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Abstract: Of all the uses of water, agriculture is the one that requires the greatest proportion of resources world-
wide. Consequently, it is a salient subject for environmental policy-making, and adoption of modern irrigation
systems is a key means to improve water use efficiency. In this paper we present an agent-based model of
the adoption process — known as “modernisation" — of a community constituted by farmer agents. The phe-
nomenon is approached as a contingent innovation adoption: a first stage to reach a collective agreement fol-
lowed by an individual adoption decision. The model is based on historical data from two Spanish irrigation
communities during the period 1975-2010. Results suggest that individual profits and farm extension (as proxy
of social influence) are suitable assumptions when modelling the modernisation of communities in regions
where agriculture is strongly market-oriented and water is scarce. These encouraging results point towards the
interest of more sophisticated socio-cognitive modelling within a more realistic socio-hydrologic context.

Keywords: Agent-Based Modeling, Innovation Diffusion, Policy-Making, Irrigation Agriculture, Socio-Hydrology

Introduction

The agricultural water cycle involves a large proportion of water resources, accounting for approximately 70 %
of global water withdrawals (FAO|2016). In a foreseeable future of growing population and changing climatic
conditions, where agriculture will have to increase its production some 50 % by 2050, those requirements are
not likely to diminish (FAO|2017). These expectations shall produce increasing socio-economic stress on the
water cycle unless sound policy is implemented and effective actions are taken.

There is widespread consensus that water could be better managed in agriculture, especially where traditional
low-efficiency irrigation systems are commonly used (see|Lopez-Gunn et al.[(2012)). Consequently, many stake-
holders consider the modernisation of irrigation systems as an essential means for better water use in farmers
communities — and also for promoting other social values such as rural development and environmental sus-
tainability.

The motivation behind this paperis to understand how modernisation takes place in such communitiesin order
to provide input for policy-design. We intend to model policies in the water domain and it is therefore neces-
sary to model different decision processes and profiles of stakeholders. We model Spanish “irrigation com-
munities” (ICs) because they use a large share of water resources in Spain, because enough reliable data from
some communities is available to set up a core working model that may be extended to other communities, and
because they follow an innovation process that may be adapted to agricultural communities elsewhere.

Our approach is to build a simple agent-based model (ABM) — a population of farmer agents and a socio-
economic context that influences individual choices — to understand how the dispositions of individuals to
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modernise propagate in the community and end up in the actual adoption or rejection of the innovation
ftion 2). In our model, individual decision-making is based on comparing the current farm performance against
the expected return (see|Knox et al.|(2012)), as well as taking social influence into account.

The model we discuss here explains a two-staged adoption of modern irrigation technology — collective and
individual — with profit-driven individuals immersed in a social network where farm extension is a proxy for
social influence (Section 3). We modelindividual decisions (unknown from data) from which we simulate com-
munity adoption, which fits quite faithfully the actual adoption data. We calibrated our model with real data
from two communities and found that, in these cases in which agriculture is market-oriented and water scarcity
is high, favourable modernisation conditions arise from added-value crops, which are enabled by higher water

allocations and greater irrigation efficiency (Section 4).

This work presents a particular case in the water policy domain that, approached with ABM, allows the explo-
ration of alternative policies (see|Srinivasan et al.[(2017)). It also suggests the need of a richer socio-cognitive
model (of individuals and communities) to explain modernisation in other types of communities (Sections

and|g).

Background and State of the Art

Modernisation of irrigation systems is said to improve water use efficiency (see |LOpez-Gunn et al,(2012)). In
traditional communities, water is distributed by means of open channels, and applied using field ditches. A
drawback of such systems is their significant level of water losses. These contrast with modern systems with
pressurised networks and sprinklers or drip pipes — whose adoption is known as “modernisation” —, that min-
imise water losses but consume more energy.

An irrigation community (IC) is a group of agents that share a water allocation right, whose main use is farm
irrigation. In Spain, an IC has the power to plan and execute infrastructure projects, as long as an assembly
constituted by allits members agrees. This procedure is based on direct voting, for which farmers hold a number
of votes proportional to their farm extension. Actual modernisation of an IC (our object of simulation) is a two-
stage process: (i) the community upgrades the shared infrastructure only when supporters of modernisation
gather enough votes to pass the project; and (ii) only then are farmers able to install drip or sprinkler systems
in their own fields.

Diffusion of innovations is the process through which practices, ideas or products, are spread and adopted over
time within a social system (Rogers|[1995). Diffusion of innovations in ICs has been studied using equation-
based models (AlcAsn|2007). However, this modelling approach does not reflect agent heterogeneity and does
not reproduce farmers’ social interactions explicitly.

Agent-based models can overcome these limitations and have been used to study adoption of innovations (Def-
fuant et al.|2005;[Sengupta et al.|2005}|Zhang et al.|2016; | Deffuant et al.[2002). Moreover, as we present in this
paper, it allows to approach adoption-decision as a contingent phenomena, in which farmers may adopt a tech-
nology individually only after a prior collective agreement that emerges from the same decision-making units.
As|Hu et al.| (2017) indicate, major challenges in modelling behaviour in AMB is data scarcity and consider a
proper representation of bounded rationality implications in the domain and context under study. They pro-
pose that working from domain experts’ knowledge may help to address such challenges, as we did in this
work.

ABM has been also used to explore human social behaviour in the agricultural domain (Huber et al.l2018;|Berger
2001;|Schreinemachers & Berger|2011), although it has been used for answering research questions related to
land-use changes (Parker et al.[2003) and implementation of payment for ecosystem services (Sengupta et al.
2005;/Chen et al.[2012).

A line in the agricultural domain has taken a socio-hydrology approach (Sivapalan et al.[2014), combining hu-
man behavioural models with biophysical models, to focus, in particular, on water issues. Becu et al.|(2003)
presented the CATCHSCAPE model, whose central point was the impact of upstream agricultural water man-
agement on the farming activity downstream, for which they considered a spatial representation of the water-
shed explicitly. |Hu et al.|(2017) explored the use of groundwater for irrigation, and introduced environmental,
economic, social, and infrastructure aspects on agents’ decision-making on groundwater pumping. They con-
cluded that factors relevant in agents’ decisions were temperature, precipitation, groundwater level and crop
prices — variables that are reflected in our work in water availability and climatologic conditions. However, that
model lacked social interaction between agents, since the agents represented aggregation of multiple farmers.
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Figure 1: Modernisation of an irrigation community as a two-stage process.

Similar to the work we present,|Holtz & Pahl-Wostl|(2012) used ABM to conduct historical research in a Spanish
basin where irrigation agriculture was a key economic activity. However, they focused on land-use changes and
groundwater use. They considered diffusion of irrigation technologies, multiple crop options, and cognitive
biases as risk aversion and concluded that farmer models should consider more values than profit orientation
(e.g. lifestyle).

Berger (2001) developed a model for assessing different policy scenarios in the diffusion of innovations and re-
source use changes. The model was based on a cellular automata modelling approach, since it was considered
that spatial dimension was essential in agriculture models. Although some of the potentialities afforded by the
spatial representation are not included in our model (e.g. resource distribution, nutrient diffusion, return flows,
etc.), they are easy to be implemented in future work, since the spatial dimension is already taken into account.

The usual approach of innovation-diffusion models base decision-making on utility functions (Kiesling et al.
2012), and also consider contagion processes (AlcAsn/[2007; Holtz & Pahl-Wostl[2012; |Berger|2001). Although
other non-economic variables might be included in this function, it is assumed that most farmers (especially
large-scale farmers) focus primarily on economic utility as the driving value (Benouniche et al.[2014). For in-
stance,|Sengupta et al.|(2005) categorised farmers according to their motivation, distinguishing between large-

scale farmersthat pursued profit maximisation and small-scale farmersinterested in conservation of rural lifestyle.

In this paper we identify a class of ICs for which the profit-driven assumption is plausible, due to the regional
socioeconomic context. Nonetheless, we recognise the need of considering additional values and interests
(see|Huber et al.[(2018)).

