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ABSTRACT
This paper tackles the open problem of value alignment in multi-
agent systems. In particular, we propose an approach to build an
ethical environment that guarantees that all agents in the system
learn to behave ethically while pursuing their individual objectives.
Our contributions are founded in the framework of Multi-Objective
Multi-Agent Reinforcement Learning. Firstly, we characterise a
family of Multi-Objective Markov Games (MOMGs), the so-called
ethical MOMGs, for which we can formally guarantee the learning
of ethical behaviours. From these, we specify the process for build-
ing single-objective ethical environments that simplify the learning
in the multi-agent system. Interestingly, our theoretical results for
multi-agent environments generalise recent state-of-the-art results
for single-agent environments.
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1 INTRODUCTION
The challenge of guaranteeing that autonomous agents act value-
aligned (in alignment with human values) [23, 27], is becoming
critical as agents increasingly populate our society. Hence, it is of
great concern to design ethically-aligned trustworthy AI [4] capable
of respecting our values [7, 11]. Indeed, there has recently been a
rising interest in both the Machine Ethics [22, 32] and AI Safety
[1, 13] communities in applying Reinforcement Learning (RL) [28]
to tackle the critical problem of value alignment.

These two communities typically deal with the value alignment
problem by designing an environment endowed with incentives
for behaving ethically. Thus, often in the literature a single agent
receives incentives through an exogenous reward function (e.g., [2,
16, 31]). Firstly, this reward function is specified from some ethical
knowledge. Afterwards, it is incorporated into an agent’s learning
environment through an ethical embedding process. Against this
background, in this paper we tackle the novel problem of designing
an ethical embedding process for multi-agent systems.
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Specifically, we propose the creation of an ethical environment
providing theoretical guarantees that all agents learn to behave
ethically while pursuing their respective individual objectives. In
particular, we focus on environments wherein agents share a social
ethical objective that they should prioritise to their individual objec-
tives (e.g., agents heading to their destinations over a pond should
stop to rescue someone drowning in the waters below [26]). This
consideration of ethical and individual objectives requires the learn-
ing agents to take a multi-objective approach that may be complex
to handle. Hence, we propose to create a (simpler) single-objective
ethical environment that embeds both ethical and individual ob-
jectives. For that purpose, we follow the prevailing approach of
applying a linear scalarisation function that weighs individual and
ethical rewards ([2, 31]). However, scalarisation has some known
problems [9] and in fact some weightings may deviate the agents
from behaving ethically and, thus, we must explicitly (and theoreti-
cally) ensure that this will not be the case. This has been addressed
recently by [18] and yet, they just guarantee it for a single agent.
Hence, guaranteeing that all agents in a multi-agent system learn to
behave ethically remains an open problem. We tackle it by propos-
ing the Multi-Agent Ethical Embedding (MAEE) process depicted
in Figure 1, whose input is a multi-objective environment that is
transformed into a single-objective ethical environment.

Our contribution is two-fold. Firstly, we formalise the MAEE
Problem within the framework of Multi-Objective Markov Games
(MOMG) [24, 25]. This formalisation allows us to characterise the
so-called Ethical MOMGs, the family of MOMGs for which we
can solve the problem. As Figure 1 shows, solving the problem
amounts to transforming an ethical MOMG into an ethical Markov
Game (MG), where agents do not need to apply Multi-Objective
RL [20, 21], but just RL [12, 14]. Our formalisation involves the
definition of ethical policies as well as ethical equilibrium. An ethical
policy defines the behaviour of an agent prioritising the shared
ethical objective over its individual objective. An ethical equilibrium
is a joint policy composed of ethical policies that characterises the
target equilibrium in the ethical environment.

Secondly, we propose a novel process to solve theMAEE problem
that generalises the single-agent ethical embedding process in [18].
Our process involves two consecutive decompositions of the multi-
agent problem into 𝑛 single-agent problems: the first one (Figure
1 left) allows the computation of the ethical equilibrium (i.e., the
target joint policy); whereas the second one (/right) computes the
weight vector that solves our embedding problem.

Next, Section 2 presents our formalisation of the MAEE problem.
Section 3 studies the multi-agent environments to which we can
apply a MAEE process, and Section 4 details our process to build
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Figure 1: Multi-Agent Ethical Embedding process for environment design. Rectangles stand for objects whereas rounded
rectangles correspond to processes. Process steps (from left to right): Computation of the ethical equilibrium from the input
multi-objective environment; and computation of the solution ethical weight that creates an output ethical (single-objective)
environment.

ethical environments. Subsequently, Section 5 illustrates our ap-
proach with an example environment. Finally, Section 6 concludes
and sets paths to future work.

2 FORMALISING THE MAEE PROBLEM
In Ethics, a moral value (or ethical principle) expresses a moral ob-
jective worth striving for [30]. Following [18], current approaches
to align agents with a moral value propose: (i) the specification of
rewards to actions aligned with a moral value, and (ii) an embedding
that ensures that all agents learn to behave ethically (in alignment
with the moral value). Since we tackle the specification process in
[19], here we focus on the embedding and we assume that individ-
ual and ethical rewards are specified as a Multi-Objective Markov
Game (MOMG) 1 [25] (see definition below). In particular, since
the rewards in this given MOMG consider a social moral value,
we refer to it as an ethical MOMG, and define it as a two-objective
learning environment where rewards represent both the individual
objective of each agent and the social2 ethical objective (i.e., the
moral value). Then, the purpose of the multi-agent ethical embed-
ding problem, which we formalise below, is that of transforming an
ethical MOMG into a single-objective MGwherein it is ensured that
all agents learn to fulfil a social ethical objective while pursuing
their individual objectives. We start by formalising an environment
for 𝑛 agents and𝑚 objectives as an MOMG.

