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ABSTRACT

This paper tackles the open problem of value alignment in multi-
agent systems. In particular, we propose an approach to build an
ethical environment that guarantees that all agents in the system
learn to behave ethically while pursuing their individual objectives.
Our contributions are founded in the framework of Multi-Objective
Multi-Agent Reinforcement Learning. Firstly, we characterise a
family of Multi-Objective Markov Games (MOMGs), the so-called
ethical MOMGs, for which we can formally guarantee the learning
of ethical behaviours. From these, we specify the process for build-
ing single-objective ethical environments that simplify the learning
in the multi-agent system. Interestingly, our theoretical results for
multi-agent environments generalise recent state-of-the-art results
for single-agent environments.
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1 INTRODUCTION

The challenge of guaranteeing that autonomous agents act value-
aligned (in alignment with human values) [23, 27], is becoming
critical as agents increasingly populate our society. Hence, it is of
great concern to design ethically-aligned trustworthy Al [4] capable
of respecting our values [7, 11]. Indeed, there has recently been a
rising interest in both the Machine Ethics [22, 32] and AI Safety
[1, 13] communities in applying Reinforcement Learning (RL) [28]
to tackle the critical problem of value alignment.

These two communities typically deal with the value alignment
problem by designing an environment endowed with incentives
for behaving ethically. Thus, often in the literature a single agent
receives incentives through an exogenous reward function (e.g., [2,
16, 31]). Firstly, this reward function is specified from some ethical
knowledge. Afterwards, it is incorporated into an agent’s learning
environment through an ethical embedding process. Against this
background, in this paper we tackle the novel problem of designing
an ethical embedding process for multi-agent systems.
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Specifically, we propose the creation of an ethical environment
providing theoretical guarantees that all agents learn to behave
ethically while pursuing their respective individual objectives. In
particular, we focus on environments wherein agents share a social
ethical objective that they should prioritise to their individual objec-
tives (e.g., agents heading to their destinations over a pond should
stop to rescue someone drowning in the waters below [26]). This
consideration of ethical and individual objectives requires the learn-
ing agents to take a multi-objective approach that may be complex
to handle. Hence, we propose to create a (simpler) single-objective
ethical environment that embeds both ethical and individual ob-
jectives. For that purpose, we follow the prevailing approach of
applying a linear scalarisation function that weighs individual and
ethical rewards ([2, 31]). However, scalarisation has some known
problems [9] and in fact some weightings may deviate the agents
from behaving ethically and, thus, we must explicitly (and theoreti-
cally) ensure that this will not be the case. This has been addressed
recently by [18] and yet, they just guarantee it for a single agent.
Hence, guaranteeing that all agents in a multi-agent system learn to
behave ethically remains an open problem. We tackle it by propos-
ing the Multi-Agent Ethical Embedding (MAEE) process depicted
in Figure 1, whose input is a multi-objective environment that is
transformed into a single-objective ethical environment.

Our contribution is two-fold. Firstly, we formalise the MAEE
Problem within the framework of Multi-Objective Markov Games
(MOMG) [24, 25]. This formalisation allows us to characterise the
so-called Ethical MOMGs, the family of MOMGs for which we
can solve the problem. As Figure 1 shows, solving the problem
amounts to transforming an ethical MOMG into an ethical Markov
Game (MG), where agents do not need to apply Multi-Objective
RL [20, 21], but just RL [12, 14]. Our formalisation involves the
definition of ethical policies as well as ethical equilibrium. An ethical
policy defines the behaviour of an agent prioritising the shared
ethical objective over its individual objective. An ethical equilibrium
is a joint policy composed of ethical policies that characterises the
target equilibrium in the ethical environment.

Secondly, we propose a novel process to solve the MAEE problem
that generalises the single-agent ethical embedding process in [18].
Our process involves two consecutive decompositions of the multi-
agent problem into n single-agent problems: the first one (Figure
1 left) allows the computation of the ethical equilibrium (i.e., the
target joint policy); whereas the second one (/right) computes the
weight vector that solves our embedding problem.

