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Abstract
Argumentation-based debates are mechanisms that a group can use to resolve conflict-
ing opinions and hence reach agreement. They have many potential applications in
on-line communities and other open environments. In this paper, we provide computa-
tional infrastructure to support argumentation-based debates, in particular focusing on
the problem of how participants in a debate can reach agreement about the outcome of
the debate, given all the statements that have been made. Our approach makes it possi-
ble to represent arguments that are put forward by the participants in a debate, allows
both positive and negative relationships between the arguments to be represented, and
makes it possible for participants to express opinions about both the arguments and the
outcome of the debate. Our main contribution is to provide a novel method—indeed
the first method—for computing the collective decision that emerges from the combi-
nation of a set of arguments and a set of opinions about whether the arguments hold or
not. To do this, we carry out a formal investigation of a family of aggregation functions.
This family starts with a function that is firmly rooted in the social choice literature,
and is extended with functions that are more oriented towards the use of argumenta-
tion.We prove that to ensure that the collective decision is coherent, a property that we
think is essential, an aggregation function needs to take into account the dependencies
between arguments. We also provide an empirical analysis of the performance of our
approach to reaching a collective decision, showing that a collective decision can be
reached for debates, of the size that one currently finds online, in reasonable time.
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1 Introduction

Across the world there is an increased interest in the process of using technology
to provide a route for the greater engagement of citizens in the governance of their
communities. The idea is that thanks to the use of so-called e-governance or, more
specifically, e-participation systems, individuals will be able to have a greater say
in the way that they are governed (Weerakkody and Reddick 2012), and decisions
taken by their elected representations will more closely reflect the views of the rep-
resented (Dawes 2008). For example, both Barcelona and Reykjavík municipalities
have opened up some aspects of their policy making to citizens through the use of
online portals. These portals, Decidim Barcelona (2017) and Better Reykjavík (2017),
respectively, allow individual citizens to put forward policy proposals, state their sup-
port for proposals made by their peers, and debate the pros and cons of proposals made
by themselves and by others.

Decidim and Better Reykjavík, by their restriction to the cities in question, focus on
local issues and have limited reach into the broader communities. However, there is no
reason why such experiments in participatory democracy have to be geographically
limited. Indeed, the ambitious Parlement et Citoyens project in France (2017) aims to
scale this kind of activity up to the national level, allowing citizens and deputies to
collaboratively draft proposals for legislation.

All these efforts can be seen as extensions of earlier e-governance efforts, such as
the UK’s online petition site (Petitions 2017), along the lines of online collaboration
platforms intended to support small group discussions. The UK petition site allows
citizens and residents to request that parliament consider a topic. It is a one way
mechanism—if a petition collects 10,000 signatures, then the government responds.
If a petition collects 100,000 signatures (as did the recent petition to deny Donald
Trump a state visit), then parliament debates the issue. However, there is no ability for
citizens to directly discuss issues amongst themselves, nor is there a facility to engage
in debate with lawmakers. It is this ability to engage in structured debates that, for us, is
the key element inDecidim, Better Reykjavík and Parlement et Citoyens. The structure
comes from an initial proposal, which participants can then subject to scrutiny, offering
arguments for and against the central issue. This is a structure that they have in common
with sites like Quoners (2017) and consider.it (2017) which are not tied to a
particular institution, and tools like the Deliberatorium (Klein 2012, 2017).

The work described in this paper is inspired by these kinds of e-participation
systems, and explores computational mechanisms for evaluating the output of these
systems. In other words, we define and formally analyze a computational mechanism
that can take the output of an e-participation system—a number of arguments about a
proposal and opinions aboutwhether or not those arguments have value—and establish
what the balance of opinion is. Indeed, the scenario that we investigate is somewhat
more general than that supported by the systems mentioned above. That is because
existing e-participation systems are limited to either providing a list of arguments for
a proposal and a list of argument against, so that there are no relationships between the
list of arguments, or providing a forum-like setting where arguments are structured in
a tree. In contrast, we allow for a more general discussion.

In particular, in this paper we do the following:
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– We introduce a novel, formal framework—which we call a target-oriented dis-
cussion framework—that can support discussions about whether some proposal
should be accepted or not. (The proposal is the “target”.) This allows participants
in a debate to put forward arguments for and against the target, and to indicate the
relationships between those arguments. (If argument a is in favour of the target
and argument b is against it, then a and b may conflict, and our framework allows
this to be recorded).

– We provide the means for individuals to express their opinions about the proposal
and the arguments that have been put forward in our framework—both arguments
that they have put forward and arguments put forward by others—along with a
method that can assess whether or not the set of opinions as a whole is reasonable.
This notion of reasonableness is established by the formal notion of a coherent
labelling. A coherent labelling can be thought of as a relaxed variant of the standard
argumentation notion of a complete labelling (Baroni et al. 2011) which provides
further flexibility in expressing opinions.1

– We introduce and formally evaluate a family of aggregation functions that take
a set of arguments and opinions about those arguments and return the collective
decision about the target. We investigate the properties of these aggregation func-
tions by borrowing from, and extending, the adaptation of classical properties from
social-choice theory to the domain of argumentation that was carried out in Awad
et al. (2017). We find that the aggregation functions that we introduce span a range
of properties—summarised in Table 3—illustrating the trade-offs between those
properties. We prove that two of the functions guarantee that the outcome satisfies
the property of coherent collective rationality, meaning that they generate a coher-
ent labelling, so that the collective opinion from the discussion is coherent—and
this is the case evenwhen aggregating individual opinions thatmay not be coherent.

As the terminology we have used so far suggests, our work draws both on argu-
mentation theory and social choice theory. We consider that the statements made by
participants in discussion are arguments. That is they are statements that include a
conclusion and the reason why that conclusion is considered to hold. (However, like
much work in argumentation (Dung 1995; Modgil and Caminada 2009), we will deal
with them at a purely abstract level, meaning that we treat them as if they were atomic
objects with no internal structure.) As in standard argumentation theory (Dung 1995),
we consider that arguments can conflict, that they attack each other, for example if
their conclusions are contradictory, but we also consider that arguments may defend
one another, as in Cayrol and Lagasquie-Schiex (2005b). Unlike most work in argu-
mentation theory, we are not directly concerned with computing the acceptability of
the arguments in the discussion using some version of the standard semantics (Baroni
et al. 2011; Baroni and Giacomin 2009). Rather, we are interested in establishing
which arguments the participants in the discussion consider to hold,2 and doing this
is where the ideas from social choice theory come in.

1 As we point out below, this additional flexibility arises because we do not require participants in debates
to conform to the rules for labelling developed in argumentation. We want to allow debaters to be irrational
in this sense, when they assign labels to arguments.
2 Naturally, since we are establishing which arguments hold on the basis of the views of the participants
in the discussion, rather than the rational computation of one of the standard semantics, the results we get
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We consider the problem of merging opinions about arguments in a debate to be an
instance of collective decision-making as studied in social-choice theory. Given a set
of agents, and a set of arguments about a topic, where each agent may have an opinion
about whether or not the arguments hold, we are interested in how the agents can,
as a group, reach a decision about the topic. To deal with this situation, we consider
a family of novel functions which aggregate the opinions of the agents to compute
the overall opinion on the topic. Therefore, our work tackles the same problem that
Awad et al. posed in Awad et al. (2017), and we also encode agents’ opinions about
arguments using a set of non-binary labellings just as in Awad et al. (2017). However,
our work takes an important step beyond (Awad et al. 2017) since we establish the
overall labelling over the set of arguments without assuming independence between
arguments as Awad et al. (2017) does (and as the judgement aggregation and prefer-
ence aggregation literature in general does). Instead we adhere here to the important
observation made in Awad et al. (2017), where the authors note that assuming inde-
pendence is questionable because (as noted above), it is natural for a set of arguments
to have support and attack relationships between them. Since these relationships exist,
it is logical for the process of merging opinions about arguments to take these rela-
tionships between the arguments into consideration in some form. That is what two
of our aggregation functions do, guaranteeing that the resulting aggregated opinion is
coherent, that is, in some sense, free of contradictions. Coherence, in the sense we use
the term, is a weaker condition than the conflict-freeness that is the standard minimum
condition in argumentation theory, and our future work will look to establish whether
other aggregation functions can attain a conflict-free set of opinions.

From a social choice perspective, it is important to note that unlike in the literature
on judgement aggregation and preference aggregation, we do not impose the condition
that opinions satisfy any property from which our aggregation functions can benefit
to guarantee collective rationality. The rationale for this is clear, and the same as the
rationale for not insisting on any conditions on the set of labellings that are given to
the arguments by participants—since the agents that are involved in the discussions
are humans, we cannot assume that they will have rational opinions. That is because
we know that humans are frequently inconsistent when expressing their opinions,
often contradicting themselves. We therefore believe that not assuming rationality is
essential for our aggregation operators to be capable of being used in realistic settings.
Organisation. The paper is structured as follows. Section 2 surveys related work. The
next two sections characterise, Sect. 3, and formalise, Sect. 4, our novel multi-agent
discussion framework. Then, Sect. 5 details both the decision problem that we study
and the desired properties of aggregation functions; Sect. 6 introduces a family of novel
aggregation functions and studies their social-choice properties; Sect. 7 provides an
algorithm for computing the collective decision of a discussion framework using the
functions from Sect. 6 and tests how long it takes to compute a collective decision for

will differ from those that the standard semantics will generate. One might therefore consider the results
irrational in some sense. However, as we discuss at length below, they are rational in the sense of (some
aspects of) social choice theory. And we believe that highlighting the differences between the results as
established by argumentation and the results as established by social choice theory, as our work will do
in the long term, will be to the benefit of both those who study argumentation and those who study social
choice theory.
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realistically-sized discussion frameworks; and Sect. 8 draws conclusions and plans
future research.

2 RelatedWork

We identify several broad research areas with connections to the topics that we discuss
in this paper. These include tools for online discussion, computational argumentation,
and social choice theory.

2.1 Tools for Online Discussion

As mentioned above, we see this work as being inspired by work on online discussion
forums such as Decidim Barcelona (2017), Better Reykjavík (2017) and Parlement
et Citoyens (2017), where participants can carry out a structured discussion around
some topic, typically a policy proposal. These particular tools just allow participants
to offer arguments for and against a proposal, and only in the context of a specific
institution. Other approaches have extended the scope of these tools. One direction is
in developing tools that are not tied to a specific institution. In this category of non-
institutional tools we find Quoners (2017) and consider.it (2017), which we
mentioned above, and Appgree (2017) and Baoqu (2017) where the main focus is on
scalability—making the systems fit for use by large numbers of participants. Another
direction is that of allowing participants to do more than just comment. Here we have
the example of Jackson and Kuehn (2016) and Loomio (2017), where participants can
both comment on proposals, albeit in an unstructured way, and also vote on them.
What distinguishes our work from all of these approaches is that we aim to support
discussions that are more than just structured—they are argument-based, and we take
the interaction between the arguments into account.3

There are other approaches that allow for structured argument-based discussions.
Most notable here is Klein’s work on the Deliberatorium (Klein 2012; Klein and
Convertino 2015)which allows for the presentation of arguments and their interactions.
The Deliberatorium is part of a long line of work that allows to structure reasoning
about complex scenarios in terms of arguments for and against options. Other work in
this line is (Carr 2003; Reed and Rowe 2004; Suthers et al. 1995; Van Gelder 2003),
where the focus is more on drawing the relationships between arguments as a means
of helping people understand the scenarios. Our work differs from these approaches
in its attempt to provide computational methods to summarise the information that has
been put forward. In other words, our focus is on using the results of debate as input
to a computational process, rather than providing support for the debate itself. In that
sense our work could be viewed as a post-processing stage that could be applied in
conjunction with any of the tools to support structured discussion.

3 Although we acknowledge that we do not deal with the interactions as comprehensively as all work in
argumentation does.
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2.2 Computational Argumentation

Computational argumentation (Rahwan and Simari 2009) has a lengthy history within
artificial intelligence. At the time of writing, it is hard to overstate the influence of
the work of Dung (1995) which both introduced the idea of studying argumentation
at the abstract level, that is without considering the structures from which arguments
are constructed, and the idea of using argumentation as a way of establishing a con-
sistent viewpoint from an inconsistent set of data.4 Dung (1995) provided a number
of methods—“semantics” as they are called—to extract a consistent set of arguments
from a set of arguments that conflict with one another, and inspired much subse-
quent work on abstract argumentation systems (Baroni and Giacomin 2009; Modgil
and Caminada 2009; Vreeswijk 1997). This includes work on bipolar argumentation
(Amgoud et al. 2008; Cayrol and Lagasquie-Schiex 2005b), which includes a “sup-
port” relation between arguments.

However, work on abstract argumentation is only one aspect of work on argumen-
tation. In fact, Dung (1995) was pre-dated by work that looked at decision-making
as a process of putting forward reasons—arguments, though they were not called
that at the time—for and against particular conclusion (Fox and Bardhan 1980). This
approach was then refined into systems of argumentation such as (Fox et al. 1993)
and (Krause et al. 1995). Such systems were precursors of work where the internal
structure of an argument is important: logic-based argumentation (Besnard andHunter
2001), assumption-based argumentation (Dung et al. 2006) and structured argumen-
tation systems such as aspic+ (Modgil and Prakken 2013), and DeLP (García and
Simari 2004). In these more subtle forms of argumentation, the focus is often still on
establishing consistency—the difference with abstract argumentation is just that they
don’t consider arguments as primitive objects, rather arguments are constructed from
sentences in some language.

