Artificial Intelligence 196 (2013) 77-105

Contents lists available at SciVerse ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

SAT-based MaxSAT algorithms ™ @ CrossMark

Carlos Ansétegui?, Maria Luisa Bonet P, Jordi Levy ©*

4 Universitat de Lleida (DIEI), Jaume II 69, Lleida, Spain
b Universitat Politécnica de Catalunya (LSI), J. Girona 1-3, Barcelona, Spain
¢ Artificial Intelligence Research Institute (IlIA, CSIC), Campus UAB, Bellaterra, Spain

ARTICLE INFO ABSTRACT
Article history: Many industrial optimization problems can be translated to MaxSAT. Although the general
Received 19 June 2012 problem is NP hard, like SAT, many practical problems may be solved using modern

Received in revised form 3 January 2013
Accepted 13 January 2013
Available online 21 January 2013

MaxSAT solvers. In this paper we present several algorithms specially designed to deal
with industrial or real problems. All of them are based on the idea of solving MaxSAT
through successive calls to a SAT solver. We show that this SAT-based technique is efficient
in solving industrial problems. In fact, all state-of-the-art MaxSAT solvers that perform

Keywords:

MaxSAT well in industrial instances are based on this technique. In particular, our solvers won
SAT the 2009 partial MaxSAT and the 2011 weighted partial MaxSAT industrial categories of
Boolean optimization the MaxSAT evaluation. We prove the correctness of all our algorithms. We also present

a complete experimental study comparing the performance of our algorithms with latest
MaxSAT solvers.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The MaxSAT problem is a generalization of the satisfiability problem. The idea is that sometimes not all restrictions
of a problem can be satisfied, and we try to satisfy the maximum number of them. The MaxSAT problem can be further
generalized to the Weighted Partial MaxSAT problem. In this case, we can divide the restrictions in two groups: the clauses
that must be satisfied (hard), and the ones that may or may not be satisfied (soft). In the last group, we may put different
weights to the clauses, where the weight is the penalty to falsify the clause. The idea is that not all restrictions are equally
important. The addition of weights to clauses makes the instance weighted, and the separation into hard and soft clauses
makes the instance partial. Given a weighted partial MaxSAT instance, we want to find the assignment that satisfies the
hard clauses, and the sum of the weights of the falsified clauses is minimal. Such an assignment will be optimal in this
context.

The weighted partial MaxSAT problem is a natural combinatorial problem, and it can be used in several domains, such as:
scheduling [40] and timetabling [9] problems, FPGA routing [41], software package installation [7], design debugging [36],
bioinformatics [39], probabilistic reasoning [34], etc. However, state-of-the-art solvers have not yet experienced the same
success as SAT solvers for the Satisfiability problem in the industrial field. Weighted Partial MaxSAT is an NP-hard problem,
so our aim is to produce efficient solvers to handle real/industrial problems that although generally big in size, are not as
hard as the worst case instances.

* Research partially supported by the Ministerio de Economia y Competividad research projects ARINF TIN2009-14704-C03-01, TASSAT TIN2010-20967-
C04-01/03/04.
* Corresponding author.
E-mail addresses: carlos@diei.udl.cat (C. Ansétegui), bonet@Isi.upc.edu (M.L. Bonet), levy@iiia.csic.es (J. Levy).
URLs: http://www.Isi.upc.edu/~bonet (M.L. Bonet), http://www.iiia.csic.es/~levy (]. Levy).

0004-3702/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.artint.2013.01.002

http://dx.doi.org/10.1016/j.artint.2013.01.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:carlos@diei.udl.cat
mailto:bonet@lsi.upc.edu
mailto:levy@iiia.csic.es
http://www.lsi.upc.edu/~bonet
http://www.iiia.csic.es/~levy
http://dx.doi.org/10.1016/j.artint.2013.01.002
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.artint.2013.01.002&domain=pdf

78 C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105

Originally, MaxSAT solvers (wmaxsatz [23], minimaxsat [18], incwmaxsatz [24]) were based on a depth-first branch and
bound solving schema. Recently, the use of SAT solvers for solving MaxSAT problems has emerged as a new paradigm. The
core idea is to reduce an optimization problem to a sequence of decision problems which are solved with the appropriated
solver. This general approach comes from the observation that many important optimization problems fall into the class of
FPNP which is the class of functions that can be computed polynomially with a SAT oracle [33]. This idea has been applied
in [15] to solve scheduling optimization problems through a sequence of Constraint Satisfaction Problems and in [20] to
solve planning problems through a sequence of SAT instances.

Fu and Malik [17,16] describe a MaxSAT algorithm in this direction. This algorithm can be considered as our initial
source of inspiration. Since then, there has been a development of solvers based on satisfiability testing: sat4j [22], wbo
and msuncore [25], wpm1 [4], wpm2 [5], pwbo [32], bincd [19] and maxhs [13]. Analyzing the results of the latest MaxSAT
evaluations [8] we can conclude that, in general, the branch and bound solvers are more competitive on random problems,
while solvers based on calls to a SAT solver are better for industrial or real problems.

The purpose of this paper is to summarize all our contributions to the development of SAT-based MaxSAT solvers [2-5],
as well as to present some new results. They include detailed proofs of the correctness of all the algorithms, the introduction
of the notion of MaxSAT reducibility and some of its properties, and a complete experimental comparison of our solvers
with the present best performing solvers.

We present our algorithm WPM1 [4], which is the weighted version of the Fu and Malik algorithm [17,16], designed
originally for Partial MaxSAT. Recently, in [2] we show how we can improve its performance by breaking the symmetries
introduced by the reformulation of the MaxSAT problem into a sequence of SAT problems. We also show how we can force
the SAT solver to prioritize the discovery of higher quality unsatisfiable cores to boost the overall search process.

We also present our algorithm PM2 [4,3] for Partial MaxSAT, which essentially follows the same search strategy as the
Fu and Malik algorithm, but using just one blocking variable per clause. Finally, we present our WPM2 [5] algorithm which
is almost a generalization of the PM2 algorithm for Weighted MaxSAT. The WPM2 algorithm was the first algorithm of its
class. Although we provide an implementation of WPM2, we mostly focus on the description of a general architecture that
can be parametrized to obtain more competitive solvers.

Our solvers based on PM2 and WPM1 solvers won the 2009 Partial MaxSAT category and 2011 Weighted Partial MaxSAT
industrial categories of the MaxSAT evaluation, respectively. In this paper we present a complete experimental study with
the best performing solvers of the MaxSAT 2011 evaluation and other solvers which have been recently published and did
not take part.

This paper proceeds as follows. Section 2 presents some preliminary concepts. Section 3 briefly introduces the main
basic ideas behind SAT-based MaxSAT solvers. Section 4 describes the concepts of cost-preservation, MaxSAT equivalence
and MaxSAT reducibility. These notions play the same roles for MaxSAT formulas as equisatisfiability and logical equivalence
for SAT formulas. Section 5 presents the Fu and Malik’s algorithm [17,16] and proves its correctness.

Section 6 describes the problem of symmetries and shows how to break them. Section 7 presents the WPM1 algorithm,
proves its correctness and describes the problem of the quality of the cores. Section 8 introduces a stratified approach
to come up with higher quality cores in WPM1. This stratified approach is generalized, for any MaxSAT solver preserving
MaxSAT reducibility, in Section 9. Sections 10 and 11 present the PM2 and WPM2 algorithms, respectively, and prove their
correctness. Finally, Section 12 presents the experimental evaluation.

2. Preliminaries

We consider an infinite countable set of boolean variables X. A literal | is either a variable x; € X’ or its negation —x;.
A clause C is a finite set of literals, denoted as C =1y v --- VI, or as O for the empty clause. A SAT formula ¢ is a finite set
of clauses, denoted as ¢ =C1 A -+ A Cpp.

A weighted clause is a pair (C, w), where C is a clause and w is a natural number or infinity, indicating the penalty for
falsifying the C. A clause is called hard if the corresponding weight is infinity, otherwise the clause is called soft.

A (weighted partial) MaxSAT formula is a multiset of weighted clauses

(p = {(C17 Wl)v ey (Cmv Wm)v (Cm+],00), RN (Cm+m’,oo)}

where the first m clauses are soft and the last m’ clauses are hard. Given a weighted partial MaxSAT formula ¢, we define

the SAT formulas Dsoft = {C1.....Cm}, ¥nard ={Cm+1, ..., Cnymr} and Pplain = Psoft Y Phard-
The set of variables occurring in a formula ¢ is noted as var(¢).

Definition 1 (Partial and total truth assignment). A (partial) truth assignment is a function I : X — {0, 1}, where X C X. This
function can be extended to variables from X \ X, literals, clauses, SAT formulas and MaxSAT formulas, resulting into a
function from formulas to formulas, as follows.

For variables x; ¢ X, 1(x;) = x;.

For literals, I(—x;) =1 — I(x;), if x; € X; otherwise, I(l) =1.

For clauses, I(l{ v ---VI.) =I(y) Vv --- Vv I({;) and I(O) = 0, simplified considering 1vC=1and 0v C=C.

For SAT formulas I(C1 A---ACr) =1(C1) A--- AI(Cy) and [(¥) =1, simplified considering 1A ¢ =¢ and 0 A ¢ =0.

C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105 79

For MaxSAT formulas, I({(C1, w1), ..., (Cm, Wwm)}) = {(I(C1), w1), ..., (I(Cpn), wm)} and I(@) =1, considering {(1, w)} U
¢ =¢ and {(0, w)} Up ={(0, w)} U@ and simplifying {(C, wy), (C,w2)} U@ = {(C, w1 +w2)} U ¢.
Given a SAT formula ¢, a total truth assignment is a truth assignment I with domain var(g).

Notice that for any SAT formula, I(¢) may be 0, 1, or a partial instantiation of ¢, whereas for total truth assignments,
I(¢) is either 0 or 1.

Example 2. Given ¢ = {(—y,6),(xV ¥,2),(xV z,3),(y Vz2)} and I :{y,z} — {0,1} such that I(y) =0 and I(z) =0, we
have I(p) ={(x,5), (O, 2)}.

We say that a truth assignment [satisfies a literal, clause or a SAT formula if it assigns 1 to it, and falsifies it if it
assigns 0. A SAT formula is satisfiable if there exists a truth assignment that satisfies it. Otherwise, it is unsatisfiable.

Given an unsatisfiable SAT formula ¢, an unsatisfiable core @, is a subset of clauses ¢: € ¢ that is also unsatisfiable.
A minimal unsatisfiable core is an unsatisfiable core such that any proper subset of it is satisfiable. Given a MaxSAT formula
an unsatisfiable core is a subset of clauses, without weights, that is unsatisfiable.

In our algorithms the unsatisfiable cores are described by the indexes of the soft clauses belonging to the core. In this
context, given a MaxSAT formula ¢ = {(C1, w1), ..., (Cin, Wm), (Cm+1,00), ..., (Cjqm, 00)}, @ core is a set A ={iy,...,is} <
{1,...,m} of indexes of soft clauses such that ¢pgq U{Ci,, ..., C;,} is unsatisfiable.

Definition 3 (Optimal cost and assignment). Given a weighted partial MaxSAT formula ¢ and a truth assignment [: var(p) —
{0, 1}, the optimal cost of a formula is the minimal cost of all its total truth assignments:

cost(w):min{ Z wi I:var((p)—>{0,1}}

(Ci,wiegp
1(C;))=0
An optimal assignment is an assignment with optimal cost.
A MaxSAT formula is said to be satisfiable if it has cost zero.

Example 4. Given ¢ = {(—y,6),(xV y,2),(xV z,3),(y Vz2)} and I :{y,z} — {0,1} such that I(y) =0 and I(z) =0, we
have cost(¢) =0 and cost(I(¢)) = 2.

Notice that for any weighted partial MaxSAT formula ¢ and total truth assignment I : var(¢) — {0, 1} we have I(¢) =
{(O, cost(I(¢)))}. For any MaxSAT formula ¢ and truth assignment I we have cost(p) < cost(I(¢)). Notice also that when
w is finite, the pair (C, w) is equivalent to having w copies of the clause (C, 1) in our multiset.

The Weighted Partial MaxSAT problem for a weighted partial MaxSAT formula ¢ is the problem of finding an optimal
assignment. If the optimal cost is infinity, then the subset of hard clauses of the formula is unsatisfiable, and we say that
the formula is unsatisfiable. The Weighted MaxSAT problem is the Weighted Partial MaxSAT problem when there are no hard
clauses. The Partial MaxSAT problem is the Weighted Partial MaxSAT problem when the weights of soft clauses are equal. The
MaxSAT problem is the Partial MaxSAT problem when there are no hard clauses. Notice that the SAT problem is equivalent to
the Partial MaxSAT problem when there are no soft clauses.

A linear pseudo-boolean constraint is an inequality of the form wixq +--- 4+ wyx, op k, where op € {<, >, =, >, <}, ke N,
w; €N, and x; are boolean variables. A cardinality constraint is a linear pseudo-boolean constraint where the coefficients w;
are equal to 1.

3. SAT-based MaxSAT

In this section we describe a simple SAT-based approach for solving MaxSAT. The detailed descriptions of our algorithms
appear in the following sections.

A Weighted Partial MaxSAT problem ¢ = {(C1, w1), ..., (Cm, Wm), (Cing1, 00), ..., (Cjpmy, 00)} can be solved through the
resolution of a sequence of SAT instances as follows. Let ¢, be a SAT formula that is satisfiable if, and only if, ¢ has an
assignment with cost smaller or equal to k. One way to encode ¢ is to extend every soft clause C; with a fresh auxiliary
variable b;, and add the conversion to CNF of the linear pseudo-boolean constraint ZT:] wib; < k. Then

m
@k =1{C1Vb1,...,Cn Vbm, Cmt1, -+, Cupn') UCNF(ZW,-b,- <k)
i=1
If the cost of the optimal assignment to ¢ is ko, then the SAT problems ¢y, for k > kop, are satisfiable, while for k < kop¢
are unsatisfiable. Therefore, the search of the cost of the optimal assignment to ¢ corresponds to the precise location of this
transition between satisfiable and unsatisfiable SAT formulas.

80 C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105

Notice that k may range from 0 to > i ; w; (the sum of the weights of the soft clauses). This encoding of ¢ ensures that
the set of all satisfying assignments of ¢, (with variables restricted to the variables of ¢) is the set of optimal assignments
of .

The search for the value kop: can be done following different strategies; searching from k =0 to kop (increasing k
while ¢ is unsatisfiable); from k = >"I"; w; to some value smaller than kop: (decreasing k while ¢ is satisfiable); or
alternating unsatisfiable and satisfiable ¢ until the algorithm converges to kop (for instance, using a binary search scheme).
Solvers using the first approach are sometimes called unsatisfiability-based solvers, while solvers using the second are called
satisfiability-based solvers.

The key point to boost the efficiency of these approaches is to know whether we can exploit any additional information
from the execution of the SAT solver for the next runs.

The approach used by the solver sat4j [22] or gms (QMaxSAT) [21] is to exploit the information of the satisfiable formu-
las ¢, encoded using auxiliary variables as above. The same idea was initially used by the solver miniSAT' [14] for solving
pseudo-boolean optimization problems. It starts with k = 271:1 w;. Whenever the underlying SAT solver returns satisfiable
for ¢y, it checks the satisfying assignment I and sets the next k equal to the sum of the weights of the soft clauses with
auxiliary variable set to true, minus one, i.e. k=3, _; w;i — 1. If the SAT solver returns unsatisfiable, then the algorithm
stops and the optimal cost is set to k + 1. If the reported optimal cost is Z:‘n:] w;i + 1 (which may be considered as an
infinite cost) the MaxSAT formula is unsatisfiable.

