
Noname manuscript No.
(will be inserted by the editor)

Agreement Computing

Carles Sierra · Vicent Botti · Sascha Ossowski

Received: date / Accepted: date

Abstract In this paper we introduce the concept of
Agreement Computing, motivate the central role that
the concept of agreement plays in open software systems
and discuss a number of research challenges that need to
be addressed to make the agreement computing vision
a reality.

Keywords Semantics · Norms · Organisations ·
Negotiation · Trust

PACS 07.05.Mh · 89.20.Ff

1 Introduction

Most current transactions and interactions at business
and leisure levels are mediated by computers and com-
puter networks. From email to virtual worlds, the way
people work and enjoy their free time has changed dra-
matically in less than a generation time. This change
has made IT research and development focus on as-
pects like new Human-Computer Interfaces, enhanced
routing, or network management tools. However, the
biggest impact of this change has been on the way ap-
plications are thought and developed. Current applica-
tions require built-in components to which more and
more complex tasks can be delegated, components that
show higher levels of intelligence, components that are

Carles Sierra

Artificial Intelligence Research Institute, IIIA-CSIC

E-mail: sierra@iiia.csic.es
Vicent Botti

Universitat Politècnica de València

E-mail: vbotti@dsic.upv.es
Sascha Ossowski

CETINIA, University Rey Juan Carlos

E-mail: sascha.ossowski@urjc.es

capable of sophisticated ways of interacting, as they
are massively distributed, and quite often embedded in
all sort of appliances and sensors. These autonomous
components are usually termed agents to stress their
capability of representing human interests, of being au-
tonomous and socially-aware.

These trends in software development have moti-
vated a number of research initiatives in Europe and
USA in recent years. One of the most relevant to our
vision is the Global Computing initiative launched in
2001 as part of the IST FET Programme. The aim of
the call, also contained in the subsequent Global Com-
puting II initiative, was to focus research on large-scale
open distributed systems: a timely vision given the ex-
ponential growth of Internet and the turmoil gener-
ated on the media and scientific fora of some inter-
national initiatives like the Semantic Web, IBM’s au-
tonomic computing concept, and the peak of Napster
usage in 2001 with more than 25 million users. Most
projects had a highly interdisciplinary nature, and a
large number of groups from theoretical computer sci-
ence, agents, networks and databases worked together
in a fructiferous way. The focus of GCI was on three
main topics: analysis of systems and security, languages
and programming environments, and foundations of net-
works and large distributed systems. Along these lines,
GCI projects dealt with formal techniques, mobility,
distribution, security, trust, algorithms, and dynamics.
The focus was ambitious and foundational, with an ab-
stract view of computation at global level, having as
particular examples the GRID or the telephone net-
work. Both functional and non-functional (e.g. QoS)
properties were be studied. The focus on GCII was
shifted towards issues that would help in the actual de-
ployment of such big applications, namely, security, re-
source management, scalability, and distribution trans-



2

parency. Other initiatives for large distributed systems
(although not necessarily open in our sense) include
P2P systems, where nodes in a graph act as clients
and servers and share a common ontology that per-
mit easy bootstrapping and scalability, or Grid appli-
cations where the nodes in a graph share and inter-
change resources for the completion of a complex task.
The semantic web proposal that has received significant
funding in the EU and the US is generating standards
for ontology definition and tools for automatic annota-
tion of web resources with meta-data. The size of the
semantic web is growing at a high pace. Finally, the
availability of applications as web services has permit-
ted an approach to solving complex systems by com-
bining already available web services. The annotation
of those through standards like WSDL or BPEL opens
the door to the automatic orchestration of solutions
for complex tasks. Combinations of Semantic Web and
Web services standards are currently underway (SA-
WSDL, SEE TC) within standardization bodies such
as W3C and OASIS. The recent growth of cloud com-
puting makes it even clearer that the distribution of
services and resources is an unstoppable movement.