Next, Section 2 presents our formalisation of the MAEE problem.
Section 3 studies the multi-agent environments to which we can
apply a MAEE process, and Section 4 details our process to build
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Figure 1: Multi-Agent Ethical Embedding process for environment design. Rectangles stand for objects whereas rounded
rectangles correspond to processes. Process steps (from left to right): Computation of the ethical equilibrium from the input
multi-objective environment; and computation of the solution ethical weight that creates an output ethical (single-objective)

environment.

ethical environments. Subsequently, Section 5 illustrates our ap-
proach with an example environment. Finally, Section 6 concludes
and sets paths to future work.

2 FORMALISING THE MAEE PROBLEM

In Ethics, a moral value (or ethical principle) expresses a moral ob-
jective worth striving for [30]. Following [18], current approaches
to align agents with a moral value propose: (i) the specification of
rewards to actions aligned with a moral value, and (ii) an embedding
that ensures that all agents learn to behave ethically (in alignment
with the moral value). Since we tackle the specification process in
[19], here we focus on the embedding and we assume that individ-
ual and ethical rewards are specified as a Multi-Objective Markov
Game (MOMG) ! [25] (see definition below). In particular, since
the rewards in this given MOMG consider a social moral value,
we refer to it as an ethical MOMG, and define it as a two-objective
learning environment where rewards represent both the individual
objective of each agent and the social® ethical objective (i.e., the
moral value). Then, the purpose of the multi-agent ethical embed-
ding problem, which we formalise below, is that of transforming an
ethical MOMG into a single-objective MG wherein it is ensured that
all agents learn to fulfil a social ethical objective while pursuing
their individual objectives. We start by formalising an environment
for n agents and m objectives as an MOMG.

DEFINITION 1. A (finite) m-objective Markov Game (MOMG) of
n agents is defined as a tuple (S, A=1-", RI=bm TY swhere: S is
a (finite) set of states; A (s) is the set of actions available at state
s for agent i; Ri=(R,... ,RL)) is a vectorial reward function with
each Rj. being the associated scalar reward function of agent i for
objective j € {1,...,m}; andT is a transition function that, taking
into account the current state s and the joint action of all the agents,
returns a new state.

MOMGs generalise other widely used specifications [25]: an MOMG with a single
objective corresponds to a Markov game (MG); and single-agent MOMG corresponds
to a Multi-Objective Markov Decision Process (MOMDP).

2Social in the sense that it is shared by all agents in the system. We take this social
stance because moral values are widely assumed to stem from the society as they are
defined as “ideals shared by members of a culture about what is good or bad” [8].

Each agent i of an MOMG has its associated multi-dimensional
state value function Vi = (VL,...,VL), where each Vji is the ex-
pected sum of rewards for objective j of agent i. Moreover, given
an MOMG M, if we enforce all the agents but i to follow a fixed
joint policy 77, we obtain an MOMDP! M’ for agent i.

Now, we define an ethical MOMG as a two-objective Markov
game encoding the reward specification of both the agents’ indi-
vidual objectives and the social ethical objective (i.e., the moral
value). Following the Ethics literature [5, 6] and recent work in
single-agent ethical embedding processes [18], we define an ethical
objective through two dimensions: (i) a normative dimension, which
punishes the violation of moral requirements; and (ii) an evaluative
dimension, which rewards morally praiseworthy actions. Formally:

DEFINITION 2 (ETHICAL MOMG). We define an Ethical MOMG
as any n-agent MOMG

M= (S, A, (Ro, Ry + R T), (1)

such that for each agent i:RiV : 8 x Al — R penalises violating
moral requirements; and Rg : 8 x AL — R* positively rewards
performing praiseworthy actions.

We define R, Ri\/ and Rg as the individual, normative and evalua-
tive reward functions of agent i, respectively. We refer toR., = R;V+R2
as the ethical reward function and impose agents to be equally treated
when assigning the (social) ethical rewards.

Although actions cannot be rewarded and punished simultane-
ously, having a two-fold ethical reward prevents agents from learn-
ing to disregard some of its normative requirements while learning
to perform as many praiseworthy actions as possible. Moreover,
the equal treatment homogenises what is considered as praisewor-
thy or blameworthy. Thus, it ensures that the ethical objective is
indeed social. Finally, also notice that a single-agent Ethical MOMG
corresponds to an Ethical MOMDP as defined in [18].

