Modeling Defeasible Argumentation within
a Possibilistic Logic Framework with Fuzzy Unification

Teresa Alsinet
Dept. of Computer Science
University of Lleida, Spain
{tracy,cic}@eps.udl.es

Abstract

Possibilistic Defeasible Logic Pro-
gramming (P-DeLP) is a logic pro-
gramming language which combines
features from argumentation theory
and logic programming, incorporat-
ing the treatment of possibilistic un-
certainty at object-language level.
This paper presents a first approach
towards extending P-DeLP to in-
corporate fuzzy constants and fuzzy
propositional variables. We focus
on how to characterize the result-
ing, extended language, and how to
deal with conflicting arguments in
the context of the proposed frame-
work.

Keywords:  Possiblilistic logic,
fuzzy constants, fuzzy unification,
defeasible argumentation.

1 Introduction

In the last decade, defeasible argumentation
has emerged as a very powerful paradigm to
model commonsense reasoning in the pres-
ence of incomplete and potentially inconsis-
tent information [6]. Recent developments
have been oriented towards integrating ar-
gumentation as part of logic programming
languages. In this context, Possibilistic De-
feasible Logic Programming (P-DeLP) [7] is
a logic programming language which com-
bines features from argumentation theory and
logic programming, incorporating the treat-

1228

Carlos 1. Chesnevar

Lluis Godo Sandra Sandri
Al Research Institute (IIIA)
Bellaterra, Spain
{godo, sandri}@iiia.csic.es

ment of possibilistic uncertainty at object-
language level See also [4, 5] for other argu-
mentation formalisms using possibilistic logic
to handle merging of prioritized information.

In spite of its expressive power, an important
limitation in P-DeLP (as defined in [7]) is
that the treatment of fuzzy constants was not
formalized. One interesting alternative for
such formalization is the use of PGL™T, a Pos-
sibilistic Gddel logic extended with fuzzy con-
stants. This paper presents a first approach
towards extending P-DeLP through the use of
PGL™* in order to incorporate fuzzy constants
and fuzzy propositional variables. We focus
on how to characterize the resulting, extended
language, and how to deal with conflicting ar-
guments in the context of the proposed frame-
work. The rest of the paper is structured as
follows: first, in Section 2 we present the fun-
damentals of PGL*. Then in Section 3 we
define the DePGL™ programming language.
Section 4 focuses on the characterization of
arguments in DePGL™, and Section 5 ana-
lyzes the notions of conflict among arguments
in the context of our proposal. Finally Sec-
tion 6 concludes and discusses future work.

2 PGL™*: fundamentals

Possibilistic logic is a logic of uncertainty
where a certainty degree between 0 and 1,
interpreted as a lower bound of a necessity
measure, is attached to each classical for-
mula. In [1, 2] we defined a logical system for
reasoning under possibilistic uncertainty and
disjunctive vague knowledge with an efficient
and complete proof procedure for atomic de-



duction when clauses fulfill two kinds of con-
straints. The formalism —called Possibilistic
Godel logic extended with fuzzy constants or
PGL*- is an implication-based extension of
Possibilistic logic defined on top of (the posi-
tive fragment of ) Godel infinitely-valued logic,
capable of dealing with fuzzy constants, allow-
ing thus also fuzzy unification.

The basic components of PGL* formulas are:
a set of primitive propositions (fuzzy propo-
sitional variables) Var; sorts of constants; a
set C of object constants (crisp and fuzzy con-
stants), each having its sort; a set Pred of
unary! regular predicates, each one having a
type (a type is a tuple of sorts); and con-
nectives A, —. An atomic formula is either
a primitive proposition from Var or of the
form p(A), where p is a predicate symbol from
Pred, A is an object constant from C and the
sort of A corresponds to the type of p. Formu-
las are Horn-rules of the form p1A---Apr — ¢
with & > 0, where p1,...,pr, ¢ are atomic
formulas. A (weighted) clause is a pair of
the form (p, ), where ¢ is a Horn-rule and
a€[0,1].