To our knowledge, modernisation of irrigation systems has not been modelled as a two-stage contingent pro-
cess in ABM, where relationships between individuals and the emergence of collective properties is essential.
This work, particularly, addresses this gap, and relates adoption decision both at the individual and collective
level to agricultural and water economy aspects.

Model

The model we present here represents an irrigation community (IC) as a set of farmer agents for which moderni-
sation is achieved in two stages (Figure[l). The first one accounts for the commitment of collective modernisa-
tion, in which each farmer evaluates whether it is worth modernising its farm, and then, all farmers need to
reach a collective agreement based on an aggregation of their attitudes. In the subsequent second stage, once
the community agrees to modernise, individual farmers may choose to modernise their own farms. We draw
upon information from experts and field data from irrigation communities to design and calibrate the model.
We model individual decisions (unknown from data) from which we model community adoption (comparable
with actual adoption data). Thus, the model can be used to gauge the proclivity of a given community to mod-
ernise and reveals external actions that may induce modernisation.

We use five types of data, drawn from several sources, as input for the model (Figure[2 [Appendix B). We obtain,
as a raw outcome, the individuals’ disposition to modernise (Stage 1) and their actual adoption (Stage 2), that
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Figure 2: Model components.

we aggregate to obtain the collective disposition and the adoption curve, respectively. We use NetLogo as a
simulation platform.

Entities and assumptions

Farmers are the only kind of agentin the model. They are characterised by the following attributes: (i) farm area;
(ii) farm location; (iii) supply support (capability to increase water supply by means of alternative sources, such
as private wells); (iv) crop-inertia (reluctance to change crops in spite of potential profitability); (v) risk-aversion;
(vi) age; (vii) capital; (viii) past revenue (economic outcome of the past agricultural season); and (ix) disposition
towards modernisation. Attributes (i-vi) are based on real-data (see[Appendix B) and attributes (vi-ix) evolve
as results of the simulation.’

Social influence is a key element in the modernisation process, since farmers use information from other farm-
ers to make decisions. Nonetheless, the replication of social networks in such agricultural communities is not
a trivial task: social interaction between farmers may happen in multiple occasions (e.g. community assem-
blies, sporadic contact in town, familiar relationships, etc.). Indeed, this particular phenomena justifies more
fieldwork.

In our model, we based farmers’ social network on two elements: (i) spatial proximity and (ii) farm scale. Al-
though spatial proximity (i.e. social distance) generation model may ignore some aspects that are relevant in
social networks (for instance, that well-connected nodes are generally connected with each other), we con-
sidered it to be a plausible hypothesis for constituting a social network in a agricultural community. [Hamill &
Gilbert/(2009) proposed a similar mechanism to generate social networks, whose perception model is based on
social circles (whose radius was labelled ‘social reach’).

We introduced homophily in the social network with the consideration of the farm scale. The assumption is
that each farmer pays attention to similar neighbours, since their plots have similar farming features and their
experiences are likely to apply. Scale is defined on farm extension, following the classification of [RomAan-
Cervantes|(1996) in Spanish communities: (i) small scale farmers are those that own between 0 and 20 hectares;
(ii) medium scale, from 20 to 70 ha; and (iii) large scale, greater than 70 ha. Following experts’ opinion and |Be-
nouniche et al.|(2014), we assume that all farmers may be linked but small scale and large scale farmers do not
influence each other.

Formally, farmer i and farmer j of the set of farmers A are connected R(3, j) when the distance between them
is below a maximum distance d,,,,, and their farm scales are not small and large (Expression . The social
network N; of the farmer i (the other farmers it is connected with) is given by Expression 2| Note that social
network N; is defined at the initialisation step of the simulation and fix for the whole simulation.

(Vi,j € A)(R(3,7) + (distance(s, j) < dmaa )

—(scale(i) = small A scale(j) = large) A (i # j)) m
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Farmers have dichotomous states in three issues: (i) farming their lands and participating in the community
(active or inactive); (ii) adoption of the innovation (traditional or modernised); and (iii) attitude towards mod-
ernisation (willing to modernise or not willing to modernise). Afarmer willing to modernise will vote for collective
modernisation in Stage 1 and will modernise its individual plot if possible in Stage 2. Notice that willingness is
a state, whose transition is determined by the disposition as explained below (Equation|[6).

To start a simulation, all farmers start being active, traditional, not willing to modernise, and have the crop that
best suits their initial water availability.
The spatial scale of the model represents the farming area of the community. The model simulates decades

of activity through discrete one-year steps, although some submodels use one-month steps (for instance, the
crop yield estimation considers one-month steps). All the submodels are explained in detail injAppendix Aland

data injAppendix B

Process overview

The following procedures are executed sequentially each time-step (one year) (See for further de-
tails):

1. Update allocation: set water context variables, such as water allocation and water prices.

2. Water availability: determined by the water allocated to the farmer, expected rainfall, private water sup-
ply (wells), and the efficiency of the irrigation system (shared and individual irrigation infrastructure).

3. Crop choice: farmers choose one crop (from a list of options), aiming to maximise their income. For the
sake of simplicity, crop choice depends only on water and crop-related variables. Crop water require-
ments are calculated as the reference evapotranspiration multiplied by a crop coefficient (see/Allen et al.
(1998)).

4. Update environment: precipitation and evapotranspiration are updated and memorised by farmers to
choose crops next year.

5. Production: Revenue := Income - Cost: Income is a function of crop market prices, farm area, and crop
yield, which is adjusted according to water stress (see |Steduto et al.[(2012)). Cost adds up the costs of
water, energy, farm inputs and amortisation of the individual’s irrigation system.

6. Activity?: farmers decide whether to stop farming or not depending on the revenue and the capital they
have.

7. Modernisation? (only Stage 1): farmers’ willingness to modernise is defined by two processes: individual
decision-making and social influence.

8. Assembly (only Stage 1): farmers vote for or against collective modernisation.

9. Modernise (only Stage 2): those farmers who are willing to modernise their farms do so. There is no strict
dependency of this decision and what the farmers voted in the assembly.

10. Population evolution: farmers that reach the retirement age trigger a generational replacement, and
inactive farmers can become active again, transfer their land to a new farmer, or remain inactive.

Submodels

Stage 1: The community commits to modernise

Individual decision-making: It is based on opportunity costs of traditional systems. Taking into account that
modernisation would have brought a higher volume of available water, farmers evaluate how it would have
affected their economy. Revenue and expectation are calculated as the difference between income and costs
(Equations[3]and[4). In this specific procedure, past revenue considers the traditional irrigation system (shared
and individual), whereas expectation regards a modernised system. Collective adoption costs are introduced as
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water costs (i.e. tariff scheme), whereas individual costs are those of amortisation. These variables are different
in each time-step t, depending on the decisions made by the farmer i and context variables.

PastRevenue; 1 := Income; — Costs; (3)

Expectation; ;s := Incomegzl‘)demi”d) — C’ostsi?‘)demised) (4)
Farmers must perceive that the utility of the expectation is greater than the past revenue (Equation. Provided
that this condition is met, disposition compares expectation and past revenue including a risk-aversion param-
eter g1 (Equation[6). This parameter is greater than or equal to zero; when it is zero, the farmer has no risk
aversion and will adopt the innovation as long as benefits are expected; on the contrary, a large value for this
parameter means that the farmer is averse to changes and will adopt only if it entails significant profits. As the
disposition ranges from zero to one, a negative result will be considered as zero.

FExpectation;; > PastRevenue; (5)

. . PastRevenue;
Disposition; ; :=1 — 2 oorere

St Expectation; (6)
Social influence: a farmer jreceives an influence on its own disposition. The new disposition is is the weighted
average of the disposition of its neighbours (i.e. the agents that constitute N;), besides its own disposition prior
the influence. The weights are determined proportionally to their farm area (namely, their farm area Area;
divided by the total area Arear of the farmersin {N;} U {i}) (Equation[7).