The Fu and Malik algorithm [17,16] - described originally only for Partial MaxSAT - exploits the information of the
unsatisfiable formulas ¢j. It starts with k =0 and increases this value until ¢y is satisfiable. Whenever ¢y is unsatisfiable,
the SAT solver also returns an unsatisfiable core, that is not necessarily minimal. The next ¢y is constructed adding aux-
iliary variables to the soft clauses belonging to the core, and adding cardinality constraints on these variables, stating that
exactly one of them has to be true. This prevents the solver from finding the same unsatisfiable core in the next iterations.
Therefore, contrarily to the encoding of ¢ given above, in this encoding we may have more than one auxiliary variable in a
clause, or none. This approach is quite effective since it allows to solve more efficiently the unsatisfiable ¢ instances, due
to the addition of cardinality constraints at each iteration. However, this approach has also a weakness. A soft clause can be
extended with more than one auxiliary variable (if it belongs to more than one core). This can hamper the efficiency of the
SAT solver. In Section 10, we describe the algorithm PM2 that uses only one auxiliary variable for each clause. This allows
us to encode more efficiently the information provided by the unsatisfiable cores.

The solvers wpm1 [4], wbo and msuncore [25,26] are based on the extension of the Fu and Malik algorithm to the
Weighted Partial MaxSAT problem. This weighted extension of the Fu and Malik algorithm is described in Section 7. PM2
only works for Partial MaxSAT. In Section 11, we show how the same idea is extended to Weighted Partial MaxSAT by the
algorithm WPM2.

The solver maxhs [13] also only increases the lower bound to reach the optimum. It also solves a sequence of SAT
formulas, but which are simplifications of the initial MaxSAT formula. In this case, the arithmetic reasoning is handled in a
different hitting set problem.

Finally, the approach followed by the solvers msu4.0 [31], pwbo1.1 [32] and bincd [19], alternate phases in which the SAT
solver reports satisfiable (giving an upper bound of ko) with other in which it reports unsatisfiable (giving lower bounds
for kope). They also use a unique auxiliary variable for each clause.

The efficiency of these solvers depends critically on which SAT solver we use, and how we encode the cardinality and
pseudo-boolean constraints.

4. MaxSAT reducibility

Our algorithms solve a MaxSAT formula by successively transforming it until we get a trivially solvable formula. To prove
the soundness of the algorithms it suffices to prove that these transformations preserve the cost of the formula. However,
apart from this notion of cost-preserving transformation, we can define other (stronger) notions of formula transformation,
like MaxSAT equivalence and MaxSAT reducibility.

Definition 5 (Cost-preservation, MaxSAT equivalence and MaxSAT reducibility). We say that ¢ and ¢, are cost-equivalent if
cost(gpq) = cost(gr).
We say that @1 and ¢, are MaxSAT equivalent if, for any assignment [: var(pq) U var(g,) — {0, 1}, we have cost(I(¢1)) =

cost((¢2)).
We say that ¢ is MaxSAT reducible to ¢, if, for any assignment [: var(¢q) — {0, 1}, we have cost(I(¢1)) = cost(I(¢2)).

Notice that the distinction between MaxSAT equivalence and MaxSAT reduction is the domain on the partial assignment.
In one case it is var(¢1) Uvar(gy), and in the other var(¢q).
In the following we show some examples of the notions of Definition 5.

Example 6. The following example shows a formula transformation that preserves the cost, but not MaxSAT reducibility.
Consider ¢ = {(x,2), (—x, 1)} and ¢, = {(O, 1)}. We have cost(¢1) = cost(¢y) = 1, hence the transformation of ¢; into ¢,

C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105 81

is cost-preserving. However, ¢ is not MaxSAT reducible to ¢;, because the assignment [: {x} — {0, 1} with I(x) =0, makes
cost(I(g1)) =2 # 1 = cost(I(¢2)).

On the contrary, ¢, is MaxSAT reducible to @i, because there is a unique assignment I: ¢ — {0, 1}, and it satisfies
cost(I(g1)) = cost(I(¢2)). Hence, MaxSAT reducibility is not a symmetric relation.

The following example shows that MaxSAT reducibility does not imply MaxSAT equivalence. Consider ¢1 = {(x, 2), (—x, 1)}
and @3 = {(0,1),(x, 1), (x V ¥,1), (=x V z,1), (—y V —z,00)}. We have that ¢; is MaxSAT reducible to ¢s.! However,
@1 and @3 are not MaxSAT equivalent because for I : {x,y,z} — {0,1} defined by I(x) = I(y) = I(z) =1 we have
cost(I(¢1)) = 1 # oo = cost(I(¢3)).

Finally, ¢1 is MaxSAT equivalent to ¢4 = {(O, 1), (x, 1)}.

The notion of cost-preserving transformation is the weakest of all three notions, and suffices to prove the soundness of
some of the algorithms. However, it does not allow us to replace sub-formulas by cost-equivalent sub-formulas, in other
words cost(¢1) = cost(¢y) does not imply cost(¢1 U ¢3) = cost(gz U @3). On the other hand, the notion of MaxSAT equiva-
lence is the strongest of all three notions, but too strong for our purposes, because the formula transformations we use do
not satisfy this notion. When ¢, has variables not occurring in ¢4, it is convenient to use the notion of MaxSAT reducibility,
that, in these cases, is weaker than the notion of MaxSAT equivalence.

The notion of MaxSAT equivalence was implicitly defined in [12]. In this paper a MaxSAT resolution rule that preserves
MaxSAT equivalence is defined, and proved complete for MaxSAT.

Eventually, the transformations we apply to a formula reach a state of saturation where the cost of the formula is
obtained. Moreover, the resulting formula also describes the set of optimal assignments.

Definition 7. We say that {(0, w)} U ¢’ is a saturation of ¢, if ¢ is MaxSAT reducible to {(0,w)} U ¢’ and ¢’ is satisfiable.
The same notion can be defined for cost-preserving and MaxSAT equivalent transformations.

Next we prove some basic facts about MaxSAT reducibility that will be needed to prove the correctness of our algorithms.
Lemma 8.

(1) If 1 is MaxSAT-reducible to ¢, and var(g;) Nvar(gs) C var(¢y), then @1 U @3 is MaxSAT-reducible to ¢, U @3.

(2) MaxSAT-reducibility is transitive: if @1 is MaxSAT-reducible to @7, @ is MaxSAT-reducible to ¢3, and var(¢q) Nvar(@s3) < var(gs),
then ¢y is MaxSAT-reducible to ¢3.

(3) If {(O, w)} U ¢’ is a saturation of ¢, then
(a) w =cost(p) and
(b) I:var(¢) — {0, 1} is an optimal assignment of ¢ iff I(¢') is satisfiable.

Proof. (1) Assume that ¢, is MaxSAT-reducible to ¢, and that ¢3 is a set of weighted clauses satisfying var(gs) Nvar(¢;) \
var(¢p1) = {. Suppose now that I : var(p1 U @3) — {0, 1}. Then, since I assigns values to all the variables of ¢1 U ¢3,

cost(I(p1 U@3)) = Z w; = Z wi + Z w; = cost(I(¢1)) + cost(I(¢3))
(Ci,wi)e@1Ups (Ci,wi)epy (Ci,wi)eps
1(C))=0 1(C))=0 1(C))=0

Similarly, since I assigns all variables from @3, we have I(¢3) = {(Q, cost(I(¢3)))}, hence

cost(I(p2 U g3)) = cost(I(g2) U { (O, cost(I(¢3)))}) = cost(I(¢2)) + cost(I(¢3))

Since ¢ is MaxSAT-reducible to ¢, if we restrict I to the variables of ¢; obtaining say I’, then cost(I’(¢1)) = cost(I'(¢2)).
On the other hand, clearly I(¢1) = I’(¢1), and since var(gs) N var(py) \ var(pq) = @, 1(¢2) = I'(¢2). Also, by the initial
assumption, I’(¢1) = I'(¢2). Therefore, cost(I(¢1)) = cost(I(¢2)), and (1) is proved.

(2) To prove this result we will need two statements that can be summarized as: in the definition of MaxSAT reducibility
we can restrict the domain of interpretations for free, and we can enlarge it with variables not occurring in the formulas.

Statement 1. For any pair of MaxSAT formulas ¢; and ¢, and sets of variables Vi and V5, if V, C Vq and VI: V| —
{0, 1} cost(I(¢1)) = cost(I(¢2)), then VI : Vo — {0, 1} cost(I(¢1)) = cost(I(¢y)). This results proves, for instance that MaxSAT
equivalence is stronger than MaxSAT reducibility because var(g) C var(¢1) U var(¢a).

Statement 2. For any pair of MaxSAT formulas ¢ and ¢,, and sets of variables V; and V5, if V, Nvar(¢; U¢@y) =¥ and
VI:V1— {0,1} cost(I(p1)) = cost(I(¢z)) then VI: VUV, — {0, 1} cost(I(¢1)) = cost(I(¢2)).

1 To prove that @1 is MaxSAT reducible to ¢3, we must consider two interpretations I; and I, defined by I;(x) =0 and I>(x) = 1. In the first case,
we obtain I1(¢1) ={(0,2)} and I1(¢3) ={(0.2), (¥, 1), (—y v —z,00)} that have the same cost 2. In the second case, we obtain I>(¢1) = {(0O,1)} and
L (g3) ={(O,1), (z,1), (—y vV —z,00)} that have also the same cost 1.

82 C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105

Now, since ¢ is MaxSAT reducible to ¢,, we have VI :var(¢1) — {0, 1} cost(I(¢1)) = cost(I(¢2)).

Since ¢, is MaxSAT reducible to ¢3, we have VI : var(g;) — {0, 1} cost(I(¢2)) = cost(I(¢3)). By statement 1, we can
restrict the domain getting VI : var(p1) Nvar(pz) — {0, 1} cost(I(g2)) = cost(I(¢3)). By statement 2, since var(gi) Nvar(gs) <
var(¢z), we have VI : var(gpr) Nvar(gz) U (var(gq) \ var(gz)) — {0, 1} cost(I(g2)) = cost(I(¢3)). Hence, VI : var(p;) — {0, 1}
cost(I(g2)) = cost(I(¢3)).

Therefore, VI : var(¢1) — {0, 1} cost(I(¢1)) = cost(I(¢3)).

(3) Let {(O,w)} U ¢’ be the saturation of ¢. Then ¢’ is satisfiable, and ¢ is MaxSAT-reducible to {(0, w)} U ¢’. So for
every assignment [of the variables of ¢,

cost(I(g)) = cost(I({(@, w)} U "))
= cost(I({(T, w)})) + cost(I(¢"))
= w + cost(I(¢’))

From the previous equations we conclude that for any assignment I to the variables of ¢, cost(I(¢)) > w, and that any
assignment such that I(¢’) is satisfiable must be optimal for ¢.

Since ¢’ is satisfiable, let I’ be an assignment that satisfies ¢’. Say that [is the restriction of I’ to the variables of ¢. For
such an assignment, I(¢’) is satisfiable, and cost(I(¢")) = 0. At this point we can conclude that w = cost(¢).

It is clear that, for any assignment I : var(p) — {0, 1}, I(¢’) is satisfiable iff cost(I(¢)) = w, and cost(I(p)) = w iff I is
an optimal assignment for ¢. O

Example 9. Notice that the side condition of Lemma 8(1) is necessary. For instance, if we take @1 = {(0, 1)}, ¢2 =
{(x,1), (—x,00)} and ¢3 = {(x, 1)}, where the side condition var(¢;) N var(gs3) = {x} g () = var(¢gq) is violated, we have
that ¢ is MaxSAT reducible to ¢;, but @1 U @3 is not MaxSAT reducible to ¢, U ¢s.

Similarly, the side condition in Lemma 8(2) is also necessary. For instance, if we take ¢ = {(x, 1), (—x, 1)}, ¢2 = {(O, 1)}
and @3 = {(x, 1), (—x, 00)}, where the side condition var(g)) Nvar(gs) = {x} ¢ ¥ = var(¢;) is also violated, we have that ¢;
is MaxSAT reducible to ¢, and this to ¢3. However, ¢ is not MaxSAT reducible to ¢3.

There are two side conditions in Lemma 8(1) and (2) (see Example 9) that restrict the set of variables that can occur
in the MaxSAT problems. However, if we ensure that problem transformations only introduce fresh variables, i.e. when ¢
is MaxSAT reduced to ¢, all new variables introduced in ¢, do not occur elsewhere, then these conditions are trivially
satisfied. In our algorithms, all formula transformations satisfy this restriction.

Lemma 8(1) holds for MaxSAT equivalence, even if g3 does not satisfy the restriction var(gs) Nvar(g,) C var(¢q). How-
ever, it does not hold for cost-preserving transformations: ¢1 = {(x, 1), (—x,2)} and ¢, = {(O, 1)} have the same cost 1,
however @1 U {(x, 1)} and ¢, U {(x, 1)} have distinct costs. Lemma 8(2) holds for cost-preserving and MaxSAT equivalence
transformations. Moreover, these two relations are also symmetric. Finally, Lemma 8(3) also holds for cost-preserving and
MaxSAT equivalence transformations.

5. The Fu and Malik’s algorithm

Before giving the full version of our algorithms, we will present the original Fu and Malik’s algorithm [17,16] for Partial
MaxSAT, and show the correction of the algorithm. We will use parts of the proof of correctness of this algorithm to show
the correctness of our WPM1 and PM2 algorithms.

The algorithm consists in iteratively calling a SAT solver on a working formula ¢. This corresponds to the line (st, ¢) :=
SAT({C | (C, w) € ¢}). The SAT solver will say whether the formula is satisfiable or not (variable st), and in case the formula
is unsatisfiable, it will give an unsatisfiable core (¢.). At this point the algorithm will produce new variables, blocking
variables (b} in the code, with superindex s indicating the number of the core and subindex i indicating the index of the
soft clause), one for each soft clause in the core. The new working formula ¢ will consist in adding the new variables to
the soft clauses of the core, adding a cardinality constraint saying that exactly one of the new variables should be true
(CNF(Z,-EAs b} =1) in the code), and adding one to the counter of falsified clauses. This procedure is applied until the SAT
solver returns SAT.

For completeness, we reproduce the code of the Fu and Malik’s algorithm in Algorithm 1.

Before we prove the correctness of the algorithm, we present an example of the execution of the algorithm.

Example 10. Consider the pigeon-hole formula PHP%3 with 5 pigeons and one hole where the clauses saying that no two
pigeons can go to the same hole are hard, while the clauses saying that each pigeon goes to a hole are soft. The variable x;
means that pigeon i goes to the only hole.

C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105 83

Algorithm 1: The pseudo-code of the Fu and Malik algorithm (with a minor correction).

Input: ¢ ={(C1,1),..., (Cm» 1), (Cnt1,00), -+ (Cngmy, 0)}

1: if SAT({C; | w; = 00}) = (UNSAT, _) then return (oo, ¥) >~Hard clauses are unsatisfiable
2: cost:=0 >Optimal
3 5:=0 ~Counter of cores
4: while true do
5: (st, @c) :==SAT({C; | (Ci, 1) € ¢}) ~Call the SAT solver without weights
6: if st =sart then return (cost, ¢)
7: s:=s5+1
8: As:=0 >Indexes of the core
9: foreach C; € ¢, do
10: if w; # oo then >If the clause is soft
11: b := new_variable()
12: @ =@\ {(Ci,H}U{(C; vb], 1)} >Add blocking variable
13: As = Ag U (i)
14: @:=¢pU{(C,00)|Ce CNF(ZieAS bi =1)} >~Add cardinality constraint as hard clauses
15: cost := cost+1

o ={x1. 1), (x2. 1), (x3,1), (x4, 1), (x5, 1),
(—X1 V —X2,00), ..., (—Xq V —Xs5, oo)} Suppose that applying the Fu and Malik algorithm, the SAT

¢1={xvbl ,1),

solver computes the (minimal) unsatisfiable core A1 = {1, 2}.

(xaVv b; , 1), The new formula will be as shown on the left. At this point,
(x3 , 1), the variable cost takes value 1.

(x4 , 1),

(x5 , DU

{(=xi v —xj,00) [i < j} U

CNF(b} + b} =1, 00)

If the next unsatisfiable cores found by the SAT solver are A; = {3,4} and A3 = {1, 2, 3, 4}, then the new formula will

be, respectively:

@2={xvbl 1,

p3={@avblv b3 1),

(x2v bl .1, (x2v blv b3, 1),
(x3v b3, 1), (x3Vv bv b3, 1),
(xav b2, D), (XaV biv b3, 1),
(x5 , DU (x5 ,D}U

{(=x; vV —xj,00) | i < j}U
CNF(b] + b} =1,00) U
CNF(b3 + b3 =1, 00)

{(=x; v —xj,00) | i < j}U
CNF(b] + b} =1,00) U
CNF(b3 4+ b3 =1,00) U
CNF(b3 + b3 + b3 + b3 =1, 00)

After the third iteration, the variable cost has value 3. Finally, after finding the core A4 = {1,2,3,4,5} we get the
following satisfiable MaxSAT formula:

@a={(xvblv bIvb} 1),
(x2v blv b3v b3, 1),

(X3V b3v b3V b3

D.