Within ethical MOMGs, we define the ethical policy 7t for an
agent i as that maximising the ethical objective subject to the be-
haviour of the other agents (i.e., their joint policy z~*). This maximi-
sation is performed over the normative and evaluative components
of agent i’s value function:



DEFINITION 3 (ETHICAL POLICY). Let M be an ethical MOMG. A
policy ' of agent i is said to be ethical in M with respect to w~" if
and only if the value vector of agent i for the joint policy (x', 77%),
is optimal for its social ethical objective (i.e., its normative V/i/ and
evaluative be components):

i i
=maxV )
Nixiaiy = gt Niptamiy
i i
= max V, .
Eiminmty = i Eiplamiy

Ethical policies pave the way to characterise our target poli-
cies: best-ethical policies. These maximise pursuing the individual
objective while ensuring (prioritising) the fulfilment of the ethi-
cal objective. Thus, from the set of ethical policies, we define as
best those maximising the individual value function Voi (i.e., the
accumulation of rewards Ré):

DEFINITION 4 (BEST-ETHICAL POLICY). Let M be an Ethical MOMG.

We say that a policy ©* of agent i is best-ethical with respect to x*
if and only if it is maximal in V] in the set Il (n™") of ethical policies
with respect to m™\:
Oi . = max Voi S
AT plelle(n) PR

In the MARL literature, if the policy 7 of each agent i is a best-
response (i.e., optimal with respect to 77%), then the joint policy
7 = (x1,...,7") that they form is called a Nash equilibrium
[14]. Here we propose two similar equilibrium concepts for ethical
MOMGs. First, if the policy 7 of each agent of an Ethical MOMG
is ethical, we say that the joint policy x is an ethical equilibrium.
Second, if each 7! is best-ethical, then we say that 7 is a best-
ethical equilibrium.

Our approach consists in transforming the Ethical MOMG into
a single-objective MG by means of what we call a multi-agent
embedding function. In this way, the agents can learn by apply-
ing single-objective multi-agent reinforcement learning algorithms
(MARL) [25]. In the Multi-objective literature, an embedding func-
tion receives the name of scalarisation function [25].

Therefore, our goal is to find an embedding function f, that
guarantees that it is only possible for the agents to learn ethical
policies in the ethical environment (the single-objective Markov
Game created from applying f;). Formally, such fo must ensure
that best-ethical equilibria in the Ethical MOMG correspond with
Nash equilibria in the single-objective MG created from f,. For that
reason, we refer to the MOMG scalarised by f, as the ethical MG.
In its simplest form, this embedding function f, will have the form
of a linear combination of individual and ethical objectives for each
agent i:

VY =%V = wiv + wh(VA + V), @

where W = (wé, wi) is a weight vector with all weights wé, wi >0
to guarantee that each agent i takes into account all rewards (i.e.,
both objectives). Without loss of generality, hereafter we fix the
individual weight of all agents to wé = 1. We refer to any linear f?
by its weight vector w’. Furthermore, since in an Ethical MOMG
we have an equal treatment condition for all agents, we deem
appropriate that all agents have the same scalarisation function
with the same ethical weight, namely we = w} = -+ = w.

Finally, we can formalise our multi-agent ethical embedding
problem as that of computing a weight vector w = (1, w,) that
incentivises all agents to behave ethically while still pursuing their
respective individual objectives. Formally:

ProBLEM 1 (MAEE: MULTI-AGENT ETHICAL EMBEDDING). Let
M = (S, AL (R}, R}, + RL), T) be an ethical MOMG. The multi-
agent ethical embedding problem is that of computing the vector w
of positive weights such that all Nash equilibria in the Markov Game
M =(8, A, Ry + we(Rn + Rg), T) are best-ethical equilibria in M.