{Nijuii}

. . Area;
Disposition; ; 1= J

- Disposition; 7
Arear P ot (@)

State transition: Each year, the transition from not willing to modernise to willing to modernise is based on
a probability P; (Equation|[8). This transition is bidirectional, meaning that farmers can change their mind on
whether to modernise or not. If the farmer was already willing to modernise (W), the complementary probability
is used as the transition probability.

P,[W | =W ] := Disposition, P,[-W | W] :=1— Disposition, (8)

Assembly: The community will commit to modernise only when more than half the votes are for modernising
(thatis, all farmers may cast their votes but only farmers who are active and willing to modernise vote in favour).
The number of votes each farmer has is proportional to its farm area.

Stage 2: Individuals modernise their plots

Individual decision-making: The procedure is the same as in the Stage 1, except that the risk-aversion param-
eter g2 is now greater than before. According to expert’s observations, in the first stage farmers do not have
to commit to adopt; and, furthermore, collective costs are shared among all community members. However,
in Stage 2 farmers will invest their own money in their own plot that they will eventually have to pay with their
own income. Therefore, their commitment is more fragile.

Social influence: it is based on imitation. Farmers who have not adopted observe those farmers in their social
network IN; who have already adopted and also are making a profit (Expression[9) — thus, they use a tempo-
rary social network Nm. Then, they calculate an expected income from the average revenue per unit of area
(Equation. More precisely, a farmer i at time-step t:

Nii = {j € N; : (Modernised(j) = true) A (Past Revenue;,; > 0)} (9)

Ny

1 Z PastRevenue;,;

Ezxpectation; + == Area; - | ~ |
it

> Area; (10)
Expectation must meet the previous condition (Equation[5). Afterwards, a transition probability is calculated
as before (Equationl6), but using a specific imitation risk-aversion parameter a;. This parameter decreases over
time because, as time passes, knowledge about the innovation (both internal and external to the community) is
higher, and imitation is less risky. This is represented by a reduction parameter # (in %) that updates (linearly)

JASSS, 22(4) 1,2019 http://jasss.soc.surrey.ac.uk/22/4/1.html Doi: 10.18564/jasss.4100



3.20

4.1

4.2

4.3

4.4

the imitation risk-aversion at the initialisation a;o (where t is the number of years since the initialisation at year
to) (Equation(l).
Q¢ = Qo (1 — ’lz)t) (11)

State transition: The procedure is the same as before (Equation [8), except that it is not bidirectional, since
farmers willing to modernise adopt the innovation immediately and never retract.

Simulation

We use historical data from two Spanish irrigation communities: Alhama de Murcia and Campo de Cartagena.
Both are located in the Segura river basin in SE Spain (Figure ED In this region, water scarcity is severe and
the average annual precipitation is low (approximately 300 mm/year). Thus, ICs receive surface water transfers
from the Tajo river and farmers often draw from groundwater resources. Climatological conditions (i.e. evap-
otranspiration and precipitation) are regional normal values during 1981-2010 and are assumed constant over
time. Crop variables (i.e. crop coefficients, yields, and prices) are set using national sources
[Region of Murcia|2017}/Regional Statistics Center of Murcia|2017;|MAPAMAIND). Following experts’ opinions, in-
dividual modernisation is assumed to cost 3,500 eur/ha, to be paid in a 5-year time frame with a 2.5 % interest
rate. Global efficiency of the irrigation system (taking into account distribution and application) is set as ~40 %
and ~75 % for traditional and modernised systems, respectively. Finally, social network maximum distance is
4 km (see Figure[d]as an example of spatial setup).

Region of
Murcia

Figure 3: Location of studied irrigation communities in the Region of Murcia (Spain)

With regards to the actual modernisation process of the community as a whole, there is reliable data for both
communities. The data set of the two communities is not complete, fortunately they mostly complement each
other. Thus, given the similarities of the two ICs, we were able to model the variables of each stage drawing
mainly on data from one community. Validating social processes of empirically-grounded models is difficult
and has to cope with many uncertainties (Parker et alJ2003). We have stuck to replicative validation, comparing
the simulation results with the real observations.

Stage 1: Collective modernisation

This stage is modelled mostly with data from Alhama de Murcia. This community has 5,906 hectares and 2,317
members. It started to operate in 1979 with a nominal allocation of 10,372,000 m3/year, although since then, it
has received only up to 50 %. In 1981, its General Assembly decided not to participate in the modernisation plan
of the region. Nonetheless, it decided to modernise in 2000. Predominant crops in the area were citrus, grape,
and other fruit trees and vegetables.

In order to simulate the collective disposition we used data from 1979 to 2010. Water allocations are published (Al{
l[hama de Murcia I1C|2016), as well as water prices (SCRATS|2017). Crop options are a representative crop type
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Figure 4: Example of spatial setup of Campo de Cartagena. The triangles represent farmers, whose size is pro-
portional to their farm area. Data on the location of farmers is provided at sector level, in which they are ran-
domly distributed.

in the aforementioned generic groups. Water fees are supposed to be 50 and 150 eur/ha/year, for traditional
and modernised infrastructure, respectively. According to experts, collective modernisation costs are approxi-
mately 6,500 eur/ha with a payback period of 75 years. We used data from a nearby community (namely Campo
de Cartagena) to define the individuals’ attributes. In this stage, the risk-aversion parameter vs; in Equation 6]
is set empirically to 0.5 to fit observations, as done for Stage 2 (see Section 5.6. Simulations involved 440 agents
and 300 runs for each experiment.

Results indicate an increase of votes in 1985-1990 and in 1995-2005 — slightly higher — (Figure[7). Figures[5land|6]
show that they correspond with larger allocations and lower water prices, which enable new crop options that
lead to added-value crops (Figure . Crop-inertia plays a key role because it favours a change to crops with
higher marginal water value (Figure. During the 1985-1990 period, increased water supply leads to a mixture
of two crops (Figure[8): one with a higher water marginal value and lower water requirement (vegetables) and
another with a lower water marginal value but larger value and larger water requirements as well (grape). In
this period, most farmers that switch crops in the high-crop inertia scenario, grow grapes because they have
larger water supplies. In the low inertia scenario, more farmers switch crops, including farmers with lower water
supplies that allow them to move only to lower value crops (they switch to vegetables but cannot produce
grapes). In the 1995-2005 period, inertia is less relevant because, due to the increased availability of water,
producing grapes is feasible for almost all farmers.

Stage 2: Individual modernisation

The second stage of the model is tested using data from Campo de Cartagena. 1t comprises 37,433 hectares
and their predominant crops were vegetables, citrus, and fruit trees. AlcAsn| (2007) collected data to build
equation-based models of innovation diffusion for the period of 1975-2005. In that work, 360 farmers out of
3,237 were thoroughly characterised (e.g. age, farm area, support-supply, crop-inertia), and the water-related
variables such as water allocations and water prices were given in detail.? In the absence of precise field data,
we chose representative crops in the region for the three predominant types (vegetables, citrus, and fruit trees).
As suggested before, risk aversion in this stage is larger because farmers are now committing their own money.
Thus, the risk-aversion parameter g, in Equation [6]is larger than the corresponding vs1 in stage 1, namely,
1.085. The risk aversion when imitating «yg is 1.970 with a reduction v of 2 % every year. These are equal for
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all farmers. In order to calibrate these parameters we tested different values for the risk-aversion parameters
against the actual adoption curve (see Figuresandand associated discussion starting in Section 5.6.