Another line of work in computational argumentation, separate from that on estab-
lishing consistency, is that on argument accrual (Besnard and Hunter 2001; Cayrol
and Lagasquie-Schiex 2005a; Fox and Bardhan 1980; Prakken 2005; Verheij 1995).
Accrual involves the “summing up” of arguments, with the idea of establishing the
strongest argument, sometimes in the face of arguments for and against some option,
typically with the aim of being able to decide between some alternatives.

The work mentioned above uses argumentation as a mechanism for a single entity
to come to a conclusion. However, as Sycara (1990), Walton and Krabbe (1995)
and others have pointed out, argumentation is also a natural mechanism for multiple
entities to use to reach consensus on some point. As a result, argumentation has been
used (Amgoud et al. 2000; McBurney and Parsons 2009) in multiagent systems as
a mechanism for rational interaction (McBurney 2002) for a particular meaning of
“rational”. That is “rational” in the sense that each stage in the interaction is supported
by well-founded reasons. Here we build upon this prior work in rational interaction.
Our approach allows agents to put forth arguments about some topic under discussion,
be them either in favour or against the topic.

4 Though this latter aspect clearly has a debt to (Lin and Shoham 1989).
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Our work connects to several of these themes in argumentation. First, since we
are interested in arguments from a number of participants, our work is clearly related
to the use of argumentation in multiagent interaction. As we will see below, just
like (Amgoud et al. 2000) and subsequent work, we assume a particular protocol for
arguments to be posed, and we are interested in being able to compute the outcome of
a discussion taking into account the arguments put forward by multiple participants.

Second, ourwork connectswith the idea of argumentation as ameans of extracting a
coherent view fromanumber of conflicting arguments.One, commonly used, approach
to doing this is the labelling approach (Baroni et al. 2011), which attaches the labelsin
(for arguments that should be accepted), out (for arguments that should be rejected)
and undec (where the status cannot be decided). In this paper we borrow the idea
of the labelling, but rather than finding one or more consistent labellings from the
relations between arguments, we allow participants to indicate which labels they think
apply to which arguments. In other words, we take participants’ votes on what label
should apply to what argument as input and from them compute a consensus labelling,
where the consensus labelling need only be, in our terminology, “coherent”. Coherency
is formally defined in Sect. 4.3, but informally we can say that a labelling is coherent
if every argument that is labelled in has more more arguments for it than against
it, and if every argument that is labelled out has more arguments against it than for
it. Coherency is a weaker requirement than the consistency applied by the standard
approaches in argumentation (Baroni et al. 2011), thus setting our work apart from that
on merging argumentation systems, for example (Coste-Marquis et al. 2007), which
looks to construct one or more consistent merged labellings from several different
consistent labellings.

Considering the input labellings as votes from human participants places our work
in close relation to that of social argumentation (Leite and Martins 2011), though,
unlike that work we take as input votes on the status of arguments rather than votes
on the strength of the relation between arguments.

2.3 Social Choice Theory

Given a a set of alternatives and a set of agents who possess preference relations over
the alternatives, social choice theory focuses on how to yield a collective choice that
appropriately reflects the agents’ individual preferences (Aziz et al. 2017). With this
aim, social choice theory has extensively explored many ways of aggregating agents’
individual preferences (Gaertner 2009). Since there is a consensus in the literature on
the desirable properties that a “fair” way of aggregating preferences should satisfy
(e.g. no single agent can impose their view on the aggregate; if all agents agree, the
aggregate must reflect the agreement; etc.), aggregation functions can be characterised
and compared in terms of the desirable properties they satisfy. Notice though that
social choice theory counts on multiple negative results, namely impossibility results
showing the incompatibility of certain sets of desirable properties (e.g.Arrow’s famous
impossibility theorem Arrow and Sen 2002).

The work in this paper is in the vein of Awad et al. (2017). There, the authors pose
the very same problem that we tackle here: given a topic under discussion and a set of
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agents expressing their individual opinions about the arguments in the discussion, how
can the agents reach a collectively rational decision? Likewise Awad et al., we con-
sider that reaching a collective decision is a judgement aggregation problem in which
the aggregation of opinions must satisfy desirable social choice properties. A further
similarity with (Awad et al. 2017) stems from the way we encode opinions (subjec-
tive evaluations). Indeed, notice that while in judgement aggregation each proposition
may take on one of two values (True or False), here, when aggregating labellings, each
argument can take on one of three values (lin, out, and undec). Therefore, aggre-
gating labellings, as we do it here, has more in common with non-binary evaluations
(Dokow and Holzman 2010).

Notwithstanding the similarities with Awad et al. (2017), there are several impor-
tant differences with respect to that work and to the judgement aggregation literature
as a whole. First of all, and very importantly, we do not assume independence between
arguments as a fundamental postulate as is the case in Awad et al. (2017). As admitted
byAwad et al., the necessity of independence is questionable because of the dependen-
cies between arguments that come already encoded in the form of relationships such
as attack. Despite that, they opt to stick with independence to keep open the possibility
of proving strategy-proofness. Thus, they follow the usual methodology in judgement
aggregation, though they do not establish the relation between independence and
strategy-proofness. Indeed, independence is a fundamental property in the judgement
aggregation literature because of its theoretical value in proving strategy-proofness and
strategic manipulation. If the independence criterion is not satisfied, then the function
aggregating judgements is not immune to strategic manipulation (Dietrich and List
2007). However, independence is not always upheld. On the one hand, from a theoret-
ical point of view, independence is regarded as too strong a property, since, together
with mild further conditions, it implies dictatorship (Lang et al. 2016). Furthermore, it
is also considered as not very plausible (Mongin 2008).Hence, the theoretical and com-
putational benefits of relaxing independence have been subject of much research (see
e.g. Dietrich and Mongin 2010; Lang et al. 2016; Mongin 2008; Pigozzi et al. 2008).

Against this background, and given that dependencies do exist between arguments,
our work departs from and goes beyond (Awad et al. 2017) by dropping independence.
Thus, the aggregation functions that we introduce in this paper exploit dependencies
between arguments and combine agents’ opinions to yield an aggregated opinion. To
the best of our knowledge, we are the first to take this step in a multi-agent argumen-
tation context5.

A second, major difference has to do with the approach chosen to achieve collec-
tive rationality. Here we focus on designing novel aggregation functions that exploit
dependencies between arguments to ensure collective coherence. Instead, Awad et al.
are concerned with characterising the restrictions that are necessary so that the plural-
ity rule, a well-known voting function in the literature, produces collectively rational
outcomes. Notice that Awad et al. study social choice properties satisfied by the plural-
ity rule by adapting various classical social-choice theoretic properties (see e.g. Arrow

5 While the work of Coste-Marquis et al. (2007) and others on merging argumentation systems could be
considered work on combining opinions in multi-agent argumentation this work is based on methods form
argumentation theory. We come at it from a different perspective.
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and Sen 2002; Arrow et al. 2010) to the argumentation domain. Here we borrow some
of those properties to study our aggregation operators. Nonetheless, since some of
those properties assume independence and we do not, we define further social choice
properties that take into account dependencies between arguments.

More recently, in the intersection of social choice theory and argumentation, we
find the interesting work in Rago and Toni (2017). Similarly to our work, the QuAD-
V framework in Rago and Toni (2017) allows pro and con arguments (attackers and
defenders in our terminology) and agents’ votes over arguments (labels). Nonethe-
less QuAD-V does not allow arguments to be attackers and defenders at the same
time. Although Rago and Toni (2017) propose the QuAD-V algorithm to determine
a collective decision from multiple opinions by exploiting the dependencies between
arguments, their goal is rather different fromours. Thus, they focus on the debate proce-
dure (opinion polling) to ensure that, at the end of the debate, the agents contributewith
individually rational opinions, a weaker version of our notion of coherent labelling.
Instead, our focus is the design of aggregation functions that satisfy desirable social
choice properties, particularly collective rationality (strict rationality in Rago and
Toni’s terms), without requiring agents’ individual rationality. Along this line, notice
also that the social choice properties of the QuAD-V algorithm are not investigated.

Finally, notice that unlike the literature on judgement aggregation and preference
aggregation, in this paper we will not impose any particular properties on opinions
from which our aggregation operators can benefit to guarantee collective rationality.
Note that this is the case, for instance, for some aggregation functions in the judgement
aggregation literature. For example, among distance-based aggregators, the Kemeny
rule (Endriss and Moulin 2016) only considers consistent judgement sets, and hence
disregards those which are not, and premise-based aggregators (Endriss and Moulin
2016) typically make assumptions on the agenda to guarantee consistency and com-
pleteness. In contrast to that literature, some of the aggregation operators introduced
in this paper guarantee collective rationality independently of opinions’ properties.
As discussed above, the rationale for this is clear: we must disregard rationality when
humans are involved in debates because their opinions may show contradictions and
inconsistencies.

3 Introducing our Discussion Framework

Overall, we consider a situation where several individuals try to reach some consensus
on a given issue. We refer to this issue or topic as the discussion target. During
the discussion process, individuals provide arguments in favour or against this topic
(or other arguments) in an orderly manner. Notice that although the example used
throughout this paper considers a norm as the topic under discussion, this need not
be the case. Indeed, we can imagine any of the dialogues discussed in Parsons et al.
(2003), for example, to be discussions about a target which is the subject of the first
statement to be made in the dialogue. Putting forward arguments, which may either be
directed towards the target, or to arguments that have previously been put forward, is
one way in which participants in the discussion can make their points of view known.
In addition, participants are able to express their opinion on the target as well as by
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indicating which arguments they find acceptable or not. Next Sect. 4 is devoted to
formalise this setting, which, as described in Ganzer-Ripoll et al. (2017a), we name it
target-oriented argumentation framework.

We admit this is clearly a rather restricted notion of a discussion, not least because
of the restriction to a single target, and many real-world discussions would not be
encompassed by it. Furthermore, as we shall see in Sect. 4, what we formalise is even
simpler, because we insist that any statement made after the target is an argument, and
this argument has to relate to the target and/or to previous arguments. However, despite
this simplicity, a target-oriented discussion allows more complex discussions than any
of the existing, implemented, discussion frameworks discussed above. Thus, while we
may need to extend the target-oriented discussion framework if we want to capture
the full richness of human discussions, what we have here is already a considerable
step beyond what currently exists.

Within a target-oriented argumentation framework,wedistinguish two relationships
between arguments: one argument can be for another argument, or it can be against
another argument. These possible relationships between arguments are those discussed
in Besnard and Hunter (2001)6 Notice that for and against relationships are binary
and directed. Moreover, they are mutually exclusive. In addition, in order to allow
participants in a discussion to show their opinion of existing arguments, we make use
of the notion of labels for arguments. Whereas in standard argumentation, labels are
derived from the structure of the set of arguments (Baroni et al. 2011), in our approach
a set of labels are assigned by each participant in the discussion. Every label is either
in, out or undec. Participants assign an in label to the target or an argument in
order to indicate that they accept it. Conversely, they assign out to signal rejection.
Finally, an undec label denotes undecision, which may be related to two different
situations. Firstly, this label can be used to indicate a participant is doubtful about
whether to opt for one of the two options (i.e., in or out). Secondly, uncertainty may
also derive from situationswhere participants simplymiss the opportunity of assigning
a label (or, in other words, providing their opinion about the target or an argument).
Such situations seem to be rather realistic in human debates, as we can hardly expect
participants will label absolutely all discussion elements.

Once participants have allocated labels to the target and arguments, we have a
number of sets of labels. In order to reach a consensus onwhether the target is accepted
or rejected, we need to aggregate the sets of labels. This is the main contribution of
this paper, investigating how to aggregate all the legitimate and subjective opinions of
the participants, expressed as labellings, into a single collective labelling. Once we
can aggregate all labellings, then we will be able to assess whether participants as a
whole accept, reject, or fail to reach a clear decision about the topic (i.e., the target)
under discussion.

In establishing suitable aggregation functions, we have to take into account that
we are dealing with human providers of labels, and so cannot expect that the labels
are assigned in a rational manner—contradictions or inconsistencies in assigning
labellingsmayoccurwhen expressing opinions. Despite allowing individual labellings

6 The notions of “for” and “against” in Besnard andHunter (2001) are tied to argument conclusions because
this work deeps down into the level of argument structure. However, since we deal at the argument abstract
level, we intend to capture the same notions through argument relations.
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Table 1 The opinions of the
neighbours in the discussion
about the street cleaning norm

Arguments

N a1 a2 a3

Agents Ag1 ✗ ✓ ✓ ✓

Ag2 ✓ ✗ ✗ ✓

Ag3 ✓ ✗ ✓ ✓

to be irrational, we still aim at designing aggregation functions that are able to combine
these “imperfect” individual labellings into a “reasonable” agreed opinion. We intu-
itively characterise “reasonable” by the notion of coherent labelling (Ganzer-Ripoll
et al. 2017a) and other desirable properties. The next section formally introduces the
notion of coherence and subsequent sections study how it is possible to define some
aggregation functions that will yield a single aggregated labelling that satisfies several
desirable properties which include coherence.

Having introduced the concept of a target-oriented discussion framework, we intro-
duce a simple example that will allow us to illustrate some of the ideas in the paper.