Any weight vector w with positive weights that guarantees that
all Nash equilibria (with respect to w) are also best-ethical equi-
libria is a solution to Problem 1. Unfortunately, Problem 1 is not
solvable for every Ethical MOMG. Therefore, in what follows we
characterise the Ethical MOMGs for which a solution exists (and a
way of computing it).

3 SOLVABILITY OF THE MAEE PROBLEM

This section is devoted to describing the minimal conditions un-
der which there always exists a solution to Problem 1 for a given
ethical MOMG, and to proving that such solution actually exists.
This solution (a weight vector) will allow us to apply the ethical
embedding process to the ethical MOMG at hand to produce an
ethical environment (a single-objective MG) wherein agents learn
to behave ethically (i.e., to reach a best-ethical equilibrium). In what
follows, Subsection 3.1 characterises a family of ethical MOMGs
for which Problem 1 can be solved, and Subsection 3.2 proves that
the solution indeed exists for such family.

3.1 Characterising solvable Ethical MOMGs

We introduce below a new equilibrium concept for ethical MOMGs
that is founded on the notion of dominance in game theory, the
so-called best-ethically-dominant equilibrium. We find such equilib-
rium in environments where the best behaviour for each agent is to
follow an ethical policy, provided that the ethical weight is properly
set. The existence of such equilibria is important to characterise
the ethical MOMGs for which we can solve the MAEE problem
(Problem 1). Thus, as shown below in Section 3.2, we can only
solve Problem 1 for Ethical MOMGs with a best-ethically-dominant
equilibrium.

We extract our concept of dominance from the game theory
literature. In a Markov game context, we say that a policy 7 of
agent i is dominant if it yields the best outcome for agent i no
matter the policies that the other agents follow. Then, we say that
the dominant policy z! dominates over all possible policies [15]:

DEFINITION 5 (DOMINANT PoLICY). Given a Markov game M, a
policy " of agent i is a dominant policy if and only if for every joint
policy (p', p~") and every state s in which p*(s) # 7' (s) it holds that:

V! —i>(5)~ (3)

(i p) (s) > V!

(plp
A policy is strictly dominant if we change > to >. Moreover, if
the policy 7 of each agent of an MG is a dominant policy, we say
that the joint policy 7 = (!, ..., 7") is a dominant equilibrium.
Now we adapt the concept of dominance in game theory for
Ethical MOMGs. We start by defining policies that are dominant



with respect to the ethical objective. We call these policies ethically-
dominant policies. Formally:

DEFINITION 6 (ETHICALLY-DOMINANT POLICY). Let M be an ethi-
cal MOMG. We say that a policy ' of agent i is an ethically-dominant
policy in M if and only if the policy is dominant for its ethical objec-
tive (i.e., both its normative V}i( and evaluative be components) for
every joint policy (p', p~%) and every state s in which p(s) # 7' (s) :

vi s) > Vi s),
N(ﬂi,p’i>( ) N(pi,p’i)( )
Vi s) > Vi s).

E(fri,p’i)( ) E(pi,p’i>( )

Following Def. 3, every ethically-dominant policy 7" is an ethical
policy with respect to any 77"

We also adapt the concept of dominance from game theory for
best-ethical policies. Given an ethical MOMG, we say that a best-
ethically-dominant policy is: (1) dominant with respect to the ethical
objective among all policies; and (2) dominant with respect to the

individual objective among ethical policies. Formally:

DEFINITION 7 (BEST-ETHICALLY-DOMINANT POLICY). Let M be
an Ethical MOMG. A policy r* of agent i is a best-ethically-dominant
policy if and only if it is ethically-dominant and

(s) 2V, (s),

L

O4pi o1
for every joint policy {p’, p~%), every state s in which p*(s) # 7' (s),
and p'(s) is an ethical policy with respect to p~'(s).

i
O¢ni,p1)

Observe that by Def. 4, every best-ethically-dominant policy 7’
is also a best-ethical policy with respect to any 7.

Next, we define the generalisation of the two previous dominance
definitions considering the policies of all agents. This will lead to
new equilibrium concepts. If the policy ; of each agent of an
Ethical MOMG is ethically-dominant, then the joint policy 7 =
(71, ...,7™) is an ethically-dominant (ED) equilibrium. If the
policies are best-ethically-dominant, then the joint policy 7 is a
best-ethically-dominant (BED) equilibrium. Observe that every
ethically-dominant equilibrium is an ethical equilibrium, and every
best-ethically-dominant equilibrium is a best-ethical equilibrium.