Fuzzy constants are seen as (flexible) restric-
tions on an existential quantifier. Moreover,
it is natural to take the truth-value of formu-
las, for instance, salary(low), under a given
interpretation in which the salary is 2o euros,
as the degree in which the salary zg is con-
sidered to be low, i.e. pow(zo). This leads to
treat formulas as many-valued, with the unit
interval [0, 1] as set of truth-values.

A many-valued interpretation for the lan-
guage is a structure w = (U, 4,m) which maps
each basic sort o into a non-empty domain
U,; a primitive proposition ¢ into a value
i(q) € [0,1]; a predicate p of type (o) into
a value i(p) € U,; and an object constant
A (crisp or fuzzy constant) of sort ¢ into a
normalized fuzzy set m(A) with membership
function p1m 4y : Us — [0,1]. Remark that for
each predicate symbol p, i(p) is the one and
only value of domain which satisfies p in that

*We restrict ourselves to unary predicates for the
sake of simplicity. However, since variables and func-
tion symbols are not allowed, the language still re-
mains propositional.

interpretation. Indeed, the intended mean-
ing of a fuzzy constant in PGL¥ is to express
disjunctive knowledge about the possibly un-
known value of the corresponding predicate.
The truth value of an atomic formula ¢ under
an interpretation w = (U,4,m), denoted by
w{yp), is just i(q) if ¢ is a primitive proposi-
tion g, and it is computed as pn,4)(é(p)) if o
is of the form p(A). This truth value extends
to rules by means of the min-conjunction and
Godel’s many-valued implication: w(p; A---A
pr — ¢) is 1 if min(w(p1),...,w(pk)) < w(g),
and is w(g) otherwise.

Notice that w(y) may take any intermediate
value between 0 and 1 as soon as ¢ contains
some fuzzy constant and w(y) depends not
only on the crisp relations assigned to predi-
cate symbols, but on the fuzzy sets assigned
to fuzzy constants. Then, in order to define
the possibilistic semantics, we need to fix a
meaning for the fuzzy constants and to con-
sider some extension of the standard notion
of necessity measure for fuzzy events. The
first is achieved by fixing a contezt. Basi-
cally a context is the set of interpretations
sharing a common domain U and an inter-
pretation of object constants m. So, given
U and m, its associated context Iy, is just
the set {w interpretation | w = (U,i,m)}
and, once fixed the context, [¢] denotes the
fuzzy set of models for a formula ¢ defining
By (w) = w(ep), for all w € Ty m.

Now, in a fixed context Zy,,, a belief state
(or possibilistic model) is determined by a
normalized possibility distribution on Zy,,
7 : Iym — [0,1]. Then, we say that = sat-
isfies a clause (yp, @), written 7 | (g, @), iff
the (suitable) necessity measure of the fuzzy
set of models of ¢ with respect to 7, denoted
N([g] | ), is indeed at least . Here, for the
sake of soundness preservation, we take

N(lgl[7m) = (w) = pip)(w),

inf «
wely,m
where = is the reciprocal of Godel’s many-
valued implication, defined as z = y = 1 if
z <yand z =y = 1— z, otherwise. This
necessity measure for fuzzy sets was proposed
and discussed by Dubois and Prade (cf. [8]).
For example, according to this semantics, the

1229



formula

(age_Peter(about_35),0.9)

is to be interpreted in PGL™ as the following
set of clauses with imprecise but non-fuzzy
constants

{(age-Peter([about_35)s), min(0.9,1 - 8) : B € [0,1]}

As usual, a set of clauses P is said to entail
another clause (o, @), written P = (¢, @), iff
every possibilistic model 7 satisfying all the
clauses in P also satisfies {p, ), and we say
that a set of clauses P is satisfiable in the
context determined by U and m if there ex-
ists a normalized possibility distribution = :
Zym — [0,1] that satisfies all the clauses in
P. Satisfiable clauses enjoy the following re-
sult [3]: If P is satisfiable and P = (¢, ),
with o > 0, there exists at least an interpre-
tation w € Ty m such that w(yp) = 1.