Definition 1. A (finite)𝑚-objective Markov Game (MOMG) of
𝑛 agents is defined as a tuple ⟨S,A𝑖=1,...,𝑛, ®𝑅𝑖=1,...,𝑛,𝑇 ⟩ where: S is
a (finite) set of states; A𝑖 (𝑠) is the set of actions available at state
𝑠 for agent 𝑖 ; ®𝑅𝑖 = (𝑅𝑖1, . . . , 𝑅

𝑖
𝑚) is a vectorial reward function with

each 𝑅𝑖
𝑗
being the associated scalar reward function of agent 𝑖 for

objective 𝑗 ∈ {1, . . . ,𝑚}; and 𝑇 is a transition function that, taking
into account the current state 𝑠 and the joint action of all the agents,
returns a new state.

1MOMGs generalise other widely used specifications [25]: an MOMG with a single
objective corresponds to a Markov game (MG); and single-agent MOMG corresponds
to a Multi-Objective Markov Decision Process (MOMDP).
2Social in the sense that it is shared by all agents in the system. We take this social
stance because moral values are widely assumed to stem from the society as they are
defined as “ideals shared by members of a culture about what is good or bad” [8].

Each agent 𝑖 of an MOMG has its associated multi-dimensional
state value function ®𝑉 𝑖 = (𝑉 𝑖

1 , . . . ,𝑉
𝑖
𝑚), where each 𝑉 𝑖

𝑗
is the ex-

pected sum of rewards for objective 𝑗 of agent 𝑖 . Moreover, given
an MOMG M, if we enforce all the agents but 𝑖 to follow a fixed
joint policy 𝜋−𝑖 , we obtain an MOMDP1 M𝑖 for agent 𝑖 .

Now, we define an ethical MOMG as a two-objective Markov
game encoding the reward specification of both the agents’ indi-
vidual objectives and the social ethical objective (i.e., the moral
value). Following the Ethics literature [5, 6] and recent work in
single-agent ethical embedding processes [18], we define an ethical
objective through two dimensions: (i) a normative dimension, which
punishes the violation of moral requirements; and (ii) an evaluative
dimension, which rewards morally praiseworthy actions. Formally:

Definition 2 (Ethical MOMG). We define an Ethical MOMG
as any 𝑛-agent MOMG

M = ⟨S,A𝑖=1,...,𝑛, (𝑅0, 𝑅N + 𝑅𝐸 )𝑖=1,...,𝑛,𝑇 ⟩, (1)

such that for each agent 𝑖 : 𝑅𝑖N : S × A𝑖 → R− penalises violating
moral requirements; and 𝑅𝑖

𝐸
: S × A𝑖 → R+ positively rewards

performing praiseworthy actions.
We define 𝑅𝑖0, 𝑅

𝑖
N and 𝑅𝑖

𝐸
as the individual, normative and evalua-

tive reward functions of agent 𝑖 , respectively. We refer to 𝑅𝑖𝑒 = 𝑅𝑖N +𝑅𝑖
𝐸

as the ethical reward function and impose agents to be equally treated
when assigning the (social) ethical rewards.

Although actions cannot be rewarded and punished simultane-
ously, having a two-fold ethical reward prevents agents from learn-
ing to disregard some of its normative requirements while learning
to perform as many praiseworthy actions as possible. Moreover,
the equal treatment homogenises what is considered as praisewor-
thy or blameworthy. Thus, it ensures that the ethical objective is
indeed social. Finally, also notice that a single-agent Ethical MOMG
corresponds to an Ethical MOMDP as defined in [18].

Within ethical MOMGs, we define the ethical policy 𝜋𝑖 for an
agent 𝑖 as that maximising the ethical objective subject to the be-
haviour of the other agents (i.e., their joint policy 𝜋−𝑖 ). This maximi-
sation is performed over the normative and evaluative components
of agent 𝑖’s value function:



Definition 3 (Ethical policy). Let M be an ethical MOMG. A
policy 𝜋𝑖 of agent 𝑖 is said to be ethical in M with respect to 𝜋−𝑖 if
and only if the value vector of agent 𝑖 for the joint policy ⟨𝜋𝑖 , 𝜋−𝑖 ⟩,
is optimal for its social ethical objective (i.e., its normative 𝑉 𝑖

N and
evaluative 𝑉 𝑖

𝐸
components):

𝑉 𝑖
N⟨𝜋𝑖 ,𝜋−𝑖 ⟩

= max
𝜌𝑖

𝑉 𝑖
N⟨𝜌𝑖 ,𝜋−𝑖 ⟩

,

𝑉 𝑖
𝐸⟨𝜋𝑖 ,𝜋−𝑖 ⟩

= max
𝜌𝑖

𝑉 𝑖
𝐸⟨𝜌𝑖 ,𝜋−𝑖 ⟩

.

Ethical policies pave the way to characterise our target poli-
cies: best-ethical policies. These maximise pursuing the individual
objective while ensuring (prioritising) the fulfilment of the ethi-
cal objective. Thus, from the set of ethical policies, we define as
best those maximising the individual value function 𝑉 𝑖

0 (i.e., the
accumulation of rewards 𝑅𝑖0):

Definition 4 (Best-ethical policy). LetM be an EthicalMOMG.
We say that a policy 𝜋𝑖 of agent 𝑖 is best-ethical with respect to 𝜋−𝑖

if and only if it is maximal in𝑉 𝑖
0 in the set Π𝑒 (𝜋−𝑖 ) of ethical policies

with respect to 𝜋−𝑖 :

𝑉 𝑖
0⟨𝜋𝑖 ,𝜋−𝑖 ⟩

= max
𝜌𝑖 ∈Π𝑒 (𝜋−𝑖 )

𝑉 𝑖
0⟨𝜌𝑖 ,𝜋−𝑖 ⟩

.