Example 1 (Neighbours’ debate) Suppose Alan, Bart, and Cathy are neighbours and
they aim to reach an agreement on the following norm (N ): “Neighbours should take
fixed turns at 6 a.m. for cleaning leaves in the street”. Thus, they pose three different
arguments: a1 = “The schedule is too rigid”; a2 = “6 a.m. is too early”; and
a3 = “Fair task distribution”. Notice that: arguments a1 and a2 are against N whereas
a3 is for it; and a2 is in favour of a1, since someone that wakes up later would prefer to
change the schedule. Making explicit both these arguments and their relations allows
Alan, Bart, and Cathy to start sharing their opinions. Thus they can indicate whether
they think each argument should be accepted or rejected, or whether they have no
opinion about it: On the one hand, Alan (shown as Ag1 in first row in Table 1) loves
getting up late, and so he rejects norm N by assigning an out label to the target and
accepts arguments a1 and a2 by labelling them as in. However, he concedes argument
a3 so that it also labels it as in. On the other hand, Bart (Ag2 in second row in Table 1)
is used to getting up early and is clearly in favour of norm N . Consequently, he accepts
both norm N and argument a3 and rejects arguments a1 and a2 which are against N .
Finally, Cathy (Ag3 in third row in Table 1) is keen on routines, and thus she accepts
norm N and argument a3 and rejects argument a1. Nevertheless, she likes to get up at
7 a.m., so she accepts a2.

Given this situation, the question that arises, and which this paper answers, is:
should the neighbours agree to accept this street cleaning norm? or, in other words:
how should they aggregate their individual opinions into a consensual one?

4 The Target-Oriented Discussion Framework

The debate between neighbours in the previous section exemplifies the key concepts
of our discussion framework. In this framework, a norm N is the target of the debate
between multiple agents. Agents can put forward arguments relating to the target
or to other arguments and can express their opinions on those arguments together
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with the target of the debate. In this section, in addition to introducing formally the
key concepts of our framework, we define opinions not presenting inconsistencies
as coherent. In particular, we introduce the target-oriented discussion framework in
Sect. 4.1, the agent’s labelling representing the agent’s opinions in Sect. 4.2, and our
coherence notion in Sect. 4.3.

4.1 Formalisation of the Target-Oriented Discussion Framework

We aim to define a formal framework capturing both for and against relations between
arguments. In this sense our work has some similarities with work in bipolar argu-
mentation frameworks (Amgoud et al. 2008; Cayrol and Lagasquie-Schiex 2005b) and
work on argument accrual (Besnard and Hunter 2001; Prakken 2005; Verheij 1995).
The motivation behind including arguments for the target and for other arguments is
given by novel works concerning humans participating in large-scale argumentation
frameworks. (e.g. Klein 2012; Klein and Convertino 2015). These works allow human
participants to express both for and against relationships between arguments. Within
our framework, we aim to provide that expressiveness.7 Our desire to capture human
uses of argumentation also explains many of the differences between our system and
those in the literature—this was explored in more detail in Sect. 2. In what follows
we use the term “attack” express the existence of an “against” relationship between
two arguments, as is common in the argumentation literature. We also use the term
“defence” to express the existence of a “for” relationship between two arguments. We
do not use the term “support” for this positive relation between arguments to stress
the difference between our work and bipolar argumentation frameworks.8

To simplify the formal analysis, we provide some restrictions on the way that
a discussion unfolds. In other words, we insist that discussions follow a particular
protocol with the following steps:

1. One agent puts forward the target of the discussion.
While any agent is allowed to start a discussion by putting forward a target, only
one target is allowed per discussion.

2. Any agent is then allowed to put forward an argument in favour of, or against, the
target and/or any arguments that have already been put forward.
This process continues until no agent has any further arguments to put forward.

3. Agents express their opinions about whether the arguments that have been put
forward hold, or whether those arguments do not hold by assigning in, out or
undec labels to the arguments.
Agents are not required to have an opinion about whether every argument holds or
not—they are allowed to not express an opinion about any given argument—but

7 Thus while the “for” relations between arguments can be converted into “against” relations (if a if for b
then it is against c which is against a), this does not appear to be what people naturally do, and since we
aim to support natural human argument, we work directly with “for” and “against” relations.
8 In bipolar argumentation systems, the support relations are mainly used to infer additional “extended”
attack relations which are fed into a standard argumentation semantics rather than being weighted up,
accrual-style, with attack relations as they are in our work.
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Fig. 1 Representation of an
attack relationship b �→ a and a
defence relationship d � c

any agent can express an opinion about any argument. Only one opinion can be
expressed about any given argument by any one agent.

4. The opinions of the agents are then merged to establish a consensus about the
status of each argument, and the status of the target.

Before defining the structure that results from the first two steps of this process, we
define a more general structure, the discussion framework.

Definition 1 A discussion framework is a triple DF = 〈A, �→,�〉, whereA is a finite
set of arguments, and �→⊆ A × A and �⊆ A × A are disjoint attack and defence
relationships (i.e., �→ ∩ �= ∅). We represent that argument b ∈ A attacks argument
a ∈ A as b �→ a, and that b defends a as b � a.

A discussion framework can be also modelled as a graph whose nodes represent the
arguments and whose edges represent either attack or defence relationships between
arguments. Figure 1 shows the graphical representation of attack and defence rela-
tionships.

Next, we define the concept of descendant to capture the indirect relationship exist-
ing between two arguments through a sequence of attack and defence relationships.

Definition 2 Let DF = 〈A, �→,�〉 be a discussion framework and a ∈ A one of its
arguments. We say that an argument b ∈ A is a descendant of a if there is a finite set
of arguments {c1, . . . , cr } ⊆ A such that b = c1, c1R1c2, · · · , cr−1Rr−1cr , cr = a
and Ri ∈ {�→,�} for all 1 ≤ i < r .

Given our notion of descendant, next we formalise a target-oriented discussion frame-
work as having a target argument (e.g., a norm or proposal) as the main focus of the
discussion.

Definition 3 A target-oriented discussion framework T ODF = 〈A, �→,�, τ 〉 is a
discussion framework satisfying the following properties: (i) for every argument a ∈
A, a is not a descendant of itself; and (ii) there is an argument τ ∈ A, called the target,
such that for all a ∈ A \ {τ }, a is a descendant of τ .

Observation 1 The previous definitions allow us to identify some properties to further
characterise a target-oriented discussion framework:

1. No reflexivity. No argument can either attack or defend itself. Formally, ∀a ∈ A,
a � �→ a and a � a.

2. No reciprocity. If an argument a attacks another argument b, then a cannot be
attacked or defended by b, namely ∀a, b ∈ A, if a �→ b then b � �→ a and b � a.
Analogously, if an argument a defends another argument b, a cannot be defended
or attacked by b, namely ∀a, b ∈ A, if a � b then b � a and b � �→ a.
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3. No target contribution. The target neither attacks nor defends any other argument,
namely for all a ∈ A \ {τ }, τ � �→ a and τ � a. This distinguishes the special role
of the target as the centre of discussion to which attacks and supports are directly
or indirectly pointed.

Considering the previous definitions and observation, we can also infer the propo-
sition below.

Proposition 1 Let T ODF = 〈A, �→,�, τ 〉 be a target-oriented discussion frame-
work and E =�→ ∪ �. The graph associated to a TODF, GT ODF = 〈A, E〉, is a
directed acyclic graph, where A is the set of nodes and E the edge relationship. ��

Note the similarity between the graph structure of a T ODF and the way that
(Proietti 2017) models debates using bipolar argumentation frameworks.

We can formalise the protocol for constructing a T ODF as follows:

Definition 4 Given a discussion framework DF = 〈A, �→,�〉, the discussion frame-
work DF ′ = 〈A′, �→′,�′〉 is constructed target-first if it is constructed according to
the following rules:

1. If A = ∅ then A′ = {τ } for some argument τ . τ is the target of DF ′.
2. If A �= ∅ then A′ = A ∪ {b} for b /∈ A and there are subsets of arguments

AA,AD ⊆ A with AA ∪ AD �= ∅ and AA ∩ AD = ∅, such that b �→ a for each
a ∈ AA and b � c for each c ∈ AD , and hence �→′= �→ ∪⋃

a∈AA
{(b, a)} and

�′= �→ ∪⋃
c∈AD

{(b, c)}.
Note that in rule 2, b must attack or defend at least one argument in A and can attack
or defend multiple arguments, but cannot attack and defend at the same time the very
same argument.

The following proposition can be directly derived from Definitions 3 and 4.

Proposition 2 Any discussion framework DF constructed target-first will be a target-
oriented discussion framework.

It is possible to construct a target-oriented discussion framework in a way that is not
target-first, but in so far as we consider the construction of a discussion framework
we will only consider target-first construction. Doing so not only ensures that the
discussion framework is of a form that is easy to analyse—because it is acyclic—but
it alsofitswith theway, sketched informally above, that existing discussion frameworks
are used in practice.

Example 2 (A formalization of the neighbourhood discussion) Figure 2a depicts the
neighbours’ target-oriented discussion framework. The nodes in the graph represent
the set of arguments A = {N , a1, a2, a3} in the example of Sect. 3, where N is the
street cleaning norm, and a1, a2, a3 are the rest of arguments. Thus, N , the norm
under discussion, is taken to be the target τ in our T ODF . As to edges, they represent
both the attack and defence relationships: a1 �→ N , a2 �→ N and a2 � a1, a3 � N
respectively.
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(a) (b)

Fig. 2 The example of the neighbours as a T ODF . a associated graph to T ODF . b T ODF together with
labellings

4.2 Argument Labellings

Once the notion of target-oriented discussion framework has been formalised, in this
section we introduce the agent’s opinions, what we call argument labellings. In terms
of the four step protocol given above, this corresponds to step 3. Recall that step
3 involves agents expressing their opinions about the arguments in the discussion
framework. Here we consider that each such opinion corresponds to a labelling in the
sense of Baroni et al. (2011), Caminada (2006) and Caminada and Gabbay (2009).
That is, a labelling is an assertion about some or all of the arguments in the discussion
framework being in one of three states: in, meaning that they are accepted by the
agent expressing the opinion; out, meaning that they are not accepted by the agent
expressing the opinion; or undec meaning that the agent doesn’t have an opinion
as to whether they are in or out. Besides expressing uncertainty the undec label
represents the lack of an opinion. This feature is specially relevant in large-scale
debates. As can be seen in Klein (2012), participants usually give their opinion about
those arguments of their interest, but we cannot expect them to provide their opinions
about all arguments posed within the context of a discussion.

Definition 5 (Argument labelling) Let T ODF = 〈A, �→,�, τ 〉 be a target-oriented
discussion framework. An argument labelling for a T ODF is a function L : A −→
{in,out,undec} that maps each argument of A to one of the following labels: in
(accepted), out (rejected), or undec (undecidable).

We note as Ag = {ag1, . . . , agn} the set of agents taking part in a T ODF , and
as Li the labelling encoding the opinion of agent agi ∈ Ag. We will put together the
opinions of all the agents participating in an argumentation as follows.

Definition 6 (Labelling profile) Let L1, . . . , Ln be argument labellings of the agents
in Ag, where Li is the argument labelling of agent agi . A labelling profile is a tuple
L = (L1, . . . , Ln).

Example 3 (The opinions of the neighbours) Figure 2b graphically depicts Alan’s,
Bart’s, and Cathy’s labellings (noted as L1, L2, L3 respectively), representing their
opinion about the T ODF illustrated by Fig. 2a.
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4.3 Coherent Argument Labellings

As pointed out in Awad et al. (2017), there are several ways in which a labelling
over an argument structure can be evaluated. In Awad et al. (2017), the authors use the
notion of complete labelling (Baroni et al. 2011). A complete labelling requires that
an argument is labelled in iff all the arguments which attack it are labelled out; and
an argument is labelled out iff at least one of the arguments that attack it is labelled
in. The idea of a complete labelling starts with Dung (1995), and reflects the idea
that a rational agent will label arguments consistently—thus an argument can only
be accepted (in) if all of its attackers are not accepted (out) and so on. We believe
that the restrictions imposed by complete labelling conditions are not suitable for
human participation systems. Instead, we impose less conditions for a labelling to
be classified as reasonable or coherent. Hence, given an argument a we contrast
the opinions about the argument, named direct opinion, with the opinions about its
immediate descendants, what we call indirect opinion, and look for ways in which
these may be made somewhat consistent.

Consider the neighbours’ example in Fig. 2b, given argument N , we take into
consideration its assigned labels , i.e., its direct opinion L1(N ), L2(N ), and L3(N );
and the labels assigned to its descendants (a1, a2, and a3), i.e., its indirect opinion.
Similarly for argument a1, its direct opinion is formed by the labels assigned to a1 and
its indirect opinion is determined by the labels of its defending argument a2.

Then, the labelling over an argument will be coherent if its indirect opinion agrees
with its direct opinion. In other words, when the majority of labels in its indirect
opinion are in line with its direct label. In the following, the formalization of the
notion the coherent labelling is proposed.

First, given an argument a we define its set of attacking arguments A(a) = {b ∈
A|b �→ a}; and its set of defending arguments D(a) = {c ∈ A|c � a}. Hence, the
labels attached to the arguments in A(a) ∪ D(a) form the indirect opinion of a.