Adoptionistriggered when innovators change crops and after that, the model shows that it spreads by imitation,
regardless of crop patterns (Figure[9). The adoption curve that results from the simulation resembles the typical
logistic function, as expected, and fits the actual curve (Figu re.
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1980 1985 1990 1995 2000 2005 2010
Year

Figure 5: Water allocations for Alhama de Murcia dur-
ing 1979-2010. They show prominent peaks in 1985-
1990 and 1995-2005. Campo de Cartagena allocation
distribution is similar, but volumes are approximately
twice as large.
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Figure 7: Simulated collective disposition in Alhama
de Murcia during1979-2010 under standard (real data)
and High (twice the standard) crop-inertia.
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Figure 6: Water prices for Tajo-Segura transfers dur-
ing1979-2010. Pricesincrease from 1979, have avalley
during 2003-2005, and then a steeperincrease. These
prices have been used for Alhama de Murcia.
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Figure 8: Simulated crop types in Alhama de Murcia
during 1979-2010. Notice that crop pattern change
with high water allocations and low water prices.

Simulations show reasonable correspondences with the studied cases in Spain. Significant increases in collec-
tive modernisation disposition are produced when farmers can leap to higher-value crops that have a greater
water demand. These results are consistent with others like (LOpez-Gunn et al.|2012; Pfeiffer & Lin|2014).

The model is validated with real data. We had no information on individual farmers’ behaviour and social in-
teractions beyond descriptive expert knowledge and agent attributes (e.g. farm area) but we had highly aggre-
gated IC data (e.g. the adoption curve). We compared the results, which emerged from simulated individuals’
behaviour and social influence models, and found that they matched.
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Figure 10: Simulated adoption curve in Campo de
Cartagena during 1975-2005.

Figure 9: Simulated crop typesin Campo de Cartagena
during 1975-2005. Crop pattern change with high wa-
ter allocations.

Our model identifies when favourable conditions appear. In other words, what is relevant is the evolution of the
collective disposition and its local maxima. Although we have calibrated the model to reflect credible voting
results, additional empirical data about agents’ resolutions is likely to improve calibration.

It can be deduced from the model that when water availability is too high, farmers do not perceive modernisa-
tion as advantageous, since their water demand would be completely satisfied and costs will increase unnec-
essarily (see Section Modernisation? in[AppendixA). In other words, if farmers have as much water as they need
to grow the highest water-demand crop — despite the water losses of the traditional system —, ‘modernisation’
is not attractive at all because it does not produce any extra profit. Although water losses are lower because
of the innovation, they already have the volume they need for the chosen crop. In this case, “modernisation”
does not lead to anything but higher costs.

Likewise, if water availability is low due to short allocations, farmers will not modernise since production in-
creases do not compensate the costs or they cannot leap to higher-water-demand crops. Furthermore, uncer-
tainty, and not only availability, affects decision-making (Alcon et al.[2014). This uncertainty could arise from
environmental variables (rainfall resources and extreme weather events) or institutional reliability (whether the
river basin authority or community can ensure the entire water allocation and water prices). We have not mod-
elled uncertainty explicitly in our model beyond the risk-aversion and the imitation risk-aversion parameters.

Varying risk-aversion supports intuitive results: the greater the risk aversion, the lower the adoption rate. Fig-
ure[TTshows that a risk-aversion ys2 > 1, (i.e. statu quo weighs more than future expectations) entails delayed
adoption curves. Lower values for the parameter lead to a significant number of adoptions at the beginning,
that are delayed by a period of low water allocations (Figure — since greater water availability due to mod-
ernisation does not result in higher profits —, and then recover to slowly enter in a stationary phase. Notice that
the “exponential growth” in the adoption curve is still notable for yg2 > 1, which reflects that the delaying fac-
tor is presumably the lack of early adopters that spread the innovation (who decide to adopt at the end of the
period, when highest water allocations are provided) — which also explains the deviation in simulation results.
This exercise reveals the considerable sensitivity of the parameter: for instance, valuing the statu quo only 0.85
in comparison to the expectation (see Equation@ leads to a quite different adoption curve.

Similarly, imitation risk-aversion oo shows higher sensitivity when a9 < 2 (Figure . For greater values
(oo > 2), effects are reduced with respect to the base line, which may reveal that imitation, despite occur-
ring, is infrequent. In other words, as the imitation risk-aversion parameter increases, the “social effects” are
practically suppressed.

Since the shape of the estimated adoption curves follows a logistic curve as expected, our choice of the val-
ues for risk aversion parameters is guided by the extremes of the actual adoption curves. Better grounds for
fixing risk aversion parameters should come from field data from these and other communities. However, as
incidental support to our approach, notice that the shape of the estimated curves not only fits nicely the rest
of the interval but also reproduce the “bumps” of the actual curves. Thus, for example, our model estimates
that adoption is almost absent in periods of low water allocation (1981-1984 and 1987-1994 in Figure, a phe-
nomenon that is also visible in the real adoption curve and is easily observable in Figure[12]

Modernisation affects the efficiency of the irrigation infrastructure, but it requires a proper management as
Doi: 10.18564/jasss.4100
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outputs.

well (Coward|1991;Naranjo Chicharro|2010). Although these factors were not introduced in the model, it is ex-
pected that an efficient management would accelerate adoption and diffusion because of two reasons: (i) a
poor management implies that not all potential benefits are entirely exploited, making modernisation less at-
tractive to farmers; and (ii) untrained farmers are less successful, hence less likely to be imitated by other farm-
ers. Since in our model imitators only perceive the consequences of the modernisation — i.e. revenue and not
the new crop options — they fail to assess the total benefits. According to the simulations, this social influence
is relevant for the second stage: without it, only ~70 % of the farmers eventually adopt (Figure . This also
suggests that an appeal to profit-driven motivations is more likely to be successful when it is addressed to opin-
ion leaders in those communities that are market-driven, able to adopt new crops and threatened with water
limitations.
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No social influence = Standard

Figure 13: Simulated adoption curves in Campo de
Cartagena for two scenarios: standard (actual adop-
tion process) and no social influence (i.e. without so-
cial network).

5.10 Experts have proposed other conditions for modernisation that could be approached as extensions of the cur-
rent model. Two are noteworthy: (1)|Ortega| (2015) reported that some farmers were deceived: while moderni-
sation was offered for free or strongly subsidised, in practice farmers had to pay for it, which hindered financial
sustainability. In our model, it means that farmers used optimistic values which led to collective modernisation
that would not have happened if they had not been misled. (2) In our model, collective decision is approached
as a bottom-up aggregation of individual dispositions, a reasonable assumption for communities in which the

JASSS, 22(4) 1, 2019 http://jasss.soc.surrey.ac.uk/22/4/1.html Doi: 10.18564/jasss.4100



5.1

5.12

5.13

5.14

6.1

6.2

6.3

social structure is horizontal. However, in some communities there is a small number of promoters of moderni-
sation who try to influence other members to vote in its favour: politicians or community presidents promote
modernisation in order to gain recognition or increase power (see|Sanchis-Ibor et al.|(2017)). In this case, only
a few agents would decide (Equations, and the diffusion model (Equationand social network building)
would consider other social characteristics to weigh the influence.

Edmonds|(2005) pointed out the problems of representing opinions as numerical measurements and indicated
the concerns when using such approach in causal mechanisms of the simulation model. We are aware that we
make a strong assumption representing the disposition to modernise by a simple numerical score, and useiitin
particular social influence functions. Modernisation may be motivated (or rejected) by combinations of other
values besides economic profit: for instance, comfort, time savings due to automatisation, sense of progress,
etc. In other words, decisions about modernisation arise, presumably, from a more complex model of rational-
ity (which not only takes economic profit into consideration). This points for further research in how to work
with values in computational models.

For these reasons, and although the results are encouraging, more field research is needed to better ground
some assumptions in the model — for example, non-economic values (e.g. tradition, power, etc.), risk-aversion
and crop-inertia parameters, social network generation — to apply it in communities whose socio-hydrological
characteristics are different from the ones whose data we used. We think that fieldwork should be done to
further explore the farmers’ values and their understandings — as pointed out by Huber et al.| (2018) —, since
this will shape how the behaviour of the artificial farmer agents is modelled (see also (Hitlin & Piliavin/2004;
Schwartz|2012)).