(xav bIvbivby. 1),

X5V

bd.1}U

{(=x; vV —xj,00) | i < j}U
CNF(b} + b} =1, 00) U
CNF(b3 + b3 =1,00) U
CNF(b3 4+ b3 + b3 +b3 =1,00) U
CNF(b} + b3 + b3 + b} + b2 =1, 00)

At this point cost is 4. The algorithm will now call the SAT solver on ¢4, and the solver will return the answer “satisfiable”.

The algorithm returns cost = 4.

84 C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105

The following lemma is part of the correctness of the Fu and Malik algorithm.

Lemma 11. Let ¢ = {(C1, 1), ..., (Cp, 1), (Cm41,00), ..., (Crg-m’, 00)} be a partial MaxSAT formula, A € {1, ..., m} be a core, and

(p’:(p\{(C,-,l)|ieA}U{(Civb,-,1)|ieA}U{(C,oo)'CeCNF(Zbi:1>}U{(D,l)}
icA

where b, for i € A, are new variables. Then, ¢ is MaxSAT reducible to ¢'.

Proof. Let I : var(¢) — {0, 1} be a truth assignment. If I(¢pgqq) =0 then cost(I(¢)) = cost(I(¢’)) = co and the lemma holds.

Otherwise, we can assume that I(@harg) = 1, and, since {C; |i € A} U @pqrg i an unsatisfiable core, I falsifies some soft
clause C; where i € A.

Now, consider an optimal assignment I’ : var(I(¢’)) — {0, 1} for I(¢’), i.e. cost(I(¢")) = cost(I'(I(¢’))). For every clause
C; with i ¢ A, we have I'(I(C;)) = I(C;). Since I’ is optimal, it satisfies CNF(3_;., I'(b;) =1). Let j € A be the unique index
satisfying I’(bj) = 1. For the rest of indexes k € A and k # j, I'(by) =0, hence I’ o I(Cx Vv by) = I(Ck). On the other hand,
since I’ is optimal and [falsifies some of the soft clauses in the core, the clause C; must be one of such falsified clauses:
I(Cj)=0. We have I'oI(Cj vbj) =1, but I falsifies 0. Hence, cost(I({C; | i € A})) = cost(I'o I({(C; Vb;, 1) | i € A}U{(O, D})).
We conclude cost(I(¢")) = cost(I'(I(¢’))) = cost(I(¢)). O

Theorem 12. Fu and Malik (see Algorithm 1) is a correct algorithm for Partial MaxSAT.
Moreover, when for a formula @, the algorithm returns (cost, ¢’), then {(O, cost)} U ¢’ is a saturation of ¢.

Proof. In each iteration of the while loop, if the SAT solver returns UNSAT and the unsatisfiable core has soft clauses,
we substitute a formula ¢ by another ¢’ plus the addition of one to the variable cost. Adding 1 to cost is equivalent
to considering that ¢’ has also the empty clause. Lemma 11 shows that ¢ is MaxSAT reducible to {(O0, 1)} U ¢’, hence
cost-preserving cost(¢) = cost({(d, 1)} U ¢).

When hard clauses are satisfiable, Lemma 11 also shows that when variable cost is equal to the optimal cost of the
original ¢, then the actual formula is satisfiable. This ensures that, either hard clauses are unsatisfiable, and the algorithm
terminates in the second line, or they are satisfiable, and the algorithm terminates in ko iterations of the main loop.

Notice that, to prove the first statement of the theorem, we only need to prove that the Fu and Malik transformation
is cost-preserving. However, Lemma 11 proves that the transformation is a MaxSAT reduction. This fact, together with the
transitivity of MaxSAT reductions (stated in Lemma 8), proves the second statement of the theorem, i.e. that the resulting
formula is a saturation of the original one. O

The original version of the Fu and Malik algorithm, published in [17], was slightly different. After line 13 there was the
following line:

13bis: if BV = () then return UNSAT,

that we have replaced by line 1 of Algorithm 1.

This change ensures that the algorithm terminates even when the set of hard clauses is unsatisfiable. Recall that the SAT
solver does not guarantee to return minimal unsatisfiable cores, and, if it always includes an irrelevant soft clause in the
core, then the original algorithm does not terminate.

6. Breaking symmetries

It is well known that formulas that contain a great deal of symmetries cause SAT solvers to explore many redundant
truth assignments. Adding symmetry breaking clauses to a formula has the effect of removing the symmetries, while keeping
satisfiability the same. Therefore it is a way to speed up solvers by pruning the search space.

In the case of executions of the Fu and Malik algorithm, symmetries can appear in two ways. On one hand, there are
formulas that naturally contain many symmetries. For instance, in the case of the pigeon-hole principle we can permute
the pigeons or the holes, leaving the formula intact. On the other hand, in each iteration of the Fu and Malik algorithm,
we modify the formula adding new variables and hard constraints. In this process we can also introduce symmetries. In the
present paper, we are not concerned with eliminating natural symmetries of a MaxSAT formula as in [28], since that might
be costly, and it is not the aim of the present work. Instead we will eliminate the symmetries that appear in the process
of performing the algorithm. In this case, it is very efficient to extract the symmetries given our implementation of the
algorithm.

Before we formally describe the process of eliminating the symmetries, we will see an example.

Example 13. Consider again the pigeon-hole formula PHP? of Example 10. The working formula ¢3 from the previous section
is still unsatisfiable, this is the reason to find a fourth core A4. However, if we do not consider the clause x5 the formula is

C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105 85

satisfiable, and has 8 distinct models (two for each variable among {x1, ..., x4} set to true). Here, we show 2 of the models,
marking the literals set to true (we do not include the clauses —x; v —x;, for i # j and put the true literals in boxes):

X1V v b3 x1v blv b3
X2V blv b3 X2V v b3
X3V v b3 X3V v b3

AN biv b} EZI\ biv b}
+b;:1 b}+:1
+b§=1 +bﬁ=l
b§++b§+b§=1 +b§+b§+bi=1

The previous two models are related by the permutation b} <~ b}, b? <~ b%. The two ways of assigning values to the b
variables are equivalent. The existence of so many partial models makes the task of showing unsatisfiability of the formula
(including x5) much harder.

The mechanism to eliminate the symmetries caused by the extra variables is as follows: suppose we are in the s iteration
of the Fu and Malik algorithm, and we have obtained the set of cores {A1, ..., As}. Now, we add the hard clauses:

bj — =b} forl=1,....s—1andi,je A/NAsand j>i

This can be done adding the following line to the Fu and Malik algorithm, just after line 14.

14bis: foreachI=1,...,5s—1do
foreach i, je AiNAs; and j > i do
@ 1= U{(=b} v =bl;, 00))

These clauses imply that in Example 13 we choose the model on the left rather than the one on the right.

Example 14. For Example 13, after finding the third unsatisfiable core A3, we would add the following clauses to break
symmetries (written in form of implications):

3 1
by — —b,
3 2
b3 — —bj

Adding these clauses, instead of the 8 partial models, we only have 4, one for each possible assignment of x; to true.
After finding the forth core Ay, the set of clause for breaking symmetries are (written in compact form):

b3 — b}
b3 — —b2
bi — (=b} A —b3 A —b3 A —b3)
by — (=b3 A —b3)
b3 — (=b% A—b3)
The following lemma is used to prove the correctness of the Fu and Malik algorithm with symmetry breaking. Notice

that ¢ is the formula passed by the Fu and Malik algorithm to the SAT solver, whereas the formula ¢’ is the one passed by
the Fu and Malik algorithm with symmetry breaking.

Lemma 15. For any sequence of cores A1, ..., As the following two formulas are equi-satisfiable.
S
¢ = Phara U {Ci\/ \/ b/ izl,...,m}uUCNF<Zb{:1)
iEAj j=1 iEAj

v=pu J U [-bfv-bi)
1<k<I<s l',jE‘Ak‘ﬂAl
i<j

86 C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105

Proof. Obviously, when ¢’ is satisfiable, ¢ is also satisfiable.

Now, assume that [satisfies ¢, but falsifies ¢’. Then, there exist four values i, j, k, | such that 1 <k <!<s and
i,je ArNA;and i < j and I(bif) = I(b’j) = 1. Since for these k and [, the assignment I evaluates ZieAk I(b:.‘) =1 and
ZieAI I(b{.) =1, and i € A; and j € Ay, we have I(bi.) = I(b’;) = 0. We can construct a new assignment I’ that assigns the
same values as I, except for the following four variables:

1(bf)=1(b}) =1 I'(bj)=1(b})=0
1(b}) =1(b5)=0 I'(b))=1(bk)=1

It is not difficult to see that I’ also satisfies ¢.

This way, we can define a rewriting rule on assignments. Concatenating these transformations we can eventually construct
a sequence of assignment transformations I — I’ —> ... —> [" such that " satisfies ¢’. We will prove that this finite
sequence always exists.

Notice that, for any assignment satisfying ¢, either we can transform it, or it also satisfies ¢’. Therefore, it suffices to
prove that the rewriting rule is terminating, i.e. there does not exist infinite sequences of transformations | —> I’ — ---
We define a weight for each of these assignments as follows:

weight(I) = Z i-j

1tbhH=1
When we transform I into I’ the weight is transformed as follows.

weight(I') = weight(I) —i-1— j-k+i-k+ j-1=weight(I) + (j —i) - I — k)

Since i < j and k < I, the weight of an assignment strictly increases in each transformation weight(I’) > weight(I). On the
other hand, the weight of an assignment I satisfying ZieAk I(bi.‘) =1fork=1,...,s is bounded by m- s, hence this bound
the length of any sequence of assignment transformations. O

Theorem 16. The Fu and Malik algorithm with symmetry breaking is a correct algorithm for MaxSAT.

Proof. The technical details of the proof are in Lemma 15. The formulas ¢ and ¢’ stated in the lemma are the formulas send
by the classical Fu and Malik algorithm and the symmetry breaking Fu and Malik algorithm to the SAT solver, respectively.
They are equi-satisfiable, therefore we will obtain the same optimal (number of calls to the SAT solver). O

The following example shows that although the proposed method for breaking symmetries is correct, it can still be
improved.

Example 17. Consider the following set of cores A; = {2, 3}, A2 = {1, 3}, A3 = {1, 2}. Assume that after finding these cores,
the following formula sent to the SAT solver is satisfiable.

@ = @nara U {C1 Vb2 VDI, Co Vbl vb3, C3vblvbd, ..}
U {CNF(b} + b} = 1), CNF(b% + b3 = 1), CNF(b3 + b3 =1)}

The symmetry breaking procedure would not add any additional clause (because the intersection of any pair of cores is
just a singleton). However, the formula has (at least) two models produced by symmetries in the b’s:

) =106 =106 =1 1'(B3)=1'(3) =1'(b}) =0
1) =1(b) =1(63) =0 " 1(b3) =1 (b}) =1'(b) =1

7. The WPM1 algorithm

Algorithm 2 is the weighted version of the Fu and Malik algorithm described in Section 5. In this algorithm, we iteratively
call a SAT solver with a weighted working formula, but excluding the weights. In particular, the difference with respect to
Algorithm 1 is that, when the SAT solver returns an unsatisfiable core, we calculate the minimum weight of the clauses
of the core (Wpj, in the algorithm). Then, we transform the working formula duplicating the clauses of the core. In one
of the copies the clauses have the original weight minus the minimum weight, and in the other copy we put the blocking
variables and we give them the minimum weight. Finally we add the cardinality constraint on the blocking variables as in
Algorithm 1, and we add wp;, to the cost.

The following lemmas are used to prove the correctness of the algorithm.

C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105 87

Algorithm 2: The pseudo-code of the WPM1 algorithm.
Input: ¢ ={(Cy, w1),..., (Cm, W), (Cny1,00), ..., (Cogmy, 00)}

1: if SAT({C; | w; = 0o}) = (UNSAT, _) then return (oo,) >~Hard clauses are unsatisfiable
2: cost:=0 >Optimal
3 5:=0 ~Counter of cores
4: while true do
5: (st, @c) :=SAT({C; | (Ci, wi) € @}) ~Call the SAT solver without weights
6: if st = saT then return (cost,)
7: s:=s5+1
8: As:=0 >Indexes of the core
9: Wiin := min{w; | C; € ¢c A W;j # 00} >Minimum weight
10: foreach C; € ¢, do
11: if w; # oo then
12: b} := new_variable()
13: @ =\ {(Ci, w)} U{(Ci, wi — Win), (Ci Vb, Wiin)} >Duplicate soft clauses of the core
14: As = Ag U {i}
15: @:=¢pU{(C,00)|Ce CNF(ZI-EAS bf =1)} >Add cardinality constraint as hard clauses
16: | cost:=cost+Wpin

Lemma 18. Let ¢ be a weighted partial Max-SAT formula, and let exp(¢) be the natural expansion of ¢ into an unweighted formula
by substituting every soft clause (C, w) of ¢ by w copies? of (C, 1). Then, cost(I(¢)) = cost(I(exp())), for any assignment I.

Proof. Straightforward. O

The next lemma shows that if we have several identical unsatisfiable cores, we do not need to add different blocking
variables to each core. Instead all cores can have the same set of blocking variables.

Lemma 19. Let ¢ = @sot U @nara be a partial MaxSAT formula, {C1, ..., Cs} U @hara be an unsatisfiable SAT formula,?® and V =
var(g) Uvar({Cq, ..., Cs}). Let

N
(p1=<pU{(Civb,-,l),...,(Civbi,l)|i=1,...,s}U[(C,oo))CeCNF(Zbi=1>]
r times i=1

and
r . s .
<P2=<pUU{(Ci vd/ 1)]i=1,...,s}U U:(C,oo) ‘ CeCNF(Zd{ :1)]
j=1 j=1 i=1
where bj, d{ ¢ V are fresh variables. Then, cost(I(¢1)) = cost(I(¢2)), for any assignment I : V — {0, 1}.
Proof. For any assignment I :V — {0, 1}, if I(¢pqq) =0 then cost(I(¢1)) = cost(I(¢;)) = oo and the lemma holds.
Otherwise, I(¢harg) = 1. Let Iy be an optimal assignment for I(¢;). We modify I; into an assignment I, the following

way:

Iz(d{) =I1i(b;) foralli=1,...,sandj=1,...,r

It is clear that I; o I(C) =11 o I(C), for all C € @. Also, I3 o I(C; \/d{) =11 o I(C; Vv b;). Therefore, the set of soft clauses in
@1 falsified by I o I is equal to the number of soft clauses in ¢, falsified by I o I.
Let now I, be an optimal assignment for I(¢,). We modify I, into an assignment I, the following way:

Ib)=1(d}) foralli=1,...,s
It is clear that I; o I(C) = I3 0 I(C), for all C € ¢.
By optimality of I, if Iz(cl{) =1 for some j, then I(C;) =0.
For j=1,...,r, let i; be the index of the d variable set to 1 by I, i.e. Iz(di’j) =1 and Iz(d{) =0, for i #1i;. Notice that
I1(bj;)) =1 and I1(b;) =0, for i #iy.

2 Recall that a MaxSAT formula is a multiset of clauses, so we may have several copies of the same clause.
3 Notice that Cy, ..., Cs are not necessarily clauses of .

88 C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105
Forany j=1,...,I if i; =iy, then Iy o I(C; v bj) = I o I(C; Vd}):]zo[(ci\/d{).
Otherwise, if i; # i1, since Iz o I(d}]) =lo (d{j) =1, by optimality of I,, we have

I(Ciy) =I(Ci;)) =0

Therefore
I1 o I(Ci, vV bi)) =1 whereas I o I(Cj, \/d{l) =0
I101(Ci; vbi;) =0 whereas I; o I(Cj, \/d{l) =1 and
LioI(Civh) =l 0l(Civd)), foriiy,ij

In any case, the number of soft clauses in ¢ falsified by I o I is equal to the number of soft clauses in ¢, falsified by
Ibol. O

The next lemma shows the correctness of one iteration of our Weighted Partial MaxSAT algorithm WPM1.