In the MARL literature, if the policy 𝜋𝑖 of each agent 𝑖 is a best-
response (i.e., optimal with respect to 𝜋−𝑖 ), then the joint policy
𝜋 = (𝜋1, . . . , 𝜋𝑛) that they form is called a Nash equilibrium
[14]. Here we propose two similar equilibrium concepts for ethical
MOMGs. First, if the policy 𝜋𝑖 of each agent of an Ethical MOMG
is ethical, we say that the joint policy 𝜋 is an ethical equilibrium.
Second, if each 𝜋𝑖 is best-ethical, then we say that 𝜋 is a best-
ethical equilibrium.

Our approach consists in transforming the Ethical MOMG into
a single-objective MG by means of what we call a multi-agent
embedding function. In this way, the agents can learn by apply-
ing single-objective multi-agent reinforcement learning algorithms
(MARL) [25]. In the Multi-objective literature, an embedding func-
tion receives the name of scalarisation function [25].

Therefore, our goal is to find an embedding function 𝑓𝑒 that
guarantees that it is only possible for the agents to learn ethical
policies in the ethical environment (the single-objective Markov
Game created from applying 𝑓𝑒 ). Formally, such 𝑓𝑒 must ensure
that best-ethical equilibria in the Ethical MOMG correspond with
Nash equilibria in the single-objective MG created from 𝑓𝑒 . For that
reason, we refer to the MOMG scalarised by 𝑓𝑒 as the ethical MG.
In its simplest form, this embedding function 𝑓𝑒 will have the form
of a linear combination of individual and ethical objectives for each
agent 𝑖:

𝑓 𝑖𝑒 ( ®𝑉 𝑖 ) = ®𝑤𝑖 · ®𝑉 𝑖 = 𝑤𝑖
0𝑉

𝑖
0 +𝑤𝑖

𝑒 (𝑉 𝑖
N +𝑉 𝑖

𝐸 ), (2)

where ®𝑤𝑖 � (𝑤𝑖
0,𝑤

𝑖
𝑒 ) is a weight vector with all weights𝑤𝑖

0,𝑤
𝑖
𝑒 > 0

to guarantee that each agent 𝑖 takes into account all rewards (i.e.,
both objectives). Without loss of generality, hereafter we fix the
individual weight of all agents to𝑤𝑖

0 = 1. We refer to any linear 𝑓 𝑖𝑒
by its weight vector ®𝑤𝑖 . Furthermore, since in an Ethical MOMG
we have an equal treatment condition for all agents, we deem
appropriate that all agents have the same scalarisation function
with the same ethical weight, namely𝑤𝑒 � 𝑤1

𝑒 = · · · = 𝑤𝑛
𝑒 .

Finally, we can formalise our multi-agent ethical embedding
problem as that of computing a weight vector ®𝑤 � (1,𝑤𝑒 ) that
incentivises all agents to behave ethically while still pursuing their
respective individual objectives. Formally:

Problem 1 (MAEE: Multi-Agent Ethical Embedding). Let
M = ⟨S,A𝑖 , (𝑅𝑖0, 𝑅

𝑖
N + 𝑅𝑖

𝐸
),𝑇 ⟩ be an ethical MOMG. The multi-

agent ethical embedding problem is that of computing the vector ®𝑤
of positive weights such that all Nash equilibria in the Markov Game
M ′ = ⟨S,A, 𝑅0 +𝑤𝑒 (𝑅N + 𝑅𝐸 ),𝑇 ⟩ are best-ethical equilibria inM.

Any weight vector ®𝑤 with positive weights that guarantees that
all Nash equilibria (with respect to ®𝑤 ) are also best-ethical equi-
libria is a solution to Problem 1. Unfortunately, Problem 1 is not
solvable for every Ethical MOMG. Therefore, in what follows we
characterise the Ethical MOMGs for which a solution exists (and a
way of computing it).

3 SOLVABILITY OF THE MAEE PROBLEM
This section is devoted to describing the minimal conditions un-
der which there always exists a solution to Problem 1 for a given
ethical MOMG, and to proving that such solution actually exists.
This solution (a weight vector) will allow us to apply the ethical
embedding process to the ethical MOMG at hand to produce an
ethical environment (a single-objective MG) wherein agents learn
to behave ethically (i.e., to reach a best-ethical equilibrium). In what
follows, Subsection 3.1 characterises a family of ethical MOMGs
for which Problem 1 can be solved, and Subsection 3.2 proves that
the solution indeed exists for such family.

3.1 Characterising solvable Ethical MOMGs
We introduce below a new equilibrium concept for ethical MOMGs
that is founded on the notion of dominance in game theory, the
so-called best-ethically-dominant equilibrium. We find such equilib-
rium in environments where the best behaviour for each agent is to
follow an ethical policy, provided that the ethical weight is properly
set. The existence of such equilibria is important to characterise
the ethical MOMGs for which we can solve the MAEE problem
(Problem 1). Thus, as shown below in Section 3.2, we can only
solve Problem 1 for Ethical MOMGs with a best-ethically-dominant
equilibrium.

