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Abstract. Function filtering enhances dynamic programming methods working
on a tree decomposition of the constraint graph. It is based on bounds for tuples:
if the lower bound of tuple t is equal to or higher than a suitable upper bound,
t can be discarded, decrementing the size of the message to travel in the tree
decomposition. We present a new form of lower bound that tightens the lower
bound of the original function filtering, so this new version –called two-sided
function filtering– is more powerful. We provide experimental evidence of its
benefits.

1 Introduction

In constraint satisfaction, inference is widely used but in a very limited form. A simple
example is arc consistency: by the inspection of constraints and domains, it is able to
deduce that some values will never be in a solution so they can be removed. Arc consis-
tency is incomplete inference since it cannot always produce a solution. Inference can
also be complete. Some algorithms are adaptive consistency [5], cluster tree methods
[7] and bucket elimination [3]. Their temporal and spatial complexities are exponential
in some parameters of the constraint graph (see [4] for details). When compared with
search methods (exponential complexity in time but linear complexity in space), they
look unattractive, especially when search is enhanced with the powerful machinery of
local consistency coupled with global constraints [14].

In the soft constraints realm, satisfaction is replaced by optimization. This causes
that problems with soft constraints become more difficult to solve than their hard coun-
terparts. The same solving ideas are recreated here. Search methods, based on a branch-
and-bound schema, are combined with soft local consistencies to filter domains [10].
Complete inference methods are easily adapted to compute the optimum, at the cost
of dragging large arity constraints. Their high spatial complexity is the main drawback
to be used in practice. Nevertheless, this issue is not always unavoidable: when there
are ways to control the spatial complexity, complete inference can provide excellent
performance [9].

While search algorithms consider assignments of individual variables, dynamic pro-
gramming methods handle whole cost functions which are combined and exchanged
among nodes of a suitable decomposition of the problem instance. Function filter-
ing [13] reduces the size of cost functions by filtering out those tuples that are found
unfeasible to be extended into an optimal solution. Provided a lower bound on the cost
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of the best extension of the tuple, and an upper bound on the cost of the optimal solu-
tion, a tuple is filtered out when its lower bound reaches the upper bound. Authors of
[13] proposed a form of computing a lower bound of the cost of the best extension of
a tuple t, that we call one-sided lower bound. It works as follows. When computing a
cost function at node i for node j, the cost of the best extension of t is computed com-
bining the cost of t in one particular cost function at node i with the cost of functions
on t variables coming from node j. We extend this form of lower bound, producing the
two-sided lower bound where all functions at node i (and not only one) are taken into
account when computing the cost of the best extension of t. Since the new lower bound
tightens the old one, it is direct to see that this new approach is more powerful than
the original one. Combining this new lower bound with the function filtering idea, we
obtain the two-sided function filtering approach, that is the paper contribution.

The structure of the paper is as follows. Section 2 contains some concepts used
throughout the paper. Section 3 details the original one-sided filtering method. Sec-
tion 4 focuses on improving lower bounds, presenting the two-sided function filtering
approach. This approach is empirically evaluated in Section 5. Finally, Section 6 draws
some conclusions from this work.

2 Preliminaries

In this paper we consider soft constraints that are represented as cost functions using
the weighted model [12]. A weighted CSP (WCSP) is defined as �X,D,C, S(k)�where
X and D are variables and domains as in CSP. C is a finite set of constraints as cost
functions; fT ∈ C (T is the scope of fT ) assigns costs to value tuples t ∈

�
xi∈T Di,

such that,

f(t) =






0 if t is allowed
1 . . . k − 1 if t is partially allowed
k if t is totally forbidden

S(k) = �[0, 1, ..., k],⊕,≥� is a valuation structure such that a ⊕ b = min{k, a + b},
� = k, ⊥ = 0 [8]. We assume that the reader is familiar with assignments or value
tuples tS with scope S, complete tuples (S = X), projections over S� ⊂ S, tS [S�], and
concatenation of two tuples tS · t�T , defined only if common variables coincide in their
corresponding values. We assume that fT (tS) (with T ⊂ S) always means fT (tS [T ]).
A complete tuple tX is consistent if

�
fT∈C fT (tX) < k, else tX is inconsistent. A

solution is a complete consistent assignment with minimum cost. Finding a solution is
NP-hard. With k = 1 WCSP reduces to CSP.

