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Abstract. In this work we propose the use of a similarity-based fuzzy
CBR approach to classify the prevalence of Schistosomiasis in the state
of Minas Gerais in Brazil.

1 Introduction

Case-based reasoning [1], CBR for short, can be considered as a form of
similarity-based or analogical reasoning since the basic principle implicitly fol-
lowed in this problem solving methodology is that similar problems have similar
solutions. A weaker version of this principle stated is given by “it is only plausi-
ble (but not necessary) that similar problems have similar solutions”. In [2] the
authors propose a novel Fuzzy CBR algorithm for classification, in which this
weaker principle is read, in the classification context [5] as:

“The more similar are the problem descriptions of two cases,
the more possible their classification values are similar”

Basically, in this context, a CBR base is composed of cases of the form
c = (d, cl), where d is the case description modeled as a vector of values for a set
of attributes and cl its associated class. The assignment of a class to a new case
description d0 will depend on the similarity between d0 and the descriptions of
the cases in the CBR base. In the approach proposed in [2], this similarity is
calculated as a weighted mean of the similarity between each attribute addressed
in the description part of the cases in the learning data set. In this approach,
the weight vectors are learnt in such a way as to minimize the misclassification
of the cases already contained in the base.

Schistosomiasis mansoni is a disease with social and behavioral characteris-
tics. Snails of the Biomphalaria species, the disease intermediate host, uses water
as a vehicle to infect man, the disease main host. In Brazil, six million people are
infected by it, mainly in poor regions of the country [10]. According to the data



presented at the Brazilian Information System for Notifiable Diseases (SINAN)
of the Ministry of Health, from 1995 to 2005, more than a million positive cases
were reported, 27% of them in the State of Minas Gerais.

In [7], the authors present a classification Schistosomiasis prevalence for the
State of Minas Gerais, using remote sensing, climate, socioeconomic and neigh-
borhood related variables. Two approaches were used, a global and a regional
one. In the first approach, a unique regression model was generated and used
to estimate the disease risk for the entire state. In the second approach, the
state was divided in four regions, and a model was generated for each one of
them. Imprecise classifications were also generated for both approaches, using
the estimated standard deviation and several reliability levels as basis.

The aim of this paper is to check the usefulness of the fuzzy CBR approach
to classification proposed in [2] in order to estimate and classify schistosomiasis
prevalence, as an alternative to the linear regression model approach developed
in [7]. To allow the comparison of the results, we present two approaches for
solving the problem, a global and a regional one, following the guidelines in [7].

This work is organized as follows. In Section 2 we describe the similarity-
based fuzzy CBR model we have used. In Section 3 we present our application
context and discuss the experiments we have performed. Section 4 finally brings
the conclusion.

2 A similarity-based fuzzy CBR model for classification

2.1 Working framework

Before going into more details, let us specify our working framework for
classification-like case-based reasoning problems. Let us assume we have a base of
cases CB consisting of an already solved set of cases, where a case is represented
by a (complete) tuple of attribute values describing the situation or problem to
solve together with a solution class or result. To fix ideas, let A = {a1, . . . , an}
be the set of description attributes and let class denote the class attribute.
Moreover, let us denote by D(ai) and D(class) the domains of the attributes ai

and class respectively (so D(class) is the set of solution classes). Then a case
c ∈ CB will be represented as a pair c = (d, cl), where d = (a1(c), . . . , an(c)) is
a n-tuple with the problem description values and cl = class(c) is the solution
class for the case c. If we write D = D(a1)× . . .×D(an) (D for descriptions) and
Cl = D(class), then a case base CB is just a subset of D×Cl. In the following,
all definitions will use this classification-oriented notation.

In this framework, given a case base CB = {ci = (di, cli)}i∈I and a new
problem description d∗, the CBR task is to find (guess) a solution class cl∗ for
d∗, by applying the above general principle in some form, i.e. taking into account
the similarity of d∗ with already solved cases ci ∈ CB.