Finally, it is convenient to remark that modernisation has been questioned from a perspective focused on en-
vironment conservation perspective (LAspez-Gunn et al.|[2012} L6pez-Gunn et al.[2012; Perry et al.|2009). It has
been suggested that modernisation leads to farming intensification (e.g. extension of the farming area, double-
cropping, or the adoption of crops with higher water demand), eventually increasing the use of water resources.
One of the reasons, for instance, is that farmers are forced to intensify their production in order to compensate
higher energy costs —phenomena that is aggravated because energy prices are continuously rising, while prices
in agricultural markets follow a downward trend (LAspez-Gunn et al.[2012).

Although farming intensification in the model can only be produced by the adoption of crops with higher water-
demand, the aforementioned phenomena is reflected in the simulations. Three scenarios have been simulated
for Campo de Cartagena: (i) a standard scenario, where farmers adopt progressively (as they do in Figure[10);
(ii) a traditional scenario, in which individual farmers keep using traditional methods and do not adopt modern
technology at any time; and (iii) a modernised scenario, in which farmers adopt the technology from the start
of the simulation. As Figure [14 shows, the three scenarios are almost identical and modernisation results in
low water savings. What modernisation actually promotes is water productivity (Figure[15) — which is, in fact,
more sensitive to water allocation changes.® This indicates one of the trade-offs that public policy has to deal
with, and different understandings of what ‘efficiency’ is in this particular domain (see also|Perry et al.[{(2009)).
Therefore, it has been suggested that additional policy instruments are necessary if environment conservation
(namely, water savings) is pursued, such as updating water allocations and water tariffs (see|Lopez-Gunn et al.
(2012)).

Closing Remarks

We developed an agent-based model to explain modernisation of the irrigation system in farmer communities.
Modernisation is modelled as a contingent innovation-diffusion process: a first stage where the community es-
tablishes a collective agreement to modernise — based on individuals’ dispositions — followed by an individual
adoption decision. The model was built using historical data (1975-2010) from two Spanish irrigation communi-
ties where water is scarce and efficient irrigation (resulting in higher water availability) enables more profitable
crop types that are commercially consolidated.

The model is predictive for modernisation under such particular conditions. It can be used by policy makers to
foster modernisation in similar contexts, to incentivise or subsidise the emergence of the propitious conditions,
or to either dismiss modernisation or identify (alternative) non-profit driven motivations.

Although results are promising, we recognise that this model has some limitations. Conceptually speaking,
bounded rationality of farmers should be further improved using more fieldwork. Also, some of the assump-
tions made to simplify the model or due to lack of data could be improved in further versions (e.g. there is
no lag between crop-decision and crop-production, which may be inappropriate for tree-type crops; constant
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Figure 14: Simulated average water use (m3/ha) in  Figure 15: Simulated average water productivity
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adopt); modernised (farmers adopt from the start). from the start).

and current crop prices; etc.). Moreover, input from experts and available data may have driven the modelling
process towards some consolidated worldviews about farmer communities.

These results are but a modest first step into a larger project of using agent-based modelling in policy-making
and the role of values as the main research motivation (Perello-Moragues & Noriega|in press). The immediate
next step is to bring non-economic values in the individual decision-process. Field studies like AlcAsn| (2007)
have pointed out that variables like age, education, or time-savings affect individual dispositions. There are
also communities that rejected modernisation subsides on, for instance, grounds of preservation of lifestyle
and landscape (AlcAsn, personal communication), while others adopted due to misleading agents (Ortegal2015;
Sanchis-lbor et al.[2017).

Despite the fact that this model puts emphasis on water economy, the model could be extended to consider
a broader approach for policy-making, namely taking the Food-Energy-Water nexus into account. As|Cai et al.
(2018) pointed out, ABM is a promising modelling approach to consider that perspective. We think that the case
presented in this paper is particulary interesting, as it combines agricultural economy, water governance, and
the use of energy-intensive technologies (LAspez-Gunn et al.;2012;|Lépez-Gunn et al.;2012).

Finally, we believe that this paper makes three contributions for the ABS community: (a) identifies a problem
domain that involves a rich repertoire of challenges (value-driven decision-making; collective agreement, pol-
icy design, negotiation, etc.), (b) constitutes a real practical application based on real data, and (c) provides a
non-trivial illustration of how policy-makers and businesses may adopt ABM for their interests.

Appendix A: Submodels

This appendix complements|Section 3
For the sake of simplicity we omit subindex t (time-step) in all formulas, where time-step is one year.

Water availability

Farmers estimate the expected volume of water available to irrigate for that year. This volume of water resources
is given by:

e The water allocation of the community, Wyiocation, fOr that particular year.

e The supply support S;, which represents the share of the supplied water resources withdrawn from alter-
native sources like private wells. Therefore, this volume W, pport,; is calculated (Equation:

Si : Wallocation
Wsupport,i ' = ————— 12
pport, 1 — S; ( )
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e The effective precipitation, P,, that is the fraction of precipitation that can be potentially used by crops,
considering that there is a fraction that leaves the system (as runoff, for instance). It is assumed that only
75 % of the total precipitation P is effective precipitation.

e The irrigation infrastructure (constituted by the collective distribution and individual application sys-
tems), that determines the fraction of water that leaves the system (as leakage or evaporation) and cannot
be used in crop evapotranspiration (Table[l).

The irrigation infrastructure determines the amount of water that is actually applied to the crop. A fraction of
the total volume of water leaves the system due to system losses (i.e. leakage or evaporation). Thus, considering
the efficiency of water distribution 14 and the efficiency of water application u, ; (that depends on the farmer),
the water allocation Wjiocation 1S reduced to (Equation :

/
Wallocation,i = Wallocation * Hd - Ha,i (13)

Likewise, the support is reduced to (Equation[14):

Ws/upport,i = Wsuppo’rt,i * Ma,i (14)
System Collective, Distribution (1) Individual, Application (u, ;)
Traditional 0.75 0.55
Modernised 0.85 0.90

Table 1: Irrigation infrastructure efficiencies

Water partition

It is assumed that the water allocation and supply support is distributed uniformly along the season — those
months in which the crop requires to be irrigated, that is, K. ; # 0 for month j —, although we recognise that
other considerations could be done at this point (for instance, that the volume is distributed equally along all
the year regardless of the crop requirements).

Considering that the season comprises m months (i.e. the number of months with K. # 0) (see Table[3]in

[Appendix B), then, the available water for each is (Equations[15|and|[16):

!
W/ L Wallocation,i
allocation,i,m *— m (15)

!
Wsuppo'rt,i

/
Wsupport,i,m T m

Water irrigation

This procedureis done along the year for all the months. If the crop requires to beirrigated in monthj (K. ; # 0),
then the farmer i uses all the water available for that month (Equation[17):

! /
Wiyj = Wallocation,i,m + Wsupport,i,m + Pe,j (17)

The water requirement for crop c is calculated as the reference evapotranspiration ETj ; (which depends on
climatological variables, such as temperature) multiplied by the crop coefficient K. ; (Allen et al.|1998) (Equa-

tion[18):

ET.; =K. ;- ETo; (18)

Then, the available water is compared to the required water to determine the volume of irrigation water /. Two
cases are identified:

e Case (a): W; ; > ET, ;, which means that there is enough water to satisfy the crop water requirement.
In this case, the farmer uses only the required volume (not all the available water) (Equation[19):

I,:=ET.; (19)
J J
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e Case (b): W, ; < ET. ;, which means that the crop is under water deficit conditions. In this case, the
farmer uses all the water that is available, although it does not satisfy the water requirement (Equa-
tion|20):

I; == W, (20)

Notice that water used to irrigate has different sources (see Equation[17). Accordingly, the farmer uses the dif-
ferent sources following a policy of minimising the cost of water. With this in mind, the first source to be used
is precipitation, then the community allocation (Equation[15), and finally the individual sources (Equation([T6),
which are assumed to be more expensive than the other sources — mainly because they are groundwater re-
sources and also not all the agents have access to them.