Finally, still in a context Ty, the degree of
possibilistic entailment of an atomic formula
{or goal) ¢ by a set of clauses P, denoted
by l|l¢llp, is the greatest a € [0,1] such that
P = (p,a). In [3], it is proved that |jp||p =
inf{N([g] | 7) | = |= P}.

The calculus for PGL™ in a given context Zym,
is defined by the following set of inference
rules:

Generalized resolution:

(pAs— q(4),a),
(g(B)At —r,[)

(pAsAt— r,min(e, B))

Fusion:

[GR], if AC B

(p(4) A s — q(D),a),
(p(B) At — g(E), B)
(p(AU B) AsAt - ¢(DU E), min{e, §8))

[FU]

Intersection:

(p(4), @), (p(B), B)
(p(AN B), min(a, §))

Resolving uncertainty:

(p(4), @
(p(47),1)

[IN]

[UN], where A’ = max(1 — a, A)

Semantical unification:

(b(4), )
@B min(e, NB ) O

1230

For each context Ty, the above GR, FU,
SU, IN and UN inference rules can be proved
to be sound with respect to the possibilistic
entailment of clauses. Moreover we shall also
refer to the following weighted modus po-
nens rule, which can be seen as a particular
case of the GR rule

gpl /[\3) /\pn(—’ qéa)),
P1,P1)s---s\PnsPn
(g, min(e, B1,- .-, Bn)) [MF]

Finally, the notion of proof in PGL*, denoted
by F, is deduction by means of the triviality
axiom and the PGL™T inference rules. Then,
given a context Iy m, the degree of deduction
of a goal ¢ from a set of clauses P, denoted
l¢|p, is the greatest a € [0,1] for which P |-
(p, 00).

In [2, 3] it is shown that this notion of proof is
complete for determining the degree of possi-
bilistic entailment of a goal, i.e. |¢|p = |l¢]p,
for non-recursive and satisfiable programs P,
called PGL* programs, that satisfy two fur-
ther constraints, called modularity and con-
text constraints. Actually, the modularity
constraint can be achieved by a pre-processing
of the program which extends the original
PGL™* program with valid clauses by means
of the GR and FU inference rules. This is in-
deed the first step of an efficient and complete
proof procedure for PGL* programs satisfy-
ing what we call context constraint. The idea
is that in a PGL* program satisfying the con-
text constraint, the use of the SU and MP
inference rules is enough to attain a degree
of deduction equal to the degree of possibilis-
tic entailment. Then, the second step of the
proof procedure is based on the MP, SU, UN
and IN rules and translates a PGL* program
satisfying the modularity constraint into a se-
mantically equivalent set of 1-weighted facts,
whenever the program satisfied the context
constraint. The final step is a deduction step,
based on the SU rule, which computes the
maximum degree of possibilistic entailment of
a goal from the equivalent set of 1-weighted
facts.



3 The DePGL™ programming
language

As already pointed out our objective is to
extend the P-DeLP programming language
through the use of PGL* in order to incorpo-
rate fuzzy constants and fuzzy propositional
variables; we will refer to this extension as
Defeasible PGLT, DePGL* for short. To this
end, the base language of P-DeLP [7] will
be extended with fuzzy constants and fuzzy
propositional variables, and arguments will
have an attached necessity measure associated
with the supported conclusion.

The DePGL* language £ is defined over
PGL™ atomic formulas together with the con-
nectives {~, A, « }. The symbol ~ stands for
negation. A literal L € £ is a PGL™ atomic
formula or its negation. A rule in L is a for-
mula of the form Q « Li A ... A L,, where
Q,L1,...,L, are literals in £. When n = 0,
the formula @ « is called a fact and sim-
ply written as Q. In the following, capital
and lower case letters will denote literals and
atoms in £, respectively.

In argumentation frameworks, the negation
connective allows to represent conflicts among
pieces of information. In the frame of
DePGL*, the handling of negation deserves
some explanation. As for negated proposi-
tional variables ~ p, the negation connective
~ will not be considered as a proper Godel
negation, rather ~ p will be treated as an-
other propositional variable p/, with a partic-
ular status with respect to p, since it will be
only used to detect contradictions at the syn-
tactical level. On the other hand, negated
literals of the form ~p(A), where A is a fuzzy
constant, will be handled in the following way.