In its most general sense, a fuzzy similarity relation on a domain Ω is a
mapping S : Ω×Ω → [0, 1] which assigns to every pair (w,w′) of elements of Ω
a number measuring how much w and w′ resemble each other according to some



given criteria, in the sense that the higher S(w,w′), the larger their resemblance.
In particular, S(w,w′) = 1 means that w and w′ are undistinguishable, while
S(w,w′) = 0 means that w and w′ have nothing in common. One can also
understand δ(w,w′) = 1−S(w,w′) as a kind of distance between w and w′. Usual
and reasonable properties (see e.g. [6]) required of such functions are reflexivity
and symmetry, i.e. S(w,w) = 1 and S(w,w′) = S(w,w′), for any w,w′ ∈ Ω. S is
called separating if it verifies that S(w,w′) = 1 iff w = w′. Sometimes they are
also required to fulfill a weak form of transitivity, namely S(w,w′)⊗S(w′, w′′) ≤
S(w,w′′), where ⊗ is a t-norm. For our purposes, and unless stated otherwise,
we shall consider similarity relations as reflexive and symmetric fuzzy binary
relations but neither necessarily transitive nor separating.

2.2 Main elements of the model proposed

The approach we will describe in the rest of this section requires that, for each
attribute a ∈ A, there is an available fuzzy similarity relation Sa on D(a), as
well as a fuzzy similarity relation Sclass over the set of classes Cl, as defined in
Section 2.1.

The main step in the method is to define a suitable similarity relation SD

between the case descriptions in the case base CB and an arbitrary problem
description. Our working assumption is that such similarity will be defined as a
weighted average of the existing similarity functions Sa for each attribute. Then,
of course, we need additional information to assess the relevance (weight) of each
attribute for retrieving a particular case. In particular, we will assume there is a
best5 set of weighs vector for each case that properly evaluates the importance
of each attribute when computing the similarity between that case and another
arbitrary case description in the case base CB.

Definition 1. Let A = {a1, . . . , an} be the set of attributes considered in D
and, for each a ∈ A, let Sa be the corresponding similarity relation on D(a),
and let w : A → [0, 1] be a weight assignment to attributes, i.e. an assignment
such that

∑
a∈A w(a) = 1. Then, we define the induced fuzzy similarity relation

Sw
D : D×D → [0, 1] over case descriptions as follows:

Sw
D (d1, d2) =

∑
a∈A

w(a) · Sa(a(d1), a(d2)) (1)

using the notation d1 = (a1(d1), . . . , an(d1)) and d2 = (a1(d2), . . . , an(d2)).

Note that, so defined, Sw
D is a indeed similarity relation in the sense of Section

2.1, i.e. it is reflexive and symmetric.
Once we have defined the similarity relation Sw

D , we can define how adequate
a solution class cl is for a problem description d∗ just by comparing d∗ to the de-
scriptions of all those cases in CB sharing that solution class cl, and aggregating
all these similarity values.
5 In the sense explained in Section 2.3.



Definition 2. Let be CB ⊆ D ×Cl a case base. Given a set of weight assign-
ments W = {wc}c∈CB (one per each case in CB), and a suitable aggregation
function F on [0, 1], the adequacy degree between a case description d∗ ∈ D and
a solution class cl ∈ Cl is defined as follows:

ΠW,F (d∗, cl) = F ({Swc

D (d∗, d) | c ∈ CB, c = (d, cl}).

where Swc

D is defined as in Definition 1.

Depending on the application, suitable aggregation functions [4] may be for
example disjunctive functions, like the maximum or other t-conorms, or some
kinds of average functions, like quasi-arithmetic means or even more sophisti-
cated aggregation functions.

Finally, given case base CB, a set of weight assignments W = {wc}c∈CB

and a suitable aggregation function F on [0, 1], the last step in the fuzzy CBR
approach consists in assigning to a case description d∗ ∈ D the solution class cl∗

such that
cl∗ = arg max

cl∈CL
ΠW,F (d∗, cl).

2.3 Learning the weight assignments for each case

Next, we describe how to learn the appropriate weight assignment for each case
in the base CB. So, in the following, we will assume that a case c0 ∈ CB is known
and fixed along the learning process. In fact, the same process we describe below
for c0 will be applied for each case in CB. Naturally, for each case c0, the process
would lead to its corresponding weight assignment w0.

To do so, in addition to the case c0, we need to fix a subset of cases LS0 ⊆ CB,
i.e. a collection of problem descriptions whose solution class is known. This is the
learning set. Then, the weights determination can be formulated in the following
way:

Problem 1 (Weight Determination Problem). Let c0 = (d0, cl0) be a case in base
CB and let LS0 ⊆ CB be the learning set relative to c0. Then the weight
determination problem relative to c0 is to determine a weight assignment w0 :
A → [0, 1] such that, for each case c = (d, cl) ∈ LS, the similarity between d0

and d, Sw0
D (d0, d), approximates as much as possible the similarity between the

solution classes cl0 and cl, SClass(cl0, cl).