Finally, observe that a joint policy 7 = (z',..., z") is a strictly
best-ethically-dominant equilibrium if and only if every 7 is strictly
dominant with respect to the individual objective among ethical
policies (i.e., by changing > with > in Def. 7).

In the following subsection we prove that we can solve the multi-
agent ethical embedding problem (Problem 1) for Ethical MOMGs
with a best-ethically-dominant equilibrium.

3.2 On the existence of solutions

Next we prove that we can find a multi-agent ethical embedding
function for ethical MOMGs with best-ethically-dominant equilib-
ria. Henceforth, we shall refer to such ethical MOMGs as solvable
ethical MOMGs, and if the BED equilibrium is strict, we will refer
to such Ethical MOMG:s as strictly-solvable. Below, we present The-
orem 1 as our main result. The theorem states that given a solvable
ethical MOMG, it is always possible to find an embedding function
that transforms it into a (single-objective) MG where agents are
guaranteed to learn to behave ethically. More in detail, following
Theorem 1 guarantees that for the appropriate ethical weight in

our embedding function, then the only Nash equilibria in the envi-
ronment where the agents learn (the scalarised MOMG produced
thanks to the embedding function) are best-ethical equilibria in the
Ethical MOMG. In other words, such embedding function is the
solution to Problem 1 we are looking for.

The proof of Theorem 1 requires the introduction of some propo-
sitions as intermediary results. The first proposition establishes the
relationship between dominant and ethically-dominant policies.

PROPOSITION 1. Given an ethical MOMG M = (S, A%, (Ro, Ry +
Rg)', T) for which there exists ethically-dominant equilibria, there
exists a weight vector w = (1, we) with we > 0 for which every
dominant policy for an agent i in the MG M’ = (S, A, woR; +
We (ij + R]i:,), T) is also an ethically-dominant policy for agent i in

Proor. Without loss of generality we only consider determinis-
tic policies, by the Indifference Principle [15].

Consider a weight vector w = (1, w,) with we > 0. Suppose that
for that weight vector, the only deterministic w-dominant policies
(i.e. policies that are dominant in the MOMG scalarised by w) are
ethically-dominant. Then we have finished.

Suppose now that it is not the case, and there is some w-dominant
policy p’ for some agent i that is not dominant ethically. This implies
that for some state s’ and for some joint policy p~* we have that:

s') < Vi s+ Vi s’),
l.)( ) <Vy ﬂ.)( ) Ew’pﬂ.)( )

Vi (s +V}
N(p‘:p") E (rt.p

(pt.p~

for any ethically-dominant policy 7’ for agent i.

For an € > 0 large enough and for the weight vector w’ =
(1, we + €), any ethically-dominant policy z* will have a better
value vector at that state s’ than p’ against p~:

W Vgpi’p—g(sl) <w- Vzﬂi’p—i>(s,)~

Therefore, p’ will not be a w’-dominant policy. Notice that p
will remain without being dominant even if we increase again the
value of we by defining w’’ = (1, we + € + §) with § > 0 as large as
we wish.

Now consider the policy p’ not ethically-dominant that requires
the maximum e, > 0 in order to stop being w-dominant. We can
guarantee that this policy exists because there is a finite number
of deterministic policies in a finite MOMG. Therefore, by selecting
the weight vector ws = (1, we + €,), then only ethically-dominant
policies can be w,-dominant for this ethical weight we + €. In other
words, every wy-dominant policy is also ethically-dominant for this
new weight vector. O

The former proposition helps us establish a formal relationship
between dominant equilibria and ethically-dominant equilibria
through the following proposition.

PROPOSITION 2. Given an ethical MOMG M = (S, A%, (Ry, Ry +
Rp)!,T) for which there exists best-ethically-dominant equilibria,
there exists a weight vector w = (1, we) with we > 0 for which
every dominant policy for an agent i in the Markov Game M’ =
(S, AL, R(i) +We (RiV +RJ"5), T) is also a best-ethically-dominant policy
for agent i in the ethical MOMG M and vice-versa.