Let L be a labelling and S a set of arguments, we denote the number of arguments
accepted in S as inL(S) = |{b ∈ S |L(b) = in}| and the number of rejected
arguments as outL(S) = |{b ∈ S |L(b) = out}|. Given this notation, we can
consider the number of accepted defending arguments of a as inL(D(a)) and the
number of rejected defending arguments as outL(D(a)). Similarly, the number of
accepted and rejected attacking arguments respectively is represented by inL(A(a))

and outL(A(a)), respectively. We define the positive and negative support of the
indirect opinion about an argument below.

Definition 7 (Positive support) Let a ∈ A be an argument and L a labelling onA. We
define the positive (pro) support of a as: ProL(a) = inL(D(a)) + outL(A(a)). If
ProL(a) = |A(a) ∪ D(a)| we say that a receives full positive support from L .

Definition 8 (Negative support) Let a ∈ A be an argument and L a labelling on A.
We define the negative (con) support of a as:ConL(a) = inL(A(a))+outL(D(a)).

If ConL(a) = |A(a) ∪ D(a)| we say that a receives full negative support from L .

Observe that the positive support of an argument merges the accepted defending
arguments with the rejected attacking ones, whereas the negative support merges the
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Table 2 The coherence of the labellings from the neighbourhood discussion

Labellings

L1 L2 L3

Positive
support

Negative
support

Direct
label

Positive
support

Negative
support

Direct
label

Positive
support

Negative
support

Direct
label

a1 1 0 in 0 1 out 1 0 out

a2 0 0 in 0 0 out 0 0 in

a3 0 0 in 0 0 in 0 0 in

N 1 2 out 3 0 in 2 1 in

Cohe
rence

� � ✗

accepted attacking arguments with the rejected defending ones. Table 2 illustrates the
positive and negative support for the arguments involved in the neighbour’s example.

We now introduce our notion of coherence by combining the positive and negative
support of an argument.We consider that a labelling is coherent if for each argument
the next conditions are fulfilled: (1) if an argument is accepted, that is it is labelled
in, then its positive support has to be higher than its negative support and (2) if an
argument is rejected, is labelled out, then its negative support has to be higher than
positive support

Definition 9 (Coherence) Given a T ODF = 〈A, �→,�, τ 〉, a coherent labelling is a
total function L : A → {in,out,undec} such that for alla ∈ Awith A(a)∪D(a) �=
∅: (1) if L(a) = in then ProL(a) ≥ ConL(a); and (2) if L(a) = out then
ProL(a) ≤ ConL(a).

To finish, we define a more general notion of coherence, a stronger one, taking into
account what is the difference between the positive and negative support.

Definition 10 (c-Coherence) Let T ODF = 〈A, �→,�, τ 〉 be a target-oriented discus-
sion framework. A c-coherent labelling for some c ∈ N is a total function L : A →
{in,out,undec} such that for all a ∈ A with A(a) ∪ D(a) �= ∅: (i) if L(a) = in
then ProL(a) > ConL(a)+c; (ii) if L(a) = out then ProL(a)+c < ConL(a);
and (iii) if L(a) = undec then |ProL(a) − ConL(a)| ≤ c.

Note that the weakest form of c-coherence, 0-coherence, is exactly the coherence
of Definition 9.

Let T ODF , we will note the class of all the argument labellings of T ODF as
L(T ODF), the subclass of coherent argument labellings as Coh(T ODF), and the
subclass of c-coherent argument labellings as Cohc(T ODF) for some c ∈ N.

Example 4 Now we apply this definition to the example in Fig. 2b. Table 2 shows that
while labellings L1 and L2 are coherent, L3 is not. L3 is not coherent because the
labelling is not coherent for argument a1: while the direct opinion on the argument
indicates rejection (L3(a1) = out), its indirect opinion indicates acceptance (its pos-
itive support (1) is greater than its negative support (0)). Just L1, L2 belong to the
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subclass of its coherent argument labellings Coh(T ODF). Moreover, L1 and L2 are
0-coherent.

We have now provided the machinery for agents to express their opinions about the
arguments in a target-oriented argumentation framework, and so have all we need to
support step 3 of the protocol in Sect. 4.1.

5 The Aggregation Problem

As stated above, our goal is to help agents reach a collective decision on the acceptance
or rejectionof a target. This corresponds to step4of the protocol inSect. 4.1. InSect. 5.1
we cast our goal as a judgement aggregation (List and Pettit 2002) problem that is
solved by having a set of agents collectively decide how to label a target-oriented
argumentation framework. We propose to solve such problem using an aggregation
function that provides a label for the target and the arguments. Although labellings
can be aggregated in different ways, here we follow (Awad et al. 2017) in requiring
the outcome of an aggregation must be fair. In particular, Sect. 5.2 defines a set of
properties to analyse different aggregation functions.

5.1 Collective Labelling

First, we define our notion of discussion problem by putting together a TODF and the
individual labellings of the agents involved in a discussion.

Definition 11 (Labelling discussion problem) A labelling discussion problem LDP
is a pair 〈Ag, T ODF〉, where Ag is a finite, non-empty set of agents, and T ODF is
a target-oriented discussion framework.

In our example, the labelling discussion problem is LDP = 〈{ag1, ag2, ag3},
T ODF〉. Our goal is to aggregate the individuals’ labellings in a LDP to produce a
labelling that represents the collective opinion in the discussion.Again, in our example,
that would amount to aggregating L1, L2, L3 into a single labelling.

Definition 12 (Aggregation function) Given a labelling discussion problem
〈Ag, T ODF〉, a function F : D −→ L(T ODF), where D ⊆ L(T ODF)n , is
called an aggregation function for the discussion problem.

In short, an aggregation function F outputs a single labelling from the opinions of
the agents contained in a labelling profile. The resulting single labelling encodes the
collective decision over the target and the arguments.

Definition 13 (Decision over a target) Given an aggregation function F for a labelling
discussion problem 〈Ag, T ODF〉 and a labelling profile L, the label F(L)(τ ) stands
for the decision over the target of the T ODF .
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5.2 Social Choice Properties

Social choice theory provides a collection of formal properties that make it possible to
characterise aggregation methods in terms of outcome fairness (Dietrich 2007). Based
on Awad et al. (2017), here we formally adapt some of these properties to characterise
the desirable properties of an aggregation function in terms of both the arguments in
a discussion framework and the collective decision output by the function. Besides
these adapted properties, we define some novel properties to characterise aggregation
functions with regard to: our coherence notion; and the consideration of dependencies
between arguments, recall that our work is the first to relax the limiting assumption of
argument independence in the context of collective decisions.

The first two properties characterise aggregation functions in terms of the labellings
that they can take as input. In particular, we first adapt from Awad et al. (2017) the
notion of exhaustive domain to characterise aggregation functions defined for any
labelling profile; and, then, we modify this property to consider if a function is at least
defined for coherent labelling profiles.

Exhaustive Domain (ED) (Awad et al. 2017). An aggregation function F satisfies
ED if its domain is D = L(T ODF)n , namely if the function can operate over all
labelling profiles.
Coherent Domain (CD). An aggregation function F satisfies CD if its domain
contains all coherent labelling profiles, namely Coh(T ODF)n ⊆ D.

Moreover, we also define collective coherence as a property characterising aggre-
gation functions that produce coherent outcomes.

Collective coherence (CC). An aggregation function F satisfies CC if for all
L ∈ D F(L) ∈ Coh(T ODF).

We consider CC as the most important property to satisfy by an aggregation func-
tion. Notice that an aggregation function fails at satisfying collective coherence when
it is not able to produce a coherent labelling. This is the case when there is a contradic-
tion between the collective label (direct opinion) and the collective indirect opinion
for some argument. Such contradiction may pose a threat to the acceptability of col-
lective decisions (Thagard 2002). Notice that collective coherence is the counterpart
of the collective rationality property defined in Awad et al. (2017). There, Awad et al.
require that the outcome of aggregating labellings is a complete labelling. As argued in
Sect. 4.3, our notion of coherence can be viewed as a relaxation of the notion of com-
pleteness. Hence, collective coherence can be regarded as our relaxation of collective
rationality.

Within a discussion, the opinions of all the agents involved must be considered
equally significant. Anonymity is a social choice property that captures such require-
ment.

Anonymity (A) (Awad et al. 2017). Let L = (L1, . . . , Ln) be a labelling profile
in D, σ a permutation over Ag, and L′ = (Lσ(1), . . . , Lσ(n)) the labelling profile
resulting from applying σ over L. An aggregation function F satisfies anonymity
if F(L) = F(L′).
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The non-dictatorship property requires that no agent overrules the opinions of rest
of the agents. Notice that since non-dictatorship follows directly from the satisfaction
of anonymity, the former is a weaker version of the latter.

Non-Dictatorship (ND) (Awad et al. 2017). An aggregation function F satisfies
ND if no agent agi ∈ Ag satisfies that F(L) = Li for every labelling profile
L ∈ D.

Another important property in the social choice literature is unanimity, which char-
acterises the behaviour of aggregation functions when there is agreement among the
agents’ opinions. Here, we define two unanimity properties that take into account the
relationships between the arguments in the target-oriented discussion framework. In
particular, we adapt the notion of unanimity to express a different desirable prop-
erty: if all agents share the very same direct opinion on an argument, we demand
that the collective opinion is in line with such agreed opinion. We name this property
direct unanimity to reflect that only direct opinions are taken into account. Then, we
expand the notion of unanimity to consider the dependencies between the arguments
and study the cases when there is unanimity in the indirect opinions. In particular,
endorsed unanimity is the counterpart of direct unanimity for indirect opinions: if
there is an unanimous indirect opinion for an argument, the collective opinion for the
argument must be in line with it.

Direct Unanimity (DU). Let L = (L1, . . . , Ln) be a labelling profile, where
L ∈ D. An aggregation function F satisfies DU if, for any a ∈ A such that
Li (a) = l for all Li ∈ L, where l ∈ {in,out,undec}, then F(L)(a) = l holds.

Endorsed Unanimity (EU). Let L = (L1, . . . , Ln) be a labelling profile such
that L ∈ D. An aggregation function F satisfies EU if:

(i) For any a ∈ A such that a counts on full positive support for all Li ∈ L, then
F(L)(a) = in;

(ii) For any a ∈ A such that a counts on full negative support for all Li ∈ L, then
F(L)(a) = out.

In addition to unanimity, we also consider a complementary property, namely sup-
portiveness. This requires that an aggregation function does not label an argument
with a label that has not been employed by any agent.

Supportiveness (S) (Awad et al. 2017). An aggregation function F satisfies S if
for every argument a ∈ A and for all labelling profile L = (L1, . . . , Ln), L ∈ D,
we can find some agent agi ∈ Ag for which F(L)(a) = Li (a) holds.

Monotonicity is a property aimed at capturing how the result of an aggregation func-
tion changes as opinions, expressed as labellings on arguments, change. In particular,
if some of the direct opinions of an argument change to become the same as its col-
lective labelling, then this collective labelling should remain the same. Here we adapt
monotonicity and in-out-monotonicity properties from Awad et al. (2017). Unlike
monotonicity, in-out-monotonicity (we prefer the name binary monotonicity) only
considers the in and out labels.9

9 Ensuring the monotonicity of undec is particularly hard.
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Monotonicity (M) (Awad et al. 2017). Let l ∈ {in,out,undec} be a
label, a ∈ A an argument, and L = (L1, . . . , Li , . . . , Li+k, . . . , Ln), L′ =
(L1, . . . , L ′

i , . . . , L
′
i+k, . . . , Ln), L,L′ ∈ D, two profiles that only differ on the

labellings of agents i, . . . , i + k. We say that an aggregation function F is mono-
tonic if L j (a) �= l while L ′

j (a) = l for all j ∈ {i, . . . , i + k}, then F(L)(a) = l
implies that F(L′)(a) = l.

Binary Monotonicity (BM) (Awad et al. 2017) Let l ∈ {in,out} be a
label, a ∈ A an argument, and L = (L1, . . . , Li , . . . , Li+k, . . . , Ln), L′ =
(L1, . . . , L ′

i , . . . , L
′
i+k, . . . , Ln), L,L′ ∈ D, two profiles that only differ on

the labellings of agents i, . . . , i + k. We say that an aggregation function F is
binary monotonic if L j (a) �= l while L ′

j (a) = l for all j ∈ {i, . . . , i + k}, then
F(L)(a) = l implies that F(L′)(a) = l.

We expand the notion of monotonicity with two novel properties that, unlike the
notion of monotonicity presented in Awad et al. (2017), consider the opinions of an
argument’s descendants. The first of these novel properties, which we call familiar
monotonicity,10 determines that when the direct support for the collective labelling
of an argument increases, the collective labelling must not change provided that the
opinions on the descendants of the argument do not change either. The need for the
latter condition stems from the fact that an argument’s collective labellingmight change
after the opinions on its descendants are changed. The second property that we propose
is the binary version of familiar monotonicity.

Familiar Monotonicity (FM). Let l ∈ {in,out,undec} be a label, a ∈ A
an argument, and L = (L1, . . . , Li , . . . , Li+k, · · · , Ln), L′ = (L1, . . . , L ′

i , . . . ,

L ′
i+k, · · · , Ln),L,L′ ∈ D, two profiles that only differ on the labellings of agents

i, . . . , i + k. We say that an aggregation function F satisfies FM if L j (a) �= l
while L ′

j (a) = l and L j (b) = L ′
j (b) for all j ∈ {i, . . . , i + k} and argument b

descendant of a, then F(L)(a) = l implies that F(L′)(a) = l.