A lot of discussion has been made on what are the
similarities and differences between services, agents, peers,
or nodes in a grid. Our stance in this paper is that the
commonality is on the interaction that can in all cases
be abstracted to the establishment of an agreements for
execution and a subsequent execution of agreements. In
some cases these agreements are implicit, in others they
are explicit, but in all cases we can understand the com-
puting as a two phase scenario where agreements are
first generated and then executed.

In this paper we introduce the vision of agreement
and agreement computing in Section 2, and list some
basic research challenges to realise the vision in Section
3. To keep the references within a reasonable limit, only
survey-like and classical papers and books and some
specially recent developments are included.

2 Agreements and agreement computing

Computing has been traditionally based on implicit agree-
ments between programmers and language designers.
In particular, agreements on the meaning of computa-
tional concepts used to design and execute a program.
For instance, all programmers share the meaning of the
concept of variable, value or loop as well as the notion
of program state and state transition. Complex soft-
ware development has been mostly based on explicit
agreements between project leaders and programmers
by means of which the relationships between the dif-
ferent software components are established and docu-

mented. These agreements (in the form of specifications
of interface and behaviour) become then the basis for
subsequent verification of the resulting software prod-
uct.

But, when software systems and their elements be-
comes autonomic, adaptive, and open, these explicit
agreements are simply non-existing. How can we build
software that interoperates correctly and is thus reliable
in those situations? How can we build complex solutions
from simple components? We believe that current pro-
gramming methodologies, languages, and tools need to
evolve to incorporate an explicit notion of agreement
between computational entities. Agreements are in our
vision an explicit description of the interoperation be-
tween two independent pieces of code that is generated
by the two pieces of code themselves. Agreements are
to be generated by a particular type of built-in inter-
action between software entities. Software components
willing to participate in open systems will therefore re-
quire to include extra capabilities to explicitly represent
and generate these agreements, on top of the simpler
capacity to interoperate, once the agreements are set.
That is, agreements should become the basic run-time
structures that determine whether a certain interaction
is correct, in a similar way as type-checking currently
determines if the values in a call to a procedure are
correct. Agreement-checking is a run-time analysis of
whether a particular interaction between two entities
satisfies an agreement. Agreements are multi-faceted
and include different sorts of agreements: on meaning of
the exchanged variables, on constraints to be respected
during the computation made by the entities, on prop-
erties of the values exchanged, on the particular proto-
col to follow, etc. This view requires that the interac-
tion between two components starts by the generation
(or perhaps selection) of the interoperation agreement
and then a subsequent phase in which the actual in-
teroperation of the parties involved. Agreements can
evolve in a long term interoperation by further inter-
action between the computational entities. This capac-
ity will make software components “interaction-aware”
and can produce a significant step forward in software
design and run-time verification if a number of scien-
tific challenges are solved. In the next section we list
the most significant ones and discuss possible venues of
work leading to this vision.

3 Challenges

Although many efforts have been devoted in the projects
and initiatives mentioned in the introduction, there is
still a large number of unsolved questions that require



3

a significant research effort and in some cases a com-
pletely new and disruptive vision. In this section we
briefly outline a few areas where new technologies for
the establishment of agreements need to be developed.
These technologies are key to support the phase in
which autonomous entities establish the agreements to
interoperate.

3.1 Semantics

The openness in the development of agents, compo-
nents, or services creates the need for semantic align-
ments between different ontologies. Every component
may have an interface defined according to a (not nec-
essarily shared) ontology. Although standards are in
place for ontology representation (e.g. OWL) there is
currently no scalable solution to establish agreements
between software entities on the alignment of their se-
mantics. The sheer dimension of some ontologies and
the large number of them available on the web makes
it impossible to solve the alignment problem entirely
by hand, so robust computational mechanisms need to
be designed. Techniques that might bring light into the
problem include: data mining of background knowledge
for the alignment algorithms, information flow meth-
ods to align concepts, or negotiation techniques to al-
low agents or services to autonomously negotiate agree-
ments on the meaning of their interactions. Agreements
on semantics are of a very fundamental nature and their
establishment is key for the success of truly open soft-
ware systems in the long run[7].