Lemma 20. Let ¢ = {(C1, w1), ..., (Cm, Wi), (Cm41, 00), ..., (Cptmy » 00)} be a weighted partial MaxSAT formula, A € {1, ..., m}
be a core, and Wy, = min{w; | i € A}. Let

@ =@\ {(Civbi,wy |ieA}U{(Ci, Wi — Wmin), (Ci V bj, Wnin) | i € A}

Ce CNF(Zb,- = 1)} U {(0, Win) }

ieA

U {(C,oo)

where {b; | i € A} are fresh variables not occurring in ¢. Then, ¢ is MaxSAT reducible to ¢’'.

Proof. Let I : var(p) — {0,1} be an assignment of the variables of ¢. Let exp(¢) be the unweighted expansion of ¢.
Lemma 18 shows that cost(I(¢)) = cost(I(exp(¢))), for any assignment, in particular for I. If I(¢peq) =0 the cost of both
formulas is infinity and we are done. Otherwise, since {C; |i € A} U gpqq is an unsatisfiable core of exp(¢), and since
Wmin = min(w; | i € A), each one of the clauses C; appears at least wp;, times in exp(¢). Now we can apply the transfor-
mation of Lemma 11 wy,, times to obtain a formula
@2 =exp(@\ {(Ci Vb, w)|iec A)U{(Civd! 1)|icA j=1,..., wnin)
U{(Ci, 1),....(Ci, 1) | i € A}
—_—
Wj—W pin times
Wnin .
ul {(C, 00) ‘ C eCNF(Zd{ = 1)}
j=1 icA
u{@D,....@ 1}
N———
Win times
that is a MaxSAT reduction of exp(¢). Hence cost(I(exp(¢))) = cost(I(¢2)) because var(p) = var(exp(¢)).

Now by Lemma 19, the following formula

@3 =exp(@\ {(Ci vbi,wy) [ieA}) U{(Civbi1),....(Ci Vb, 1) |ic A}

W nin times

U{(Ci,1),....(Ci, 1) | i€ A}

N— —

Wj—Wnin times
u{(c, oo)’CeCNF(Zbi:1>}
icA

u{@,D,....@ 1}

e e

Wmin times

satisfies cost(I(¢2)) = cost(I(gp3)), for the fixed I, because it has domain var(¢). Now using again Lemma 18, ¢3 satisfies
cost(I(¢3)) = cost(I(¢")), for any assignment I. We conclude then that ¢’ is a MaxSAT reduction of ¢. O

C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105 89

Theorem 21. WPM1 (see Algorithm 2) is a correct algorithm for Weighted Partial MaxSAT.
Moreover, when for a formula @, the algorithm returns (cost, ¢’), then {(O, cost)} U ¢’ is a saturation of ¢.

Proof. The theorem is proved iterating Lemma 20 for every execution of the loop of the algorithm, and an argument similar
to the proof of Theorem 12 for the termination. O

Example 22. In the following we show the execution of WPM1 on the formula ¢ = {(x, 1), (¥, 2), (2, 3), (—x V =y, 00), (x V
—z,00), (¥ V—z,00)}. As we can observe, the number of iterations depends on which unsatisfiable core we use in each step
(even if these cores are minimal).?

*,1) (@, 3) (@, 4)

,2) (x, 1) (xVvb3,1)

(z,3) ¥,2) 1D

(=X V =y, 00) (zvbl,3) (yvb2, 1)
(x V =z, 00) (=xV =y, 00) (z v bl,3)
(y VvV —z,0) (xV —z,00) (=X V =y, 00)
(y V=2, 00) (x V =z, 00)

(b3 =1,00) (y v —z,00)

(b} =1, 00)

(b3 +b3 =1, 00)

A longer possible execution, where all clauses get weight one or infinite, would be the following one.

x 1) @, 1) (0, 3) (O, 4)
,2) (xvbl, 1 (xvbl, 1) (xVvblvb3 1
(z,3) ((y,g (yVvb2,2) (y vb3,1)

—XV = z,
((’;Vvég Zvbl 1) (zVv b2,2) (yvbZvb3 1)
(y v —z,00) (=X V =y, 00) (zvbi, 1) (zv b2 1)
(x vV =z, 00) (=X V =y, 00) (zvb3vhb3, 1)
(y Vv =z,00) (v 72,09) (zvbl 1)

(b +bl =1, 00) (y v =2z,00)

L (bl +bl =1, 00) (=X V =y, 00)
2 2 _ (XV—'Z,OO)
(b2 +b2 =1, 00) RV

(bl +bl=1,00)
(b3 + b3 =1, 00)
(b3 +b3 +b3=1,00)

In the next section we describe a heuristic that leads to shorter executions by using preferably clauses with higher weight
in the cores.

8. A stratified approach for WPM1

Next we will propose an improvement to the algorithm WPM1. But before doing that, we will analyze some examples
that study the limitations of WPM1. The WPM1 algorithm consists of iteratively calling a SAT solver on the instance without
the weights, and once an unsatisfiable core is found, we find the minimum weight of the clauses in the core. At this point
we double the clauses in the core, once with the minimum weight and an extra variable, and once with the remaining
cost. The process of doubling the clauses might imply to end up converting clauses with weight say w into w copies of the
clause of weight 1. When this happens, the process becomes very inefficient. In the following we show another example
that reflects this situation.

Example 23. Consider the formula

@ ={(,1), (x2,m), (—x2,00)}

4 This example comes from the slides of the conference presentation of [4] where some weaknesses of Algorithm 2 were discussed.

90 C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105

Algorithm 3: The pseudo-code of the stratified approach for WPM1 algorithm.
Input: ¢ = {(C1, w1), ..., (Cn, Wm), (1, 00), ..., (Cngm, 00)}

1: if SAT({C; | w; = 0o}) = (UNSAT, _) then return (oo, #)
2: cost:=0 >Optimal
3: 5:=0 ~Counter of cores
4: Wpax :=max{w; | (Ci, wj) € ¢ A W; < 00}
5: while true do
6: (st, @c) :=SAT({C; | (Ci, Wi) € QAW;| = Wmax}) >Call without weights
7 if st = saT then
8: if Winax =0 then return (cost, ¢)
9: \\ else Wy := max{w; | (Ci, Wi) € A Wi < Wnax}
10: else
11: s:=s5+1
12: As:=0 >Indexes of the core
13: Wiin := min{w; | C; € ¢c A W; # 00} >Minimum weight
14: foreach C; € ¢ do
15: if w; # oo then
16: b} := new_variable()
17: @ =@\ {(Ci, w)}U{(Ci, Wi — Wnnin), (Ci V b}, Winin)} >Duplicate soft clauses
18: Ag = As U {i}
19: @:=pU{(C,0)|Ce CNF(Z,EA‘ bf =1)} ~Add cardinality constraint as hard clauses
20: CoSt := COSt +Wpin

Assume that the SAT solver always includes the first soft clause in the returned unsatisfiable core, even if this makes the
core not minimal. After one iteration, the new formula would be:

o1 ={(x1 v bl, 1), (x2 v bl 1), (X2, m — 1), (=x2, 00), (b} +bl =1, o)}

If from now on, at each iteration i, the SAT solver includes the first clause along with {(xo,m —i+ 1), (—x3,00)} in the
unsatisfiable core, then at iteration i, the formula would be:

@i={(x1vb]v---vbi 1), (x2v b3, 1), ..., (x2 VDL, 1), (X2, m — i), (—X2, 00),
(b} +b3=1,00),..., (b} + b} =1,00)}

The WPM1 algorithm would need m iterations to solve the problem.

Obviously, a reasonable good SAT solver would return a better quality core than in the previous example. However, unless
the SAT solver can guarantee that it is minimal, a similar example (but more complicated) could be constructed. Moreover,
Example 22 shows that, even if the SAT solver returns minimal cores, the number of iterations of WPM1 may be different
depending on the cores obtained by the SAT solver.

In Algorithm 3 we present a modification of the WPM1 algorithm that tries to prevent the situations described in
Examples 22 and 23, by carrying out a stratified approach. The main idea is to restrict the set of clauses sent to the SAT
solver to force it to concentrate on those with higher weights. As a result, the SAT solver returns unsatisfiable cores with
clauses with higher weights. These are better quality cores and contribute to increase the cost faster. When the SAT solver
returns SAT, then we allow it to use clauses with lower weights.

In Algorithm 3 we use a variable wp,qx, and we only send to the SAT solver the clauses with weight greater than or equal
to Wmax. As in Algorithm 2, we start by checking that hard clauses are satisfiable. Then, we initialize wp,qx to the highest
weight smaller than infinite. If the SAT solver returns SAT, there are two possibilities. Either wyqy is zero (it means that we
have already sent all clauses to the SAT solver) and we finish; or it is not yet zero, and we decrease Wy to the highest
weight smaller than wp,y, allowing the SAT solver to use clauses with smaller weights. If the SAT solver returns UNSAT, we
proceed like in Algorithm 2.

We can use better strategies to decrease the value of wp. Notice that, in the worst case, we could need more executions
of the SAT solver in Algorithm 3 than in Algorithm 2, because the calls that return SAT but wyq > 0 do not contribute to
increase the computed cost. Therefore, we need to find a balance between the number of those unproductive SAT calls, and
the minimum weight of the cores. There are several heuristics that can be applied to decrease wyqx faster than Algorithm 3
when the clauses have a wide variety of distinct weights. One of them is the diversity heuristic [2] where wqx is decreased
until the following condition is satisfied

{Ci | (Ci, Wi) € @ A Wi < Winax}|
Hwi | (Ci, wi) € 9 A Wi < Wiay)|

>0 (1)

C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105 91

Algorithm 4: The pseudo-code of a generic MaxSAT algorithm that follows a stratified approach heuristic.
Input: ¢ = {(Cq1, wq),..., (Cm, wm)}

: cost:=0

Wmnax = 00

: while true do

Pwiney = {(Ci, Wi) €@ | Wi = Winax}

(cost’, Gsat s Pres) = WPM(Qw0)

cost = cost + cost’

if cost = 0o or wygx = 0 then return (cost, @sqr)

W =32 {wi | (Ci, Wi) € 0\ Qg U Pres)
9: @sat = {(Ci, harden(w;, W) | (Ci, W) € @sar}

10: @ = (@ \ Pwpa) Y @sat U Pres

11: Wmax = decrease(Wmax)

PNDDRENR

12: return (cost, @)

13: function harden(w, W)

14: begin

15: if w > W then return co
else return w

or Wpgx = 0, for some value of «. This strategy tends to send more new clauses to the SAT solver when they have bigger
diversity of weights. In our implementation of WPM1 submitted to the MaxSAT evaluation 2012, we use this strategy with
o = 1.25. This value gives us good results experimentally.

The proof of the correctness of this algorithm is like the proof for WPM1. The only additional point is that the new
algorithm is forcing the SAT solver to find some cores before others. In the proof of correctness of WPM1 there is no
assumption on which cores the SAT solver finds first.

9. A generic stratified approach

In Algorithm 4 we show how the stratified approach can be applied to any generic weighted MaxSAT solver WPM. In
the rest of the section we will describe which properties the generic algorithm WPM has to satisfy in order to ensure the
correctness of this approach.

We assume that, given a weighted MaxSAT formula ¢y, with clauses with weight wpgy or higher, the generic WPM
returns a triplet (cost, @sar, @res) such that ¢ is MaxSAT reducible to {(O, cost)} U @sar U @res, @sar is satisfiable (has cost
zero), and clauses of ¢res have cost strictly smaller than wpyqy. Given ¢, WPM1 returns a pair (cost, ¢’) where ¢ is MaxSAT
reducible to {(O, cost)} U@’ and ¢’ is satisfiable. Hence, WPM1 is an instance of the generic WPM where ¢.s = ¢J. Moreover,
we can also think of WPM as an algorithm that partially solves the formula, and returns a lower bound cost, a satisfiable
part of the formula ¢sq;, and an unsolved residual @yes.

The algorithm uses a variable wpgy to restrict the clauses sent to the MaxSAT solver. The first time wpgy = 0o, and we
run WPM only on the hard clauses. Then, in each iteration we send clauses with weight wp,x or bigger to WPM. We add
the return cost to the current cost, and decrease Wpqyx, until wpqy is zero.

Algorithm 3 is an instance of this generic schema (Algorithm 4) where WPM is substituted by a partial execution of
WPM1. In addition, clauses generated during duplication with weight smaller than wpey are put apart in @yes.

Lines 8 and 9 are optional and can be removed from the algorithm without affecting its correctness. They are inspired
in [27]. The idea is to harden all soft clauses in ¢s,; whose satisfiability does not need to be reconsidered, because falsifying
them cannot be compensated by satisfying the rest of soft clauses. The proof of the correctness of these lines is based on
the following lemma.

Lemma 24. Let ¢1 = {(C1,W1),..., (Cin, Wm), (Cm1,00), ..., (Cjgm, 00)} be a MaxSAT formula with cost zero, let ¢y =
{(C}. w)),....(C;, wy)} be a MaxSAT formula without hard clauses and W = Z§=1 w;.. Let

w ifwW

harden(w) = { o ifwsW

and ¢} = {(C;, harden(w;)) | (Ci, w;) € @1). Then, cost(p1 U @) = cost(¢] U @), and any optimal assignment for 1 U ¢, is an
optimal assignment of ¢1 U @s.

Proof. Since (p{ U @, have the same clauses as ¢ U ¢y with equal or higher weight, we trivially have cost(¢ U ¢7) <
cost(¢] U@y). For the opposite inequality, let I be an optimal assignment of ¢ U ¢,. Since ¢, is satisfiable, and W =Y {w |
(C,w) € ¢y}, we have that the optimal cost of ¢; U ¢, satisfies cost(I(¢1 U ¢2)) < W. Therefore, I must satisfy all clauses
(C,w) € @1 where w > W, i.e. all hard clauses of ¢]. Clauses of (C, w) € ¢ where w < W have the same weight in ¢; and
in 7. Therefore, cost(I(¢1 U ¢3)) = cost(I(¢; U ¢2)), and, by optimality of I, cost(¢q U @) > cost(g; Uga). O

92 C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105

Notice that we check the applicability of this lemma dynamically, recomputing the value W in every iteration in line 8
of Algorithm 4.

Example 25. Consider ¢ = {(x3,2), (—x1, 1000), (x1, 1001), (x; V —x2, 00)}. This formula does not satisfy the conditions of
Lemma 24. In the first iteration, we pass the last clause {(x; vV —x,, 00)} to the generic MaxSAT solver WPM, and it returns
cost zero, and the same formula. In the second iteration we pass the last two clauses {(x1, 1001), (x; V —x2, 00)} with the
same result (cost zero and the same formula).

In the third iteration we pass the three last clauses @y, = {(—x1, 1000), (x1, 1001), (X1 vV —x2, 00)} and, assuming we
use WPM1, it returns cost = 1000 and

@sat = {(x1, 1), (=x1 Vv b}, 1000), (x1 v b}, 1000), (x; V =2, 00), (b] + b} =1, 00)}

We cannot consider all these clauses as hard clauses, in particular, we cannot force the clause (x1, 1) to be true. However,
the new formula after this third iteration satisfies the conditions of Lemma 24, being W =2, and ¢y, can be replaced by:

@l = {(x1,1), (=x1 v b}, 00), (x1 v b3, 00), (x1 V =x2, 00), (b] +b) =1,00)}

preserving the cost.

Notice that, in Algorithm 4, the condition w > Zf:,- w; has to be checked dynamically (recall that the clause (x1,1) in
Example 25 was not present in the original formula). Notice also that, in Lemma 24, in general, the formula ¢; U ¢, is not
MaxSAT reducible to ¢ U ¢, and the transformation only preserves the cost.

Theorem 26. Given a formula ¢, if WPM returns a triplet (cost, @sar, @res) Such that ¢ is MaxSAT reducible to {(O, cost)} U @sar U @res,
©sar 1S satisfiable and @res only contains clauses with weight strictly smaller than w gy, then Algorithm 4 is a correct algorithm for
Weighted Partial MaxSAT.