Binary Familiar Monotonicity (BFM). Let l ∈ {in,out} be a label,
a ∈ A an argument, and L = (L1, . . . , Li , . . . , Li+k, · · · , Ln), L′ =
(L1, . . . , L ′

i , . . . , L
′
i+k, · · · , Ln), L,L′ ∈ D, two profiles that only differ on the

labellings of agents i, . . . , i + k. We say that an aggregation function F satisfies
BFM if L j (a) �= l while L ′

j (a) = l and L j (b) = L ′
j (b) for all j ∈ {i, . . . , i + k}

and argument b descendant of a, then F(L)(a) = l implies that F(L′)(a) = l.

The previous notions of monotonicity are related:

Proposition 3 If an aggregation function is monotonic (respectively binary mono-
tonic), then it satisfies familiar monotonicity (respectively binary familiar monotonic-
ity).

Proof The proof is straightforward because the satisfaction of the hypothesis required
by familiar monotonicity (resp. binary familiar monotonicity) implies the satisfaction
of the hypothesis required by monotonicity (resp. binary monotonicity). ��
10 We call it “familiar” because it captures the monotonicity of the descendants—the family—of an argu-
ment.
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Finally, the notion of independence (Awad et al. 2017) states that the aggregated label
for an argument must depend only on the labels that different agents have for that argu-
ment. That is, the aggregated label does not depend on the labels for other arguments.
Independence is not a desirable property; but we include it here for completeness.

Independence (I) (Awad et al. 2017). Let be two profiles L = (L1, . . . , Ln) and
L′ = (L ′

1, . . . ,
′ Ln), such that L,L′ ∈ D; and a ∈ A an argument, such that for

all agents i ∈ {1, . . . , n} Li (a) = L ′
i (a). An aggregation function F satisfies I if

F(L)(a) = F(L′)(a).

In this section we have listed a set of properties to characterise aggregation func-
tions. However, it is important to note that not all of them are equal. For a multi-party
argumentation-based discussion we believe that Collective Coherence is the most
important property. If an aggregation function is collectively coherent, then it extracts
a coherent labelling, regardless of the coherencyof the individual opinions being aggre-
gated. Along with collective coherence, we also consider that aggregation functions
should satisfy the two domain related properties—Exhaustive Domain and Coherent
Domain (where we would prefer exhaustive domain to allow wider applicability)—
and the usual social choice properties of Anonymity and (if that is not possible)
Non-Dictatorship. We also consider that aggregation functions should be monotonic,
and, given that we want to capture dependencies, Familiar Montonicity (binary or
otherwise) is then desirable. Unanimity is also important, but we consider that this
is less important, since we can imagine cases in which unanimity is not satisfied to
achieve more important properties such as coherence.11

We do not think that aggregation functions should satisfy the remaining properties,
namely Monotonicity (binary or otherwise), Supportiveness and Independence.12 We
only include them in order to provide a complete characterisation of aggregation
functions.

6 Designing Aggregation Functions to Enact Collective Decision
Making

The purpose of this section is to design aggregation functions that calculate the collec-
tive labelling for a labelling discussion problem and, thus, the decision over a target.
With this aim, notice that in Sect. 1 we observed that independence cannot be con-
sidered as a reasonable assumption, and hence our aggregation functions should aim
at exploiting dependencies between arguments. At this point, the question is how to
exploit dependencies, which fundamentally amounts to deciding how to exploit indi-
rect opinions when computing the aggregated labelling for a given argument. This
motivates the design in this section of a family of aggregation functions that exploit

11 For example, when everyone has voted that a contradictory pair of arguments—e.g., that taxes should
be cut to improve the economy and that the budget should be balanced in order to improve the economy—
should both be in, we would prefer a function that gives up unanimity and identifies that one of these
arguments must be out to ensure collective coherence to a function that ensures unanimity and insists that
they must both be in. We realise that there are real life groups, such as the current Republican caucus in
the US Congress, which would prefer unanimity to collective coherence in such cases.
12 Note these properties are related to the argument independence assumption that we are relaxing here.
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indirect opinions in differentways, namely: (i) by giving priority to direct opinions over
indirect opinions; (ii) by giving priority to indirect opinions over direct opinions; and
(iii) by combining both direct opinions and indirect opinions considering that they are
valuable to the same degree. Besides introducing such functions in Sects. 6.1.2, 6.1.3,
and 6.1.4 below, we also investigate the social choice properties that each one sat-
isfies. Thereafter, in Sect. 6.2 we compare the satisfied social choice properties per
aggregation function to elucidate the aggregation function that best exploits indirect
opinions. Before that, and for the sake of completeness, this section starts, in 6.1.1,
by introducing an aggregation function that completely disregards indirect opinions:
the so-called majority rule. This will allow us to analyse, as part of our discussion in
Sect. 6.2, the benefits and drawbacks, in social choice terms, of exploiting indirect
opinions.

Through the whole section, we will employ the following notation to represent
the direct positive and negative support of an argument. Let L = (L1, . . . , Ln) be a
labelling profile and a an argument, inL(a) = |{agi ∈ Ag |Li (a) = in}| denotes
the direct positive support of a, whereas outL(a) = |{agi ∈ Ag |Li (a) = out}|
denotes its direct negative support.

6.1 Defining Aggregation Functions

6.1.1 Disregarding Dependencies: A Majority Rule

The majority function simply compares the acceptances and rejections received by an
argument. The argument will be accepted or rejected depending on whether accep-
tances or rejection are majority. It will be labelled as undecided if there is a tie.
Formally,

Definition 14 (Majority function) Given a labelling profile L, the majority function
for any argument a is defined as:

M(L)(a) =
⎧
⎨

⎩

in, inL(a) > outL(a)

out, inL(a) < outL(a)

undec, otherwise

Example 5 (Majority rule in the neighbourhood discussion) Following the neighbours’
example, we use the majority function to compute the collective labels of each argu-
ments. See the Fig. 3 that graphically represents the collective labelling obtained. For
arguments a2, a3 and N there are more in’s than out’s opinions, therefore the col-
lective labels using M for such arguments is in. For argument a1, is the reverse, there
are more out’s than in’s, thus, its collective label is out.

6.1.2 Exploiting Dependencies: Prioritising Direct Opinions

The next function to study, the so-called opinion first function (OF), is a variation
of the majority function that exploits dependencies, but prioritising direct opinions
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Fig. 3 Neighbourhood
discussion: aggregated
labellings (and decision over
target N ) computed by M

Fig. 4 Neighbourhood
discussion: aggregated
labellings (and decision over
target N ) computed by OF

over indirect opinions. Thus, the function first considers direct opinions to obtain
an aggregated opinion on an argument. If using direct opinions leads to a tie (equal
number of acceptances and rejections), then OF uses indirect opinions to resolve the
tie, if possible. Formally,

Definition 15 (Opinion First Function) Given a labelling profile L, the opinion first
function for any argument a is calculated as:

OF(L)(a) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

in, inL(a) > outL(a)

in, inL(a) = outL(a) and ProOF(L)(a) > ConOF(L)(a)

out, inL(a) < outL(a)

out, inL(a) = outL(a) and ProOF(L)(a) < ConOF(L)(a)

undec, otherwise

Example 6 Figure 4 shows the collective label produced by OF for each argument in
the neighbours’ example. Since there are no ties for any argument, OF behaves like
M , and so its collective labelling accepts a2, a3 and N , and rejects a1.

6.1.3 Exploiting Dependencies: Prioritising Indirect Opinions

As a counterpart of OF , next we define and study the so-called Support First func-
tion (SF), which prioritises indirect opinions over direct opinions. SF considers first
indirect opinions to obtain an aggregated opinion on an argument. If using indirect
opinions leads to a tie, then SF uses direct opinions to resolve the tie, if possible.
Formally,

Definition 16 (Support First Function) Given a labelling profile L, the support first
function for any argument a is calculated as:
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Fig. 5 Neighbourhood
discussion: aggregated
labellings (and decision over
target N ) computed by SF

SF(L)(a) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

in, ProSF(L)(a) > ConSF(L)(a)

in, ProSF(L)(a) = ConSF(L)(a) and inL(a) > outL(a)

out, ProSF(L)(a) < ConSF(L)(a)

out, ProSF(L)(a) = ConSF(L)(a) and inL(a) < outL(a)

undec, otherwise

Example 7 Figure 5 shows the collective label produced by SF for each argument in the
neighbours’ example. Recall that SF considers first indirect opinions. Since arguments
a2, a3 have no descendants, their collective labellings stem from the majority in the
direct opinion, and hence, SF(L)(a2) = SF(L)(a3) = in. As to argument a1, SF
first considers the collective labelling of a2, that is in, and thus SF(L)(a1) = in.
Finally, target N is attacked by arguments a1, a2, both with collective label in, and
defended by argument a3 with label in. Therefore, the indirect collective support of
N is against N , and hence SF rejects it, namely SF(L)(N ) = out.

6.1.4 Exploiting Dependencies: Combining Direct and Indirect Opinions

Finally, after studying functions giving priority to either direct opinions, OF , or indi-
rect opinions, SF , in what follows we design an intermediate function balancing both.
With this aim, we introduce the balanced function BF , which equally combines direct
and indirect support. The following definitionmight seem a bit complex, but the under-
lying rationale is simple: for each argument, the balanced function computes both its
direct and indirect support to choose the label that best represents both. Formally,

Definition 17 (Balanced function) Given a labelling profile L, the balanced function
over L for any argument a calculated as:

BF(L)(a) =
⎧
⎨

⎩

in, I O(L)(a) + DO(L)(a) > 0
out, I O(L)(a) + DO(L)(a) < 0
undec, I O(L)(a) + DO(L)(a) = 0

where the functions I O (indirect opinion) and DO (direct opinion) are defined as:

I O(L)(a) =
⎧
⎨

⎩

1, ProBF(L)(a) > ConBF(L)(a)

0, ProBF(L)(a) = ConBF(L)(a)

−1, ProBF(L)(a) < ConBF(L)(a)
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Fig. 6 Neighbourhood
discussion: aggregated
labellings (and decision over
target N ) computed by BF

DO(L)(a) =
⎧
⎨

⎩

1, inL(a) > outL(a)

0, inL(a) = outL(a)

−1, inL(a) < outL(a)

Example 8 (Neighbourhood discussion) Figure 6 shows the aggregated opinion and
the decision over the target for our neighbourhood example obtained by the balanced
aggregation function. As shown in the picture, neighbours collectively accept argu-
ments a2 and a3, whereas argument a1 is undecided. Finally, the decision over the
target is to accept it (i.e., BF(L)(N ) = in) and the norm is accepted.

6.2 Comparing Aggregation Functions

This section compares the results obtained by the aggregation functions proposed in
the previous sections. The results themselves are contained in “Appendix A” and we
refer the reader who wants to understand the formal propositions and proofs of the
properties fulfilled by each function to that “Appendix”. Here, we just use those results
to compare the performance of the functions. We make this comparison with the aid
of Table 3, which shows the social choice properties fulfilled by each aggregation
function. Table 3 splits social choice properties into two groups: those identified as
desirable in Sect. 5.2 when exploiting dependencies between arguments, and those
that are not so relevant for our purposes but are typically referred to in the social
choice literature. Recall that, as stated in the previous sections, the most important
property is collective coherence because it ensures the rationality of the outcome of
an aggregation function. Table 3 shows us the relation between this property and the
“degree” of indirect opinion involved in the decision making represented by each
aggregation function. From left to right in Table 3: M disregards indirect opinions;
OF prioritises direct opinions over indirect opinions; BF equally considers direct
and indirect opinions; and finally, SF prioritises indirect opinions.

By analysing Table 3 we draw several interesting observations regarding: (i) the
positive and negative effects of exploiting dependencies; (ii) the aggregation function
that offers the best compromise between exploiting direct and indirect opinions; and
(iii) the positive and negative effects of introducing uncertainty bymeans of theundec
label.
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Table 3 Comparison of social choice properties fulfilled by the aggregation functions that exploit depen-
dencies versus the majority rule. Symbol code:�means fully satisfied; (�) represents satisfied under some
assumptions; and ✗ stands for unsatisfied

First, we observe that exploiting dependencies yields two main benefits:

– Indirect opinions must be exploited at least as much as direct opinions to ensure
collective coherence. Indeed, either disregarding indirect opinions or prioritising
direct opinions over indirect opinions is not enough to achieve collective coherence.
Thus, notice that neither the majority rule, which disregards indirect opinions, nor
OF , which prioritises direct opinions, satisfy collective coherence. However, both
SF , which prioritises indirect opinions, and BF , which equally combines indirect
and direct opinions, do satisfy collective coherence.

– Exploiting indirect opinions preserves anonymity. Notice that our aggregation
functions exploiting indirect opinions (OF , BF , and SF) only consider different
volumes of positive and negative opinions while disregarding the sources of opin-
ions. Hence, because of such general treatment of agents’ opinions, they all satisfy
the anonymity and non-dictatorship properties.

Second, despite obtaining major benefits, particularly in terms of satisfaction of
collective coherence, we pay a price for exploiting dependencies, namely:

– The exploitation of indirect opinions impacts the satisfaction of unanimity and
monotonicity properties. Notice that as we move from left to right in Table 3, the
unanimity and monotonicity properties become less satisfied, clearly relating the
satisfaction of the properties with the level of indirect opinion involved: the higher
the importance of indirect opinions in an aggregation function, the less the number
of satisfied unanimity and monotonicity properties.