We define the combination of two functions fT and gS as a new function fT ��

gS with scope T ∪ S and ∀t ∈
�

xi∈T Di, ∀t� ∈
�

xj∈S Dj such that t · t� is defined,
fT �� gS(t · t�) = fT (t) ⊕ gS(t�). Let F = {fT1 , . . . , fTm} be a set of functions, the
combination of F , �� F , is the function resulting from the joint combination of every
function in F , namely,

�� F = fT1 �� . . . �� fTm

Let V ⊆ X be a subset of the variables of the problem and tV a tuple that assigns
values to each of the variables in V . An extension of tV to X is a tuple that keeps the
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assignments of tV and assigns new values to the variables in X \ V . If the cost of each
possible extension of tV is larger than or equal to LB, we say that LB is a lower bound
of the cost of the best extension of tuple tV . Likewise, a function fT is a lower bound
of function fS , noted fT ≤ fS , iff T ⊆ S, and ∀tS fT (tS [T ]) ≤ fS(tS). A function gV

is a lower bound of a set of functions F if it is a lower bound of its combination �� F .
The min-marginal fS [T ] of a cost function fS over T ⊂ S is a new cost function on

T variables which assigns to each tuple tT the minimum cost among all the extensions
of tT to S. Formally,

∀tT fS [T ](tT ) = min
tS extension of tT

fS(tS [T ]).

The tightest lower bound is provided by the min-marginal. Similarly, the min-marginal
of F over V is the min-marginal of the combination of all the functions in F , that is
(�� F )[V ].

Given a set of functions F , the time to compute the min-marginal of F over V is
bounded by O(d|T |), where T =

�m
i=1 Ti, and d is the size of the common domain of

the variables in T . In some scenarios, this can be overdemanding. For that reason we
introduce a less costly way of computing a lower bound of a set of functions. Specif-
ically, we define

V
�� F , the combination of F under V as the result of combining the

min-marginals of each of its functions over V . That is,

V
�� F = fT1 [T1 ∩ V ] �� . . . �� fTm [Tm ∩ V ].

V
�� F is a lower bound of F and can be assessed in O(dk) time, where parameter k =
max (maxm

i=1 |Ti|, |V |) 1, which can be way smaller than O(d|T |). However, this lower
bound can be inferior to (�� F )[V ].

To apply dynamic programming methods, we need a suitable decomposition of the
problem instance. A tree decomposition (also called joint tree or junction tree) of a
WCSP �X,D,C, S(k)� is a triplet �T,χ,ψ�, where T = �N,E� is a tree (N is a set
of nodes and E is a set of edges), χ and ψ are labeling functions which associate with
each node i ∈ N two sets, χ(i) ⊆ X and ψ(i) ⊆ C such that: (1) for each function
fS ∈ C, there is exactly one node i ∈ N such that fS ∈ ψ(i) and S ⊆ χ(i); (2)
for each variable x ∈ X , the set {i ∈ N |x ∈ χ(i)} induces a connected subtree of
T . The tree-width of a tree decomposition is tw = maxi∈N |χ(i)|. If (i, j) ∈ E, the
separator is sep(i, j) = χ(i) ∩ χ(j). In the following, nodes of the tree decomposition
are called clusters. The neighbors of cluster i, neigh(i), is the set of clusters linked
to i in the tree decomposition. Figure 1 shows cluster i and j linked by an edge in a
tree decomposition. Observe that removing the edge connecting i and j splits the tree
decomposition into two different connected components, which we call subproblems
(see Figure 1). Formally, we say that the i-subproblem involves every cost function in
the component containing i after the edge is removed. Subproblems i and j are coupled
by a set of variables they share and must agree upon, namely their separator sep(i, j).

1 Computing each fTi [Ti∩V ] takesO(d|Ti|) time, while computing the whole expression takes
O(d|V |) time.
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j -subproblem
i-subproblem

j
i

Fig. 1: Subproblems in a tree decomposition.

