ow )

( c e l l H a s C o l o r 2 1 b l u e )
( c e l l H a s C o l o r 2 2 g r e e n )
( c e l l H a s C o l o r 2 3 r e d )
( c e l l H a s C o l o r 2 4 b l u e )
( c e l l H a s C o l o r 2 5 ye l l ow )

( c e l l H a s C o l o r 3 1 g r e e n )
( c e l l H a s C o l o r 3 2 r e d )
( c e l l H a s C o l o r 3 3 ye l l ow )
( c e l l H a s C o l o r 3 4 b l u e )
( c e l l H a s C o l o r 3 5 g r e e n )

( c e l l H a s C o l o r 4 1 b l u e )
( c e l l H a s C o l o r 4 2 b l u e )
( c e l l H a s C o l o r 4 3 b l u e )
( c e l l H a s C o l o r 4 4 r e d )
( c e l l H a s C o l o r 4 5 r e d )

( c e l l H a s C o l o r 5 1 ye l l ow )
( c e l l H a s C o l o r 5 2 ye l l ow )
( c e l l H a s C o l o r 5 3 r e d )
( c e l l H a s C o l o r 5 4 b l u e )
( c e l l H a s C o l o r 5 5 g r e e n )

; ; END OF DOMAIN−DEPENDENT RULES

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; FACTS
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

(<= ( c e l l ? row ? column ) ( r o w i n d e x ? row ) ( co lumn index ? column ) )
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( number 0 )
(<= ( number ? n ) ( succ ?m ? n ) )

; ; C a l c u l a t e s t h e manha t t an d i s t a n c e between two s q u a r e s on t h e g r i d .
; ; we add t h e r e s t r i c t i o n t h a t d must be s m a l l ( i . e . be tween 0 and 3)
; ; t o p r e v e n t t o o many i n s t a n t i a t i o n s o f t h i s r u l e .
; ; i f d i s g r e a t e r t h a n 3 we don ’ t need t h i s r u l e anyway .
(<= ( d i s t a n c e ? x1 ? y1 ? x2 ? y2 ? d ) ( d i f f ? x1 ? x2 ? dx ) ( d i f f ? y1 ? y2 ? dy )

( sum ? dx ? dy ? d ) ( r o w i n d e x ? x1 ) ( co lumn index ? y1 ) ( r o w i n d e x ? x2 )
( co lumn index ? y2 ) ( i s s m a l l ? d ) )

; ; sum :
(<=(sum ? x ? y ? s ) ( sum assym ? x ? y ? s ) )
(<=(sum ? x ? y ? s ) ( sum assym ? y ? x ? s ) )
(<=( sum assym ? x ? y ? s ) ( d i f f a s s y m ? x ? s ? y ) )

; ; t h e a b s o l u t e d i f f e r e n c e :
(<= ( d i f f ? x ? y ? d ) ( d i f f a s s y m ? x ? y ? d ) )
(<= ( d i f f ? x ? y ? d ) ( d i f f a s s y m ? y ? x ? d ) )

(<=( d i f f a s s y m ? x ? x 0 ) ( number ? x ) )
(<=( d i f f a s s y m ? x0 ? x1 1 ) ( succ ? x0 ? x1 ) )
(<=( d i f f a s s y m ? x0 ? xd ? d ) ( succ ? xc ? xd ) ( succ ? c ? d ) ( d i f f a s s y m ? x0 ? xc ? c ) )

( succ 0 1)
( succ 1 2)
( succ 2 3)
( succ 3 4)
( succ 4 5)
( succ 5 6)
( succ 6 7)
( succ 7 8)
( succ 8 9)
( succ 9 10)
( succ 10 11)
( succ 11 12)
( succ 12 13)
( succ 13 14)
( succ 14 15)
( succ 15 16)
( succ 16 17)
( succ 17 18)
( succ 18 19)
( succ 19 20)
( succ 20 21)
( succ 21 22)
( succ 22 23)
( succ 23 24)
( succ 24 25)
( succ 25 26)
( succ 26 27)
( succ 27 28)
( succ 28 29)
( succ 29 30)
( succ 30 31)
( succ 31 32)
( succ 32 33)
( succ 33 34)
( succ 34 35)
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( succ 35 36)
( succ 36 37)
( succ 37 38)
( succ 38 39)
( succ 39 40)
( succ 40 41)
( succ 41 42)
( succ 42 43)
( succ 43 44)
( succ 44 45)
( succ 45 46)
( succ 46 47)
( succ 47 48)
( succ 48 49)
( succ 49 50)

( t i m e s F i v e 0 0)
( t i m e s F i v e 1 5)
( t i m e s F i v e 2 10)
( t i m e s F i v e 3 15)
( t i m e s F i v e 4 20)
( t i m e s F i v e 5 25)
( t i m e s F i v e 6 30)
( t i m e s F i v e 7 35)
( t i m e s F i v e 8 40)
( t i m e s F i v e 9 45)
( t i m e s F i v e 10 50)
( t i m e s F i v e 11 55)
( t i m e s F i v e 12 60)
( t i m e s F i v e 13 65)
( t i m e s F i v e 14 70)
( t i m e s F i v e 15 75)
( t i m e s F i v e 16 80)
( t i m e s F i v e 17 85)
( t i m e s F i v e 18 90)
( t i m e s F i v e 19 95)
( t i m e s F i v e 20 100)
( t i m e s F i v e 21 105)
( t i m e s F i v e 22 110)
( t i m e s F i v e 23 115)
( t i m e s F i v e 24 120)
( t i m e s F i v e 25 125)
( t i m e s F i v e 26 130)
( t i m e s F i v e 27 135)
( t i m e s F i v e 28 140)
( t i m e s F i v e 29 145)
( t i m e s F i v e 30 150)
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