Crop yield estimation

Crop yield is estimated using the following relationship (Steduto et al.2012) (Equation[21):

v. ] ET.

where Y, and Y, are the maximum and actual yields, ET},,,, andET, are the maximum and actual evapo-
transpiration, and K, is ayield response factor, which determines the effect of a reduction in evapotranspiration
onyield losses — that is, when the volume of irrigation does not satisfies the crop requirement (Case (b)) — (see

Table[3|in[Appendix B).

In the model, crop yield is addressed as follows:

1. First, the evapotranspiration ratio ET,,/ET .. is calculated for each month j. Using the variables as
named in the previous submodels, it is computed as (Equation[22):

1

= 22
ET., (22)

&t

Notice that this ratio cannot be greater than one; if it is, it has to be set to 1.

2. Second, the yield ratio Y, /Y4, is obtained following Equationconsidering the crop yield response
factor K, . (Equation[23):

Y,
)\j - <Ymaz) - KyYC(l - 6]) (23)
3. Third, the average of the yield ratio is estimated for the whole crop season (that comprises m months)
(Equation[24):
_ 1 &
A=— ZJ: A (24)
Accordingly,

e In Case (a), crop requirements are satisfied. Each additional water unit does not increase the crop yield,
since the maximum production is reached. If farmers are considering to modernise their systems, the
investment is less attractive, since the yield for that crop ¢ does not change with more water.

e InCase (b), the crop is under water deficit conditions. Each additional water unit increases the crop yield.
Due to this fact, modernisation is more valuable, since it can lead to a greater production with the same
water allocation (because less water is lost by leaks and evaporation).

Production

In this procedure, the economic output of farmers is computed.

First, the crop production is estimated (in tonnes), taking into account the actual crop yield (Equation[24) and

the characteristics of the crop (Table[3|in[Appendix BJ| (Equation[25). It can be used to calculate the income (in
euros) (Equation|26). B
Production;,c :== X+ Ymaz,c - Area; (25)
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Income; . := Production; . - Price. (26)

Second, the farmer has to cover the costs of the activity. There are two main costs: (i) on the one hand, there
are individual costs that are associated to the water application system and to farming as a productive activity;
(ii) on the other hand, there are collective costs that are associated to the administration of the community and
its collective water distribution infrastructure (i.e. investment, operation, maintenance, etc.). These costs are
covered by water fees, which are established by the irrigation community, that are paid individually by all the
farmers of the community. These fees are implemented by means of different water tariff schemes:

e Atariff scheme whose pricing is proportional to the farmers’ irrigated area. This scheme is used by tradi-
tional communities (i.e. non-modernised).

e A tariff scheme whose pricing is a binary cost-allocation scheme: a fixed fee that is proportional to the
irrigated area, plus a variable fee proportional to the volume of water used. This scheme is used by those
communities that have modernised their collective distribution infrastructure. Some communities may
base their water fees entirely on the variable term.

With this in mind, a farmer i has to consider multiple costs:

e Costs of water Cy, ; (Equation fortraditional communities and Equation for modernised communi-
ties):

Cuw,i = feew, trad - ATea; (27)

Laltocation,i (28)
Hai

where fee,, is the fixed water fees for the community (which is different depending on the community has
its collective infrastructure modernised or not) in eur/ha; U,, is the variable water fee (i.e. water price) in
eur/m3; Luiocation.i 1S the total volume of irrigation (i.e. all the year) in m3/ha (see Equationsand
whose source is the water allocation of the community, and which is divided by the efficiency of applica-
tion 11, ; to obtain the actual registered volume at the entrance of the farm.

Cu,i := feew,mod - Area; + U, - Area; -

e Costs of operation and maintenance of the farm Cog a1 (Equation:
Cogm,i = Uognm - Area; (29)

where Upg s are the unitary costs of operation and maintenance in eur/ha (that are assumed to be
7,000 eur/ha in the simulation). This cost adds up the costs of farm inputs, fuel, etc.

e Costs of private supply C,, ; (Equation[30):

Cp,i :=U,p - Area; - m (30)
where U, is the unitary cost of the private water sources in eur/m3; Is,p0r.; is the total volume of irriga-
tion (i.e. all the year) in m3/ha (see Equationsand whose source is private, and which is divided by
the efficiency of application p, ; to obtain the actual volume taking into consideration application losses.
In the simulation, U, is assumed to be twice the feey, mod-

e Costs of amortisation C, ; (to replace the individual application system).

The total cost is calculated as (Equation[31):

T
Ca = Inv; + Zlnvi -(1-

t=1

%) r (31)
where I'nv; is the total investment given by the unitary cost of the application system U, in eur/ha (which
is assumed to be constant — that is, no scale economies) and the farm area Area;; r is the interest rate;
and T is the lifespan of the technology. For traditional application systems (i.e flood irrigation or field
ditches), U, is assumed to be 600 eur/ha, while it, for modernised application systems (i.e. drip or sprin-
kler irrigation), is 3,500 eur/ha. The interest rate r is set to 2.5 %, and the lifespan is 15 years for both
systems.

With this in mind, and considering equal payments along the lifespan, the amortisation cost is (Equa-
tion[32):
_Ca

Ca,i : T

(32)
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Then, the total costs for a farmer i are calculated as (Equation 33):

Costs; := Cu,i + Cognt,i + Cpi + Cai (33)

Finally, the revenue is computed as the difference between the income (see Equation and the costs (see

Equation[33) (Equation[34):

Revenue; := Income; . — Costs; (34)

Crop choice

In this procedure, farmers choose the crop type for their farms in order to maximise their revenue. Nonetheless,
they may be reluctant to change crops in spite of potential profitability due to risk aversion, specialisation,
comfort, etc. All these factosr are reflected by crop-inertia ¢. It is implemented as (Equation[35):

Pi[changecrop] =1 — ¢; (35)

If this event is unsuccessful, the farmer will grow the same crop as the previous year. On the contrary, if the
event is successful, the farmer will explore the multiple crop options (see, for instance, Table[3|in[Appendix B).
This consideration may be seen, somehow, as path-dependence on farmers’ decision-making (as their decision
depends, to some degree on their current land-use).

Takinginto account the actual irrigation system (i.e. collective and individual), and using the previous submod-
els (namely, water availability, water partition, water irrigation, crop yield estimation and production sub-
models), it is possible to estimate the actual revenue for each crop option. The chosen crop is the crop option
that maximises their revenue.

Actual production

Assuming that a farmer has chosen a crop, and using the previous submodels (namely, water availability,
water partition, water irrigation, crop yield estimation, production, and crop choice submodels), the ac-
tual revenue of the farmer can be computed, which determines the variations of their capital. The farmer then
memorises this revenue as past revenue (Equation .

Modernisation?

Note: as this submodel has been explained in[Section 3] this subsection will only provide some further details,
and will not reproduce again the entire submodel.

In Stage 1, farmers evaluate how modernisation will impact on their economy. To do so, they compare the re-
sults between the currentirrigation system (that is, traditional collective and individual systems) against a mod-
ernised irrigation system (both collective and individual systems). Generally, modernisation may increase the
water availability, which can open new crop options that lead to greater income. However, costs also increase,
mainly due to the investment that has to be made to install such systems.

In specific terms, farmer compare the revenue (Equation[34) that is produced using the current traditional sys-
tem (Equation[3) with the one that is produced using a modernised system. Namely, an expectation is generated
(Equation[4) making use of the previous submodels (i.e. water availability, water partition, water irrigation,
crop yield estimation and production submodels) assuming that a modernised irrigation systemis being used.
This expectation is then compared to the past revenue (Equation[5).

Notice that the individual modernisation costs (Equations[31]and[32) may take into account different payback
periods (for instance, in the simulation, farmers evaluate modernisation as they would have to pay the invest-
mentin 5 years).

