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perspectives

This paper is being submitted as scienti�c paper.

The research on complex representations of cases is motivated by the construc-

tion of CBR systems in complex real-world domains. Structured representations
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The aim of this paper is to present a mechanism, called , to

describe declarative biases for case retrieval in structured representations

of cases. Our approach is based on the observation that, in complex tasks,

the identi�cation of the relevant aspects for retrieval in a given situation

may involve the use of knowledge intensive methods. This identi�cation

process requires dynamical decisions about the relevant aspects of a prob-

lem and usually forces to consider non prede�ned retrieval indexes in the

memory of cases. Declarative biases provide a 
exible way of construct-

ing dynamical perspectives for retrieval in the memory of cases. We have

implemented the notion of perspectives in a re
ective object-centered rep-

resentation language, called , based on feature terms. Finally, we

have used perspectives as declarative biases for retrieval in the ap-

plication, a complex real-world case-based reasoning system for generating

expressive performances of melodies based on examples of human perfor-

mances that are represented as structured cases.
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of cases based on the notion of objects and relations among them, usually im-

plemented as graph structures, allow a 
exible and higher expressive power that

attribute-value representations.

Structured representations of cases o�ers the capability of treating subparts

of cases as full-
edged cases: a new problem can be solved using subparts of

multiple cases retrieved from the system's memory. On the other hand, struc-

tured representations of cases increase the complexity of retrieval mechanisms

and requires the development of new retrieval techniques supporting the complex

representations of cases.

In our research work we have described as a formalization of

structured representation of complex cases [6, 16]. We have developed , a

re
ective object-centered representation language designed to support knowledge

modeling of problem solving and learning based on feature terms [4, 5]. In [16]

a similitude measure based on a preference ordering among cases was presented.

The use of inductive learning techniques using feature term representations is also

investigated in [7].

The aim of this paper is to present a mechanism, called , to de-

scribe declarative biases for case retrieval in structured representations of cases.

Our approach is based on the observation that, in complex tasks, the identi�ca-

tion of the relevant aspects for retrieval in a given situation may involve the use of

knowledge intensive methods. This identi�cation process requires dynamical de-

cisions about the relevant aspects of a problem and usually forces to consider non

prede�ned retrieval indexes in the memory of cases. Declarative biases provide a


exible way of constructing dynamical perspectives for retrieval in the memory

of cases. We have implemented the notion of perspectives in .

We use perspectives as declarative biases for retrieval in the applica-

tion, a complex real-world case-based reasoning system for generating expressive

performances of melodies based on examples of human performances that are

represented as structured cases.

The organization of this paper is as follows. In Section 2 we present the notion

of feature terms and their use in the representation language. Section 3
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describes as a declarative bias mechanism for retrieval. Section 4

shows the use of perspectives in the application. Section 5 discusses related

work. Finally, in Section 6 we present the conclusions.

are record-like data structures embodying a collection of .

The di�erence between feature terms and �rst order terms is the following: a �rst

order term, e. g. ( ( ) ), can be formally described as a tree and a �xed

tree traversal order|in other words, variables are identi�ed by position. The

intuition behind a feature term is that it can be described as a labeled graph|in

other words, variables are identi�ed by name (regardless of order or position).

This di�erence allows to represent partial knowledge.

For instance, a sequence of two notes where the �rst one is a with a quarter

duration (noted as ) followed by a with an eighth duration (noted as ) is

described using the feature term representation as follows:

:

= :

= :

= :

= :

= :

=

We use the common dot notation for �eld selection (for instance

).

Feature terms have a correspondence to labeled graphs representation. For

instance, Figure 1 shows the description of a musical score containing two main

interlaced sequences: the melody as a sequence of notes and the harmonization

as a sequence of chords.

Our approach to formalize feature terms is related to the research based on

[2, 9] that proposes formalisms to model object-oriented programming

constructs. We describe the signature � of feature terms as the tuple

such that:
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Figure 1: Partial browse of the score for the `All of me' ballad. Features are

represented as thin boxes, dots indicate not expanded terms, and gray boxes

express references to existing terms.

is a set of including ;

is a set of ;

is a decidable partial order on such that is the least element and

is the greatest element.