Moreover, when for a formula ¢, Algorithm 4 returns (c, ¢'), then ¢ = cost(¢) and any assignment satisfying ¢’ is an optimal
assignment of ¢.

Proof. Termination of the algorithm is insured by decreasing of wyqx.

Consider first the algorithm without optional lines 8 and 9. In every iteration, @w,,, is replaced by @sq U @res (line 10)
and cost by cost+ cost’ (line 6), where ¢, is MaxSAT reducible to {(O, cost’)} U @sqt U @res. Therefore, by Lemma 8, and
assuming that the side conditions of this lemma hold, we have as invariant that the input formula is MaxSAT reducible to
{(O, cost)} U ¢. Now, the termination condition ensures that, either cost’ = co and the cost of the input formula is co, or
Wmax = 0. In the second case, @, = ¢ and @ = @. Therefore, the return pair (cost, @sqs¢) satisfies that the input formula
is MaxSAT reducible to {(O, cost)} U @sqr, and @y, satisfiable.

Consider now lines 8 and 9. These lines have as effect hardening some clauses of ¢. By Lemma 24, this transformation
preserves the cost of ¢. This is weaker than MaxSAT reducibility, but since cost-preserving is a transitive property, it is
enough to prove the correctness of the algorithm. Notice that with these optional lines, the return pair {(O, cost)} U @sa¢
satisfies cost(¢) = cost and any satisfying assignment for ¢4 is an optimal assignment for ¢. However, the input formula
is not necessarily MaxSAT reducible to {(O, cost)} U ¢sqr. O

10. The PM2 algorithm

The next algorithm, that we call PM2, is a variant of the algorithm described in [4]. It is based on the use of cores
and covers. Basically, every core will result into an at-least cardinality constraint, and every cover into an at-most cardinality
constraint.

At the beginning of the algorithm, every soft clause C; is extended with a unique fresh auxiliary blocking variable b;.
This variable is different for every soft clause. The presence of hard clauses in an unsatisfiable core is irrelevant. In fact, they
are removed from the core by the algorithm. Therefore, like in previous sections, when we say a core we mean a subset of
indexes of soft clauses. Covers are also subsets of indexes of blocking variables, defined as follows.

Definition 27. Given a set of cores L, we say that the set of indexes B is a cover of L, if it is a minimal non-empty set such
that, for every A€ L, if ANB #0, then A C B.
Given a set of cores L, we denote the set of covers of L as SC(L).

Lemma 28. SC(L) is a partition of the set of indexes, therefore covers do not intersect.
Moreover, every core of L is included into just one cover of SC(L).

Notice that, if L is empty, then all covers are singletons.

C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105 93

Algorithm 5: The pseudo-code of the PM2 algorithm.
Input: ¢ ={(C1,1),..., (Cm, 1), (Cm41,00), ..., (Coppmr, 00)}

1: if SAT({C; | wi = co}) = (UNSAT, _) then return (oo,) »>Hard clauses are unsatisfiable
2: BV :={by,...,bnm} >Set of all blocking variables
3: ow:={Ci1Vbi,....Cn Vbm, Cnt1, ..., Cnmr } Protect all soft clauses
4: cost:=0 >Optimal
5 L:=0 >Set of Cores
6: AL:=0 ~Set of at-least constraints
7: while true do
8: AM:=0 >Set of at-most constraints
9: foreach B € SC(L) do
10: k:=|{AeL|ACB} >Num. of cores contained in the cover B
11: L AM:=AMU {3 ;g bi <k} >Add new at-most cardinality constraint
12: (st, ¢c) := SAT(¢pw U CNF(ALU AM)) ~Call the SAT solver, return core if UNSAT
13: if st = sat then return (cost, ¢, U CNF(AL U AM))
14: A={ie{l,...,m}|CiVvb;e@:Abj€BV} >Indexes of soft clauses of the core
15: L:=LU{A}
16: k:=|{A’eL|A C A} >Number of cores contained in A including A
17: AL:=ALU{} ;cabi >k} ~Add new at-least cardinality constraint
18: | cost:=cost +1

PM2 works as follows (see Algorithm 5): every soft clause C; is extended with a blocking variable b;.> Also before the
first iteration of the algorithm the counter of falsified clauses, cost, is set to zero. We have a list of cores L that is increased
with a new core in each iteration. The list of covers is re-calculated in each iteration from the list of cores.® At every
iteration of the algorithm, we start by calculating the set of covers that cover the set of cores L. We add, for every cover B,
an at-most cardinality constraint saying that the sum of all blocking variables of the cover is at most equal to the number
of cores contained in the cover. Then, a SAT solver is called. If the solver says that the formula is satisfiable, the algorithm
returns cost as the minimal number of falsified clauses. If the solver returns UNSAT, it also gives an unsatisfiable core ¢..
Since the hard clauses are satisfiable, the core must contain some soft clause. We put the indexes of the soft clauses of the
core in a set A. Since we have found a new unsatisfiable core, variable cost gets increased by one. Also we look for cores
such that the soft clauses are included in the new core A. We add the cardinality constraint saying that the number of
variables with indexes in A that need to be one is at least the number of cores included in A (counting itself).

PM2 simplifies Fu and Malik in the sense that it only adds one blocking variable per clause. Intuitively, this would have
to result into a more efficient algorithm because there are less blocking variables, so the SAT solver will have to check
less possible assignments. This idea is already used in other MaxSAT solvers, like SAT4] [22], msul.2 [29], msu3 [30] and
msu4.0 [31]. In SAT4] only one at-most cardinality constraint (saying that the sum of blocking variables is smaller than k)
is used. This bound k is reduced until the SAT solver says unsatisfiable. In msu3 [30], in a first phase the authors compute
a maximal set of disjoint cores, and in a second phase the authors do as in SAT4] but increasing the bound k (starting
with the number of disjoint cores) until the SAT solver returns sAT, and only summing the blocking variables that have
appeared in some core. Finally, in the msu4.0 algorithm [31], apart from the at-most constraint, they also use some at-least
constraints saying that blocking variables occurring in a core, and not occurring in previous cores, have to sum at least
one. The algorithm alternates phases where the SAT solver returns SAT or UNSAT, refining a lower or upper bound, and only
terminates when the upper and lower bound coincide, or when the new core does not contain new blocking variables. Our
approach is different from previous ones in two senses. First, we can have several at-most constraints. In particular, if cores
are disjoint, we will have an at-least and an at-most constraint for each core. Second, our at-least constraints may impose
a bound strictly greater than one, in contrast with the msu4.0 algorithm. These differences would have resulted in a more
restrictive constraint, thus in fewer assignments to check by the SAT solver.

To prove that the PM2 algorithm is correct, we will prove that the Fu and Malik algorithm can simulate it. We have to be
aware they are non-deterministic, since we assume that the SAT solver returns an unsatisfiable core non-deterministically.
However, recall that we have proved that the Fu and Malik algorithm is correct for every possible run. The proof is by
induction on the number of execution steps. Suppose that Fu and Malik has simulated PM2 for s steps. We will prove that

1. If PM2 finds a core A, then this set A of (soft) clauses is also a core for the Fu and Malik algorithm (see Lemma 30);
and

5 In fact, for efficiency, in our implementation blocking variables b;’s are not introduced in clauses until they appear in some core.
6 In the implementation of the algorithm, this re-calculation is done incrementally from the set used in the previous iteration and the new core, but for
the sake of simplicity, we assume that it is re-calculated from scratch.

94 C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105

2. If PM2 does not find any core, and stops, then Fu and Malik does not find any core either (see Lemma 31), and also
stops returning the same MaxSAT value, since both have run the same number of steps.

Theorem 32 will be proved by induction. We will assume by induction hypothesis that PM2 and Fu and Malik, after s
execution steps, have both found the sequence of cores Aq,..., As. The next lemma describes the SAT formula passed to
the SAT solver in the next iteration.

Lemma 29. After finding the sequence of cores A1, ..., As, in the (s + 1)th iteration, PM2 and Fu and Malik algorithms pass to the SAT
solver the following formula, respectively.

os={Civai,....,CuVam, Cns1, ..., Cogm'}
v U CNF<Zai2|{Aj|j<rAAj§Ar}|)
Are{Aq,..., As} icA

v U CNF<Zai< l{A; |j<5AAj§B}|>

BeSC{A1,...,As} ieB

@S:{Q\/ \/ by v \/ bﬁ,,cmﬂ,...,cmm}

1€A;j meA;

UJQCNF(Zb{:])

iEAJ'
where, if i € Aj, then b{ is the variable added by the Fu and Malik algorithm to clause i, at iteration j.

Lemma 30. Let @5 and @5 be the formulas described in Lemma 29. If A is a core of s, then A is also a core of (.

Proof. If A is not a core of @5, then there exists an optimal interpretation T of @s that satisfies all hard clauses, all car-
dinality constraints of @5, and all soft clauses C; v \/;. Aj b;’ where i € A. Let | be this interpretation. Define the following
interpretation for the variables of ¢s:

I(x) = f(x) _ for any variable x € {C1, ..., Cpm}
I(aj) =max{I(b])|ie Ajaj=1,...,s} for the blocking variables

We will prove the following facts:

1. Since 1 satisfies the hard clause Cmyi € @5, for i =1,...,m/, then [satisfies the hard clause Cp4; € @s. This is trivial
because I and 1 assign the same values to the original variables that both formulas have in common.

2. Since | satisfies the cardinality constraints of ¢s, then [satisfies the cardinality constraints of ¢;.
Since the interpretation I is optimal, it means that it assigns true to at most one of the blocking variables of a clause. In
other words, for any clause i =1,...,m, we have Z{f(b{) |j=1,...,s AieAj} < 1. Therefore, the following maximal
value and the sum coincides and we have

I@)=max{I(b)) | j=1,....,s nic Aj} = > i(b))

Now, if 1 satisfies the cardinality constraints of @s, then) ;. A i(bf) =1, for any core Ag. Hence, for any core Ay, we

have
Siw=Y ¥ i6)> X Yih= X 1=lnjlickasca
ieAg icA, i€A;j AjCAy i€A; AjCA
j=1,..s i<k i<k
Hence, for any k=1, ...,s, I satisfies the at-least cardinality constraints

CNF(Za,- > |{Aj|j<k/\Angk}|)

iGAk

C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105 95

Now, for any cover B € SC{A1, ..., As} we have
ieB ieB iEAj ieB Ang Ang iEAj Ang
j=1,...s j=1,..s j=1,...s j=1,..s

=|{Ajlj=1,....sAAjC B}

because, by definition of cover, i € B and i € Aj implies A; C B.
Hence, for any cover B € SC{A1, ..., As}, I satisfies the at-most cardinality constraints

CNF(Za,» > [(Aj|i<snA;C B}|>
ieB

3. For any i € A, since 1 satisfies the soft clause C; v \/iEA}_ b{ € @s, then [satisfies the soft clause C; v a; € ;.

If T satisfies C; v \/ieAJ, b,] then either it satisfies Cj, and so I, because they assign the same values to original variables,

or | satisfies some of the variables bf In this second case, the way we define the value of a; ensures that I satisfies
this value, hence the clause C; v g; € @s.

Therefore, I satisfy all hard clauses, all cardinality constraints of ¢s, and all soft clauses C; Vv a; where i € A. This contra-
dicts that A is a core of 5. O

The previous lemma ensures that if PM2 finds a core, then Fu and Malik also finds a core. Hence, if PM2 does not stop,
then Fu and Malik does not stop, either. Therefore, the values computed by PM2 are smaller than the values calculated by
Fu and Malik. However, it is still possible that PM2 computes underestimated values of MaxSAT of a formula. The following
lemma shows that this is not the case. Notice that the proof of this lemma relies on the correctness of the Fu and Malik
algorithm.

Lemma 31. Let @5 and @5 be the formulas described in Lemma 29. If @ is satisfiable, then (s is satisfiable.

Proof. Let | be an interpretation satisfying ¢s. In particular, I satisfies CNF(} /L, a; <s), and all hard and soft clauses.
Therefore, I satisfies all the original soft clauses C; where I(a;) = false, and there are at least m — s of such clauses. We have
cost({(Cy,1),...,(Cm, 1), (Cpt1,00), ..., (Cjpyny, 00)}) < s. Since Fu and Malik is a correct algorithm for MaxSAT, it has to
stop before s or less execution steps. And, since it has not finished before, it has to finish now after these s steps, hence @s
is satisfiable. O

Theorem 32. PM2 (see Algorithm 5) is a correct algorithm for Partial MaxSAT.

Proof. As we have said, the proof of correctness relies on the correctness of the Fu and Malik algorithm. We prove that the
Fu and Malik algorithm may simulate the PM2 algorithm. Let ¢ = {(C1, 1), ..., (Cn, 1), (Cm41,00), ..., (Cjyqm, 00)} be the
original partial MaxSAT formula.

In the first iteration, PM2 and Fu and Malik call the SAT solver with the parameter

m
9o =1{C1Var.....Cn Vam. Cms1. ... Conpm} U |_J ONF(a; < 0)
i=1
@Oz{C17~--,Cm,cm+1a---,Cm+m}

respectively. Both formulas are trivially equivalent. Therefore, if the first one is satisfiable and PM2 returns cost zero, then
the second one is also satisfiable, and Fu and Malik also returns cost zero.

Inductively, assume that Fu and Malik has simulated PM2 during s iterations, finding the same sequence of cores
A1, ..., As. Lemma 29 describes the formula passed to the SAT solver in the next s 4+ 1 iteration. There are two possi-
bilities, (1) either the SAT solver finds a core for g;. In such case, Lemma 30 ensures that Fu and Malik could find the same
core. Or, (2) the SAT solver says that ¢ is satisfiable. In such case, Lemma 31 ensures that the SAT solver will also say
satisfiable for ¢s and both algorithms will stop returning cost equal to s. O

11. The WPM2 algorithm

The WPM2 algorithm computes the optimal of a weighted partial MaxSAT formula. Like the name suggests, it is a
generalization of PM2 to weighted MaxSAT formulas. However, this is not completely true. As we discuss below, WPM2 can

96 C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105

Algorithm 6: The pseudo-code of the WPM2 algorithm. The code of function newbound is in a forthcoming subsection.
Input: ¢ = {(C1, w1), ..., (Cn, Wm), (1, 00), ..., (Cgm, 00)}

1: if SAT({C; | w; = oo}) = (UNSAT, _) then return (co, ¥) >Hard clauses are unsatisfiable
2: BV :={by,...,bn} >Set of blocking variables
3: ow:={C1Vby,....,C;m Vbm,Cims1, ..., Cngermr } ~Protect all soft clauses
4: L:=0 >Set of Cores
5: AL:={w1by >0,...,wynby >0} >Set of at-least constraints
6: while true do
7: AM:=0 >Set of at-most constraints
8: cost:=0
9: foreach (}"; .z wib; > k) € AL do
10: if B € SC(L) then
11: cost := cost +k
12: L AM :=AM U {3 ;g wib; <k} >Add new at-most cardinality constraint
13: (st, ¢c) := SAT(pw U CNF(ALU AM)) ~Call the SAT solver
14: if st = sat then return (cost, ¢,, U CNF(AL U AM))
15: A:={ie{l,...,m}|(Ci Vb;) €@ Abj € BV} ~Indexes of soft clauses of the core
16: A= e A ~Extend the new core ensuring A € SC(L)
N
17 L:=LU {Ar
18: k := newbound (AL, A) >New bound
19: AL:=ALU {3 ;o4 wibi > k} ~Add new at-least cardinality constraint

deduce weaker at-least constraints, which means that, if we use WPM2 in an unweighted formula, we will obtain poorer
results than using PM2.

Like in PM2, we extend every soft clause C; with a unique fresh auxiliary blocking variable b;, and work with a set AL of
at-least linear pseudo-boolean constraints on the variables b;, and a similar set AM of at-most constraints, that are modified
at every iteration of the algorithm. Therefore, the formula sent to the SAT solver has the form ¢,, U CNF(AL U AM), where
ow={C1 Vb1,....Cn Vbm,Cnt1,...,Cnam}, and the linear constraints have been encoded as CNF formulas. In order to
understand the purpose of AL and AM, we introduce the notion of partial solution.