Proor. By Proposition 1, there is an ethical weight for which
every dominant policy in M is ethically-dominant in M.



Best-ethically-dominant policies dominate all ethically-dominant
policies, and thus every dominant policy in M’ is in fact a best-
ethically-dominant in M. In other words, at least one best-ethically-
dominant policy is dominant for this ethical weight.

Finally, since every best-ethically-dominant policy z* is best-
ethical against any other joint policy p~*, for a large enough ethical
weight, it will be a best-response against any other joint policy p~%,
which is the definition of a dominant policy. O

Thanks to Proposition 2 we are ready to formulate and prove
Theorem 1 as follows.

THEOREM 1 (MULTI-AGENT SOLUTION EXISTENCE (DOMINANCE)).
Given an ethical MOMG M = (S, A%, (Ro, Ry + Rg):, T) for which
there exists at least one best-ethically-dominant equilibrium ., then:
(1) there exists a weight vectorw = (1, we) withwe > 0 for which .. is
a dominant equilibrium in the scalarised MOMG M. by w; and (2) for
the weight vector w’ = (1, we+€) withe > 0 all Nash equilibria in the
scalarised MOMG M/, by w’ are best-ethically-dominant equilibria
in the ethical MOMG M.

Proor. By Proposition 2, there exists a weight vector w = (1, we)
for which all best-ethically-dominant equilibria are dominant equi-
libria, and thus, Nash equilibria.

Let 7. be any best-ethically-dominant equilibrium. If for such
ethical weight w, there is another Nash equilibrium p that is not
best-ethically-dominant, it cannot be either an ethically-dominant
equilibrium because 7. would have more value for some state s’
and some agent i (in which p’(s’) is not best-ethical).

Thus, this other Nash equilibrium necessarily has less ethical
value for some state s”” and for some agent j than % (in which
p’(s") is not an ethical). Therefore, p/ will stop being a best-
response against p~/ as soon as we increase the ethical weight
by any e > 0 (because 7] is already a best-response against p~/
for being dominant). This will cause that p will stop being a Nash
equilibrium.

Once a joint policy p is not a Nash equilibrium for some ethi-
cal weight we, it is no longer a Nash equilibrium for any greater
W/ > We, so the only remaining Nash Equilibria are best-ethically-
dominant equilibria. O

Theorem 1 guarantees that we can solve Problem 1 for any Ethi-
cal MOMG with at least one best-ethically-dominant equilibrium.
Indeed, for that reason we call such family of Ethical MOMGs as
solvable. In particular, we aim at finding solutions w that are as
little intrusive with the agent’s learning process as possible (i.e.,
the w that guarantees the learning of an ethical policy with the
minimal ethical weight we). Every time we refer to the minimal
ethical weight we do it in such sense.

4 SOLVING THE MAEE PROBLEM

This section details how to solve the Multi-Agent Ethical Embedding
(MAEE) problem defined by Problem 1. This amounts to computing
a solution weight vector w so that we can combine individual
and ethical rewards into a single reward to yield a new, ethical
environment.

Figure 1 illustrates our approach to solving a MAEE problem,
which follows two main steps: (1) computation of a best-ethical

equilibrium (the target joint policy), namely the joint policy that
we expect the agents to converge to when learning in our ethical
environment; and (2) computation of a solution weight vector w
based on the target joint policy. Interestingly, both computations are
based on decomposing the ethical MOMG (the input to the problem)
into n ethical MOMDPs (one per agent), solving one local problem
(MOMDP) per agent, and aggregating the resulting solutions.

In what follows we provide the theoretical grounds for com-
puting a target joint policy and a solution weight vector. For the
remainder of this Section we assume that there exists a strictly
best-ethically-dominant equilibrium in the Ethical MOMG, that is,
that the Ethical MOMG is strictly-solvable.