Using the square difference to measure the divergence between the two sim-
ilarities (i.e., the similarity between the two case descriptions and the similarity
between their classes), we can reformulate the problem as follows:

Problem 2. Let c0 = (d0, cl0) be a case in the base CB and let LS0 ⊆ CB be
the learning set from which the weight assignment w0 : A → [0, 1] relative to c0

will be determined. Then the weight determination problem relative to c0 is to
find the values w(a1), ...,w(an) that minimize the following expression:



∑
(d,cl)∈LS0

[
Sw

D (d, d0)− SClass(cl, cl0)
]2

subject to the following constraints over wc0 :
(1)

∑
a∈A w(a) = 1, and

(2) w(a) ≥ 0 for all a ∈ A.

In the experiments described in Section 3 below, we have divided case base
CB in two parts, a training set CBt and a validation set CBv = CB−CBt, and
for each case c0 ∈ CBt we obtain a weight assignment w0 by solving the above
minimization problem in a leave-one-out fashion, by taking as learning set the
whole CBt after removing case c0, i.e., for each c0 ∈ CBt, LS0 = CBt− {c0}.

In order to solve this minimization problem, we apply the algorithm intro-
duced in [8] with the extension described in [9]. It is worth pointing out that
this minimization algorithm, as similar ones existing in the literature, fails to
give a (unique) solution when there exists a particular kind of linear dependence
among the columns in the data matrix of the problem. In our case, this would
refer above to the matrix of similarity values S = {si,j} with i = 1, . . . , n and
j = 1, . . . ,m, where sij = Sai(ai(dj), ai(d0)), assuming that A = {a1, . . . , an}
and LS0 = {(d1, cl1), . . . , (dm, clm)}. In fact, as shown in [9], the problem only
arises when there is a column si = (s1i, . . . , sni) that can be written as a linear
combination of the others in the form si =

∑
j 6=i pj · sj with pj ≥ 0 and such

that
∑

j pj = 1. In such a case, when removing one of the linearly dependent
columns we get the same minimum we would get when considering all the at-
tributes. Therefore, an alternative approach is to consider as many subproblems
as dependent attributes, where each subproblem corresponds to the original one
after removing one of the dependent attributes. The solution with a minimum
error would correspond to the solution of the original problem.

3 Classification of Schistosomiasis prevalence

3.1 The original experiments: materials and methods

In the original experiments presented in [7], the disease prevalence data was pro-
vided by the Health Secretary of the State of Minas Gerais state. The prevalence
is known for 197 municipalities out of the 853 composing the state (see Figure
3.1.a). In the original experiments, 86 independent variables of various types were
used to classify prevalence: Remote Sensing (22), climatic (6), socioeconomic (34)
and neighborhood characterization (24). The Remote Sensing variables were de-
rived from sensors MODIS (Moderate Resolution Imaging Spectroradiometer)
and SRTM (Shuttle Radar Topography Mission), and are supposedly related to
the snail habitat type. The climatic variables were obtained from the Weather
Forecast and Climate Studies Center (CPTEC) from the National Institute for
Space Research (INPE) and reflects the conditions of survival of the snail and
the various forms of the larvae of Schistosoma mansoni. The socioeconomic vari-
ables were obtained from SNIU (National System of Urban Indicators) such as



the water accessing means and sanitation condition aspects. The neighborhood
characterization variables measure the disparity between neighboring municipal-
ities with relation to variables of income, education, sewerage, water access and
water accumulation.

(a) (b)

Fig. 1. The state of Minas Gerais in Brazil: a) known prevalence of Schistosomiasis,
b) regionalization obtained through algorithm SKATER.

From the original 86 variables, a smaller set was selected, according to tests
using multiple linear regression [7]; the independent variables chosen were those
that had high correlation with the dependent variable and low correlation with
other independent variables. Two main approaches were used: i) a global one,
in which all the municipalities with known disease prevalence were used, for
either constructing or validating a linear regression model, and ii) a regional
one, in which the state was divided in four homogeneous regions and a linear
regression model was created for each one of them. The number of independent
variables used in the experiment varied; in the global approach 5 variables were
used, while in the regional approach 2 variables were used for region R1, 5 for
region R2, 4 for region R3 and 3 for region R4 (see details in [7]). In both the
global and regional approaches, approximately 2/3 of the samples were used as
training set, and the remainder 1/3 as the test set. Algorithm SKATER [3] was
used to obtain the homogeneous regions in the regional model; this algorithm
creates areas such that neighboring areas with similar characteristics belong to
the same region (see Figure 3.1.b).