In Stage 2, farmers use the same process of decision-making, but the conditions have changed slightly (the risk-
aversion parameter, the collective infrastructure, and the social influence process) (see[Section 3). Once the
community decides to modernise their collective infrastructure (that is, the community goes from the Stage 1
to the Stage 2), farmers are not willing to modernise their individual application systems any more, and have to
make the decision again with the new conditions.
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Assembly

In Stage 1, the community holds an assembly to pass the proposal of modernising the collective infrastructure.
The system is based on direct voting, in which each member of the community has a specific number of votes
proportional to the area of its farm.

The community will commit to modernise only when more than half of the votes are for modernising. In prac-
tice, that means that more than 51 % of the area of the community is subject to be modernised, as the farmers
who own that extension are willing to modernise. Besides, a farmer cannot have 51 % of the votes by itself (that
is, at least two farmers have to vote in favour).

For the sake of simplicity, only farmers who are active and willing to modernise vote in favour.

Activity?

Each year, farmers decide whether to quit or not depending on the revenue from the previous seasons and the
capital they have.

If the actual revenue is negative (that is, the farmer is losing money), the farmer is more prone to quit: facing
three consecutive years of negative results will force the farmer to become inactive and leave their farm un-
productive. Likewise, if the individual capital drops to below than 0 eur, then the farmer will become inactive
too.

Population evolution

Each year, farmers’ age increases by one. This can lead them to reach the retirement age and trigger a genera-
tional replacement.

When farmers reach the retirement age, they can either (a1) be replaced by a new farmer or (b1) retire and leave
the farm unproductive (for instance, because they do not manage to find a successor). In this model, the retire-
ment age has been set to 80 years old; the probability of event (b1) is 0.60; and the probability of event (al) is
the complementary.

In case of event (al), the new farmer is between 18 and 45 years old, and not willing to modernise (that is, the
decision process has to be made again). Notice that, if the individual system of the farm has been already mod-
ernised, the new farmer has no decision to make in that matter.

Moreover, inactive farmers can (a2) remain inactive, (b2) become active again, or (c2) transfer the land to a new
farmer.

We assume that the probability of event (a2) is 0.80, and the probability of both events (b2) and (c2) is the
complementary. In this latter case, the probability of event (c2) is 0.05. As before, the new farmer is between
18 and 45 years old, and not willing to modernise (that is, newcomers have to make the decision process again).

Appendix B: Input data

A summary of the input data for the simulations can be found in Table[2}
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Variable Input Sources
Crop factors K. See Table[3| Allen et al.| (1998);|MAPAMA| (ND)
Yield water response Ky See Table[3] Steduto et al.[(2012)

Crops

Climate

Water economy

Farmers

Individual
modernisation

Maximum yield Yiqz
Crop prices Price.

Effective precipitation P.
Evapotranspiration ETp
Water prices Uy,

Water allocations Wajiocation
Water fees feeqw traq (Stage 1)
Water fees feew, moaq (Stage 1)
Age
Farm area Area;
Supply-support S;
Crop-inertia ¢;
Risk aversion vg1 (Stage 1)
Risk aversion g2 (Stage 2)
Imitation risk aversion a:io
(Stage 2)

Imitation risk aversion
reduction v (Stage 2)
Unitary cost U,
Interest rate r

Payback period T’

See Table[3]
See Table[3]

See Table[4]
See Table[d]

See Figures[T7][19]

See Figures|i6}[1§]
50 eur/ha

150 eur/ha
See Tabled]
See Tables[6[7]
See Tables[8][9]
See Tables[10}[1]
0.5

1.085
1.970

2%

3,500 eur/ha
2.5%

5years

MAPAMA|(2017); Region of Murcia|(2017);
Regional Statistics Center of Murcial(2017)
MAPAMA((2017);|Region of Murcia| (2017);

Regional Statistics Center of Murcia|(2017)
AEMET

AEMET
AlcAsn|(2007);/SCRATS| (2017); Alhama de

] Murcia IC/(2016)
AlcAsn|(2007);/Alhama de Murcia IC|(2016)

Set by experts
Set by experts
AlcAsn| (2007), INE
AlcAsn|(2007); Alhama de Murcia IC|(2018)
AlcAsn|(2007)
AlcAsn|(2007)
Set by authors
Set by authors
Set by authors

Set by authors

Set by experts
Set by experts

Set by experts

Table 2: Summary of input data

Crop options and characteristics

According to AlcAsn|(2007), in Campo de Cartagena, predominant crops are vegetables, citrus, and fruit trees
— at that time, they accounted for 51 %, 35 % and 8 %, respectively. In Alhama de Murcia, predominant crops
included citrus (45%), vineyards (35 %), and vegetables and fruit trees (20 %) in 2018 (Alhama de Murcia IC]2018).

Table[3|shows the crop options that have been considered in the simulation. Crop characteristics (i.e. evapo-
transpiration factors, maximum yield, prices, and yield response to water stress) were collected from diverse
sources (Steduto et al.[2012; Allen et al.[1998;|MAPAMA|[2017; Region of Murcia|2017; Regional Statistics Center,
of Murcia|2017;|MAPAMA|ND). In the absence of precise field data, we have chosen representative crops in the
region for the predominant ones: namely, orange (Citrus), lettuce (Vegetable), peach (Fruit-tree), and lettuce +

watermelon (Vegetable2). Grape is only available for Alhama de Murcia.

Crop Ke (-) Ymax Ky Price
M1 M2 M3 M4 M5 M6 M7 M8 M9 M0 MM M12 (T/ha) () (eur/T)
Null 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Citrus 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.6 0.5 0.5 40 0.85 390
Fruit-tree 0 0.4 0.6 0.8 1.0 1.0 0.7 0.2 0 0 0 0 30 1.1 550
Vegetable 0.4 0 0 0 0 0 0 0 0 0.6 0.9 0.9 30 115 150
Vegetable2 0.4 0 0.2 0.3 0.9 0.9 0.6 0 0 0.6 0.9 0.9 55 1.1 275
Grape 0 0 0 0.5 0.6 0.7 0.7 0.3 0 0 0 0 26 0.85 765

Table 3: Crop options and crop characteristics used in the simulation

Climatological conditions

Climatological conditions (i.e. reference evapotranspiration ET and precipitation P) are regional normal val-
ues per month during 1981-2010.* In the absence of precise historical meteorological data, they are assumed
constant over time (that is, each year values are repeated).

JASSS, 22(4) 1,2019 http://jasss.soc.surrey.ac.uk/22/4/1.html Doi: 10.18564/jasss.4100



Effective precipitation (P,) is the fraction of precipitation that can be potentially used by crops, considering
that there is a fraction that leaves the system (as runoff, for instance). It is assumed that only 75 % of the total
precipitation is effective precipitation (although we recognise that more sophisticated models are available to
estimate this fraction). These variables are usually given in millimetres or L/m?; they have been converted to
m3/ha to facilitate the operation with crop-related models.

Table[4|shows the climatological conditions — for each month of the year — that have been used in the simula-
tion.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12
ETo 561 638 880 1153 1428 1740 1791 1625 1200 865 590 497
Pe 192 145 163 242 151 23 13 17 140 343 229 247

Table 4: Climatological variables in m3/ha used in the simulation

Water prices and water allocations

For Alhama de Murcia, water fees are supposed to be 50 eur/ha/year for the traditional collective infrastructure
(see Equation . For the modernised collective infrastructure, water fees are supposed to be 150 eur/ha/year
(fixed fee), to which the variable fee that depends on the volume used to irrigate and the water price has to
be added (see Equation . Water allocation and water prices can be seen in Figuresand This data was
obtained from|Alhama de Murcia IC/(2016);/SCRATS/|(2017). > ©

For Campo de Cartagena, the tariff scheme is based entirely on the volumetric term (see Equation . Water
allocation and water prices can be seen in Figu resand This data was obtained from|AlcAsn|(2007). Notice
that, for both communities water allocations follow a similar distribution, although Campo de Cartagena’s is
almost twice as large.