– Exploiting dependencies between arguments impedes independence.As expected,
even a little involvement of indirect opinions in the decision making prevents the
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fulfilment of this property, and, therefore, the fulfilment of other social choice
properties (not considered in this paper) stronger than independence. However,
note that we do not regard this observation as a negative result. Recall from our
discussion in Sect. 2.3 that (Awad et al. 2017) consider the necessity of indepen-
dence questionable (because of the existing dependencies between arguments),
while the literature considers independence as too strong and not very plausible.

At this point, given the above-mentioned pros and cons regarding the exploitation of
dependencies, we are ready to identifywhat we believe is the best-in-class-aggregation
operator:

– BF provides the best trade-off between exploiting direct and indirect opinions. On
the one hand, OF does not satisfy collective coherence, but it satisfies both types
of unanimity and the weaker versions of monotonicity. On the other hand, while
SF satisfies collective coherence, it fails at satisfying unanimity and monotonicity
properties. BF sits between OF and SF .

Last but not least, we turn our attention to the benefits and drawbacks of introducing
the undec label to cope with uncertainty:

– The introduction of uncertainty favours the general treatment of any kind of
labelling profile. Implicitly, in our approach we use the undec label to obtain
an outcome even in those cases where there is no clear decision over an argument.
The introduction of the undec label helps undo ties (when the number of accep-
tances equals the number of rejections) that would occur in the absence of this
label. Not allowing the undec label would restrict the domain of the aggregation
functions and hamper decisionmaking despite the existence of valid opinions.Note
that this is not the case for all the aggregation functions that we have introduced,
since they all fulfil the exhaustive and coherent domain properties.

– The introduction of uncertainty negatively affects monotonicity properties. The
use of the undec label may cause the lack of a “positive” or “negative” decision
regarding the acceptance of an argument. This fact impacts directly on the satis-
faction of the monotonicity properties, and hence the need for weaker versions
such as binary monotonicity and binary familiar monotonicity.

Besides the general observations compiled above, Table 3 is also valuable to help
us individually analyse each of the aggregation functions introduced in this paper:

– We have shown that M does not satisfy our most important property, collective
coherence. Therefore, M does not ensure the coherence of the labelling obtained
as a collective decision, and therefore it might contain irrational sets of argu-
ment labellings. Despite this fact, the majority function satisfies many of the other
desired social choice properties without any restrictions, with the exception of
the endorsed unanimity property, which is restricted to 0-coherent profiles. We
also observe that while M satisfies restricted versions of monotonicity properties,
it does not satisfy their non-restricted versions. Finally, the non-exploitation of
dependencies guarantees the satisfaction of the independence property, but due to
the undec label resulting from a tie, it prevents the satisfaction of supportiveness.

– At first sight, the OF function satisfies several desirable social choice proper-
ties without restrictions, except for endorsed unanimity, which requires coherent
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labelling profiles in order to hold. Nonetheless, OF still fails, just likeM , to satisfy
collective coherence, and hence we cannot ensure the rationality of the collective
decision. Finally, OF does not satisfy the non-binary monotonicity properties,
and, as a result of exploiting indirect opinions, it loses the independence property.
To summarise, the way OF exploits indirect opinions is not enough as observed
above in our general analysis.

– SF increases the relevance of indirect opinions when computing a collective
labelling. On the one hand, this entails the satisfaction of collective coherence.
On the other hand, this negatively impacts the satisfaction of monotonicity, since
SF loses binary monotonicity with respect to OF . Furthermore, SF also is further
from satisfying endorsed unanimity than OF , since SF does not satisfy endorsed
unanimity even when we impose some kind of coherence on agents’ individual
labellings. Finally, likewise M and OF , SF also satisfies: exhaustive and coher-
ence domain, anonymity, non-dictatorship, and binary familiar monotonicity.

– BF provides a trade-off between OF and SF . First, BF satisfiesmost of the desir-
able properties identified in Sect. 5.2, including collective coherence. However,
note that BF only satisfies endorsed unanimity in case of 0-coherent labellings.
However, notice that SF did not satisfy any of the unanimity properties. Second,
BF does not satisfy properties such as direct unanimity and supportiveness, but
recall that the first one was considered the least desirable property and that the
second one was not even considered as desirable.

7 Computational Analysis

The purpose of this section is twofold. First, given a labelling discussion problem,
in Sect. 7.1, we detail an algorithm for computing a collective decision on its tar-
get. Thereafter, we empirically analyse the use of that algorithm to solve real-world
collective decision problems.

7.1 Computing the Decision Over a Target

Consider a discussion framework, T ODF = 〈A, �→,�, τ 〉, with a target τ for which
we aim at computing a collective label. Thus, we required a profile L reflecting the
opinions of the agents involved in the discussion and a function to aggregate the
opinions in the profile (be it either SF , OF , or BF).

Now, observe that according to Proposition 1, the graph associated to the TODF
is a DAG. Therefore, the computation of the collective labels for the arguments in
the discussion framework can be performed while traversing its associated graph,
henceforth referred to as GTODF . This is where we can resort to topological sorting
(Kahn 1962) to perform graph traversal. Thus, we propose to embed the computation
of the collective labels for the arguments and the target of a discussion framework
into a topological sorting algorithm. From this follows that the computation of the
collective label for the target is linear in the number of nodes (arguments) plus edges
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(attack and defence relationships) in the associated graph of the discussion framework,
asymptotically, namely O(|A| + |�→| + |�|).

Function computeCollectiveDecision in Algorithm 1 calculates the collective
decision for the target τ of a discussion framework T ODF from a profileL and aggre-
gation function F . In Ganzer-Ripoll et al. (2017b) we provide a public implementation
of Algorithm 1 together with all the functions introduced in Sect. 6.

Algorithm 1 Compute collective decision
1: function ComputeCollectiveDecision(GTODF , τ ,F ,L)
2: PendingArguments ← arguments with no descendants (neither attacked nor defended)
3: while PendingArguments is not empty do
4: b ← remove argument from PendingArguments
5: F(L)(b) ← compute collective label for b
6: for each argument c such that (b, c) is an edge of GTODF do
7: remove (b, c) from GTODF
8: if there are no incoming edges for argument c then
9: add argument c to PendingArguments

10: return F(L)(τ ) � Collective label for target τ

7.2 Empirical Analysis

This subsection empirically analyses the time required by our implementation ofAlgo-
rithm 1 to compute collective decisions. Our purpose is to investigate whether our
approach to collective decision making can be used in practice.

In order to do this, we took as a reference Parlement et Citoyens (2017), which,
as mentioned above, is a well established e-government participation site that enables
French citizens to participate in the development of laws by making, debating and
voting for law proposals. Table 4 provides some details of the 12 consultations that
had been completed as of November 2017 (the time of writing). The first column gives
the topic of the proposal, and illustrates that these policy consultations are conducted
over a wide range of different topics ranging from sustainability to migrants and even
modification of the constitution. Each consultation is structured in chapters grouping a
number of articles. The number of articles for a proposal is given in the second column.
For each individual article, citizens can provide pro and con arguments. The total num-
ber of arguments for each proposal is given in the third column. The fourth (“arg/art”)
column shows the ratio of arguments per article for each of these proposals. Thus,
there are 6.2 arguments per article on average. The fifth column shows the number of
people who participated per proposal. The sixth column, labelled “arg%” in Table 4,
provides the number of arguments as a percentage of the number of participants. The
average is 2.84%, meaning that the average participant makes around 3 arguments on
each consultation they participate in.13 Moreover, participants can vote for both the
arguments and the article proposals. The last column in Table 4 shows the aggregated

13 Note that there is a high variability in the number or arguments per participant. The standard deviation
over the values in Table 4 is 3.08.
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Table 4 Completed consultations at Parlement et Citoyens (2017) as of November 2017

Consultation Articles Arguments arg/art Participants arg% Votes

Biodiversity 355 1126 3.17 9334 0.03 51, 516

Restore confidence (a) 240 834 3.48 1109 0.31 10, 523

Restore confidence (b) 292 2102 7.20 773 0.93 9806

On-line consultation 71 435 6.13 659 0.93 5203

Pesticides 97 1106 11.40 499 2.28 4714

Nation protection 56 400 7.14 1636 0.44 8776

Useful prison 77 722 9.38 286 3.28 2687

Local democracy 93 313 3.37 33 10.20 2156

Collaborative economy 69 235 3.41 145 2.35 779

Constitution modification 30 236 7.87 179 4.39 1636

Open data 31 263 8.48 118 7.19 1153

Migrants 25 86 3.44 194 1.77 1399

Average 119.67 654.83 6.20 1247.08 2.84 8362.33

The average number of arguments per participant is 2.84% (in our experiments this number ranges from
0.1 to 50%)

number of votes. Finally, it is also worth mentioning that other participation sites, such
as Quoners (2017) or Decide Madrid (2017), are characterised by a similar proportion
of arguments to proposals.

Using this real world case scenario as a reference, we artificially generated dis-
cussion frameworks where arguments are the nodes of a directed acyclic graph and
the edges represent the relationship between the arguments. Given a number of argu-
ments, the graph representing a discussion is a directed acyclic random graph with a
probability of 0.5 of creating an edge between any two nodes. Given an edge between
two nodes, there is a probability of 0.5 that the edge represents an attack between the
arguments, and a probability of 0.5 that it represents support between the arguments.
The directions of the relationships between arguments are also randomly determined
during the generation of the directed acyclic graph.

Given a discussion framework, we then generated labellings to compose a labelling
profile. Each labelling within a profile is built by assigning a random label to each
argument in the directed acyclic graph representing the discussion framework. Hence,
randomly generated labellings are not guaranteed to be coherent. Despite that, recall
that two of our aggregation functions do ensure collective coherence of the resulting
decision.

All the computations of collective decisions four our artificially generated discus-
sion frameworks were performed on an Ubuntu 16.04 box with an Intel(R) Core(TM)
i7-4770 CPU@ 3.40GHz and 4 cores. Furthermore, our experiments set F to be BF ,
since we consider it to be the best-in-class aggregation function. Computation times
with OF , and SF are expected to be similar because they both aggregate direct and
indirect opinions just as BF does.
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Fig. 7 Time to compute collective decisions as arguments and participants (profile) grow

To establish how the time required to compute a collective decision varies as the
number of arguments and participants grows, we looked at discussions with 100–
500 arguments, and 103–105 labellings (representing participants in a discussion).
Comparing with Table 4, we can see that these numbers go far beyond the number
of arguments and participants involved in debates in actual-world platforms. For each
pair of number of arguments and number of participants we generated 100 artificial
debates as described above, and computed the collective decision for each debate.

Figure 7 shows the average time (in seconds) required to compute a collective
decision as the number of arguments and participants varies. From the figure we learn
that we can employ our approach to compute collective decisions in only a few seconds
for debates involving as many as 500 arguments and 104 participants. Computing
collective decisions for 105 becomes more demanding, but still all the scenarios can
be solved in a a few tens of seconds.

Following the above analysis we investigated the sensitivity of the time required
to compute a collective decision to the density of connections between arguments
in a discussion framework. For this second study we set the number of participants
to 103—in the middle of the range we studied before—and varied the number of
arguments, between 100 and 500, and the probability for edge creation in the random
graph representing the discussion framework, was set to a value from {0.25, 0.5, 0.75}.
This allowed us to generate artificial debates with low, medium, and high density of
connections between arguments, corresponding to probabilities 0.25, 0.5, and 0.75
respectively. Figure 8 clearly shows that the time to compute a collective decision is
affected by density of connections between arguments as the number of arguments
grows: the larger the number of arguments, the larger the impact of density of con-
nections between arguments on computational time. Moreover, the larger the density,
the more costly to compute a collective decision.
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Fig. 8 Time to compute collective decisions as the density of connections between arguments grows

At this point, notice that even the lowest density of connections considered in Fig. 8
goes far beyond the densities that we find in actual-world debates. For instance, when
considering a lowdensity scenario (by setting the probability for edge creation to 0.25),
each argument receives ∼ 12% attacks and defences (on average) of the total number
of arguments. That means that in a debate with 500 arguments, each argument would
be related (on average) to other ∼ 60 arguments. This already configures a rather
dense debate compared to actual-world debates, where humans add new arguments
by relating them to a few arguments. In fact, as we have previously mentioned, many
participation sites just allow to pose arguments in favour or against a proposal (i.e.,
specifying a single relationship for each new argument).

To summarise, given that we have evaluated configurations of artificial debates
whose scale goes far beyond those of actual-world participation systems, we consider
that our approach has the potential to be used in practice, even the largest existing
scenarios.

8 Conclusions and FutureWork

Within the context of participation and governance domains, collective decision mak-
ing is taking advantage of the application of technical systems to support on-line
debates. In this context, we advance the state of the art by assuming humans may not
participate in a rational manner, since they may express their opinions about a topic
or an argument in inconsistent or contradictory ways. Furthermore, we also consider
uncertainty as an inherent part of any debate, be it because participants signal that
they do not hold a clear opinion about certain topics or because they do not express
any opinion at all. All things considered, when tasked with computing a collective
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decision, we must look to produce an outcome that is coherent, namely one that is free
of contradictions. Doing that has been the main goal in this paper.