As previously mentioned, fuzzy constants are
disjunctively interpreted in PGL*. For in-
stance, consider the formula speed(low). In
each interpretation 7 = (U,4,m), the pred-
icate speed is assigned a wunique element
i(speed) of the corresponding domain. If
low denotes a crisp interval of rpm’s, say
[0,2000], then speed(low) will be true iff
such element belongs to this interval, i.e. iff
i(speed) € [0,2000]. Now, the negated for-

mula ~ speed(low) is interpreted as “=[Az €
low such that the engine speed is z]”, or
equivalently, “Vz € low, z does not corre-
spond with the engine speed”. But due to
the disjunctive interpretation, ~ speed(low) is
false iff speed(—low) is true, where —low de-
notes the complement of the interval [0,2000]
in the corresponding domain. Then, given
a context Zym, this leads us to understand
a negated literal ~ p(A) as another positive
literal p(—A), where the fuzzy constant —A
denotes the (fuzzy) complement of A, that
is, where (- a4)(¥) = n(lmay(w)), for some
suitable negation function n (usually n(z) =
1—-1z).

Therefore, given a context Zy,,, using the
above interpretations of the negation, and in-
terpreting the DePGL™ arrow « as the PGL™
implication —, we can actually transform a
DePGL* program P into a PGL* program
7(P), and then apply the deduction machin-
ery of PGL' on 7(P) for automated proof
purposes. Hence, if the PGL* program 7(P)
is non-recursive and satisfiable, and the con-
text Zym together with the negation function
n enjoys the PGL™ context constraint, the
PGL™ proof procedure can be used to deter-
mine the maximum degree of possibilistic en-
tailment, ie. [7(D)ll;(py = [7(L)lr(p) for all
literal L € L.

From now on and for the sake of a simpler no-
tation, given a context Zy ,, a negation func-
tion n and the transformation 7 of DePGL™
clauses into PGL* we shall write ' -, (¢, @)
to denote 7(I") F 7({¢, @)), being T and (g, )
DePGL* clauses. Moreover, we shall consider
that the negation function n is implicitly de-
termined by each context Iy, i.e. the func-
tion m will map both fuzzy constants A and
their complement (negation) —A.

4 Arguments in DePGL*

In the last sections we formalized the many-
valued and the possibilistic semantics of the
underlying logic of DePGL*. In this section
we formalize the procedural mechanism for
building arguments in DePGL™*.

We distinguish between certain and uncertain

1231



DePGL* clauses. A DePGL™ clause (g,a)

will be referred as certain when a = 1 and
uncertain, otherwise. Given a context Zy

a set of DePGL™ clauses I will be deemed as
contradictory, denoted T' - L, if

(i) either I' F; (g,@) and I' b, (~g, ), with a > 0
and 8 > 0, for some atom ¢ in £,

(ii) or I' k7 (p(A), @) with a > 0, for some predicate
p and some fuzzy constant A such that m(A) is
non-normalized.

Notice that in the latter case, 7(T') is not
satisfiable and there exist Iy C 7(I') and
Ty € 7(T) such that I'; and I's are satisfi-
able and |p(B)Ir, > 0 and |p(C)|r, > 0, with
A=BnC.

Example 1 Consider the set of clauses I' =
{ ((4) < ¢,0.5), (p(B) — qnr,03), (3,08),
(r,1) }.  Then, T +. (p(A),0.5) and T +,
(p(B),0.3), and, by the IN inference rule, I' F,
(p(A N B),0.3). Hence, in a particular contezt
Tu.m, I is contradictory as soon as m{A)Nm(B) is
a non-normalized fuzzy set whereas, for instance,
D\{{r, 1)} is satisfiable.