3.2 Norms

The entities that interact with each other may have a
behaviour that changes along time, and there may be
different contexts within which to reach agreements. A
way this context is defined and constrained is through
the definition of conventions and norms regulating the
interaction [3,12]. What set of norms to use in an in-
teraction is a matter of agreement between the entities.
These and other considerations require that the code of
entities be highly adaptive to its environment so that
agreements including a normative context can be cor-
rectly interpreted and executed. This is not the case
in current software development. For instance, most
current approaches to service programming assume a
static environment, and the classical approaches to code
verification still focus on static verification techniques.
Adaptive code is a need for the design of open dis-
tributed applications. In particular, programming will
need to face issues like norm adoption and behaviour

learning. Agreements are explicit and declarative, and
thus they open the door to use model checking and
logic based approaches, like BDI. These techniques may
make open entities norm-aware and endow them with
the capacity to build cognitive models of their environ-
ment. For recent discussions see [2].

3.3 Organisations

Many tasks require the recruiting of agents or services
to form teams or compound services. These software
entities bring in different capabilities that put together
may solve a complex task. How many entities have to be
involved and what tasks have to be associated to each
one of them are difficult questions. Traditional planning
systems and balancing algorithms are not well adapted
due to the large search space and the high dynamics and
uncertainty of an open environment where software en-
tities may join or leave or stop behaving cooperatively
at any time. Thus, new techniques need to be developed
to underpin agreements between open and possibly un-
reliable computational resources in order to forge stable
co-operation for the time needed to solve a task.

Techniques that may be promising in doing so are
normative systems, virtual organisations and electronic
institutions [14,10,1]. These techniques build “societies”
that meet several requirements of open systems such
as: distribution, constant evolution, flexibility to allow
members to enter or exit the society, and multi-platform
execution. Agreements include agreements on behaviour
and the techniques mentioned above limit and constrain
behaviour, thus they may help in reaching agreements
by successive steps in which the organisation and de-
pendencies are progressively established. How an organ-
isation that regulates the co-operation and set the rules
of the interaction is generated on-the-fly is an unsolved
question.

Business process modelling systems and languages
(e.g. BPEL or BPEL4WS) [8] have made the interac-
tion between activities and entities the central concept
in software design. A detailed workflow regulates the ac-
tivities and the combination of roles in an organisation
as well as their associated data flow. The interaction
between entities is modelled as a precise choreography
of message interchanges. However, current approaches
assume that the orchestration and choreography is ex-
ternal to the entities and static. In an open world the
way entities will interact and be combined has to be de-
termined on-the-fly. And this choreography in an evolv-
ing world has to be necessarily part of the agreement
between entities. Agreeing of the workflow of activities
needs to contemplate on the one hand an agreement of
the social structure, the flow of roles among activities,



4

and most importantly the normative system associated
to the workflow. In a sense the signing of an agreement
between two entities is the decision on what workflow
to follow. The area of electronic institutions has pro-
duced representation languages that can be the basis of
this part of the agreements.

3.4 Negotiation

Most programming languages and methodologies base
their semantics on a compositional view of code. Know-
ing the behaviour of the components, and how they are
combined, we can know the overall behaviour. This ap-
proach is to a large extent not applicable to open soft-
ware systems where the behaviour of the components
cannot be totally known or analysed, and can only be
observed. They are black boxes. Even though the be-
haviour of an entity can be restricted by the norma-
tive context and the agreements signed, it is not com-
pletely determined at component definition time. More-
over, setting agreements does not give total guarantees
on behaviour: autonomy and self-interest may refrain
agents from honouring their commitments if there is a
potential gain in so doing. New and radically different
approaches are required to deal with this problem.