Definition 33 (Partial solution and cost). An assignment I : {b1,...,bn} — {0,1} is called a partial solution of a weighted
partial MaxSAT formula ¢ = {(C1, w1), ..., (Cm, Wm), (Cm+1,09), ..., (Cim’, 00)}, if the formula I(¢w) = {C; | I(b;) =0} U
{Cm+1, .., Cmyn} is satisfiable.

The cost of a partial solution I of ¢ is cost(I) = 271:1 wil(b;).

The at-least constraints AL exclude assignments to b;’s that are not partial solutions. The at-most constraints AM enforce
that all solutions of the set of constraints ALUAM are the solutions of AL of minimal cost, if AL has any solution. This
ensures that any solution of ¢,, U CNF(AL U AM), if there is any, is an optimal assignment of ¢.

The pseudo-code of WPM2 is described in Algorithm 6. The algorithm starts with AL={w b1 >0,..., wyn by > 0} and
the corresponding AM = {w1by <0,..., wnby <0} that ensures that the unique solution of ALUAM is by =---=bp =
0 with cost 0.7 At every iteration, the algorithm calls a SAT solver with ¢, U CNF(AL U AM). If it returns sAT, then the
assignment is a Max-SAT solution of ¢. If it returns UNSAT, then we use the information of the unsatisfiable core obtained
by the SAT solver to enlarge the set AL, excluding more interpretations on the b;’s that are not partial solutions. We update
AM conveniently, to ensure that solutions to the new constraints ALUAM are still minimal solutions of the new AL constraint
set. Notice that AM depends on AL, and it is modified accordingly when AL is extended. Moreover, in every iteration, the set
of solutions of {by,...,by} defined by AL is decreased, whereas the set of solutions of AM is increased. The constraints of
AL are of the form Zieg wib; > k. Therefore, they are characterized by a set of indexes B C {1, ..., m}, called its base, and
a value k e N, called its bound. Similarly, the inequalities of AM are of the form) ;. wib; < k. The bases of the at-most
constraints AM are the set of covers SC. Moreover, the cost K is equal to the sum of the bounds of the at-most constraints,
K=> (k| jcp wibi <k) € AM}.

If we compare PM2 (Algorithm 5) and WPM2 (Algorithm 6), we see that both algorithms are line-by-line equal, except
in two parts. First, instead of computing the bound of at-least constraints as k = |{A’ € L | A’ C A}|, we computed it as
k = newbound(AL, A). The bound of at-most constraints is also computed accordingly, ensuring that they exclude solutions of
at-least constraints that are not minimal. Although the cost is computed differently, it is not a real difference because in both
cases it is equal to the sum of the bounds of the at-most constraints. Second, in the case of WPM2, we add a re-computation

7 In fact, for efficiency, in our implementation blocking variables b;’s are not introduced in clauses until they appear in some core and are incorporated
into a non-trivial at-least constraint.

C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105 97

(extension) of the core (see line 16 in Algorithm 6) as A:=|J a¢; A’. This ensures that the new core belongs to the set
A'NAZH

of covers of the old cores. If we compute the new bound as newb(;fund(AL, A) = [{(Q jea wibi > k) e AL| A’ € A} +1 then
WPM2 computes the same bounds for unweighted instances as PM2. Therefore, the first fact does not suppose a weakness
of WPM2 w.r.t. PM2, and WPM2 can be considered as a generalization of PM2. However, the second fact makes WPM2 a
new algorithm, and in fact, makes WPM2 weaker than PM2 when dealing with unweighted formulas. This is because in
WPM2 we have to extend the cores, obtaining a weaker at-least constraints.

The key point in WPM2 is how to calculate the value newbound(AL, B). Later, we will describe how to compute this new
bound in practice. In the following example we show the execution of our algorithm and describe some problems that arise
when trying to compute the new bound.

Example 34. Suppose that we have the following MaxSAT formula ¢ = {(C1, 10), (C2,4), (C3, 8), (C4, 2)}. The extended for-
mula is ¢y = {Cy Vv b1, Ca Vv by, C3 v b3, C4 Vv bs}. Suppose that in the first two iterations we get the cores A; = {1, 2} and
later Ay = {3, 4}. The constraints will be AL={10b; +4by >4, 8b3+2bs > 2} and AM = {10by +4by <4, 8b3z+2bs <2}.
And the set of covers will be SC = {{1, 2}, {3, 4}}.

Now, suppose that, in the third iteration, the SAT solver gives us the core A3 = {2, 3}. Notice that, even though b, must
be true, this core A3 may be obtained because we assume that the SAT solver does not have to return minimal cores. A3
intersects with the two old covers, therefore we will have a unique new cover B = {1, 2, 3, 4}. Notice that from AL, and the
existence of a new core, we can infer 10by +4by + 8b3 +2b4 > 6, where 6 is the sum of the two bounds in the removed
at-most constraints. However, AL has no model I satisfying 1(10by +4by + 8b3 + 2b4) = 7. Therefore, we can improve the
inequality by finding the smallest value k > 6 such that there exist a model I of the new ALU{10b1 +4b, +8b3 +2bg > k}.
This value is k = 12, which we obtain setting I(b1) = I(b4) =0 and I(by) = I(b3) =1.

11.1. Correctness of the WPM2 algorithm
Next we state some basic properties of covers.
Recall that, since SC(L) is a partition of {1,...,m}, for any i =1,...,m, there exists one and only one set in SC(L)

containing i, and for any A € L, there exists one and only one set in SC(L) containing A.

Lemma 35. For any two sets of cores L1 and Ly, if L1 C Ly then any cover B € SC(Ly) satisfies B = |) aescy) A.
ACB

Proof. Notice that, if L1 C L,, then for any A € SC(L1) there exists one and only one set B € SC(L,) such that A C B.
Therefore, for any A € SC(L1) and any B € SC(L,), if BN A # ¢ then A C B, and the lemma follows. O

Definition 36 (Bound). For any set of at-least constraints AL, and set B C {1, ..., m}, we define its bound as

bound(AL, B) = max{k eN ’ALI— > wib; > k}
ieB

where AL+ C means that all assignments to b;’s satisfying the constraints AL also satisfy the constraint C.

For instance, for the set at-least constraints AL of Example 34, we have bound(AL, {1, 2, 3,4}) =6.
The following lemma basically rephrases the definition of bound in a more convenient way.

Lemma 37. For any set of constraints AL, and set B C {1, ..., m}, bound(AL, B) =k iff
1. the bound is probable: AL+ ZieB wib; >k, and
2. feasible: AL ¥ Y ;_.p wib; > k, ie. exists an interpretation I : {by,...,bn} — {0,1} such that I(AL) = true and I(AL -
> icg Wibi =k) = true.

As we said in the previous section, the set of at-most constraints AM depends on the set AL.

Definition 38. Given a set of at-least constraints AL, the set of at-most constraints AM associated to AL is
AM = {Z w; b; < bound(AL, B) ‘ Be SC(L)}
ieB

where L ={A| (}_;cp Wibi > k) €AL}.

98 C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105

Lemma 39. For any set of at-least constraints AL and any subset of covers {B1, ..., Bs} € SC(L), where L is the set of bases of AL, we
have

N S
bound (AL, U B,-) =) " bound(AL, By)

i=1 i=1

Hence, the bound of | J;_, B; is the sum of the bounds of the constraints > jes; Wjbj < ki € AM associated to AL

Proof. The inequality bound(AL, Ule Bj) > Zle bound(AL, B;) is trivial, and holds for any set {Bq,..., Bs} of pairwise
disjoint sets, even if they are not covers. However the opposite inequality is more difficult to prove.

On one hand, by Lemma 37, we have AL+ ZjeBi w;bj > bound(AL, B;). Since B;’s are pairwise disjoint, adding these
inequalities we get AL 370 4 3" jcp Wibj =3¢y 5, Wjbj >3 i_; bound(AL B;).

On the other hand, again by Lemma 37, for every i =1,...,s we have an interpretation I; such that I;(AL) = true and
Ii(Zjegi wjbj < bound(AL, B;)) = true. Now, construct a new interpretation I defined as I(x) = I;(x), if x € B;; and I(x) =
I1(x),if x ¢ Ule B;. Notice that all constraints of AL have all their variables inside one of the sets B;. Therefore, I(AL) = true.
Notice also that I(}_ ;g Wjbj) =1i(}_;cp, Wjbj) = bound(AL, B;). Therefore, I(3;_; >_jcp, Wjbj) = Y_i_; bound(AL, B;).

These two facts, by Lemma 37, prove that statement of the lemma. O

The following lemma allows us to strengthen the set of at-least constraints. For any set of indexes B, we always have
@+ > icp wib; > bound(AL, B). The lemma states that, whenever we find a core A, we can improve this inequality for B
being the union of covers intersecting with A, i.e. the cover of SC({Aq, ..., Ar, A}) that contains A. Therefore, we can enlarge
AL getting AL’ = AL U () ;.5 wi b; > bound(AL, B) + 1}. However, it could be the case that AL’ had no models satisfying
> icg Wib; =bound(AL, B) 4+ 1 (see Example 34). In this case, we enlarge AL with } ;_; w; b; = newbound(AL, B), where
newbound(AL, B) is the minimum integer greater than bound(AL, B) + 1 such that AL’ has a model satisfying > ;.5 wib; =
newbound (AL, B).

Lemma 40. Let ¢ ={C; vV b1,...,Cqn V bm, Cmt1, ..., Cmeny} be an extended formula and AL be a set of at-least constraints. Let
AM be the set of at-most constraints associated to AL.
If, for some core A € {1, ..., m}, we have

1. {Ci vV bitica U{Cnt1, ..., Cnymr } WAL U AM is unsatisfiable
2. pw AL

then
@w Y wib; >bound(AL, B) + 1
ieB
where B € SC(L U {A}), L is the set of bases of AL, and A C B.
Moreover,
@w Y wib; > newbound(AL, B)
ieB
where
newbound(AL, B) = bound (AL, B)
Al =ALU {Z w;b; > bound(AL, B) + 1}
ieB

Proof. Suppose that ¢y, ¥) ;.4 wib; > bound(AL, B) 4 1. This means that there exists an assignment I such that I(¢y) =
true and I(}_; 5 wib; > bound(AL, B) + 1) = false. We have I(} ;. wib; < bound(AL, B)) = true. Since ¢\, AL, I(AL) = true.
By definition of bound, we have

1<Z‘ w; b; = bound (AL, B)> = true (2)
ieB
Since I(AL) = true, by definition of bound, we have

I(Z wi b; > bound (AL, B’)) = true (3)

ieB’

C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105 99

for any B’ € SC(L). On the other side, since B € SC(L U {A}), by Lemmas 35 and 39

B:UB’

B’eSC(L)
B'CB
bound(AL, B)=) bound(AL, B') (4)
B’eSC(L)
B'CB

From (2), (3) and (4) we have

I<Z wi b; < bound (AL, B’)) = true

ieB’

for any B’ € SC(L) satisfying B’ C B. Hence, I satisfies all the at-most constraints of AM that make reference to the covers
B’ included in B. We have to modify the interpretation I to get an interpretation that also satisfies the constraints of AM
that make reference to covers not included in B.

By definition of bound, there exists an interpretation I’ such that I'(AL) = true and I'(AM) = true. Let I” be another
interpretation defined as I”(x) = I(x) if x is a variable of {Cy, ..., Cyym'} OF {bj}icp, and 1" (x) = I'(x), otherwise. Notice that
all clauses of ALUAM U {C; V bi}iea U {Cm+1, ..., Cmem} either contain variables of one subset or from the other. Therefore,
1" satisfies all these clauses. This contradicts the first assumption of the lemma. O

Example 41. Suppose that we have the situation described in Example 34. The list of cores is L = {{1, 2}, {3, 4}}, and the
constraints

AL={10b; +4by >4, 8b3 +2bs >2}
AM = {10by +4by <4, 8b3 +2bs < 2}

The third core A = {2, 3} generates a new cover B = {1, 2, 3, 4} that belongs to the set of covers of {{1, 2}, {3,4}, {2,3}}.
We have bound(AL, {1, 2, 3, 4}) = 6. The first part of Lemma 40 allows us to conclude that ¢,, - 10b1 +4by +8b3 +2bs > 7.
After adding this constraint we get AL’ = ALU {10bq +4by + 8b3 + 2bs > 7}, using the second part of the lemma, we get
bound(AL’, {1, 2, 3, 4}) = newbound(AL, {1,2,3,4}) =12 and ¢, - 10b1 +4by +8b3 +2bs > 12.

Theorem 42. Given a Weighted Partial MaxSAT problem, the algorithm WPM2 computes an optimal assignment of minimal cost.

Proof. Once the algorithm finds a satisfying assignment I for ¢, U CNF(ALUAM), it returns K =Y {k' | > ;cp Wib; <K €
AM]}. Since the bases of at-most constraints are a partition of {1,...,m} and I satisfies AM, the cost of I is bounded by K.
By Lemma 39, K = bound(AL, {1,...,m}), and by Lemma 37, AL+ 271:1 wib; > K. Lemma 40 ensures that the new at-least
constraint added to AL in each iteration does not exclude partial solutions: ¢,, AL, i.e. it only excludes values of the b;’s
such that ¢,, is unsatisfiable. Therefore, the cost K of I is smaller than the cost of any partial solution of ¢,,, hence of the
minimal cost of ¢. Termination of the algorithm is ensured by the fact that the value of Y {k' | } ;.p wibi <k’ € AM} is
increased in every iteration, and it is bounded by the minimal cost of ¢. O

11.2. Computation of the new bound

The value of bound(AL, B) can be computed easily using the at-most constraints as

bound(AL, B) = Z{k’

Zwibigk’eAMAB/gB}
ieB’

However, the computation of newbound(AL, B) is not so simple. Recall the definition:
newbound(AL, B) = bound (AL, B)
where AL' = ALU {Z w;b; > bound(AL, B) + 1]

ieB
Given AL and B, the calculation of newbound(AL, B) is an NP-complete optimization problem. This can be seen by a
reduction from the following version of the subset sum problem: given {w1, ..., w,} and k, minimize Z'}zl wx; subject to
Z?:] w;jxj >k and xj € {0, 1}. This is equivalent to computing newbound(AL, B), where the weights are w;, B={1,...,n}
and AL={}}_; wjx; >k}.
In our implementation we use the following function to compute newbound.

100 C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105

Algorithm 7: A possible implementation of the newbound function.

: function newbound(AL, B)
: k:=bound(AL, B)
repeat
k = subsetsum({w; | i € B}, k)
. until SAT(CNF(ALU {3}_;p wib; =k}))
: return k

QU B WN =

Notice that the satisfiability check of ALU {} ;. w;b; =k} is necessary for soundness (see Example 41). Also notice that
the subset sum problem, even though it is NP-complete, in practical situations can be computed very efficiently. In our
implementation we use an algorithm based on dynamic programing described in [35]. As many other numerical problems,
it is pseudo-polynomial.

11.3. Complexity of the algorithm

Example 23 shows that WPM1 (without the stratified heuristics) may need O(W) calls to a SAT solver, where W =
™, w; is the sum of the finite weights, even for a constant number of clauses. Therefore, the performance of these
MaxSAT algorithms depends on the sequence of cores computed by the SAT solver. In the case of WPM2, the number of
calls to the SAT solver is also O(W) in the worst case, as stated in [19] (Theorem 1). However, this is only true if we use the
new bound function described in Algorithm 7. In fact, we use this implementation because we have seen that, in practice,
not in the worst case, it gives good results. If we use a trivial binary search, as described in Section 3, then the number of
calls to the SAT solver is O(mlog W), since there are m possibly distinct covers, and for each one we need at most log W
calls to the SAT solver to complete the binary search. Moreover, a bit more intelligent binary search, allows us to replace
logW by m.

12. Experimental results

We conducted our experimentation on the same environment as the MaxSAT evaluation [8] (processor 2 GHz). These are
the specifications: operating system Rocks Cluster 4.0.0 Linux 2.6.9, processor AMD Opteron 248 Processor 2 GHz, memory
1 GB and compilers GCC 3.4.3 and javac JDK 1.5.0. The time and memory resources of our experimentation were increased
with respect to the resources of the MaxSAT evaluation. We augmented the timeout from half hour to two hours, and the
memory limit from 0.5 GB to 1 GB, since some solvers we compared with require more memory.