4.1 Computing the ethical equilibrium

As previously mentioned, we require to compute the best-ethical
equilibrium 7, to which we want agents to converge when learning
in our ethical environment. Figure 1 (Left) illustrates the three steps
required to compute such joint policy.

In order to obtain the joint policy 7., we can resort to decom-
posing the ethical MOMG M, encoding the input multi-objective
environment, into n ethical MOMDPs M=1-+" one per agent. For
each ethical MOMDP M, we compute the individual contribu-
tion of agent i to the ethical equilibrium (7}) with single-agent
reinforcement learning.

Building the ethical equilibrium 7, via decomposition is possible
because we assume that the ethical MOMG M is strictly-solvable,
hence satisyfing the conditions of Theorem 1. This means that the
best-ethical equilibrium 7 is also strictly dominant. Thus, each
agent has one (and only one) strictly best-ethically-dominant policy
(r}), which by Def. 7 is the unique best-ethical policy against any
other joint policy.

There is the issue of how to decompose the ethical MOMG M.
Since we know that each 7! is the only best-ethical policy against
any other joint policy p~¢, we can select randomly p~* to create an
Ethical MOMDP M for each agent i.

After creating all Ethical MOMDPs ML e must compute
the policy 7% of each agent i as its best-ethical policy in the ethical
MOMDP M!. We can do this using multi-objective single-agent
RL. In particular, we apply the Value Iteration (VI) algorithm with
a lexicographic ordering [29] (prioritising ethical rewards), since
it is has the same computational cost as VI. Finally, we join all
best-ethical policies 7} to yield the joint policy 7.

4.2 Computing the solution weight vector

Once computed the ethical equilibrium 7., we can proceed to com-
pute the corresponding ethical weight w, that guarantees that 7, is
the only Nash equilibrium in the ethical environment (the scalarised
MOMG) produced by our embedding. Figure 1 (Right) illustrates
the steps required to compute it.

Similarly to Section 4.1, we compute we by decomposing the
input environment (the ethical MOMG M) into n ethical MOMDPs
MIEELn Thereafter, we compute the individual ethical weight
wi for each ethical MOMDP. Finally, we aggregate the individual
ethical weights to obtain we.

In this case, we create each Ethical MOMDP M! by fixing the
best-ethical equilibrium 77 for all agents but i. Then, computing



the ethical weight for each ethical MOMDP amounts to solving a
Single-Agent Ethical Embedding (SAEE) problem as introduced in
[18]. With this aim, we can employ the algorithm introduced in that
work (details of SAEE are provided in the Supplementary Work)
to solve all SAEE problems. Afterwards, we obtain an individual
ethical weight w! that ensures that each agent i will learn to behave
ethically (following %) in the ethical MOMDP ML,

Finally, we select the greatest ethical weight we = max; w.
to obtain the solution weight vector (1, w, + €) that solves our
problem (where € > 0). The above-described procedure to produce
an ethical environment (based on decomposing, individually solving
single-agent embedding problems, and aggregating their results)
does guarantee that agents will learn to behave ethically in such
environment.

Notice that the cost of computing the solution weight vector
mainly resides in applying n times the SAEE algorithm [18], once
per agent. Following [18], the cost of such algorithm is largely
dominated by the computational cost of the Convex Hull Value
Iteration algorithm [3].

Our approach above requires that Ethical MOMGs fulfil the
following condition: although the ethical objective is social, it is
enough that a fraction of the agents (not all of them) intervene
to completely fulfil it. To give an example inspired on the Ethics
literature, consider a situation where several agents are moving
towards their respective destination through a shallow pond and at
some point a child that cannot swim falls into the water (similarly
to the Drowning Child Scenario from [26]). To save the child, it
is enough that one agent takes a dive to rescue them. Another
example, from the Al literature, is the Cleanup Game from [10], in
which a handful of agents need to stop collecting apples from time
to time to repair the aquifer that irrigates the apples.

In terms of the ethical weight w,, this assumption implies that
the hardest situation to incentivise an agent i to follow an ethically-
dominant policy 7} occurs when the rest of agents already behave
ethically by following an ethical equilibrium 7 ‘. By definition,
for such we the policy 72 will be a best-response 