3.2 The fuzzy CBR experiments: materials and methods

This work uses the same data, variables and regionalization than those used in
[7]. As already mentioned, to construct the similarities Swc

D , our approach needs
a similarity relation Sa for each independent attribute a ∈ A to be given. In
our experiments all considered attributes are real-valued attributes. Then, for
each attribute a we have taken Sa to be of the form Sa = Sλa

, where Sλa
is a



parametrized similarity relation on [0, 1] defined as

Sλa
(x, y) = max(0, 1− |x− y|)

λa · length(a)
)

where λa ∈ (0, 1] and length(a) = maxc∈CB a(c)−minc∈CB a(c) is the maximal
variation of a in the whole case base.

On the following, we will simply denote a similarity relation for a description
attribute as Sλ, λ ∈ (0, 1], and we will synthesize the notation of a set of such
similarity relations as S(λ1,...,λn), meaning that Sλ1 is applied to attribute a1,
Sλ2 to a2, etc.

The dependent attribute Class is defined in the domain Cl = {L,M,H}, for
low, medium and high disease prevalence, respectively. In the experiments, we
have taken the similarity relation SClass on Cl to be of the form SClass = Tλ for
some λ ∈ [0, 1], where Tλ is defined as Tλ(w,w) = 1 and Tλ(w,w′) = Tλ(w′, w),
for all w,w′ ∈ Cl, Tλ(H,M) = Tλ(M,L) = λ and Tλ(H,L) = 0.

3.3 Experimental results and analysis

Table 1 brings the best results obtained from experiments made with the data,
for a) the regression models employed in [7] and b) by the fuzzy CBR method.
On Table 1.b, besides the CBR approach accuracy value, we have indicated the
similarity relations used in the description and solution variables.

We have applied the fuzzy CBR method using various parameters sets for
the description and class similarity relations. As aggregation function F in Def-
inition 2, we have used the maximum (as proposed in [2]) and other operators;
the best results were obtained with the arithmetic means (see Table 1). Notice
that for region R1, we have obtained the same accuracy (.56) using similarities
(S(.3,.4), T.5) and (S(.1,.1), T0) for the regional learning approach.

Region regional global

R1 0.56 0.50

R2 0.51 0.40

R3 0.72 0.48

R4 0.76 0.59

Region regional global

R1 0.56 (S(.3,.4), T.5) 0.56 (V(.2,.2), T0)

R2 0.56 (S(.2,.2,.2,.2,.2), T.5) 0.49 (V(.1,.1,.1,.1,.1), T0)

R3 0.62 (S(.2,.4,.3,.3), T0) 0.71 (V(.2,.2,.2,.2), T0

R4 0.38 (S(.2,.2,.2), T.5) 0.65 (V(.1,.1,.1), T.5)

(a) (b)

Table 1. Classification accuracy, with learning made on either a global or a regional
basis: (a) regression models and (b) fuzzy CBR models.

The results obtained with the fuzzy CBR approach are comparable to those
obtained with the regression models and, in one case, the fuzzy CBR approach is
better than regression (region R2). It is interesting to note that in the fuzzy CBR
approach, contrary to what happened with the regression models, the global
learning approach have very often outperformed the regional one. As a matter
of fact, the global fuzzy CBR approach obtained invariably better results than
regression in the global approach.



4 Conclusions

In this work we have described the use of a similarity based fuzzy CBR approach
to classify the prevalence of Schistosomiasis in the state of Minas Gerais in Brazil.
We have compared our results to the ones obtained from the literature that uses
linear regression. The comparison results shows the suitability of the approach.

The classification method is such that at the end of an experiment, we obtain
a similarity degree between the description of a new case and each one of those
in the case base. Then we derive the compatibility of the new case with each
class value, by aggregating all the similarity degrees obtained from the cases in
the case base that are classified with that value. Here we have verified that the
usual operator, max, is not always the most suitable for a given application. In
particular, in our problem, the best aggregation operator from those tested was
found to be the arithmetic means.
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