The solvers that implement our Weighted Partial MaxSAT algorithms are built on top of the SAT solver picosat
(v.924) [11]. The solver wpm1 implements the original WPMT1 algorithm [4]. The cardinality constraints introduced by WPM1
are translated into SAT through the regular encoding [6]. This encoding ensures a linear complexity on the size of the car-
dinality constraint. This is particularly important for the last queries where the size of the cores can be potentially close
to the number of soft clauses. We use the subscript b to indicate that we break symmetries as described in Section 6, s to
indicate we apply the stratified approach, and d to indicate that we apply the diversity heuristic to compute the next wpqy,
both described in Section 9. The solver wpm1 was submitted to the 2009 and 2010 MaxSAT evaluations, and the solver
wmpls was submitted to the 2011 evaluation, winning the Weighted Partial MaxSAT category for industrial instances. The
hardening of soft clauses (lines 8 and 9 in Algorithm 4) had no impact in our implementations’ performance.

The solver pm2 implements the original PM2 algorithm [4,3]. This solver was submitted to the 2009 evaluation, winning
the Partial MaxSAT category for industrial instances. The cardinality constraints introduced by pm2 are translated into SAT
through the sequential counter encoding [38]. The solvers pm2s, and pm2., use the sorting network and cardinality network
encoding described in [10], respectively.

The solver wpm2 implements the original WPM2 algorithm [5]. It computes newbound(AL, B) by a reduction to the
subset sum problem. The pseudo-boolean linear constraints are translated into SAT through the miniSAT™ tool from [14].

In the following we present results for the benchmarks of the Weighted Partial MaxSAT categories of the MaxSAT 2011
evaluation. We compare our solvers with at least the best three solvers of the 2011 MaxSAT evaluation for each category.
The solvers submitted to the MaxSAT 2011 evaluation we experimented with are the following: akms (akmaxsat), akms_Is
(akmaxsat_ls), incwmaxsatz, wmaxsatz09, gms0.11 and qms0.4 (QMaxSat versions 0.11 and 0.4), sat4j (SAT4] MAXSAT 2.2.0),
wbo1.6 and pwbo1.1. From qms0.11 to pwbol1.1, all solvers are SAT-based MaxSAT solvers, while the rest are branch and bound
based solvers.

We also compare with other solvers which did not compete but have been reported to exhibit good performance, such
as binc and bincd [19], maxhs [13] and the Weighted CSP solver toulbar2 [37].

We present the experimental results following the same classification criteria as in the MaxSAT evaluation. For each
solver and set of instances, we present the number of solved instances in parenthesis and the mean time required to solve
them. Solvers are ordered from left to right according to the total number of instances they solved. We present in bold
the results for the best performing solver in each set. ‘#' stands for number of instances of the given set. Notice that the
different sets of families do no have the same number instances. Therefore, additionally, we include the mean ratio of solved
instances in each family.

Table 1
Experimental results.

(a) UnWeighted - Industrial

Instance set # wpml pm2 wpmly pm2cy maxhs pm2s wbo1.6 binc bincd sat4j toulbar2
circuit-debug 3 27.8(3) 51.2(2) 28.62(3) 53.5(2) 62.6(3) 53.5(2) 45.99(1) 84.8(1) 79.9(1) 0(0) 0(0)
sean-safarpour 52 848(30) 417(26) 309(23) 366(21) 154(18) 105(15) 206(10) 292(10) 175(9) 0(0) 0(0)
Total solved 55 33 28 26 23 21 17 11 11 10 0 0

Mean solved ratio 78.5 58.0 72.0 53.5 67.0 475 26.0 26.0 25.0 0.0 0.0

(b) UnWeighted - Crafted

Instance set # akmaxsat_Is incwmaxsatz wmaxsatz09 toulbar2 pm2 pm2s, pm2cn bincd wpml wbo1.6 wpmly binc maxhs sat4j
maxcut-140-630-0.7 50 179(50) 431(50) 507(50) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
maxcut-140-630-0.8 50 132(50) 311(50) 393(50) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
dimacs-mod 62 162(53) 212(53) 176(52) 643(45) 207(10) 864(10) 243(9) 140(6) 0.02(4) 0.01(4) 38.4(5) 54.9(4) 24.6(4) 0.84(2)
spinglass 5 11.74(3) 28.74(3) 5.29(3) 2.56(2) 3.70(2) 15.8(2) 12.9(2) 2.03(1) 0.24(2) 4.07(2) 2.43(1) 2.70(1) 631(1) 52.1(1)
Total solved 167 156 156 155 47 12 12 11 7 6 6 6 5 5 3
Mean solved ratio 86.25 86.25 85.75 28.0 14.0 14.0 13.5 7.25 115 115 7.0 6.5 6.5 5.75
(c) Partial - Industrial

Instance set # bincd qms0.4 pm2en pwbol.1 pm2s, pm2 qms0.11 binc sat4j wpmly maxhs wbo1.6 wpml toulbar2
aes 7 502(1) 0(0) 0(0) 0(0) 0(0) 132(1) 0(0) 0(0) 0(0) 0(0) 952(2) 0(0) 0(0) 0(0)
bep-fir 59 183(55) 73.8(54) 36.7(56) 198(51) 42.2(54) 20.2(58) 81.7(44) 287(53) 7.79(10) 22.7(53) 575(24) 127(43) 41.3(57) 127(10)
bep-hipp-yRal-simp 17 128(14) 163(16) 86.5(15) 274(15) 104(15) 96.7(15) 208(16) 289(15) 870(14) 117(15) 640(11) 31.6(10) 24.6(9) 190.5(5)
bep-hipp-yRal-su 38 277(29) 544(32) 399(29) 537(26) 505(29) 290(29) 271(30) 406(27) 695(9) 140(18) 666(21) 58.2(10) 46(11) 0(0)
bcp-msp 64 426(33) 135(26) 1886(31) 404(20) 1877(25) 2072(21) 53.5(26) 520(21) 95.2(12) 143(7) 244(1) 436(4) 12.7(4) 450(19)
bcp-mtg 40 1113(40) 0.24(40) 5.50(40) 1.95(40) 9.34(40) 5.51(40) 0.24(40) 18.7(40) 192(27) 28.2(40) 225(6) 98.8(16) 126(11) 2360(7)
bcp-syn 74 86.3(41) 372(35) 4.40(35) 136(40) 17.1(36) 10.9(38) 78.7(34) 48.1(30) 366(25) 31.8(38) 90.6(60) 106.3(34) 20.4(32) 433(26)
circuit-trace-compact 4 471(3) 121(4) 625(4) 325(3) 543(4) 574(4) 136(4) 473(3) 620(3) 1378(4) 0(0) 0(0) 3534(1) 5149(1)
haplotype-assembly 6 0(0) 2836(4) 32.8(5) 21.6(5) 33.1(5) 33.1(5) 0(0) 0(0) 0(0) 284(2) 28.7(5) 9.02(5) 34.2(5) 0(0)
pbo-mqcnencdr 84 861(82) 402(82) 1041(74) 781(84) 1130(73) 1193(65) 170(78) 714(80) 497(84) 346(25) 813(34) 226(20) 692(7) 3510(5)
pbo-mqcnlogencdr 84 311(84) 231(78) 597(84) 437(84) 836(84) 1122(84) 227(81) 288(84) 95.9(84) 270(44) 126(35) 113(26) 176(28) 2545(10)
pbo-routing 15 11.0(15) 19(15) 0.79(15) 115(15) 1.91(15) 1.11(15) 32.2(15) 20.1(15) 423(15) 0.97(15) 63.2(14) 0.52(15) 0.82(15) 187(6)
protein_ins 12 255(2) 578(4) 66.2(2) 0.21(1) 45.4(2) 64(2) 1127(5) 243(2) 1173(4) 0.69(1) 16.2(1) 13.1(1) 57(1) 0.88(1)
Total solved 504 399 390 390 384 382 377 373 370 287 262 214 184 181 90
Mean solved ratio 66.30 7292 72.53 68.84 71.53 7215 66.53 62.23 50.07 54.69 42.61 38.15 39.46 16.84
(d) Partial - Crafted

Instance set # toulbar2 akms_Is qms0.11 incwmaxsatz pm2 pm2ey pm2e, sat4j bincd binc wpmly maxhs wpml1 wbo1.6
frb 25 3315(5) 247(5) 404(23) 377(5) 1841(19) 508(16) 689(15) 0(0) 0(0) 0(0) 0(0) 4442(5) 0(0) 0(0)
job-shop 3 0(0) 0(0) 144(3) 0(0) 1014(3) 1062(3) 1335(3) 581(3) 717(3) 473(3) 223(2) 0(0) 243(1) 458(1)
maxclic-random 96 84(96) 2.41(96) 193(80) 3.48(96) 399(65) 137(58) 289(64) 215(70) 84(63) 58.5(57) 0(0) 2367(9) 0(0) 0(0)
maxclic-structured 62 575(35) 207(40) 403(26) 159(36) 769(19) 299(19) 449(19) 1001(21) 138(18) 154(17) 45.3(8) 337(11) 13.3(8) 13.4(10)
maxone-3sat 80 25.9(80) 0.87(80) 391(80) 0.43(80) 20(80) 24.5(80) 45.5(80) 944(73) 22(80) 29.3(80) 257(73) 492(46) 3.77(42) 26.6(35)
maxone-structured 60 207(57) 708(37) 27(60) 273(56) 1212(51) 1246(57) 1199(49) 5.1(59) 149(58) 73(59) 286(27) 0(0) 11.3(2) 14(1)
min-enc-kbtree 42 1621(9) 2926(22) 1343(6) 2474(2) 479(6) 1013(5) 1735(6) 1089(3) 323(3) 107(3) 249(2) 0(0) 0(0) 1346(1)
pseudo-miplib 4 10.5(4) 466(3) 2.89(4) 1809(3) 14.0(4) 26.2(4) 25.5(4) 69.1(4) 253(4) 196(4) 10.2(3) 184(4) 0.44(2) 0.33(2)
Total solved 372 286 283 282 278 247 242 240 233 229 223 115 75 55 50
Mean solved ratio 615 59.125 78.875 56.375 71.625 70125 69.125 62.875 62.25 61.5 36.875 25.5 19.0 18.375

S01-22 (£10Z) 961 2uasia3u] [pYBLY /v 30 1N3195UY)

Lol

Table 2
Experimental results.

(a) Weighted Partial - Industrial

Instance set # wpmlpsq wpmlpg wpmlg wpmly, wbol.6 wpml wpm2 maxhs bincd sat4j binc toulbar2
haplotyping-pedigrees 100 405(95) 426(95) 378(88) 376(79) 93.5(72) 390(65) 350(42) 1043(34) 196(21) 108(20) 408(27) 383(5)
timetabling 26 686(9) 694(9) 585(8) 992(9) 776(4) 1002(7) 707(9) 1238(4) 766(6) 0(0) 1350(4) 0(0)
upgradeability-problem 100 35.8(100) 37.2(100) 36.5(100) 36.9(100) 63.3(100) 114(100) 311(100) 29(100) 637(78) 844(30) 0(0) 0(0)
Total solved 226 204 204 196 188 176 172 151 138 105 50 31 5

Mean solved ratio 76.33 76.33 72.66 71.0 62.33 63.66 58.66 49.66 40.66 16.6 14.0 1.66

(b) Weighted Partial - Crafted

set # wpmlpsy incwmaxsatz akmaxsat toulbar2 wpmlyg wmaxsatz09 maxhs sat4j wpml; bincd binc wpm1 wbo1.6 wpm2 wpmly
auc-paths 86 274(53) 7.59(86) 4.6(86) 28.8(86) 332(53) 570(80) 72.2(86) 994(44) 22(33) 1828(2) 0(0) 0(0) 0(0) 0(0) 0(0)
auc-sched 84 11.9(84) 220(84) 123(84) 133(84) 12.2(84) 92(84) 1125(69) 716(80) 7.6(80) 130(50) 103(45) 0(0) 0(0) 3196(8) 0(0)
planning 56 279(52) 92.2(38) 354(40) 149(41) 26.3(56) 220(50) 306(29) 3.27(55) 12.5(54) 59.5(47) 51.1(46) 1.46(28) 1.33(30) 307(40) 3.63(29)
warehouses 18 44(14) 1184(18) 37(2) 0.03(1) 571(3) 0.32(1) 0.37(1) 1.34(1) 1644(3) 7.03(1) 8.67(1) 4.23(18) 0.51(4) 158(1) 0.88(12)
miplib 12 1187(4) 1419(5) 0.47(2) 63.2(3) 1165(4) 266(3) 0.07(1) 693(4) 34(3) 618(3) 699(3) 0.21(1) 0(0) 398(2) 1507(1)
random-net 74 241(39) 1177(1) 1570(2) 0(0) 0(0) 0(0) 2790(6) 0(0) 0(0) 0(0) 0(0) 615(27) 63(37) 0(0) 439(12)
spot5dir 21 257(10) 1127(5) 1106(5) 217(5) 383(10) 11.5(2) 199(6) 1.95(2) 1.41(5) 66.7(11) 51.7(6) 1.03(4) 2.60(5) 196(9) 12.8(6)
spot5log 21 532(14) 0.63(4) 200(5) 170(5) 574(14) 15.6(2) 710(6) 6.04(3) 44.4(6) 124(11) 79.3(7) 21.5(6) 25.5(6) 475(9) 131(7)
Total solved 372 270 241 226 225 224 222 204 189 184 125 108 84 82 69 67
Mean solved ratio 66.5 56.625 43.625 43.875 53125 41.375 39.125 38.375 40.5 35.125 285 30.25 22.25 235 25.5

(c) Table 4 from [13]. Linux upgradibility family forcing diversity of weights

Instance set # maxhs wbo1.6 wpmly wpmlpsq wpml wpmlps wpmlg bincd satdj wpm2 binc toulbar2
Table 4 [13] 13 4.41(13) 5.03(13) 5.54(13) 8.84(13) 19(13) 534(13) 559(13) 56.69(11) 3485.52(6) 322 (5) 19.5(1) 0.00(0)
Total solved 13 13 13 13 13 13 13 13 11 6 5 1 0

ol

S01-22 (€£10Z) 961 uasiya3u] [pYBLY /v 30 1N3105UY

C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105 103

Table 1(a) presents the results for the industrial instances of the UnWeighted MaxSAT category. The solver wpm1 is the
best ranked one, closely followed by pm2. Branch and bound based MaxSAT solvers such as incwmsz, akms, wmaxsatz09 or
toulbar2 solve at most 2 instances in this category.

Table 1(b) presents the results for the crafted instances of the UnWeighted MaxSAT category. For crafted instances we
can observe the opposite behavior, branch and bound based MaxSAT solvers clearly outperform SAT-based solvers.

Although wpm1, introduces the symmetry breaking clauses, it does not perform as well as wpml, for the two previous
categories. A possible explanation is: since there are not hard clauses, the number of soft clauses in the unsatisfiable cores
tends to be higher. Therefore, wpm1, adds many more clauses which increases memory consumption.

Table 1(c) presents the results for the industrial instances of the Partial MaxSAT category. The best solver is bincd (399)
closely followed by gms0.4 (390) and pm2., (390). If we use as the ranking criterion the mean ratio of solved instances, we
can see that now the best solver is qms0.4(72.92%) followed by pm2.,(72.53%) and bincd(66.30%) ranks sixth. As with the
industrial unweighted instances SAT-based solvers clearly outperform branch and bound based solvers.

Table 1(d) presents the results for the crafted instances of the Partial MaxSAT category. The addition of hard clauses in
crafted problems seems to offer some advantage to SAT-based solvers. Although toulbar2 and akms;; are the best ranked
solvers, if we compute the average ratio of solved instances, we see that gms0.11 is the best solver and pm2 the second.
Solvers toulbar2 and akms;s rank seventh and ninth, using this criterion.

The addition of breaking symmetry clauses in wpm1y clearly boosts the performance of the basic solver wpm1 for partial
MaxSAT instances. In particular, for industrial instances, we improve from 181 to 262 solved instances, and for crafted from
55 to 115.