We extract our concept of dominance from the game theory
literature. In a Markov game context, we say that a policy 𝜋𝑖 of
agent 𝑖 is dominant if it yields the best outcome for agent 𝑖 no
matter the policies that the other agents follow. Then, we say that
the dominant policy 𝜋𝑖 dominates over all possible policies [15]:

Definition 5 (Dominant policy). Given a Markov game M, a
policy 𝜋𝑖 of agent 𝑖 is a dominant policy if and only if for every joint
policy ⟨𝜌𝑖 , 𝜌−𝑖 ⟩ and every state 𝑠 in which 𝜌𝑖 (𝑠) ≠ 𝜋𝑖 (𝑠) it holds that:

𝑉 𝑖
⟨𝜋𝑖 ,𝜌−𝑖 ⟩ (𝑠) ≥ 𝑉 𝑖

⟨𝜌𝑖 ,𝜌−𝑖 ⟩ (𝑠) . (3)

A policy is strictly dominant if we change ≥ to >. Moreover, if
the policy 𝜋𝑖 of each agent of an MG is a dominant policy, we say
that the joint policy 𝜋 = (𝜋1, . . . , 𝜋𝑛) is a dominant equilibrium.

Now we adapt the concept of dominance in game theory for
Ethical MOMGs. We start by defining policies that are dominant



with respect to the ethical objective. We call these policies ethically-
dominant policies. Formally:

Definition 6 (Ethically-dominant policy). LetM be an ethi-
cal MOMG.We say that a policy 𝜋𝑖 of agent 𝑖 is an ethically-dominant
policy in M if and only if the policy is dominant for its ethical objec-
tive (i.e., both its normative 𝑉 𝑖

N and evaluative 𝑉 𝑖
𝐸
components) for

every joint policy ⟨𝜌𝑖 , 𝜌−𝑖 ⟩ and every state 𝑠 in which 𝜌𝑖 (𝑠) ≠ 𝜋𝑖 (𝑠) :
𝑉 𝑖
N⟨𝜋𝑖 ,𝜌−𝑖 ⟩

(𝑠) ≥ 𝑉 𝑖
N⟨𝜌𝑖 ,𝜌−𝑖 ⟩

(𝑠),

𝑉 𝑖
𝐸⟨𝜋𝑖 ,𝜌−𝑖 ⟩

(𝑠) ≥ 𝑉 𝑖
𝐸⟨𝜌𝑖 ,𝜌−𝑖 ⟩

(𝑠) .

Following Def. 3, every ethically-dominant policy 𝜋𝑖 is an ethical
policy with respect to any 𝜋−𝑖 .

We also adapt the concept of dominance from game theory for
best-ethical policies. Given an ethical MOMG, we say that a best-
ethically-dominant policy is: (1) dominantwith respect to the ethical
objective among all policies; and (2) dominant with respect to the
individual objective among ethical policies. Formally:

Definition 7 (Best-ethically-dominant policy). LetM be
an Ethical MOMG. A policy 𝜋𝑖 of agent 𝑖 is a best-ethically-dominant
policy if and only if it is ethically-dominant and

𝑉 𝑖
0⟨𝜋𝑖 ,𝜌−𝑖 ⟩

(𝑠) ≥ 𝑉 𝑖
0⟨𝜌𝑖 ,𝜌−𝑖 ⟩

(𝑠),

for every joint policy ⟨𝜌𝑖 , 𝜌−𝑖 ⟩, every state 𝑠 in which 𝜌𝑖 (𝑠) ≠ 𝜋𝑖 (𝑠),
and 𝜌𝑖 (𝑠) is an ethical policy with respect to 𝜌−𝑖 (𝑠).

Observe that by Def. 4, every best-ethically-dominant policy 𝜋𝑖

is also a best-ethical policy with respect to any 𝜋−𝑖 .
Next, we define the generalisation of the two previous dominance

definitions considering the policies of all agents. This will lead to
new equilibrium concepts. If the policy 𝜋𝑖 of each agent of an
Ethical MOMG is ethically-dominant, then the joint policy 𝜋 =

(𝜋1, . . . , 𝜋𝑛) is an ethically-dominant (ED) equilibrium. If the
policies are best-ethically-dominant, then the joint policy 𝜋 is a
best-ethically-dominant (BED) equilibrium. Observe that every
ethically-dominant equilibrium is an ethical equilibrium, and every
best-ethically-dominant equilibrium is a best-ethical equilibrium.

Finally, observe that a joint policy 𝜋 = (𝜋1, . . . , 𝜋𝑛) is a strictly
best-ethically-dominant equilibrium if and only if every 𝜋𝑖 is strictly
dominant with respect to the individual objective among ethical
policies (i.e., by changing ≥ with > in Def. 7).

In the following subsection we prove that we can solve the multi-
agent ethical embedding problem (Problem 1) for Ethical MOMGs
with a best-ethically-dominant equilibrium.

3.2 On the existence of solutions
Next we prove that we can find a multi-agent ethical embedding
function for ethical MOMGs with best-ethically-dominant equilib-
ria. Henceforth, we shall refer to such ethical MOMGs as solvable
ethical MOMGs, and if the BED equilibrium is strict, we will refer
to such Ethical MOMGs as strictly-solvable. Below, we present The-
orem 1 as our main result. The theorem states that given a solvable
ethical MOMG, it is always possible to find an embedding function
that transforms it into a (single-objective) MG where agents are
guaranteed to learn to behave ethically. More in detail, following
Theorem 1 guarantees that for the appropriate ethical weight in

our embedding function, then the only Nash equilibria in the envi-
ronment where the agents learn (the scalarised MOMG produced
thanks to the embedding function) are best-ethical equilibria in the
Ethical MOMG. In other words, such embedding function is the
solution to Problem 1 we are looking for.