A DePGL™T program is a set of clauses in
L in which we distinguish certain from un-
certain information. As additional require-
ment, certain knowledge is required to be non-
contradictory and the corresponding PGL*
program 2 is required to satisfy the modu-
larity constraint [2, 3]. Formally: Given a
context Iy, a DePGLT program P is a pair
(II, A), where II is a non-contradictory finite
set of certain clauses, A is a finite set of uncer-
tain clauses, and 7(ITU A) satisfies the mod-
ularity constraint.

The requirement of the modularity constraint
of a DePGL™ program ensures that all (ex-
plicit and hidden) clauses of programs are
considered. Indeed, since fuzzy constants are
interpreted as (flexible) restrictions on an ex-
istential quantifier, atomic formulas clearly
express disjunctive information. For instance,
when A = {a1,...,a,}, p(A) is equivalent to
the disjunction p(a;)V---Vp(a,). Then, when
parts of this (hidden) disjunctive information
occur in the body of several program formulas

2We consider a set of DePGL™ clauses P as a set

of PGL* clauses 7(P), where T stands for transforma-
tions discussed in the previous section.

1232

1) (~fuel_ok — pump_clog, 1)

@) (pump_fuel — swl,0.6)
(3) (fuel_ok « pump_fuel, 0.85)
4) (pump_oil «~ sw2,0.8)
(5) (oil_ok «— pump_oil,0.8)
(6) (engine-ok « fuel_ok A oil_ok,0.6)
4] (~engine_ok « temp(high),0.95)
(8) (~oil_ok «— temp(high),0.9)
(9)  (pump-clog — pump_fuel A speed(low),0.7)
(10) (speed(low) «— sw2,0.8)
(11) (~speed(low) — sw2, sw3,0.8)
(12) (fuel-ok +— sw8,0.9)
(13) (swl,1)
(14) (sw2,1)
(15) (sw3, 1)
(16) (temp(around_31),0.85)

Figure 1: DePGL™ program Pep, (example 2)

we also have to consider all those new formu-
las that can be obtained through a completion
process of the program which is based on the
RE and FU inference rules.

Example 2 (Adapted from [7]) Consider an in-
telligent agent controlling an engine with three
switches swl, sw2 and sw3. These switches reg-
ulate different features of the engine, such as
pumping system, speed, etc. The agent’s generic
(and incomplete) knowledge about how this engine
works is the following:

— If the pump is clogged, then the engine gets no fuel.

— When swl is on, apparently fuel is pumped properly.

— When fuel is pumped, fuel seems to work ok.

— When sw2 is on, usually oil is pumped.

— When oil is pumped, usually it works ok.

— When there is oil and fuel, normally the engine is

ok.

— When there is heat, the engine is almost sure not ok.

— When there is heat, normally there are oil problems.

— When fuel is pumped and speed is low, there are
reasons to believe that the pump is clogged.

—~ When sw?2 is on, usually speed is low.

— When sw2 and sw3 are on, usually speed is not low.

- When sw3 is on, normally fuel is ok.

Suppose also that the agent knows some particular
facts about the current state of the engine:

- swl, sw?2 and sw3 are on, and
— the temperature is around 31°C.

This knowledge can be modelled by the program
Pengine shown in Fig. 1. Note that uncertainty is
assessed in terms of different necessity degrees and
vague knowledge is represented by means of fuzzy
constants (low, around_31, high).

Next we will introduce the notion of argument



in DePGL™*. Informally, a argument A is a
tentative proof (as it relies to some extent on
uncertain, possibilistic information) support-
ing a given literal (goal) @ with a necessity
degree o.

Definition 3 Given a contest Iy, and a
DePGL* program P = (11, A), a set A C A of un-
certain clauses is an argument for a goal Q with
necessity degree o > 0, denoted (A, Q, o), iff:

(1) TUAF(Q,a);

(2) TIU A is non contradictory; and

(3) A is minimal wrt set inclusion, i.e. there is
no A1 C A satisfying (1) and (2).

Let {A, Q, ) and (S, R, 8} be two arguments.
We will say that (S, R, 3) is a subargument of
(A,Q,a) iff S C A Notice that the goal R
may be a subgoal associated with the goal @
in the argument A.