The way agents and services interact depends on
two types of dynamics. First, open systems evolve, new
entities appear and disappear, and thus new agreements
have to be set. Second, the rules of the game that regu-
late the interaction between two entities might change
due to the establishment of new agreements between
them and due to agreements with third parties. This
dynamics is a true challenge as many traditional re-
search solutions are based on a static world view (e.g.
game theory, classic planning).

Given that the entities are autonomous and black
boxes to each other the only way agreements can be
reached is via negotiation of its terms and conditions.
Negotiation is the key technique to achieve a composi-
tion of behaviours capable of dealing with the dynamics
of open software systems [5,9,15].

Some of the challenges are how to efficiently nego-
tiate the terms of an agreement, how to explore large
spaces of solutions, how to establish trade-offs between
the dimensions of the agreements or how to use the
experience of human negotiation in software develop-
ment. New negotiation and planning methods need to
be proposed that take into account the changing struc-
ture and capabilities of the entities. Real-time planning
is needed to account for the potentially high volatility of
the entities in the system. Agreement planners have to
be developed where the planning algorithm includes as

part of the problem solving the establishment of agree-
ments among entities. The embedding of these planners
within virtual organisations and semantic alignment al-
gorithms seems key to cover the different levels of agree-
ments that might be required to solve a complex task.

3.5 Trust

There are two basic security dimensions over open net-
works. The first is how to guarantee identity, and this
is to a large extent solved by cryptographic methods.
The second is how to guarantee behaviour. Entities sign
agreements and these agreements have to be honoured
by the signatories. In case that the entities’ code is
available for inspection, recent results on Proof Car-
rying Code techniques provide an answer [11,4]. These
techniques permit that mobile code brings within itself
a property of behaviour and the proof that the code
satisfies the behaviour. Code and properties are input
to compilers that generate code and certificates that
permit to verify that the code has not been tampered.
However, when the code is not mobile, as in the area of
web services (where the service is executed remotely),
the possibility of fraud and malevolent behaviour cre-
ates a security threat to applications. No definitive so-
lution has been found yet.

Trust models summarise the observations of the exe-
cution of agreements and allow entities to decide whether
to sign agreements again with the same entity or which
entity to prefer for particular tasks [6]. Reputation mea-
sures are needed to bootstrap the signing of agreements
between entities. There are two challenges that need to
be addressed to guarantee behaviour: on semantics of
the agreements and on social relations between entities.
Trust and reputation models need to take into account
semantic aspects of the agreements to permit entities to
understand the relationship between past experiences
and new ones. Social network measures are needed to
understand the intentions of the entities and therefore
predict their behaviour (e.g. they may be cheating to
favour a friend). In this sense, the relationships built
along time among entities and/or their principals may
also provide guarantees of behaviour [13].

4 Conclusion

In this paper we have presented a number of challenges
that need to be addressed in order to realise the vision
of Agreement Computing. Open distributed systems are
going to be the norm in the software development indus-
try of the future and the interoperation of the software
entities will need to rely on a declarative concept of



5

agreement that is autonomously signed and executed
by the entities themselves. The notion of agreement
allows to integrate otherwise disparate research areas.
The generation of agreements between entities will need
to integrate semantic, normative, organisation, negoti-
ation and trust techniques. These five areas of research
need to give answers to a large number of challenges
sketched in this paper in order to provide the repre-
sentation languages and the programming techniques
necessary that will make Agreement Computing a real-
ity.

Acknowledgements Research supported by the Agreement Tech-
nologies CONSOLIDER project under contract CSD2007-0022

and INGENIO 2010 and by the Agreement Technologies COST

Action, IC0801.

References

1. Arcos, J.L., Esteva, M., Noriega, P., Rodŕıguez, J.A., Sierra,

C.: Engineering open environments with electronic institu-
tions. Journal on Engineering Applications of Artificial In-

telligence 18(2), 191204 (2005)
2. Boella, G., Noriega, P., Pigozzi, G., Verhagen, H.: Dagstuhl

seminar proceedings 09121: Normative Multi-Agent Systems

(2009)
3. Henrik, G., Wright, V.: Norm and Action, A logical Enquiry.