We de�ne an interpretation over the signature as the structure

= ( ) ( )

such that:

is a non-empty set, called of (or, universe);

for each symbol in , is a subset of the domain; in particular, =

and = ;

for each feature in , is a total unary function : ( ).

When the mapping is not de�ned it is assumed to have value .

Given the signature � and a set of variables, we de�ne formally

as follows:
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A feature term is an expression of the form:

where is a variable in , is a sort in , are features in , ,

and each is either a feature term or a set of feature terms.

root

sorted

subsumption infor-

mational ordering

Given two feature terms and , subsumes , , if there is a total

mapping function such that :

::= : [ = 	 = 	 ]

0

	

Note that when = 0 we are de�ning only a sorted variable ( : ). We call

the variable in the above feature term the of (noted ( ) = ),

and say that is by the sort (noted ( ) = ) and has features

. The set of variables and the set of features ocurring in are noted

respectively as and .

A feature term is a syntactic expression that denotes sets of elements in some

appropriate domain of interpretation ([[ ]] ). Thus, given the previously de-

�ned interpretation , the denotation [[ ]] of a feature term , under a valuation

: is given inductively by:

[[ ]] = [[ : [ = = ]]] = ( ) ( ) ([[ ]] )

where ( ), when is a function and is a set, stands for such

that ( ) = ; i.e., denotes the set of all elements whose images by contains

at least .

Using this semantical interpretation of feature terms, it is legitimate to es-

tablish an order relation between terms. Given two terms and , we will be

interested in determine when [[ ]] [[ ]] .

We have just seen that the semantical interpretation of feature terms allows to

de�ne an ordering relation among feature descriptions. We call this ordering

relation as . The intuitive meaning of subsumption is that of

. We say that a feature term subsumes another feature term

( ) when all information in is also contained in . Formally,

(Subsumption)

:
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1. ,

and

2. ,

3. for every such that is de�ned, we have that

is also de�ned,

4. such that , and

5. when .

episodic model

( ( )) = ( )

( ) ( ( ))

= 	 ( ) = 	

	 	 ( ( )) = ( )

( ( )) = ( ( )) =

For instance, the following feature term is a partial description of a sequence

of two notes that subsumes all the sequences of two notes where the �rst one is a

and the following a (speci�cally subsumes the previous showed example):

:

= :

= :

= :

=

This notion of subsumption is the basis of the retrieval mechanism in our

approach. Speci�cally, the set of retrieval methods provided in is based on

the lattice generated by the subsumption ordering.

is a re
ective object-centered representation language designed to support

knowledge modeling of problem solving and learning based on feature terms.

is based on the task/method decomposition principle and the analysis of

knowledge requirements for methods |and it is related to knowledge modeling

frameworks like [21] or ComMet [19].

Problem solving in is considered as the construction of an .

The view of \problem solving as modeling" is that problem solving is the con-

struction of an episodic model from problem data and problem solving knowledge.

A clear and explicit separation between tasks, methods, and domain knowledge

permits a dynamical link between a given problem, tasks, and methods as well

6
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Episodic memory

preferences

Perspectives

as a dynamical choice of a suitable method to achieve a task in a given resolu-

tion context : a `task' applies a `method' on a `episode' (described using domain

knowledge and problem data). Thus, an episodic model gathers the knowledge

pieces used for solving a speci�c problem. Once a problem is solved, auto-

matically memorizes (stores and indexes) the episodic model that has been built.

is the (accessible and retrievable) collection of episodic models

of the problems that a system has solved. The memorization of episodic models

is the basic building block for integrating learning, and speci�cally CBR, in .

incorporates to model decision making about sets of alterna-

tives present in domain knowledge and problem solving knowledge. For instance,

preference knowledge can be used to model criteria for ranking some precedent

cases over other precedent cases for a task in a speci�c situation.

The goal of the retrieval task in CBR is to search for similar precedents from the

memory of cases. Our goal is to retrieve structured cases using domain speci�c

knowledge expressed as complex relations among objects. The identi�cation of

the relevant aspects in complex situations requires the use of knowledge-intensive

methods. These relevant aspects constitute the base for the search in the memory

of cases. We claim that the use of declarative biases in the identi�cation phase

provides a clear and 
exible way to express retrieval mechanisms in complex-real

applications.