Given a context Zy,,, the set of arguments
for a DePGL™ program P = (II,A) can be
found by iterative application of the following
construction rules:

1) Building arguments from facts (INTF):

(@1
©.Q,0

for any (@, 1) € Il and any (Q,a) € A.

(Qva)v ITu {(Q,a)} I'/‘r _L, a<l
{@Q )}, @)

2) Building Arguments by SU (SUA):

(A, p(A), @)
(A, p(B), min(a, N(m(B) | m(A))))

if N{(m(B)|m(A))#0.
3) Building Arguments by UN (UNA):

(A4,p(A), )
(A, p(A), T}

where m(A’) = max(1 — a, m(A)).
4) Building Arguments by IN (INA):

(Ahp(A)’a)’ (‘Azsp(B)vﬁ>,
NUAUAz b/ L
(A1 U Az, p(AN B), min{a, §))

5) Building Arguments by MP (MPA):

(A1,L1,0a) (A2, L2,02) ... {Ax, Ly, 0ox)
(L04—L1/\L2/\.../\Lk,1)

Ut Al L
(Ui, As, Lo, B)

for any certain rule (Lg « Ly A La A ... A Lg, 1) € 1],
with 8 = min{ai,...,ox).

(A1, Ly, 1) (A2, Lz, a2) ... (Ax, Lk, o)
(Lo — Ly ALz A ... ALg,wy), withy < 1

MU{(Lo — Li ALs A . AL, NYULE At L

(U AU{(Lo — Li ALz A~ . ALy}, Lo, B)

for any weighted rule (Lg «~ Ly ALs A... A Lg,y) €
A, with 8 = min(ai, ..., o, 7)-

The basic idea with the argument construc-
tion procedure is to keep a trace of the set
A C A of all uncertain information in the
program P used to derive a given goal Q
with necessity degree «. Appropriate pre-
conditions ensure that the proof obtained al-
ways ensures the non-contradictory constraint
of arguments wrt the certain knowledge II
of the program. Given a context Zy., and
a DePGL™ program P, rule INTF allows to
construct arguments from facts. An empty ar-
gument can be obtained for any certain fact in
P. An argument concluding an uncertain fact
(Q,) in P can be derived whenever assum-
ing (@, ) is not contradictory wrt the set Il in
P. Rules SUA and UNA accounts for seman-
tical unification and resolving uncertainty, re-
spectively. As both rules do not combine
new uncertain knowledge, we do not need to
check the non-contradictory constraint. Rule
INA applies intersection between previously
argumented goals. Therefore, we must ensure
that the resulting intersection enjoys the non-
contradictory constraint wrt II. Rules MPA
account for the use of modus ponens, both
with certain and defeasible rules. Note they
assume the existence of an argument for every
literal in the antecedent of the rule. Then, in a
such a case, the MPA rule is applicable when-
ever no contradiction results when putting to-
gether 1, the sets Aj, ..., Ag corresponding
to the arguments for the antecedents of the
rule and therule (Lg « Ly ALg A... A Ly, )
when v < 1.

Example 4 Consider the program Peng in Ez-
ample 2, where temp(-) is a unary predicate of
type (degrees), speed(-) is a unary predicate of
type (rpm), heat and around_31 are two object con-
stants of type degrees, and low s an object con-
stant of type rpm. Further, consider the context
Zy,m such that:

1233



U = {Usaegrees = [—100,100] °C,
Urpm = [0, 200]},

o m(high) = [28,30, 100, 100)3,
m(around.31) = [26,31, 31, 36],
m(low) = [10, 15, 25, 30], and
m(~low) = 1 ~ m(low).

The following arguments can be derived from Pepg:

1. The argument {B, fuel_ok,0.6) can be de-
rived as follows:
i) (0, swl, 1) from (13) via INTF.
ii) {B', pump_fuel,0.6) from (2) and i) via MPA.
#i) (B, fuel_ok,0.6) from (8) and i) via MPA.

where B ={(pump_fuel — sw1,0.6)}
B =B U {(fuel_ok — pump_fuel, 0.85)}.