Routledge and Kegan Paul (1963)
4. Hermenegildo, M., Albert, E., López-Garćıa, P., Puebla, G.:

Abstraction carrying code and resource-awareness. In: Prin-

ciple and Practice of Declarative Programming. ACM Press
(2005)

5. Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Sierra,
C., Wooldridge, M.: Automated negotiation: Prospects,

methods and challenges. International Journal of Group De-

cision and Negotiation 10(2), 199–215 (2001)
6. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and rep-

utation systems for online service provision. Decis. Support
Syst. 43(2), 618–644 (2007).

7. Kalfoglou, Y., Schorlemmer, M.: IF-Map: An ontology-

mapping method based on information-flow theory. In: Spac-
capietra, S., March, S., Aberer, K. (eds.) Journal on Data

Semantics I, Lecture Notes in Computer Science, vol. 2800,
pp. 98–127. Springer-Verlag: Heidelberg, Germany (2003)

8. Ko, R.K.L., Lee, S.S.G., Lee, E.W.: Business process man-

agement (bpm) standards: A survey. Business Process Man-
agement Journal 15(5), 744–791 (2009)

9. Kraus, S.: Negotiation and cooperation in multi-agent envi-
ronments. Artificial Intelligence 94(1–2), 79–97 (1997)

10. March, J.: Organizational Decision-Making, chap. A Pref-
ace to understanding how decisions happen in organizations.
Cambridge University Press (1996)

11. Necula, G.C., Lee, P.: Proof-carrying code. Tech. rep. (1996)
12. Ross, A.: Directives and Norms. Humanities Press. (1968)
13. Sierra, C., Debenham, J.: Trust and honour in information-

based agency. In: Proc. 5th Int. Conf. on Autonomous Agents

and Multi Agent Systems, 1225–1232. ACM Press (2006)
14. Simon, H.A.: Administrative Behavior. Free Press. (1997)
15. Vasirani, M., Ossowski, S.: A market-inspired approach to

reservation-based urban road traffic management. In: Proc.
8th Int. Conf. on Autonomous Agents and Multi Agent Sys-

tems, 617–624. IFAAMAS (2009)

Carles Sierra is Full Professor at
the Institute of Research on Ar-
tificial Intelligence of the Span-
ish Council for Scientific Research
(CSIC) and Adjunct Professor at
the University of Technology, Syd-
ney, Australia. He has partici-
pated in around fourty research
projects funded by the European

Commission and the Spanish Government, and has
published more than two hundred and fifty papers in
specialized scientific journals, conferences and work-
shops. His most recent work includes Electronic Insti-
tutions, negotiation, and Trust and Reputation models.

Vicent J. Botti Navarro is Full
Professor at the Departamento
de Sistemas Informáticos y Com-
putación of Universidad Politécnica
de Valencia (Spain) and head
of the GTI-IA research group of
this centre. He received his PhD
in Computer Science from the
same university in 1990. His re-
search interests are multi-agent

systems, agreement techonologies and artificial intelli-
gence, where he has more than 200 refereed publica-
tions in international journals and conferences. He has
been leader of several National and European research
projects. Currently he is Vice-rector of the Universitat
Politècnica de València.

Sascha Ossowski is Full Profes-
sor of Computer Science and Di-
rector of the Centre for Intelli-
gent IT at University Rey Juan
Carlos in Madrid. He obtained his
MSc degree in Informatics from U
Oldenburg in 1993, and received
a PhD in Artificial Intelligence
from TU Madrid in 1997. His re-
search focuses on the application
of distributed AI techniques to

real world problems such as transportation manage-
ment and smart grids. He is chair of the COST Ac-
tion on Agreement Technologies, chairs the Board of
Directors of the European Association for Multiagent
Systems, and is a member of the steering committee of
the ACM SAC conference series.