Cluster-Tree Elimination (CTE) is an algorithm that optimally solves WCSP by
sending messages along tree decomposition edges [11, 6, 7]. CTE can be seen as the
fully serial version of the Generalized Distributive Law (GDL) algorithm for the all-
nodes (or all-clusters) problem [1]. Edge (i, j) ∈ E has associated two CTE messages:
ĝ(i→j), from i to j, and ĝ(j→i), from j to i. ĝ(i→j) is the min-marginal computed com-
bining all functions in B(i, j) (set of functions formed by ψ(i) with all incoming CTE
messages except ĝ(j→i)) over sep(i, j). CTE complexity is time O(dtw) and space
O(ds), where d is the largest domain size and s is the maximum separator size.

Mini-Cluster-Tree Elimination (MCTE(r) [7]) approximates CTE (and therefore it
computes solutions that are not necessarily optimal). If the number of variables in a
cluster is high, it may be impossible to compute ĝ(i→j) due to memory limitations.
MCTE(r) computes a lower bound by limiting by r the arity of the functions sent in
the messages. A MCTE(r) message, Gi→j , is a set of functions that approximate the
corresponding CTE message ĝ(i→j). It is computed as ĝ(i→j) but instead of combining
all functions of set B(i, j), it computes a partition P = {B1, B2, . . . , Bp} of B(i, j)
such that the combination of the functions in every Bk does not exceed arity r. The
MCTE(r) algorithm is time and space complexity O(dr).

3 One-sided Function Filtering

Function filtering [13] is a technique that reduces the size of cost functions by filtering
out those tuples that are found unfeasible to be extended into an optimal solution, be-
cause their cost reach or surpass a suitable upper bound. To perform function filtering,
each cluster i intending to send a cost function fU to cluster j needs: (1) a lower bound
lbU (tU ) on the cost of the best extension of each tuple tU ; and (2) an upper bound UB

on the value of the optimal solution. Provided that, we say that the cluster i filters fU

with lbU and UB when it filters out those tuples tU such that lbU (tU ) ≥ UB (i.e. the
ones that cannot be extended into an optimal solution), and sends the remaining ones.

While CTE exchanges exact cost functions among clusters, MCTE(r) exchanges
approximate cost functions (one or several of arity up to r), first bottom-up and then top-
down the tree decomposition. After this, each cluster i has: (1) a set of functions ψ(i),
containing its stake at the problem; and (2) for each neighbor j a set of functions Gj→i

defined on the variables sep(i, j). Gj→i stands for a summary of the j-subproblem,
namely a lower bound on the cost of each tuple in that subproblem. Observe that cluster
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i can assess the cost of an assignment by adding its own costs and the costs of its
neighbors’ subproblems. Likewise, the cluster can assess a lower bound for the costs of
a tuple in the complete problem by combining its own cost functions with those received
from its neighbors. Formally,

lbχ(i)(tχ(i)) = (�� F )(tχ(i)) (1)

where F = ψ(i) ∪
�

j∈neigh(i) Gj→i (that is, the combination of all received functions
in cluster i with the functions initially present in cluster i). However, the lower bound
assessed in Equation (1) requires O(d|χ(i)|) time, where χ(i) are the variables of cluster
i and d the common domain size. This can be very costly to compute, both in terms of
time and memory (in fact, this is the temporal complexity of the exact CTE algorithm).

As an alternative, [13] proposes the following. Let us assume that cluster i wants to
send a set of functions to cluster j. Let fU be one of these functions, U ⊆ sep(i, j) �
χ(i). A lower bound of the cost of the best extension of tuple tU can be computed by
adding a lower bound on the cost of the best extension of tuple tU in the j-subproblem
to the cost that fU assigns to tU . Formally,

lbU (tU ) = (gj→i
U �� fU )(tU ), (2)

where g
j→i
U =

U
�� Gj→i. Henceforth we shall refer to this lower bound as one-sided

lower bound. In this case, the complexity of combining under U is O(dk) time, where
now parameter k is the maximum between |U | and the arity of any function in Gj→i,
that could be cheaper than using Equation (1).