The view of feature terms as partial descriptions allows the representation of

declarative biases also as feature terms in a natural way. The declarative biases

are interpreted as syntactic patterns. are the way to construct, from

these syntactic patterns, partial descriptions of the current problem embodying

the aspects considered as relevant. These partial descriptions are used as retrieval

patterns for searching similar cases in the lattice of feature terms. The intuition

behind perspectives is shown in Figure 2.

There are two possibilities for constructing perspectives. The �rst option

is via a syntactic pattern using unsorted variables in some feature values. For

7
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Figure 2: Using perspectives in the Retrieval task. First, given a problem case

and using syntactic patterns as declarative biases, the identi�cation phase de-

termines the relevant aspects building perspectives . Then, perspectives

are used to search precedent cases in the episodic memory.

instance, in order to declare as relevant aspects of a note its duration and its

metrical strength on the melody, we will use the following syntactic pattern,

:

=

=

Then, the application of this bias to note illustrated in Figure 1 (the

theme `All of me'), for instance, will construct the following perspective,

:

= :

= :

that in turn will be used for retrieval obtaining, as a result, the set of note

precedents from the memory of cases with (quarter duration) and a

metrical strength.

The second way to build a perspective is to use a syntactic pattern where the

relevance of some features is declared using variables of features. This alternative

allows to identify the roles of features and terms in the structure. For instance,

in order to declare as relevant the role that a given note plays in the structure

of the cognition model of musical understanding of Narmour's theory (see Sec-

tion 4 for more details) we will use the following syntactic pattern where feature

8
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A syntactic pattern is an expression of the form:

where is a variable in , is a sort in , are features in ,

, and each is either a syntactic pattern or a set of syntactic patterns.

Given a problem case and a declarative bias de�ned by means of a syntactic

pattern , a of is de�ned as a feature term such that there is a

total bijective function , a total mapping function , and

an instantiation function satisfying:

1.

2. ,

and

3. ,

variables are noted with the $ symbol,

:

= :

=

Speci�cally, in our example where the note is the of a

melodic process structure, according to Narmour's theory, the following perspec-

tive will be constructed,

:

= :

=

Finally, using this perspective for retrieval we obtain all the notes playing the

same role that the note problem from the memory of cases (i.e. �rst notes of

melodic process structures).

Formally, the signature of syntactic patterns is an extension of the signature

� of feature terms that incorporates a set of feature variables ( ).

Thus, syntactic patterns are expressed as second order feature terms as follows:

::= : [ = 
 = 
 ]

0 


Given the previous de�nition of syntactic patterns, we de�ne formally a per-

spective as follows,

(Perspective)

perspective

: :

:

( ) =

( ( )) = ( ) ( ( )) = ( )

( ( )) ( ( ( )))

9
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4 Using perspectives for generating expressive

performances of melodies

4. ,

5. for every such that is de�ned, we have that

(a) ,

(b) both and have to be de�ned,

and :

(c) such that

(d) such that .

( ) = ( ( ( )))

= 	

: ( ) =

( ) = 	 ( ( )) = 	

	

	 ( ( )) = ( )

	 ( ( ( ))) = ( )

Remark that a perspective is constructed as a partial description of a prob-

lem case . In other words, this implies that . Another important remark

is that several perspectives satisfying the de�nition can be obtained. This implies

that the implementation of the perspectives mechanism has to provide a way to

obtain all of them (for instance, by providing a backtracking mechanism).

[3] is a case-based reasoning system for generating expressive performances

of melodies based on examples of human performances. incorporates back-

ground musical knowledge based on Narmour's implication/realization model [15]

and Lerdahl and Jackendo�'s generative theory of tonal music (GTTM) [12].

These theories of musical perception and musical understanding are the basis of

the computational model of musical knowledge of the system.