In particular, our approach to solving the above-mentioned collective decision prob-
lem makes several contributions. First, we have proposed a mechanism to support
debates.More precisely, we have introduced a novelmulti-agent argumentation frame-
work aimed to articulate a discussion on a given targeted topic or proposal. Thanks to
our framework, participants in a debate can express arguments for and against this pro-
posal, indicate the relationships between arguments, and express their opinions about
arguments. Furthermore, our framework makes it possible to determine whether a
participant’s opinion is reasonable (coherent) or not.

Second, we enrich our multi-agent argumentation framework with a novel set of
aggregation functions that operationalise of the combination individual opinions. This
operationalisation results in a consensual decision over the topic under discussion.
Since, as argued in Sect. 1, independence cannot be considered as a reasonable assump-
tion when dealing with arguments, we have designed a family of aggregation functions
capable of exploiting dependencies between arguments in different ways. We proved
that two of those functions guarantee the coherent collective rationality of the out-
come. And this is the case for any sort of labelling profile, namely even those in which
participants’ opinions are not individually coherent. We also studied several social-
choice properties of our aggregation functions, inspired by the work in Awad et al.
(2017), where classical properties from social choice are also checked in argumenta-
tion settings. Our study produced insights into the design of an aggregation function
and the price paid to ensure coherence and handle uncertainty. We showed that either
disregarding indirect opinions or prioritising direct opinions over indirect opinions
is not enough to achieve collective coherence. However, the necessary exploitation
of indirect opinions to obtain collective coherence comes at a price: the higher the
importance of indirect opinions in an aggregation function, the fewer the number of
unanimity and monotonicity properties that are satisfied. In the end, we observed that
the balanced aggregation function, which treats direct and indirect opinions equally, is
the one that provided the best trade-off between exploiting direct and indirect opinions.
As to uncertainty management, although the introduction of uncertainty favours the
general treatment of any kind of labelling profile, it negatively affects monotonicity
properties.

Overall, the contributions in this paper break new ground in bringing together the
fields of argumentation and computational social choice. We believe that the intersec-
tion of these two fields is a sweet spot in which to base the investigation of principled
debate-based systems.

In future work, we will particularly focus on three directions. First, we will look at
generalising the argumentation framework to allow it to capture more natural debates
than the rather simple discussions that are currently captured. Here we see the frame-
work from McBurney and Parsons (2002) as a suitable starting place. Second, we
plan to enrich the expressiveness of our target-oriented discussion framework so that
opinions about arguments can be expressed not as“accepted”, “rejected”, and “don’t
know”, as is currently the case, but instead as a number, indicating the degree to which
the argument is accepted. This will obviously require the design of another family
of aggregation functions. Third, we plan to investigate the type of interfaces required
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by humans to participate in target-oriented discussions without being overwhelmed
by their complexity. In this line, the works by Gabbriellini and Torroni (2015), Klein
(2012), Sklar et al. (2016) appear as promising pointers to the direction we should
take.
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A Formal Proofs and Results

In this section we detail the results of the aggregation functions, defined in Sect. 6,
proving all the properties summarized in Table 3.

First, in Sect. A.1, taking advantage of the similarities between the proposed aggre-
gation functions, we prove some generic results applicable to all of them. Second, in
the rest of sections of this appendix, we prove the remaining properties per aggregation
function.

A.1 General Results

The next proposition groups the properties equally fulfilled by all aggregation func-
tions.

Proposition 4 The Majority function M, the Opinion First function OF, the Support
First function SF and the Balanced function BF:
Satisfy the following properties:

(i) Exhaustive and Coherent Domain;
(ii) Anonymity and, hence, Non-Dictatorship.

Do not satisfy the following properties:

(iii) Familiar monotonicity and, therefore, Monotonicity;
(iv) Supportiveness.

Proof of Proposition 4 (i) Exhaustive and Coherent Domain.
By the definitions in Sect. 6, the functions defined compute an outcome using the
cardinal number of different kinds of finite sets whose elements are not restricted
by properties of the labellings. Hence, whatever the labelling profiles are (coherent
or not), these sets can be computed, and, therefore, the functions can compute an
outcome.

(ii) Anonymity and Non-Dictatorship.
Consider a TODF, let Ag = {ag1, . . . , agn} be the set of agents involved
and L = (L1, . . . , Ln) be a labelling profile. Let σ be a permutation of
the set of agents and L′ = (Lσ(1), . . . , Lσ(n)) the labelling profile resulting
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from applying the permutation σ over L. Let F be an aggregation function in
{M, OF, SF, BF}.
First of all, let’s consider any argument a and see that the following equali-
ties hold: inL(a) = inL′(a) and outL(a) = outL′(a). On the one hand
inL(a) = |{agi ∈ Ag |Li (a) = in}| = |{σ(agi ) ∈ Ag |Lσ(i)(a) = in}| =
inL′(a). On the other hand, outL(a) = |{agi ∈ Ag |Li (a) = out}| =
|{σ(agi ) ∈ Ag |Lσ(i)(a) = out}| = outL′(a). Hence, the direct opinion of an
argument is not affected by any permutation of the agents.
Regarding indirect opinions, note that for any argument its indirect opinion
depends on the direct and indirect opinion of its descendants. For any argument
a without descendants, ProF(L)(a) = ProF(L′)(a) = 0 and ConF(L)(a) =
ConF(L′)(a) = 0. For any argument b only having as descendants arguments
without descendants, its indirect opinion will be determined by the direct opin-
ion on their descendants, which will not change by the permutation and, hence,
ProF(L)(b) = ProF(L′)(b) and ConF(L)(b) = ConF(L′)(b). Applying this
reasoning recursively, we conclude that the indirect opinion of any argument is
not affected by the permutation of the agents.
As F(L)(a) and F(L′)(a) are determined by the indirect (ConF(L)(a) =
ConF(L′)(a) and ProF(L)(a) = ProF(L′)(a)) and direct opinion (inL(a) =
inL′(a) and outL(a) = outL′(a)) of argument a and these are not affected
by permutations, we can conclude that F(L)(a) = F(L′)(a).
Hence, it is deduced that any aggregation function based on the direct and indi-
rect opinion to extract an aggregated labelling, such as M, OF, SF or BF ,
fulfils anonymity, and consequently, non-dictatorship.

(iii) Familiar Monotonicity and Monotonicity.
We prove this by the counter-example displayed in Fig. 9. Consider a T ODF =
〈{a, b}, {(b, a)},∅, {a}〉 with two labelling profiles L = (L1, L2) and L′ =
(L1, L ′

2). The opinion of agent 1 is the same in both profiles L1(a) = in,
L1(b) = undec, whereas the opinion of agent 2 is L2(a) = out, L2(b) =
undec for the first profile and L ′

2(a) = undec, L ′
2(b) = undec for the second

one (see Fig. 9a, b).
Let F stand for any of the aggregation functions F ∈ {M, OF, SF, BF}, then
the aggregated labellings are F(L)(a) = undec, F(L)(b) = undec and
F(L′)(a) = in, F(L′)(b) = undec, as shown in Fig. 9c and d, respectively.
Notice that changing the direct opinion of agent 2 on a from out to undec
changes the aggregated labelling, F(L′)(a) = in �= undec = F(L)(a),
disproving familiar monotonicity, and therefore monotonicity.

(iv) Supportiveness.
The previous example is also a counter-example for supportiveness by only
usingL and its aggregation outcome F(L) (see Fig. 9a, c). Note that F(L)(a) =
undec though no agent’s opinion is undec on a.

��
The following lemma, relating coherence to positive and negative support, will help
us in proving results regarding the Endorsed Unanimity property for some functions.
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(a) (b)

(c) (d)

Fig. 9 Counter-example used inproposition4(iii).aLabellingprofileL.bLabellingprofileL′. cAggregated
labelling F(L). d Aggregated labelling F(L′)

Lemma 1 Let L be a labelling giving full positive (resp. negative) support to an argu-
ment a ∈ A. If L is coherent then L(a) �= out (resp. L(a) �= in). Furthermore, if L
is at least 0-coherent then L(a) = in (resp. L(a) = out).

Proof Let us prove this by contradiction. Let L be a labelling with full positive support
on argument a, i.e, ProL(a) = m and ConL(a) = 0, where m is the number of
descendants of a (m = |A(a) ∪ D(a)|). If L is coherent and L(a) = out, then,
by coherence, ProL(a) ≤ ConL(a) but ProL(a) = m and ConL(a) = 0, and
hence we obtain a contradiction, therefore L(a) �= out. Moreover, suppose that L
is 0-coherent, then it cannot be that L(a) = undec because that would mean, by
definition of 0-coherence, that ProL(a) = ConL(a), which is not the case. The proof
goes analogously for the case with full negative support. ��

In the following we analyse the satisfaction of the remaining properties (i.e.,
unanimity, endorsed unanimity, binary monotonicity, binary familiar monotonicity,
independence and collective coherence) for each aggregation function.

A.2 Majority Function

Proposition 5 The Majority function M:
Satisfies the following properties:

(i) Unanimity;
(ii) Endorsed Unanimity over Cohc(T ODF)n for c ≥ 0.
(iii) Binary Monotonicity, and consequently, Binary Familiar Monotonicity.
(iv) Independence.

Does not satisfy the following properties:

(v) Collective Coherence.
(vi) Endorsed Unanimity.

Proof of Proposition 5 (i) Unanimity.
M trivially satisfies unanimity, since unanimity over an argument is the greatest
majority that can be achieved.
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(a) (b)

Fig. 10 Counter-example used in proposition 5(v). a Agent’s labelling L. b Labelling profile M(L)

(ii) Endorsed Unanimity over Cohc(T ODF)n for c ≥ 0.
Consider a TODF, and let Ag = {ag1, . . . , agn} be the set of agents involved.
Let L = (L1, . . . , Ln) be a labelling profile giving full positive support on
argument a, i.e, for every i ∈ Ag, ProLi (a) = m, with m being the number of
descendants of a (m = |A(a) ∪ D(a)|). By the Lemma 1, if every labelling is at
least 0-coherent, we can ensure that for every i , Li (a) = in. Therefore, there is
unanimity on the direct opinion of a, and hence M(L)(a) = in. Analogously,
we prove the case with full negative support.

(iii) Binary Monotonicity, and consequently, Binary Familiar Monotonicity.
Let a be an argument and L and L′ two labelling profiles satisfying the
required hypothesis of binary monotonicity setting; i.e, L = (L1, . . . , Li , . . . ,

Li+k, · · · , Ln), L′ = (L1, . . . , L ′
i , . . . , L

′
i+k, . . . , Ln) such that L j (a) �=

L ′
j (a) = l ∈ {in,out} for j ∈ {i, . . . , i + k}. Let us assume l = in and

M(L)(a) = in, then we infer that inL(a) > outL(a). Since L j (a) �=
L ′
j (a) = in for the agents j ∈ {i, . . . , i + k}, this entails that inL′(a) >

inL(a) > outL(a) > outL′(a), and hence M(L′)(a) = in. We can prove
the case when l = out and M(L)(a) = out analogously.

(iv) Independence.
This property states that for any two profiles L = (L1, . . . , Ln) and L′ =
(L ′

1, . . . , L
′
n) and an argument a; if for all agents i ∈ {1, . . . , n} Li (a) = L ′

i (a)

then F(L)(a) = F(L′)(a). Note that if Li (a) = L ′
i (a) for all agents i ∈

{1, . . . , n}, then inL(a) = inL′(a) and outL(a) = outL′(a), which entails
that M(L)(a) = M(L′)(a).

(v) Collective Coherence.
The proof employs a counter-example with the following characteristics, let
T ODF = 〈{a, b}, {(b, a)},∅, {a}〉with argument b attacking target a, and with
labelling profile L = (L), where L(a) = in and L(b) = in, depicted in
Fig. 10a. Computing the majority function over this profile we obtain the same
labelling M(L)(a) = in and M(L)(b) = in (see Fig. 10b) which is not a
coherent labelling.

(vi) Endorsed Unanimity.
The previous example provides as well a counter-example for endorsed una-
nimity. Note that the argument a receives full negative support though its final
aggregated label is in.

��
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A.3 Opinion First Function

Proposition 6 The Opinion First function OF:
Satisfies the following properties:

(i) Unanimity;
(ii) Endorsed Unanimity over Coh(T ODF)n;
(iii) Binary Monotonicity, and consequently, Binary Familiar Monotonicity.

Does not satisfy the following properties:

(iv) Collective Coherence;
(v) Endorsed Unanimity;
(vi) Independence.

Proof of Proposition 6 (i) Unanimity.
OF trivially satisfies unanimity.

(ii) Endorsed Unanimity over Coh(T ODF)n .
Consider a TODF and let Ag = {ag1, . . . , agn} the agents involved. Let L =
(L1, . . . , Ln) be a labelling profile giving full positive support on argument a,
i.e, for every i ∈ Ag, ProLi (a) = m, with m being the number of descendants
of a (m = |A(a) ∪ D(a)|). By Lemma 1, if every labelling is coherent, then for
every agent i , Li (a) ∈ {in,undec}) and outL(a) = 0. We differentiate two
cases:

(a) If at least one agent has labelled a with in. If so, OF(L)(a) = in, which
satisfies endorsed unanimity, because inL(a) > outL(a).