When MCTE(r) runs with increasing r, the cost of the best solution found so far is
an upper bound UB . At each iteration, cluster i willing to send a set of cost functions
to cluster j can filter each of them separately. For each function, cluster i (a) uses
Equation (2) to assess a lower bound from the last message received from j; and (b)
filters the function with this lower bound and UB . The resulting algorithm is known as
IMCTEf [13].

4 Two-sided Function Filtering

Next, we aim at tightening the one-sided lower bound described above. Consider that
cluster i has already received Gj→i from cluster j. After that, it intends to send a set
of functions Gi→j (set that contains the function fU mentioned in Equation (2)), sum-
marizing the cost information in the i-subproblem, to cluster j. Since no cost function
appears in both the i-subproblem and the j-subproblem, we can assess a lower bound
for the complete problem by adding a lower bound of each of them. Notice that the
one-sided lower bound in Equation (2) already assesses the summary of the costs of
the j-subproblem from Gj→i. Likewise, we can assess the summary of the costs of
the i-subproblem from Gi→j . Therefore, we can employ the cost summaries of both
subproblems to obtain a tighter bound.

Formally, when sending cost function fU ∈ Gi→j , we compute the lower bound of
tuple tU as:

lbU (tU ) = (gj→i
U �� g

i→j
U )(tU ) (3)

where
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Given

x y gj→i
xy

a a 3
a b 4
b a 3
b b 3

,

x y fxy

a a 5
a b 2
b a 8
b b 6

,

x z fxz

a a 4
a b 3
b a 5
b b 2

, and UB=10

One-sided Two-sided

x y fxy �� fxz[x] = gi→j
xy fxy �� gj→i

xy gi→j
xy �� gj→i

xy

a a 5 3 8 5 + 3 8 + 3 ✗
a b 2 3 5 2 + 4 5 + 4
b a 8 2 10 8 + 3 ✗ 10 + 3 ✗
b b 6 2 8 6 + 3 8 + 3 ✗

Fig. 2: One-sided vs. two-sided filtering. Ticked tuples (✗) are the ones being filtered out.

• g
i→j
U =

U
�� Gi→j is a lower bound on the contribution of the i-subproblem.

• g
j→i
U =

U
�� Gj→i is a lower bound on the contribution of the j-subproblem.

Observe that there is no double counting of costs because no cost function appears
in both the i-subproblem and the j-subproblem. Henceforth, we will refer to the lower
bound in Equation (3) as two-sided lower bound. The name stems from the symmetrical
use of both subproblems. Hereafter, two-sided filtering refers to filtering employing the
two-sided lower bound.

Comparing both lower bounds, we observe that one-sided lower bound computes
a different lower bound for each function fU that cluster i wants to send to cluster
j (Equation (2)), while two-sided lower bound computes the same lower bound for
all functions to be sent from cluster i to cluster j, namely the lower bound given by
Equation (3).

As example, consider that cluster i has received a set of functions Gj→i, which
combined under {x, y} produces the function gj→i

xy shown in Figure 2. Furthermore,
cluster i knows that the cost of the optimal solution is smaller than or equal to 10
(UB = 10). Now, it wants to send functions Gi→j = {fxy, fxz} (in Figure 2) to cluster
j. Consider that it starts by sending function fxy . Cluster i can calculate the one-sided
lower bound using Equation (2), filtering out tuple (x=b, y=a) as shown in Figure 2.
Alternatively, the cluster can compute the two-sided lower bound using Equation (3), by
assessing the lower bound on the contribution of its own subproblem, namely gi→j

xy =
xy
�� Gi→j = fxy �� fxz[x]. Figure 2 shows that two-sided filtering performs better,
keeping only the tuple (x=a, y=b) as feasible.

5 Empirical evaluation

In this section we empirically compare the performance of IMCTEf when using one-
sided filtering and two-sided filtering. For each experiment, we track the amount of
memory used by the algorithm (the maximum amount of memory required by the algo-
rithm in its whole execution, from r = 2 until the problem is solved) along with the total
amount of computation (as the number of constraint checks performed, which are di-
rectly related with the CPU time used). Moreover, we conducted signed rank tests [15]
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(a) Increasing treewidth, con-
stant domain 8 and 100 vari-
ables.