2500 0.20
T
© s
m—': 2000 ‘E 015
E 5
5 1500 2
= .8 0.10
8 1000 g
® T
L 500 g 0.05
©
=

0 0.00

1980 1985 1990 1995 2000 2005 2010 1980 1985 1990 1995 2000 2005 2010
Year Year

Figure 16: Water allocations for Alhama de Murcia dur-  Figure 17: Water prices for Tajo-Segura transfers dur-
ing 1979-2010. ing 1979-2010 used for the simulation of Alhama de
Murcia.

Farmers characterisation

F. AlcAsn made available unpublished data from (AlcAsn|2007) that we used to characterise farmers in our simu-
lation. AlcAsn conducted field surveys and collected data about farmers in Campo de Cartagena. We had access
to individual agent’s data for variables such as age and farm area but, for privacy concerns, in this appendix we
show only aggregated data.

In the absence of data for Alhama de Murcia, data from AlcAsn|(2007) was used to characterise farmers in that
community. For this purpose, the values for farmers variables were randomised using normal distributions
whose mean and deviation were obtained from the sample of Campo de Cartagena.
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Figure 18: Water allocations for Campo de Cartagena  Figure 19: Water prices for Campo de Cartagena during
during 1975-2005. 1975-2005.

Age

Table[5shows the characterisation by age of farmers. In Campo de Cartagena, age was characterised according
to|AlcAsn|(2007). In Alhama de Murcia, age was set following the statistical distribution from the Spanish agri-
cultural census in 2009.7 In this latter case, as only aggregated data was available, a random value in the range
was generated following a uniform distribution.

Age range Alhama de Murcia proportion (%) Campo de Cartagena proportion (%)
<25 0.3 0.3
25-34 4.5 12.5
35-44 13.6 28.7
45-54 22.3 19.8
54-64 26.3 22.8
>65 33.0 15.9

Table 5: Age distributions used in the simulation

Farm area

Table [6] shows the distribution of farmers by farm area in Campo de Cartagena, which was set according to
AlcAsn|(2007).

Category Proportion (%)
<1ha 3.9
1-2 ha 4.2
2-5ha 10.0
5-10 ha 13.1

10-20 ha 22.3

20-30 ha n.7s

30-50 ha 17.5

50-70 ha 6.7

70-100 ha 3.3

>100ha 12

Table 6: Farmers distribution by farm area in Campo de Cartagena

InAlhama de Murcia, field data was available, but it does not allow a precise characterisation of farmers (Alhama
de Murcia IC|2018).8 They provide the total number of farms, and their distribution by areas using broad ranges
— which we follow in Table[7]—, as well as the total area for each category. Noteworthy, most of the farms are
below 1 ha. Notice that these data are referred to farms, not to farmers. For this reason, this data needs some

conversion.
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We use the same proportion of farms in each category to determine the proportion of farmers in that category.
Then, using the total area of that category, we obtain an average area per farmer. Following the same categories,
and using the data from Campo de Cartagena, we obtain a deviation for each category. With this average area
and area deviation in mind, farmers’ farm area were randomised using normal distributions (assuming a min-
imum and maximum areas of 0.1 and 500 ha, respectively). Table[7]shows the distribution of farmers by farm
area in Alhama de Murcia.

Category Proportion (%) Average area per farmer (ha) Area deviation (ha)
<1ha 67.1 0.572 0.250
1-5 ha 28.4 2.612 0.940
5-10 ha 2.6 8.703 1.100
>10 ha 1.8 46.310 83.200

Table 7: Farmers distribution by farm area in Alhama de Murcia

Supply-support

For Campo de Cartagena, supply-support was inferred from the data collected by (AlcAsn|2007) with the ques-
tion: “Water used on the farm: Origin (i.e. surface, groundwater), Source, and Use share (%)”. With this in mind,
supply-support was assumed to be the value of the use share. Table[8|shows the distribution of farmers by
supply-support in Campo de Cartagena.

Supply-support (%) Proportion (%)
=0 23.7
0-10 13.1
10-25 20.3
25-50 38.2
50-75 3.9
75-100 0.8

Table 8: Farmers distribution by supply-support in Campo de Cartagena

For Alhama de Murcia, this data was randomised using normal distributions whose mean and deviation were
obtained from the sample of Campo de Cartagena, taking into account the scale of farmers (see Section 3.6),
assuming a minimum and maximum value of 0 and 100, respectively. We recognise that this method is ques-
tionable, as the probability densities of the values over 100 and below 0 are given to 100 and 0, respectively.
Table[9]shows the characterisation of supply-support for Alhama de Murcia.

Farmer scale Average supply-support (%) Supply-support deviation (%)
Small 21.5 19.8
Medium 28.5 18.8
Large 33.9 19.5

Table 9: Supply-support characterisation in Alhama de Murcia

Crop-inertia

For Campo de Cartagena, crop-inertia was inferred from the data collected by (AlcAsn2007). Namely, the ques-
tion was; “State your degree of compliance with the following statement, scoring from 0 to 10: Would you grow
a very risky product that can generate a lot of profit?”. Using the answer given by farmers (that we refer to as
risk-affinity score), crop-inertia was assumed to be ¢; = 1 — score. Table[l0]shows the distribution of farmers
by risk-affinity score in Campo de Cartagena.

For Alhama de Murcia, this score was obtained using normal distributions whose mean and deviation were ob-
tained from the sample of Campo de Cartagena, taking into account the scale of farmers (see Section 3.6), and
assuming a minimum and maximum value of 0 and 10, respectively. As in the previous case, crop-inertia was
calculated as ¢; = 1 — score. Table[lT|shows the characterisation of risk-affinity score for Alhama de Murcia.
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Risk affinity score (0-10) Proportion (%)

Equalto 0 8.6
1-5 36.2
5-9 44.8

Equalto10 8.9

DK/NA/REF 1.4

Table 10: Farmers distribution by risk-affinity score (to calculate crop-inertia) in Campo de Cartagena

Farmer scale Average score (risk-affinity) Score deviation
Small 5.1 3.2
Medium 6.1 2.7
Large 6.9 3.0

Table 11: Risk-affinity characterisation (to calculate crop-inertia) in Alhama de Murcia

Farm location

Netlogo was combined with the GIS package to input the geographical location of farmers in the community.

AlcAsn| (2007) provided some rough geographical location of farmers in Campo de Cartagena. The surveyed
farmers reported the sector of the community where their farm was located. In the simulation, the exact posi-
tion of the farmers was randomised within the sector they reported (see Figuresand . 9

Figure 20: Geographical representation of Campo de  Figure 21: Randomly generated distribution of farmers
Cartagena, divided by sectors. in Campo de Cartagena.

This information was not available for Alhama de Murcia. Consequently, the exact location of farmers was ran-
domly generated (Figures[22]and[23).1° "
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i

Figure 22: Geographical representation of Alhama de  Figure 23: Randomly generated distribution of farm-
Murcia. ersin Alhama de Murcia.

Notes

To initialise the simulation, the age of farmers — attribute (vi) — is set with real data, but it also changes
with time.

2F. AlcAsn gave us access to unpublished data from (AlcAsn|2007) that we used to set these parameters.

3Water productivity is calculated as the revenue (Equation[3) divided by the gross water volume used from
the water allocation (that is, before water losses). The gross water volume relative to the area (Figure[14) may
not reach the level of the water allocation (Figure[i8]in because (i) the allocation is distributed
equally among the whole crop season, but (ii) the crop requirements are different for each month.

*http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?
1=7031&k=mur

Shttps://wuw.cralhama.org/el-trasvase-tajo-segura-y-los-regadios
®http://www.scrats.es/tarifas-vigentes.html
Thttps://www.ine.es/jaxi/Tabla.htm?path=/t01/p042/a2009/prov00/10/&file=1101.px&L=0
Shttps://www.cralhama.org/distribucion-de-cultivos-propiedad-y-sistema-de-riego/
%https://wuw.crcc.es/informacion-general/documentos-y-planos/
Ohttps://www.cralhama.org/zona-regable/

"https://www.chsegura.es/chs/cuenca/resumendedatosbasicos/cartografia/descargas/
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