2. Similarly, the argument (C1,0il_ok,0.8) can
be derived using the rules (15), (4) and
(5) via INTC, MPA, and MPA respec-
tively, with: C; = {(pump_oil — sw2,0.8);
(o#l .ok — pump_oil,0.8)}.

and

3. The argument { A1, engine_ok, 0.6) can be de-
rived as follows:

1) {B, fuel_ok,0.6) as shown above.
) (C1, 0il_0k,0.8) as shown above.

1) (A1, engine_ok,0.6) from i), %), (6) via MPA.

with A; ={(engine.ok — fuel_ok A oil_ok,0.6)}
U BUC;. Note that (Cq,0il_0k,0.8) and
(B, fuel_ok,0.6) are subarguments of
(A, engine_ok, 0.6).

4. Also the argument (Ca,~0il_ok,0.8), where
Co = {({temp(around_31),0.85), (~ oil ok —
temp(high),0.9)}, can be derived as follows,
where temp31 denotes temp(around_31):

i) ({(temp31, 0.85)}, temp31, 0.85),

from (16) via INTF.

%) {{(temp31, 0.85)},temp(high), 0.8},

from 1) via SUA, taking into account that
N(high | around_31) = 0.8.

11%) (Ca, ~0il_0k,0.8), from i), %), (6) vie MPA.

5. Similarly, (As, ~engine_ok,0.8) can be de-
rived using the rules (16) and (7) via INTF,
SUA, and MPA, with
A = {(temp(around_31), 0.85);

(~engine_ok — temp(high), 0.95)}.

5 Counter-argumentation and
defeat in DePGL*

Given a program and a particular con-

text, it can be the case that there

3We represent a trapezoidal fuzzy set as

[t1; t2; ta; ta], where the interval [¢;,%4] is the support
and the interval [tz, 3] is the core.

1234

exist conflicting arguments for one lite-
ral and its negation. For instance, in
the above example, (A;,engine_ok,0.6) and
(Ag, ~engine_-ok,0.8), and (Ci,oil-0k,0.8)
and (Cq,~0il_ok,0.8), and thus, the program
Perg considering the context Zy ., is contra-
dictory. Therefore, it is necessary to define a
formal framework for solving conflicts among
arguments in DePGL*. This is formalized
next by the notions of counterargument and
defeat, based on the same ideas used in P-
DeLP [7] but incorporating the treatment of
fuzzy constants.

Definition 5 (Counterargument) Let P
be a DePGL™ program, and let {A;,@1,01) and
(A2, Q2, aa) be two arguments wrt P. We will say
that (Ay,Q1,01) counterargues {Az, Q2,c2) iff
there ezists a subargument (called disagreement
subargument)} (S, @, 8) of {Az2,Q2,a2) such that
Q =~Q1.

Since arguments rely on uncertain and hence
defeasible information, conflicts among argu-
ments may be resolved by comparing their
strength and deciding which argument is de-
feated by which one. Therefore, a notion of
defeat amounts to establish a preference crite-
rion on conflicting arguments. In our frame-
work, following [7], it seems natural to define
it on the basis of necessity degrees associated
with arguments.

Definition 6 (Defeat) Let P be a DePGL*
program, and let (A1, Q1,01) and (A2, @2, ag) be
two arguments in P. We will say that (A1, @1, 1)
defeats (A2, Q2,a2) (or equivalently (A1, Q1,01)
is a defeater for (Az,Qa2, a2)) iff

(1) Argument (A1,Q1,0n) counterargues argu-
ment (Ag, @z, az) with disagreement subargument
(A,Q,a); and

(2) Fither it holds that oy > «, in which
case (Ay, @1, cu) will be called a proper defeater
for (A2,Q2,02), or a1 = «, in which case
{A1, @1, a1) will be called o blocking defeater for
(A2, Q2, 02).

Following Examples 2 and 4, we have
that argument ( Ay, ~engine_ok,0.8) is a de-
feater of argument (A;, engine.ok,0.6) while
{Ca, ~0il_0k,0.8) is a blocking defeater of
{C1, 0il_ok,0.8).