The proof of Theorem 1 requires the introduction of some propo-
sitions as intermediary results. The first proposition establishes the
relationship between dominant and ethically-dominant policies.

Proposition 1. Given an ethical MOMGM = ⟨S,A𝑖 , (𝑅0, 𝑅N +
𝑅𝐸 )𝑖 ,𝑇 ⟩ for which there exists ethically-dominant equilibria, there
exists a weight vector ®𝑤 = (1,𝑤𝑒 ) with 𝑤𝑒 > 0 for which every
dominant policy for an agent 𝑖 in the MG M ′ = ⟨S,A𝑖 ,𝑤0𝑅𝑖0 +
𝑤𝑒 (𝑅𝑖N + 𝑅𝑖

𝐸
),𝑇 ⟩ is also an ethically-dominant policy for agent 𝑖 in

M.

Proof. Without loss of generality we only consider determinis-
tic policies, by the Indifference Principle [15].

Consider a weight vector ®𝑤 = (1,𝑤𝑒 ) with𝑤𝑒 ≥ 0. Suppose that
for that weight vector, the only deterministic ®𝑤-dominant policies
(i.e. policies that are dominant in the MOMG scalarised by ®𝑤 ) are
ethically-dominant. Then we have finished.

Suppose now that it is not the case, and there is some ®𝑤-dominant
policy 𝜌𝑖 for some agent 𝑖 that is not dominant ethically. This implies
that for some state 𝑠 ′ and for some joint policy 𝜌−𝑖 we have that:

𝑉 𝑖
N⟨𝜌𝑖 ,𝜌−𝑖 ⟩

(𝑠 ′) +𝑉 𝑖
𝐸⟨𝜌𝑖 ,𝜌−𝑖 ⟩

(𝑠 ′) < 𝑉 𝑖
N⟨𝜋𝑖 ,𝜌−𝑖 ⟩

(𝑠 ′) +𝑉 𝑖
𝐸⟨𝜋𝑖 ,𝜌−𝑖 ⟩

(𝑠 ′),

for any ethically-dominant policy 𝜋𝑖 for agent 𝑖 .
For an 𝜖 > 0 large enough and for the weight vector ®𝑤 ′ =

(1,𝑤𝑒 + 𝜖), any ethically-dominant policy 𝜋𝑖 will have a better
value vector at that state 𝑠 ′ than 𝜌𝑖 against 𝜌−𝑖 :

®𝑤 ′ · ®𝑉 𝑖
⟨𝜌𝑖 ,𝜌−𝑖 ⟩ (𝑠

′) < ®𝑤 ′ · ®𝑉 𝑖
⟨𝜋𝑖 ,𝜌−𝑖 ⟩ (𝑠

′).

Therefore, 𝜌𝑖 will not be a ®𝑤 ′-dominant policy. Notice that 𝜌
will remain without being dominant even if we increase again the
value of𝑤𝑒 by defining ®𝑤 ′′ = (1,𝑤𝑒 + 𝜖 + 𝛿) with 𝛿 > 0 as large as
we wish.

Now consider the policy 𝜌𝑖 not ethically-dominant that requires
the maximum 𝜖∗ > 0 in order to stop being ®𝑤-dominant. We can
guarantee that this policy exists because there is a finite number
of deterministic policies in a finite MOMG. Therefore, by selecting
the weight vector ®𝑤∗ = (1,𝑤𝑒 + 𝜖∗), then only ethically-dominant
policies can be ®𝑤∗-dominant for this ethical weight𝑤𝑒 +𝜖∗. In other
words, every ®𝑤∗-dominant policy is also ethically-dominant for this
new weight vector. □

The former proposition helps us establish a formal relationship
between dominant equilibria and ethically-dominant equilibria
through the following proposition.

Proposition 2. Given an ethical MOMGM = ⟨S,A𝑖 , (𝑅0, 𝑅N +
𝑅𝐸 )𝑖 ,𝑇 ⟩ for which there exists best-ethically-dominant equilibria,
there exists a weight vector ®𝑤 = (1,𝑤𝑒 ) with 𝑤𝑒 > 0 for which
every dominant policy for an agent 𝑖 in the Markov Game M ′ =

⟨S,A𝑖 , 𝑅𝑖0 +𝑤𝑒 (𝑅𝑖N +𝑅𝑖
𝐸
),𝑇 ⟩ is also a best-ethically-dominant policy

for agent 𝑖 in the ethical MOMG M and vice-versa.

Proof. By Proposition 1, there is an ethical weight for which
every dominant policy inM ′ is ethically-dominant inM.



Best-ethically-dominant policies dominate all ethically-dominant
policies, and thus every dominant policy in M ′ is in fact a best-
ethically-dominant inM. In other words, at least one best-ethically-
dominant policy is dominant for this ethical weight.

Finally, since every best-ethically-dominant policy 𝜋𝑖 is best-
ethical against any other joint policy 𝜌−𝑖 , for a large enough ethical
weight, it will be a best-response against any other joint policy 𝜌−𝑖 ,
which is the definition of a dominant policy. □

Thanks to Proposition 2 we are ready to formulate and prove
Theorem 1 as follows.