(b) All agents have labelled argument a as undec. Then, inL(a) = outL(a) =
0. In this case,wemust consider the aggregatedopinionof argumenta’s descen-
dants. Since there is full positive support on a, then for each descendant ba
attacking a, the agents have labelled it with out; and (ii) for each descendant
bd defending a, the agents have labelled it with in. Therefore, the aggre-
gated opinions for each attaching descendant will be OF(L)(ba) = out and
OF(L)(bd) = in for each defending descendant. Therefore ProOF(L)(a) =
m, and ConOF(L)(a) = 0 and OF(L)(a) = in since ProOF(L)(a) >

ConOF(L)(a)).

We can analogously prove the case of full negative support.
(iii) Binary Monotonicity, and consequently, Binary Familiar Monotonicity.

Let a be an argument and L and L′ two labelling profiles satisfying the
required hypothesis of binary monotonicity setting; i.e, L = (L1, . . . , Li , . . . ,

Li+k, · · · , Ln), L′ = (L1, . . . , L ′
i , . . . , L

′
i+k, . . . , Ln) such that L j (a) �=

L ′
j (a) = l ∈ {in,out} for j ∈ {i, . . . , i + k}. Let us assume l = in and

OF(L)(a) = in, then we infer that inL(a) ≥ outL(a). Since L j (a) �=
L ′
j (a) = in for the agents j ∈ {i, . . . , i + k}, it entails that inL′(a) >

inL(a) ≥ outL(a) > outL′(a) and hence OF(L′)(a) = in. We can prove
the case when l = out analogously.

(iv) Collective Coherence.
The counter-example of Proposition 5(v) (displayed in Fig. 10a) also serves here
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(a) (b)

(c) (d)

Fig. 11 Counter-example used in proposition 6(vi). a Labelling profile L. b Labelling profile L′. c Aggre-
gated labelling by OF(L). d Aggregated labelling OF(L′)

as a counter-example for OF ; i.e., computing the opinion first function over that
profile we obtain the following labelling OF(L)(a) = in and OF(L)(b) = in
which is not a coherent labelling.

(v) Endorsed Unanimity.
The counter-example of Proposition 5(vi) (see Fig. 10a) also serves as a counter-
example for OF ; i.e., computing the opinion first function over that profile
we obtain that OF(L)(b) = in though the argument a receives full negative
support.

(vi) Independence.
We prove this by counter-example (see Fig. 11). Consider a T ODF = 〈{a, b},
{(b, a)},∅, {a}〉 with labelling profiles L = (L) and L = (L ′) such that L(a) =
undec = L ′(a) and L(b) = in, L ′(b) = out (Fig. 11a, b). OF obtains
the following labellings OF(L)(a) = out, OF(L)(b) = in (Fig. 11c); and
OF(L′)(a) = in, OF(L′)(b) = out (Fig. 11d). Clearly, independence is not
satisfied because L(a) = L ′(a) but OF(L)(a) �= OF(L′)(a).

��

A.4 Support First Function

Proposition 7 The Support first function SF:
Satisfies the following properties:

(i) Collective Coherence;
(ii) Binary Familiar Monotonicity.

Does not satisfy the following properties:

(iii) Binary Monotonicity;
(iv) Unanimity;
(v) Endorsed Unanimity;
(vi) Independence.

Proof (i) Collective Coherence.
Let a be an argument such that SF(L)(a) = in. ByDefinition 16, ProSF(L)(a) >
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ConSF(L)(a) holds, or ProSF(L)(a) = ConSF(L)(a) and inL(a) > outL(a)

holds. It thus follows that ProSF(L)(a) ≥ ConSF(L)(a), and thus SF(L) is coher-
ent. We can analogously check the case when SF(L)(a) = out.

(ii) Binary Familiar Monotonicity.
Let L,L′ be two labelling profiles satisfying the required hypothesis of
binary familiar monotonicity setting; i.e, let be two labelling profiles L =
(L1, . . . , Li , · · · , Li+k, . . . , Ln), L′ = (L1, . . . , L ′

i , . . . , L
′
i+k, . . . , Ln) such

that F(L)(a) = l ∈ {in,out}, agents agi , . . . , agi+k only differing on their
labellings of a (namely, for all b descendant of a, L j (b) = L ′

j (b) for every
j ∈ {i, . . . , i + k}) and L(a) j �= L ′(a) j = l for j ∈ {i, . . . , i + k}. Let
us assume l = in and assume that SF(L) = in. Since both labelling pro-
files L and L′ only differ on the direct opinion over a, then we can ensure
that ProSF(L)(a) = ProSF(L′)(a) and ConSF(L)(a) = ConSF(L′)(a), and the
aggregated indirect support of a does not change. We must consider two cases:

(a) If ProSF(L)(a) > ConSF(L)(a), then ProSF(L′)(a) > ConSF(L′)(a) and
SF(L′)(a) = in.

(b) If ProSF(L)(a) = ConSF(L)(a) (and ProSF(L′)(a) = ConSF(L′)(a)), then
inL(a) > outL(a). In this case we can conclude that inL′(a) ≥ inL(a)

and outL(a) ≥ outL′(a), since l = in. Therefore, SF(L′)(a) = in.

Analogous reasoning can be applied when l = out and SF(L)(a) = out, and
hence the binary familiar monotonicity for SF holds.

(iii) Binary Monotonicity.
We will employ the counter-example depicted in Fig. 12. Our counter-example
considers a T ODF = 〈{a, b}, {(b, a)},∅, {a}〉 with labelling profiles L = (L),
L(a) = in = L(b) (Fig. 12a), andL′ = (L ′), L ′(a) = out = L ′(b) (Fig. 12b).
The collective labellings obtained by SF for each profile are SF(L)(a) = out,
SF(L)(b) = in and SF(L′)(a) = in, SF(L′)(b) = out (as shown in
Fig. 12c, d).
This counter-example shows that due to the change of the direct opinion about
argument a to out, the aggregated labelling for argument a changes to in (i.e.,
SF(L′)(a) = in).

(iv) Direct unanimity.
Using the counter-example of Fig. 12, both labelling profiles (i.e., L and L′) are
unanimous on the labels on a, but the aggregated label for a does not agree with
them.

(v) Endorsed Unanimity.
The proof requires an example of an argument with two levels of descendants
(see Fig. 13). Consider a T ODF = 〈{a, b, c}, {(b, a), (c, b)},∅, {a}〉 with one
labelling profile L formed by the following labelling: L(a) = L(b) = L(c) =
in (see Fig. 13(a)). The aggregated labelling obtained by SF is SF(L)(a) =
in = SF(L)(c) and SF(L)(b) = out (see Fig. 13b). This example shows that
although a has full negative support (b is labelled in in L), the aggregated label
for a is accepted (labelled with in), which contradicts the support.
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(a) (b)

(c) (d)

Fig. 12 Counter-example used in proposition 7(iii). a Labelling profile L. b Labelling profile L′. c Aggre-
gated labelling SF(L). d Aggregated labelling SF(L′)

(a) (b)

Fig. 13 Counter-example used in proposition 7(v). a Labelling Profile L. b Aggregated Profile SF(L)

(vi) Independence.
The counter-example for proposition 6(vi) (see Fig. 11) also applies to SF . In
this case, L(a) = L ′(a) = undec, SF(L)(a) = out and SF(L′)(a) = in.

��

A.5 Balanced Function

Proposition 8 The Balanced function BF:
Satisfies the following properties:

(i) Collective Coherence;
(ii) Endorsed Unanimity over Coh0(T ODF)n;
(iii) Binary Familiar Monotonicity.

Does not satisfy the following properties:

(iv) Binary Monotonicity;
(v) Unanimity;
(vi) Endorsed Unanimity;
(vii) Independence.

Proof (i) Collective Coherence.
Let a be an argument such that BF(L)(a) = in. By Definition 17, I O(L)(a) +
DO(L)(a) > 0. Thus, there are three cases: (i) DO(L)(a) = 1 and I O(L)(a) =
1; (ii) DO(L)(a) = 1 and I O(L)(a) = 0; or (iii) DO(L)(a) = 0 and
I O(L)(a) = 1. In any of these three cases, I O(L)(a) ≥ 0, which implies that
ProBF(L)(a) ≥ ConBF(L)(a), and hence BF satisfies collective coherence. The
case when BF(L)(a) = out can also be proven analogously.
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(ii) Endorsed Unanimity over Coh0(T ODF)n .
Let’s consider a 0-coherent labelling profile L = (L1, . . . , Ln). Suppose an
argument a that has full positive support for all Li , i.e., ProLi (a) = m for every
i , where m is the number of descendants of a. By Lemma 1, Li (a) = in for
every i and hence DO(L)(a) = 1. ProLi (a) = m implies that for every descen-
dant b of a, Li (b) = in if b � a and Li (b) = out if b �→ a. Therefore, for
every descendant b ∈ {A(a) ∪ D(a)} its direct support will be DO(L)(b) = 1
or DO(L)(b) = −1 depending on whether b defends or attacks a, respec-
tively. Moreover, this means that for b defending a BF(L)(b) ∈ {in,undec}
and for b attacking BF(L)(b) ∈ {out,undec}, which in turn implies that
I O(L)(a) ≥ 0. And to finish, if DO(L)(a) = 1 and I O(L)(a) ≥ 0 then
BF(L)(a) = in.
The case supposing full negative support for every agent can be proven analo-
gously.

(iii) Binary Familiar Monotonicity.
Let L,L′ be two labelling profiles satisfying the required hypothesis of
binary familiar monotonicity setting; i.e, let be two labelling profiles L =
(L1, . . . , Li , · · · , Li+k, · · · , Ln), L′ = (L1, . . . , L ′

i , . . . , L
′
i+k, . . . , Ln) such

that F(L)(a) = l ∈ {in,out}, agents agi , . . . , agi+k only differing on their
labellings of a (namely, for all b descendant of a, L j (b) = L ′

j (b) for every
j ∈ {i, . . . , i+k}) and L(a) j �= L ′(a) j = l for j ∈ {i, . . . , i+k}. Let us assume
l = in and BF(L)(a) = in and we have that DO(L)(a) ≥ 0. Since L j (b) =
L ′
j (b) for all b descendant of a, we know that I O(L)(a) = I O(L′)(a) because

I O only depends on the descendants. inL(a) ≤ inL′(a) and outL(a) ≥
outL′(a) and we can deduce that DO(L′)(a) ≥ DO(L)(a) ≥ 0. From this, it
follows that DO(L′)(a)+ I O(L)(a) ≥ DO(L)(a)+ I O(L)(a) ≥ 1, and hence
BF(L′)(a) = in.We can analogously check the case where BF(L)(a) = out.

(iv) Binary Monotonicity.
Let consider the following example, depicted in Fig. 14, with a T ODF =
〈{a, b}, {(b, a)},∅, {a}〉 with two labelling profiles L = (L) and L′ = (L ′)
with the following properties: L(a) = undec, L(b) = out (see Fig. 14a)
and L ′(a) = in, L ′(b) = in (see Fig. 14b). The resulting labellings are
BF(L)(a) = in, BF(L)(b) = out (see Fig. 14c) and BF(L′)(a) = undec,
BF(L′)(b) = in (see Fig. 14d). As can be seen, BF(L)(a) = in and by
changing a’s label to in on L′ the aggregated labelling of a changes to undec
due to the changes in the descendant’s labels.

(v) Unanimity.
Fig. 15 represents a counter-example. Let a T ODF contain an argument τ =
a, which is defended by five other arguments {a1, a2, a3, a4, a5}. The T ODF
involves the argument labellings of three agents, L1, L2, and L3 (see Fig. 15a):

(1) L1(a) = L1(a1) = L1(a2) = L1(a3) = in and L1(a4) = L1(a5) = out,
(2) L2(a) = L2(a1) = L2(a2) = L2(a4) = in and L2(a3) = L2(a5) = out,

and
(3) L3(a) = L3(a1) = L3(a2) = L3(a5) = in and L3(a3) = L3(a4) = out.
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(a) (b)

(c) (d)

Fig. 14 Counter-example used in proposition 8(iv). a Labelling Profile L. b Labelling Profile L′. c Aggre-
gated Profile BF(L). d Aggregated Profile BF(L′)

(a) (b)

Fig. 15 Counter-example used in Proposition 8(v). On the left are the argument labellings, on the right is
the result of the BF function

(a) (b)

Fig. 16 Counter-example used in proposition 8(vi). a Labelling profile L. b Aggregated Labelling BF(L)

Notice that the three agents agree on accepting the target, and hence there is
unanimous opinion on a. Figure 15b depicts the resulting labelling when com-
puting the BF function the labelling profile L. Since arguments a1 and a2 are
collectively accepted (BF(L)(a1) = BF(L)(a2) = in) and arguments a3, a4,
and a5 are rejected (BF(L)(a3) = BF(L)(a4) = BF(L)(a5) = out), the
target is neither accepted nor rejected, BF(L)(a) = undec. Thus, BF does
not satisfy direct unanimity.

(vi) Endorsed Unanimity.
The result can be easily seen with the following counter-example, depicted in
Fig. 16. Let be a T ODF = 〈{a, b}, {(b, a)},∅, {a}〉 with the labelling profile L
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formed by only one single labelling, L(a) = in and L(b) = in. The collective
labelling obtained applying BF toL is the following: BF(L)(a) = undec and
BF(L)(b) = in. As we can see, a has full negative support but the collective
label is undec instead of out.

(v) Independence.
The counter-example of proposition 6(vi) (see Fig. 11) applies to this func-
tion as well. In this case, L(a) = L ′(a) = undec, BF(L)(a) = out and
BF(L′)(a) = in

��
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