(b) Increasing number of
variables, constant treewidth
8.

(c) Increasing domain size,
constant treewidth 9 and 100
variables.

Fig. 3: Experimental results of one-sided filtering against two-sided filtering. Median of
constraint checks and bytes exchanged are reported.

on all results to ensure that differences between methods are statistically significant
(α = 0.01).

One may be curious about the number of tuples that are filtered by our method. We
report the amount of memory used and not the number of filtered tuples because not
all filtered tuples cause the same savings in memory (savings depends on tuple’s arity).
Since we provide results aggregating increasing arity limits, we believe that the number
of saved bytes is a more precise measure than the number of filtered tuples. It is worth
noting that filtering a tuple in an early iteration implies that none of its extensions have
to be considered in the future ones; therefore, filtering a tuple at a given iteration has a
multiplicative effect in future iterations.

It is well-known that the treewidth is the most important indicator of problem hard-
ness for CTE-based algorithms (the temporal complexity is exponential in such pa-
rameter). Hence, we segmented our experiments according to this parameter, and en-
sured that all algorithms use the very same tree decomposition when solving the same
problem instance. We generated hard instances characterizing each scenario by three
parameters: number of variables, variables’ domain size, and treewidth. For each sce-
nario, we generated 100 problems by: (1) randomly drawing problem structures fol-
lowing an Erdös-Rényi G(n, p) model [2]; (2) selecting those structures having the
treewidth requested for the scenario; and (3) randomly drawing costs from a N (0, 1)
normal distribution (function costs are made positive by adding its minimum value to
each function).

First, we ran an experiment to evaluate the savings as the treewidth increases. We
generated scenarios with 100 variables of domain 8, and treewidths ranging from 6 to
9. Figure 3a shows that two-sided filtering reduces, with respect to one-sided filtering,
the amount of memory required by a median of more than 25% for the easier problems
(treewidth 6). It achieves even better results for the harder problems (more than 50%
for the set with treewidth 9).
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Next, we arranged an experiment to assess the impact of increasing numbers of
variables. Hence, we generated 5 sets of 100 problems, with an increasing number of
variables for each set. Since we only wanted to measure the impact of the varying
number of variables, we generated many random problem structures and selected only
those that yielded a fixed treewidth of 8. Figure 3b shows the median results achieved
by both approaches on each set of problems. Notice that using two-sided instead of one-
sided filtering reduces the total amount of bytes by more than 40% in most cases, while
achieving a 54% reduction in the 100-variables problems set. Nevertheless, there is an
interesting trend change in both computation and memory requirements past the 80-
variables set. The cause of this change is that all problems have the very same treewidth
of 8. Therefore, as the number of variables increases, the resulting problems are sparser.

Finally, we designed an experiment to measure the trend of both filtering styles
as the variables’ domain sizes increase. Thus, we generated scenarios with 100 vari-
ables, treewidth 9 and domain sizes ranging from 2 to 8. Once again, two-sided filtering
achieves significant memory savings for all the experiment’s problems. Further, as the
domain increases, so do the savings with respect to one-sided filtering: starting with a
narrow 7% reduction for domains of size 2, and reaching more than 50% reduction for
the toughest scenario (domain size 8).

6 Conclusions

We have presented the two-sided function filtering approach in the context of WCSP,
when soft constraints are represented as cost functions. This approach comes from the
combination of the two-sided lower bound computation with the function filtering idea.
Given a tree decomposition, two-sided lower bound considers the aggregation of costs
coming from the two disjoint subproblems, such that its union constitutes the whole
problem instance. Specifically, two-sided lower bound for tuple t at cluster i considers
the costs of t in the subproblem i coming not only from function fU to be send to
cluster j, but also from other functions of cluster i. This cost is combined with the cost
coming from subproblem j, to compute the cost of t’s best extension. This two-sided
lower bound directly extends one-sided lower bound, and it is straightforward to see
that it is more powerful. Experimentally, we have shown the benefits of this approach
with respect to one-sided function filtering in both time and memory, using a number
of experiments.
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