Theorem 1 (Multi-agent solution existence (dominance)).
Given an ethical MOMGM = ⟨S,A𝑖 , (𝑅0, 𝑅N + 𝑅𝐸 )𝑖 ,𝑇 ⟩ for which
there exists at least one best-ethically-dominant equilibrium 𝜋∗, then:
(1) there exists a weight vector ®𝑤 = (1,𝑤𝑒 ) with𝑤𝑒 > 0 for which 𝜋∗ is
a dominant equilibrium in the scalarised MOMGM∗ by ®𝑤 ; and (2) for
the weight vector ®𝑤 ′ = (1,𝑤𝑒 +𝜖) with 𝜖 > 0 all Nash equilibria in the
scalarised MOMGM ′

∗ by ®𝑤 ′ are best-ethically-dominant equilibria
in the ethical MOMG M.

Proof. By Proposition 2, there exists aweight vector ®𝑤 = (1,𝑤𝑒 )
for which all best-ethically-dominant equilibria are dominant equi-
libria, and thus, Nash equilibria.

Let 𝜋∗ be any best-ethically-dominant equilibrium. If for such
ethical weight𝑤𝑒 there is another Nash equilibrium 𝜌 that is not
best-ethically-dominant, it cannot be either an ethically-dominant
equilibrium because 𝜋∗ would have more value for some state 𝑠 ′
and some agent 𝑖 (in which 𝜌𝑖 (𝑠 ′) is not best-ethical).

Thus, this other Nash equilibrium necessarily has less ethical
value for some state 𝑠 ′′ and for some agent 𝑗 than 𝜋𝑖∗ (in which
𝜌 𝑗 (𝑠 ′′) is not an ethical). Therefore, 𝜌 𝑗 will stop being a best-
response against 𝜌−𝑗 as soon as we increase the ethical weight
by any 𝜖 > 0 (because 𝜋 𝑗

∗ is already a best-response against 𝜌−𝑗
for being dominant). This will cause that 𝜌 will stop being a Nash
equilibrium.

Once a joint policy 𝜌 is not a Nash equilibrium for some ethi-
cal weight 𝑤𝑒 , it is no longer a Nash equilibrium for any greater
𝑤 ′
𝑒 > 𝑤𝑒 , so the only remaining Nash Equilibria are best-ethically-

dominant equilibria. □

Theorem 1 guarantees that we can solve Problem 1 for any Ethi-
cal MOMG with at least one best-ethically-dominant equilibrium.
Indeed, for that reason we call such family of Ethical MOMGs as
solvable. In particular, we aim at finding solutions ®𝑤 that are as
little intrusive with the agent’s learning process as possible (i.e.,
the ®𝑤 that guarantees the learning of an ethical policy with the
minimal ethical weight 𝑤𝑒 ). Every time we refer to the minimal
ethical weight we do it in such sense.

4 SOLVING THE MAEE PROBLEM
This section details how to solve theMulti-Agent Ethical Embedding
(MAEE) problem defined by Problem 1. This amounts to computing
a solution weight vector ®𝑤 so that we can combine individual
and ethical rewards into a single reward to yield a new, ethical
environment.

Figure 1 illustrates our approach to solving a MAEE problem,
which follows two main steps: (1) computation of a best-ethical

equilibrium (the target joint policy), namely the joint policy that
we expect the agents to converge to when learning in our ethical
environment; and (2) computation of a solution weight vector ®𝑤
based on the target joint policy. Interestingly, both computations are
based on decomposing the ethical MOMG (the input to the problem)
into 𝑛 ethical MOMDPs (one per agent), solving one local problem
(MOMDP) per agent, and aggregating the resulting solutions.

In what follows we provide the theoretical grounds for com-
puting a target joint policy and a solution weight vector. For the
remainder of this Section we assume that there exists a strictly
best-ethically-dominant equilibrium in the Ethical MOMG, that is,
that the Ethical MOMG is strictly-solvable.

4.1 Computing the ethical equilibrium
As previously mentioned, we require to compute the best-ethical
equilibrium 𝜋∗ to which we want agents to converge when learning
in our ethical environment. Figure 1 (Left) illustrates the three steps
required to compute such joint policy.

In order to obtain the joint policy 𝜋∗, we can resort to decom-
posing the ethical MOMGM, encoding the input multi-objective
environment, into 𝑛 ethical MOMDPsM𝑖=1,...,𝑛 , one per agent. For
each ethical MOMDP M𝑖 , we compute the individual contribu-
tion of agent 𝑖 to the ethical equilibrium (𝜋𝑖∗) with single-agent
reinforcement learning.

Building the ethical equilibrium 𝜋∗ via decomposition is possible
because we assume that the ethical MOMG M is strictly-solvable,
hence satisyfing the conditions of Theorem 1. This means that the
best-ethical equilibrium 𝜋∗ is also strictly dominant. Thus, each
agent has one (and only one) strictly best-ethically-dominant policy
(𝜋𝑖∗), which by Def. 7 is the unique best-ethical policy against any
other joint policy.

There is the issue of how to decompose the ethical MOMGM.
Since we know that each 𝜋𝑖∗ is the only best-ethical policy against
any other joint policy 𝜌−𝑖 , we can select randomly 𝜌−𝑖 to create an
Ethical MOMDPM𝑖 for each agent 𝑖 .

After creating all Ethical MOMDPs M𝑖=1,...,𝑛 , we must compute
the policy 𝜋𝑖∗ of each agent 𝑖 as its best-ethical policy in the ethical
MOMDP M𝑖 . We can do this using multi-objective single-agent
RL. In particular, we apply the Value Iteration (VI) algorithm with
a lexicographic ordering [29] (prioritising ethical rewards), since
it is has the same computational cost as VI. Finally, we join all
best-ethical policies 𝜋𝑖∗ to yield the joint policy 𝜋∗.