As in most argumentation systems, the main
goal in DePGL™ involves a procedure to de-
termine if a given argument (4 Q, o) is war-
ranted (or ultimately accepted) wrt a program
P. Intuitively, an argument (A @, @) is war-
ranted if

1. it has no defeaters, or

2. every defeater for (A @, ) is on its turn
defeated by another argument which is
warranted.

In P-DeLP this is done by an exhaustive di-
alectical analysis of all argumentation lines
rooted in a given argument (see [7] for details)
which can be efficiently performed by means
of a top-down algorithm.

However, the situation DePGL* gets more in-
volved. Indeed, due to the disjunctive inter-
pretation of fuzzy constants and their associ-
ated fuzzy unification mechanism, a complete
analogous procedure for DePGL™* cannot be
applied since new blocking situations between
arguments have to be considered. Defining
such a procedure is part of our current re-
search work.

6 Conclusions. Future work

As we have shown in this paper, PGL* con-
stitutes a powerful formalism that can be in-
tegrated into an argument-based framework
like P-DeLP, allowing to combine uncertainty
expressed in possibilistic logic and fuzziness
characterized in terms of fuzzy constants and
fuzzy propositional variables.

In this paper we have focused on character-
izing DePGL™, a formal language that com-
bines features from PGL™T along with ele-
ments which are present in most argumenta-
tive frameworks (like the notions of argument,
counterargument, and defeat). As stated in
Section 5, part of our current work is focused
on providing a formal characterization of war-
rant in the context of the proposed frame-
work. We are also analyzing how to charac-
terize an alternative conceptualization of war-
rant in which different warrant degrees can be
attached to formulas on the basis of necessity

degrees, extending some concepts suggested
in [9]. Research in these directions is currently
being pursued.

Acknowledgements

This work was supported by Spanish Projects
TIC2003-00950, TIN2004-07933-C03-01/03,
TIN2004-07933-C03-03, by Ramén y Cajal
Program (MCyT, Spain) and by CONICET
(Argentina).

References

[1] T. Alsinet and L. Godo. A complete calcu-
lus for possibilistic logic programming with
fuzzy propositional variables. In Proc. of
UAI-2000 Conf., pp. 1-10, 2000.

[2] T. Alsinet and L. Godo. A proof procedure
for possibilistic logic programming with fuzzy
constants. In Proc. of ECSQARU-2001, LNAI
243, pp- 760-771, 2001.

[3] T. Alsinet. Logic Programming with Puzzy
Unification and Imprecise Constants: Possi-
bilistic Semantics and Automated Deduction.
Monografies of the IITA, Num. 15, CSIC, 2003.

[4] L. Amgoud and C. Cayrol. Inferring from in-
consistency in preference-based argumentation
frameworks. J. Autom. Reasoning 29(2):125—
169, 2002.

=

Amgoud, L., and Kaci, S. An argumenta-
tion framework for merging conflicting knowl-
edge bases: The prioritized case. In Proc. of
ECSQARU-2005 , LNAI 3571, pp. 527-538,
2005.

[6] C. Chestievar, A. Maguitman, and R. Loui.
Logical Models of Argument. ACM Computing
Surveys, 32(4):337-383, 2000.

[7] C. Cheshevar, G. Simari, T. Alsinet and
L. Godo. A Logic Programming Framework
for Possibilistic Argumentation with Vague
Knowledge. In Proc. of UAI 2004. Banff
(Canada), pp. 76-84, July 2004.

D. Dubois, J. Lang, and H. Prade. Possibilis-
tic logic. In { D.Gabbay et al. eds.) Handbook
of Logic in Art. Int. and Logic Prog. (Non-
monotonic Reasoning and Uncertain Reason-
ing), pp. 439-513. Oxford Univ. Press, 1994.

)

)

J. L. Pollock. Defeasible reasoning with va-
riable degrees of justification. Artif. Intell.,
133(1-2):233-282, 2001.

1235