Table 2(a) presents the results for the industrial instances of the Weighted Partial MaxSAT category. As we can see, our
original solver wpm1 performs similarly to wbo1.6. However, by breaking symmetries (wpm1lj,) we solve 12 more instances
than wbo1.6, and 20 more, if we apply the stratified approach. Combining both, we solve 28 more instances. The addition
of the diversity heuristic to the stratified approach has no impact for the instances of this category. We do not present any
result on branch and bound based solvers since they typically do not perform well on industrial instances.

In order to study the impact of the stratified approach in more detail, we compared wpm1s; and wpm1 on the instances
that both were able to solve.

For the upgradibility family, wpm1 performed in average 878 unsatisfiable calls to the SAT solver, while the average
reduction of unsatisfiable calls for wpm1; was about 2.90%. We do not take into account the intermediate satisfiable calls
for wpm1; since they were fast enough. The average gain in time for wpmis was 210%.

For the haplotyping-pedigrees family, wpm1 performed in average 58 unsatisfiable calls to a SAT solver, while the average
reduction of unsatisfiable calls for wpmi1s was about 5.61%. The average gain in time for wpm1; was 65%. Notice that for
this family wpm1 solves 23 instances less, so the previous percentages may be larger provided a bigger cutoff.

Overall, we can conclude that although the stratified approach produces in average less unsatisfiable calls, also these calls
seem to be faster. The smaller size of the formula that we send to the SAT solver in wpm1s may help. Besides, by grouping
clauses by weight we may be capturing some structural properties of the instance that help the SAT solver to come up with
the proof of unsatisfiability faster.

Table 2(b) presents the results for the crafted instances of the Weighted Partial MaxSAT category. The best ranked solvers
in this category for the MaxSAT 2011 evaluation were: incwmaxsatz, akmaxsat and wmaxsatz09, in this order. They all are
branch and bound based solvers, which typically dominate the crafted and random categories. We can see that our solver
wpm1 shows a poor performance in this category. However, by applying the stratified approach (wpmils) we jump from
84 solved instances to 184. If we also break symmetries (wpm1,s) we solve 224 instances, ranking as the third best solver
compared to the participants of the MaxSAT 2011 evaluation, and very close to akmaxsat. If we compare carefully the results
of wpm1 and wpmlys, we notice that there are two sets of instances where wpm1 behaves much better (warehouses and
random-net). This suggests that we must make our stratified approach more flexible, for example, by incorporating the
diversity heuristic (wpm1psq). Using wpm1psg we solve up to 270 instances, outperforming all the branch and bound solvers.

In [13] it is pointed out that instances with a great diversity of weights can be a bottleneck for some Weighted MaxSAT
solvers. To test this hypothesis they generated 13 instances from the Linux upgradibility set in the Weighted Partial MaxSAT
industrial category preserving the underlying CNF but modifying the weights to force a greater diversity. We have repro-
duced the experiment with the same instances in Table 2(c). As we can see, wpm1 compares well to the best performing
solvers, and by breaking symmetries (wpml,) we reach the performance of maxhs and wbo1l.6. On the other hand, the
stratified approach impacts negatively (wpm1s or wpm1y,), but the diversity heuristic fixes this problem.

Taking into consideration the experimental results obtained in the different categories, we can see that our approach
wpmlpsg is the most robust solver for Weighted Partial MaxSAT instances, both industrial and crafted. It is interesting to
highlight that for the first time a SAT-based MaxSAT solver dominates the Weighted Partial MaxSAT category for crafted
instances.

We can also see that wpm1 is the best approach for unweighted industrial instances closely followed by pm2.

With respect to the different implementations of algorithm PM2, we can see that it is still a quite competitive approach.
From a point of view of robustness, gms and pm2 dominate the Partial MaxSAT categories. The current solver of algorithm
WPM2 [5], is not efficient enough for crafted instances. We would need to explore more efficient encodings for pseudo-
boolean constraints into SAT and better strategies for computing the newbound(AL, B).

104 C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105

13. Conclusions

In this work we have presented several SAT-based MaxSAT algorithms which iteratively call a SAT solver. We have
shown that these algorithms clearly dominate branch and bound based algorithms on industrial instances and on some
crafted instances. Moreover, their design allows to benefit from advances in SAT solvers without almost no additional cost.
Therefore, this is a relevant approach for solving optimization problems where the underlying constraints are well-suited
for SAT solvers.

We have worked on efficient algorithms which iteratively refine the lower bound thanks to the discovery of unsatisfiable
cores. Other search schemes which alternate the refinement of the lower and the upper bound also have great potential,
and will be worth exploring in the future.

First, we have presented a more efficient version of the Fu and Malik algorithm thanks to the addition of symmetry
breaking clauses on the blocking variables introduced between iterations. This is an idea which can be applied to other
algorithms that solve a problem by working on a sequence of reformulations. This reformulations may artificially introduce
symmetries making the problem harder, and our ideas may speed up the solutions.

Then, we have presented the algorithm WPM1, which is the weighted version of the Fu and Malik algorithm. Later,
we have introduced a stratified approach which prioritizes the discovery of higher quality unsatisfiable cores. This has a
significant impact on the performance. It also raises the interesting question of how to define the quality of a core. From
the experimental results, we can conclude that the implementation of the WPM1 algorithm with the stratified approach is
the most robust approach for weighted partial industrial and crafted instances.

On the other hand, we have presented an alternative version of the Fu and Malik algorithm, the algorithm PM2, which
introduces only one blocking variable per soft clause. Although this approach needs to introduce more complicated cardi-
nality constraints on the blocking variables, there are several encodings of cardinality constraints into CNF which guarantee
arc-consistency while keeping the size of the encoding tractable in practice. Obviously, these algorithms should be paramet-
ric on the encoding of the cardinality constraints since the performance can vary from one family of instances to another.
Overall, from the experimental results we can see that the implementation of the PM2 algorithm is quite robust for indus-
trial Partial MaxSAT instances.

Finally, the WPM2 algorithm extends the PM2 algorithm to weighted formulas. Here, we impose pseudo-boolean linear
constraints on the blocking variables. Unfortunately, there are not as good encodings for pseudo-boolean linear constraints
as for cardinality constraints, in the sense of guaranteeing arc-consistency and a tractable size of the encoding. Therefore, a
nice research avenue is to treat these pseudo-boolean constraints directly. This can be achieved by building our algorithms
on top of a pseudo-boolean (PB) solver or a Satisfiability Modulo Theory (SMT) solver with the Linear Integer Arithmetic
Theory, and the ability to return unsatisfiable cores. Preliminary work in this direction using SMT solvers can be found
in [1].

A nice contribution of the WPM2 algorithm, with respect to the WPM1 algorithm, is to isolate the computation of the
new bound (see Algorithm 7). This problem is better-suited for Integer Linear Programming (ILP) approaches than for SAT.
Notice that, in order to circumvent this computation, WPM1 is forced to duplicate soft clauses increasing the size of the
formula. We think that although WPM2 is not yet as competitive as WPM1, the ideas in this algorithm are promising and
could be better exploited by the usage of SMT, PB or ILP approaches.

We have provided detailed proofs of correctness for all our algorithms. We think that similar algorithms or more com-
plicated approaches could use our proof ideas as a solid basis for new correctness arguments.

References

[1] C. Ansdtegui, M. Bofill, M. Palahi, J. Suy, M. Villaret, A proposal for solving weighted CSPs with SMT, in: Proc. of the 10th Int. Workshop on Constraint
Modelling and Reformulation (ModRef 2011), 2011, pp. 5-19.
[2] C. Ansétegui, M.L. Bonet, J. Gabas,]. Levy, Improving SAT-based Weighted MaxSAT solvers, in: Proc. of the 18th Int. Conf. on Principles and Practice of
Constraint Programming (CP'12), 2012, pp. 86-101.
[3] C. Ansétegui, M.L. Bonet,]. Levy, On solving MaxSAT through SAT, in: Proc. of the 12th Int. Conf. of the Catalan Association for Artificial Intelligence
(CCIA’09), 2009, pp. 284-292.
[4] C. Ansétegui, M.L. Bonet,]. Levy, Solving (Weighted) Partial MaxSAT through satisfiability testing, in: Proc. of the 12th Int. Conf. on Theory and
Applications of Satisfiability Testing (SAT'09), 2009, pp. 427-440.
[5] C. Ansétegui, M.L. Bonet,]. Levy, A new algorithm for Weighted Partial MaxSAT, in: Proc. the 24th National Conference on Artificial Intelligence
(AAAI'10), 2010.
[6] C. Ansétegui, F. Manya, Mapping problems with finite-domain variables to problems with boolean variables, in: Proc. of the 7th Int. Conf. on Theory
and Applications of Satisfiability Testing (SAT’04), 2004, pp. 1-15.
[7] J. Argelich, D. Le Berre, L. Lynce, J.P. Marques-Silva, P. Rapicault, Solving Linux upgradeability problems using boolean optimization, in: Proceedings First
International Workshop on Logics for Component Configuration (LoCoCo), 2010, pp. 11-22.
[8] J. Argelich, C.M. Li, E. Manya,]. Planes, MaxSAT evaluations, http://www.maxsat.udl.cat, 2009, 2010, 2011.
[9] R. Asin, R. Nieuwenhuis, http://www.Isi.upc.edu/~rasin/timetabling.html, 2010.
[10] R. Asin, R. Nieuwenhuis, A. Oliveras, E. Rodriguez-Carbonell, Cardinality networks: A theoretical and empirical study, Constraints 16 (2) (2011) 195-221.
[11] A. Biere, PicoSAT essentials,]. Satisf. Boolean Model. Comput. 4 (2008) 75-97.
[12] M.L. Bonet,]. Levy, F. Manya, Resolution for Max-SAT, Artificial Intelligence 171 (8-9) (2007) 606-618.
[13]]. Davies, F. Bacchus, Solving MAXSAT by solving a sequence of simpler SAT instances, in: Proc. of the 17th Int. Conf. on Principles and Practice of
Constraint Programming (CP'11), 2011, pp. 225-239.
[14] N. Eén, N. Sérensson, Translating pseudo-boolean constraints into SAT, J. Satisf. Boolean Model. Comput. 2 (1-4) (2006) 1-26.

http://www.maxsat.udl.cat
http://www.lsi.upc.edu/~rasin/timetabling.html

C. Ansétegui et al. / Artificial Intelligence 196 (2013) 77-105 105

[15] D. Frost, R. Dechter, Maintenance scheduling problems as benchmarks for constraint algorithms, Ann. Math. Artif. Intell. 26 (1-4) (1999) 149-170.

[16] Z. Fu, Extending the power of boolean satisfiability: Techniques and applications, Ph.D. thesis, Princeton, 2007.

[17] Z. Fu, S. Malik, On solving the partial Max-SAT problem, in: Proc. of the 9th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT'06),
2006, pp. 252-265.

[18] E. Heras, J. Larrosa, A. Oliveras, MiniMaxSat: A new weighted Max-SAT solver, in: Proc. of the 10th Int. Conf. on Theory and Applications of Satisfiability
Testing (SAT’07), 2007, pp. 41-55.

[19] F. Heras, A. Morgado, J. Marques-Silva, Core-guided binary search algorithms for maximum satisfiability, in: Proc. the 25th National Conference on
Artificial Intelligence (AAAI'11), 2011, pp. 284-297.

[20] H.A. Kautz, B. Selman, Planning as satisfiability, in: ECAI, 1992, pp. 359-363.

[21] M. Koshimura, T. Zhang, H. Fujita, R. Hasegawa, QMaxSAT: A partial Max-SAT solver, J. Satisf. Boolean Model. Comput. 8 (1/2) (2012) 95-100.

[22] D. Le Berre, SAT4], a satisfiability library for Java, http://www.sat4j.org, 2006.

[23] C.M. Li, F. Manya, N.O. Mohamedou,]. Planes, Exploiting cycle structures in Max-SAT, in: Proc. of the 12th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT'09), 2009, pp. 467-480.

[24] H. Lin, K. Su, C.M. Li, Within-problem learning for efficient lower bound computation in Max-SAT solving, in: Proc. the 23rd National Conference on
Artificial Intelligence (AAAI'08), 2008, pp. 351-356.

[25] V. Manquinho,]J. Marques-Silva,]. Planes, Algorithms for weighted boolean optimization, in: Proc. of the 12th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT'09), 2009, pp. 495-508.

[26] V.M. Manquinho, R. Martins, 1. Lynce, Improving unsatisfiability-based algorithms for boolean optimization, in: Proc. of the 13th Int. Conf. on Theory
and Applications of Satisfiability Testing (SAT'10), in: Lecture Notes in Computer Science, vol. 6175, Springer, 2010, pp. 181-193.

[27]]J. Marques-Silva, J. Argelich, A. Graga, . Lynce, Boolean lexicographic optimization: Algorithms & applications, Ann. Math. Artif. Intell. 62 (3-4) (2011)
317-343.

[28] J. Marques-Silva, 1. Lynce, V.M. Manquinho, Symmetry breaking for maximum satisfiability, in: Proc. of the 15th Int. Conf. on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR'08), 2008, pp. 1-15.

[29] J. Marques-Silva, V.M. Manquinho, Towards more effective unsatisfiability-based maximum satisfiability algorithms, in: Proc. of the 11th Int. Conf. on
Theory and Applications of Satisfiability Testing (SAT'08), 2008, pp. 225-230.

[30] J. Marques-Silva, J. Planes, On using unsatisfiability for solving maximum satisfiability, arXiv:0712.1097, 2007.

[31] J. Marques-Silva, J. Planes, Algorithms for maximum satisfiability using unsatisfiable cores, in: Proc. of the Conf. on Design, Automation and Test in
Europe (DATE'08), 2008, pp. 408-413.

[32] R. Martins, V.M. Manquinho, 1. Lynce, Exploiting cardinality encodings in parallel maximum satisfiability, in: Proc. of the 23rd Int. Conf. on Tools with
Artificial Intelligence (ICTAI'11), 2011, pp. 313-320.

[33] C.H. Papadimitriou, Computational Complexity, Academic Internet Publ., 2007.

[34] J.D. Park, Using weighted Max-SAT engines to solve MPE, in: Proc. the 24th National Conference on Artificial Intelligence (AAAI'10), 2002, pp. 682-687.

[35] D. Pisinger, An exact algorithm for large multiple knapsack problems, European J. Oper. Res. 114 (3) (1999) 528-541.

[36] S. Safarpour, H. Mangassarian, A.G. Veneris, M.H. Liffiton, K.A. Sakallah, Improved design debugging using maximum satisfiability, in: FMCAD, IEEE
Computer Society, 2007, pp. 13-19.

[37] M. Sanchez, S. Bouveret, S.D. Givry, F. Heras, P. Jégou,]. Larrosa, S. Ndiaye, E. Rollon, T. Schiex, C. Terrioux, G. Verfaillie, M. Zytnicki, Max-CSP competition
2008: toulbar2 solver description, 2008.

[38] C. Sinz, Towards an optimal CNF encoding of boolean cardinality constraints, in: Proc. of the 11th Int. Conf. on Principles and Practice of Constraint
Programming (CP'05), 2005, pp. 827-831.

[39] D.M. Strickland, E. Barnes, J.S. Sokol, Optimal protein structure alignment using maximum cliques, Oper. Res. 53 (3) (2005) 389-402.

[40] M. Vasquez,].-K. Hao, A “logic-constrained” knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation
satellite, Comput. Optim. Appl. 20 (2001) 137-157.

[41] H. Xu, R.A. Rutenbar, K.A. Sakallah, Sub-SAT: A formulation for relaxed boolean satisfiability with applications in routing, IEEE Trans. Comput. Aided
Des. Integrated Circ. Syst. 22 (6) (2003) 814-820.

http://www.sat4j.org

	SAT-based MaxSAT algorithms
	1 Introduction
	2 Preliminaries
	3 SAT-based MaxSAT
	4 MaxSAT reducibility
	5 The Fu and Malik's algorithm
	6 Breaking symmetries
	7 The WPM1 algorithm
	8 A stratiﬁed approach for WPM1
	9 A generic stratiﬁed approach
	10 The PM2 algorithm
	11 The WPM2 algorithm
	11.1 Correctness of the WPM2 algorithm
	11.2 Computation of the new bound
	11.3 Complexity of the algorithm

	12 Experimental results
	13 Conclusions
	References