4.2 Computing the solution weight vector
Once computed the ethical equilibrium 𝜋∗, we can proceed to com-
pute the corresponding ethical weight𝑤𝑒 that guarantees that 𝜋∗ is
the only Nash equilibrium in the ethical environment (the scalarised
MOMG) produced by our embedding. Figure 1 (Right) illustrates
the steps required to compute it.

Similarly to Section 4.1, we compute 𝑤𝑒 by decomposing the
input environment (the ethical MOMGM) into 𝑛 ethical MOMDPs
M𝑖=1,...,𝑛

∗ . Thereafter, we compute the individual ethical weight
𝑤𝑖
𝑒 for each ethical MOMDP. Finally, we aggregate the individual

ethical weights to obtain𝑤𝑒 .
In this case, we create each Ethical MOMDP M𝑖

∗ by fixing the
best-ethical equilibrium 𝜋−𝑖∗ for all agents but 𝑖 . Then, computing



the ethical weight for each ethical MOMDP amounts to solving a
Single-Agent Ethical Embedding (SAEE) problem as introduced in
[18]. With this aim, we can employ the algorithm introduced in that
work (details of SAEE are provided in the Supplementary Work)
to solve all SAEE problems. Afterwards, we obtain an individual
ethical weight 𝑤𝑖

𝑒 that ensures that each agent 𝑖 will learn to behave
ethically (following 𝜋𝑖∗) in the ethical MOMDPM𝑖

∗.
Finally, we select the greatest ethical weight 𝑤𝑒 = max𝑖 𝑤𝑖

𝑒

to obtain the solution weight vector (1,𝑤𝑒 + 𝜖) that solves our
problem (where 𝜖 > 0). The above-described procedure to produce
an ethical environment (based on decomposing, individually solving
single-agent embedding problems, and aggregating their results)
does guarantee that agents will learn to behave ethically in such
environment.

Notice that the cost of computing the solution weight vector
mainly resides in applying 𝑛 times the SAEE algorithm [18], once
per agent. Following [18], the cost of such algorithm is largely
dominated by the computational cost of the Convex Hull Value
Iteration algorithm [3].

Our approach above requires that Ethical MOMGs fulfil the
following condition: although the ethical objective is social, it is
enough that a fraction of the agents (not all of them) intervene
to completely fulfil it. To give an example inspired on the Ethics
literature, consider a situation where several agents are moving
towards their respective destination through a shallow pond and at
some point a child that cannot swim falls into the water (similarly
to the Drowning Child Scenario from [26]). To save the child, it
is enough that one agent takes a dive to rescue them. Another
example, from the AI literature, is the Cleanup Game from [10], in
which a handful of agents need to stop collecting apples from time
to time to repair the aquifer that irrigates the apples.

In terms of the ethical weight𝑤𝑒 , this assumption implies that
the hardest situation to incentivise an agent 𝑖 to follow an ethically-
dominant policy 𝜋𝑖∗ occurs when the rest of agents already behave
ethically by following an ethical equilibrium 𝜋−𝑖∗ . By definition,
for such𝑤𝑒 the policy 𝜋𝑖∗ will be a best-response against any joint
policy, thus becoming a dominant policy. In other words, the ethical
weight required to guarantee that 𝜋𝑖∗ is dominant is the same as
the ethical weight required to guarantee that 𝜋𝑖∗ is a best-response
against 𝜋−𝑖∗ . This is formally captured by the next condition:

Condition 1. LetM be an ethicalMOMGM = ⟨S,A𝑖 , (𝑅0, 𝑅N+
𝑅𝐸 )𝑖 ,𝑇 ⟩ for which there exists at least one best-ethically-dominant
equilibrium 𝜋∗. Consider the weight vector ®𝑤 = (1,𝑤𝑒 ) and the
scalarised MOMG M∗ = ⟨S,A𝑖 , 𝑅0 +𝑤𝑒 · (𝑅N + 𝑅𝐸 )𝑖 ),𝑇 ⟩. We re-
quire that if the best-ethically-dominant equilibrium 𝜋∗ is a Nash
equilibrium inM∗, then 𝜋∗ is also a dominant equilibrium inM∗.

Now we can proceed with proving the soundness of our method
for computing a solution weight vector. First, we notice what im-
plies for the weight vector to have the minimal ethical weight𝑤𝑒

necessary for 𝜋∗ to be a Nash equilibrium. From an agent perspec-
tive, this implies that such ethical weight has to be the minimum
one that guarantees that each 𝜋𝑖∗ is a best-response. Formally:

Observation 1. Given any joint policy 𝜋 , then the minimum
ethical weight𝑤𝑒 for which every policy 𝜋𝑖 is a best-response against
𝜋−𝑖 is also the minimum ethical weight 𝑤𝑒 for which 𝜋 is a Nash
equilibrium.

Second, the following Theorem tells us the minimal𝑤𝑒 necessary
for 𝜋∗ to be the only Nash equilibrium: any ethical weight slightly
greater than the one that guarantees that 𝜋 is a Nash equilibrium.

Theorem 2. Given an ethical MOMG M = ⟨S,A𝑖 , (𝑅0, 𝑅N +
𝑅𝐸 )𝑖 ,𝑇 ⟩ for which there exists at least one best-ethically-dominant
equilibrium 𝜋∗ and for which Condition 1 holds, if for a weight vector
®𝑤 = (1,𝑤𝑒 ) with𝑤𝑒 > 0 we have that 𝜋∗ is a Nash equilibrium, then
for ®𝑤 ′ = (1,𝑤𝑒 + 𝜖) it is the unique Nash equilibrium (except for
other best-ethically-dominant equilibria).