We study the issue of musical expression in the context of tenor saxophone

interpretations. We have done several recordings of a tenor sax performer playing

several Jazz standard ballads with di�erent degrees of expressiveness, including an

(almost) inexpressive interpretation of each piece. These recordings are analyzed,

using spectral modeling techniques [18], in order to extract basic information

related to the expressive parameters. The set of extracted parameters together

with the scores of the pieces constitute the set of structured cases of the case-based

system. From this set of cases and using similarity criteria based on background

10
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Figure 3: Task decomposition of the CBR method.

musical knowledge expressed as perspectives, the system infers a set of possible

expressive transformations for a given piece. Finally, using the SMS synthesis

procedure and the set of inferred transformations, generates new expressive

interpretations of the same jazz ballads as well as of other similar melodies.

The problem solving method developed in follows the usual subtask

decomposition of CBR methods described in [1]: (see

Figure 3). The overall picture of the subtask decomposition is the follows:

: The goal of the retrieve task is to choose the set of notes (cases)

most similar to the current problem. This task is decomposed in three

subtasks:

: The goal of this task is to build retrieval perspectives us-

ing two alternative biases. The �rst bias uses Narmour's implica-

tion/realization structures. The second bias uses Lerdahl and Jack-

endo�'s generative theory.

: The goal of this second task is to search cases in the case

11
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Select
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Retain

memory using retrieval methods and previously constructed per-

spectives.

: The goal of the select task is to rank the retrieved cases using

preference methods. The preference methods use criteria such

as similarity in duration of notes, harmonic stability, or melodic direc-

tions.

: the goal of the reuse task is to choose a set of expressive transfor-

mations to be applied in the current problem from the set of more similar

cases. The �rst criterion used is to adapt the transformations of the most

similar case. When several cases are considered equally similar, the major-

ity rule is used. Finally, when previous criteria are not su�cient, all the

cases are considered equally possible alternatives and one of them is selected

randomly.

: the incorporation of the new solved problem to the memory of cases

is performed automatically in . All solved problems will be available

for the reasoning process in future problems.

Once we have described the overall picture of the CBR method, let us now

explain in more detail the role of perspectives in the retrieval subtask in .

The background musical knowledge incorporated in the system is the basis for

the construction of perspectives for retrieval.

The �rst bias applied is based on the Implication/Realization (IR) theory of

Narmour. IR propose a theory of cognition of melodies based on eight basic

structures. These structures characterize patterns of melodic implications that

constitute the basic units of the listener perception. Other parameters such as

metric, duration, and rhythmic patterns emphasize or inhibit the perception of

these melodic implications. The use of the IR model provides a bias based on

the structure of the melodic surface. The example of the note's role in a process

structure described in the previous section is an example of a bias used in

following Narmour's theory.

12
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see http://www.iiia.csic.es/Projects/music/Saxex for a sample of sound example.

The second bias used is based on Lerdahl and Jackendo�'s generative theory

of tonal music (GTTM). GTTM o�ers an alternative approach to understanding

melodies based on a hierarchical structure of musical cognition. GTTM proposes

four types of hierarchical structures associated with a piece. This structural ap-

proach provides the system with a complementary view of determining relevance

biases. An example of a bias based on the GTTM theory is the use of the metrical

importance of a note (see the �rst example in previous section).

Combining these two biases we have performed two sets of experiments. The

�rst set of experiments consisted in using examples of expressive performances

of some phrases of a piece in order to generate expressive performances of other

phrases of the same piece. This group of experiments has revealed that

identi�es clearly the relevant cases even though the new phrases introduce small

variations of phrases existing in the memory of cases. The second set of experi-

ments consisted in using examples of expressive performances of some pieces in

order to generate expressive performances of other pieces. This second group of

experiments has revealed that the use of perspectives allows to identify situations

such as long notes, ascending or descending melodic lines, etc. Such situations

are also usually identi�ed by a human performer.

As a �nal remark, we want to emphasize that the �nal output of are

sound �les containing expressive performances resulting from applying adequate

expressive transformations to the situations identi�ed and retrieved by the use of

perspectives. This capability o�ers a simple way to test the solutions proposed

by the system by just listening to the output sound �les and the results obtained

are very promising .

Other works on structure-based representations are [14], focusing on

case-based planning; the research around the project [10], and the use of

parallel techniques in a [11, 17]. There is a growing interest on structured

13
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