Proof. By Condition 1, we have that the ethically-dominant-
Nash equilibrium 𝜋∗ is also dominant for the weight vector ®𝑤 =

(1,𝑤𝑒 ). By Theorem 1, once we increase the ethical weight𝑤𝑒 by
some 𝜖 > 0 as small as we want, the only Nash equilibria will be
those joint policies that are ethically-dominant-Nash equilibria as
well. □

Finally, to compute the solution weight vector (1,𝑤𝑒 ) we resort
to Observation 1 and Theorem 2. First, we consider the 𝑛 different
ethical weights𝑤𝑒1 , . . . ,𝑤𝑒𝑛 that we obtain by applying the single-
agent ethical embedding algorithm for each agent individually (the
second step of our solution weight vector computation in Figure 1),
and we select the one with maximum value:

𝑤𝑒 = max
𝑖

𝑤𝑖
𝑒 . (4)

Afterwards, we add a small 𝜖 > 0 to its value𝑤 ′
𝑒 = 𝑤𝑒 +𝜖 in order to

guarantee that for𝑤 ′
𝑒 , the best-ethically-dominant equilibrium 𝜋∗

is the only Nash equilibrium. The weight vector ®𝑤 = (1,𝑤 ′
𝑒 ) is our

desired ethical embedding that guarantees that the Markov Game
M ′ = ⟨S,A𝑖 , 𝑅𝑖0 + (𝑤𝑒 + 𝜖) [𝑅𝑖N + 𝑅𝑖

𝐸
],𝑇 ⟩ is an ethical environ-

ment. In other words, ®𝑤 solves the multi-agent ethical embedding
problem.

5 EXAMPLE: THE PUBLIC CIVILITY GAME
This section illustrates our process to design an ethical environment
(outlined in Figure 1) through an example: the Public Civility Game
(PCG) [16]. The PCG is a value alignment problemwhere two agents
must learn to behave according to the moral value of civility. In
[18], the authors solve a limited version of the problem where just
one agent learns to behave ethically (the other agent follows a fixed
policy). Instead, here we design an ethical environment for all the
agents to learn.

Figure 2a depicts the PCG grid environment where agents (L)eft
and (R)ight move from their initial positions to their goal destina-
tions (GL and GR respectively). At the beginning of each episode,
garbage (small purple square) can appear blocking the way of any
of the two agents and we expect the agent to learn to handle it
civically while moving towards its goal. The desired civic (ethical)
behaviour is to push the garbage to the bin without throwing it
at each other even though this requires additional effort. Next, we
detail the processes to obtain an ethical environment for the Public
Civility Game and the policies that the agents learn in such environ-
ment. For that, we borrow the action set (move and push) and the
reward function specified in [18] to build the input environment
(MOMG) for the multi-agent embedding: each agent receives an
individual reward (𝑅𝑖0 = 20) for reaching its destination (otherwise,
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Figure 2: (a) A possible initial state of the public civility game. The agent on the right (R) has to deal with the garbage obstacle,
which has been located in front of it. (b) Visualisation in Weight Space of the partial convex hull for agent L. (c) Visualisation in
Weight Space of the partial convex hull for agent R. (d) Visualisation in Objective Space of the partial convex hull of each agent
(L and R), composed by 3 policies per agent: 𝐸 (Ethical), 𝑅 (Regimented) and 𝑈 (Unethical). (e) Evolution of the accumulated
rewards per episode that the Left agent obtains in the ethical environment. Horizontal dotted lines mark convergence values for
an unethical policy, and straight lines for an ethical policy (red for individual rewards, green for ethical rewards). (f) Evolution
of the accumulated rewards per episode of the Right agent.

𝑅𝑖0 = −1); a penalty (𝑅𝑖N = −10) for pushing the garbage to a posi-
tion occupied by another agent; and an ethical incentive (𝑅𝑖

𝐸
= 10)

for pushing the garbage to a bin.

5.1 Building the ethical environment
5.1.1 Ethical equilibrium computation. Following Section 4.1 (and
left side of Figure 1), we first decompose the input ethical MOMG
into two ethical MOMDPs M𝑖∈{𝐿,𝑅 } . We build each M𝑖 by ran-
domly fixing the policy of agent 𝑗 ≠ 𝑖 . Then, we let agent 𝑖 learn its
individual ethical policy 𝜋𝑖∗ by applying Value Iteration with lexico-
graphic ordering [29]. Policy 𝜋𝑖∗ has agent 𝑖 throw the garbage to a
bin whenever found in front. It is worth noting that the vectorial
values (𝑉 𝜋𝑖

0 ,𝑉 𝜋𝑖

N +𝑉 𝜋𝑖

𝐸
) of these policies are (-0.59, 0 + 2.4) for 𝜋𝐿∗

and (0.59, 0 + 2.4) for 𝜋𝑅∗ , which amount to an accumulation of
rewards

∑ ®𝑅𝐿 = (15.5, 0 + 5) and ∑ ®𝑅𝑅 = (16.5, 0 + 5). Finally, we
obtain the ethical equilibrium by joining the ethical policies of both
agents: 𝜋∗ = (𝜋𝐿∗ , 𝜋𝑅∗ ).

5.1.2 Solution weight vector computation. Following Section 4.2
(and right side of Figure 1), the next step is to compute an ethical
weight for which 𝜋∗ is a Nash equilibrium. Recall that our approach
is a three-step process based on (1) decomposing the ethical MOMG

in several ethical MOMDPs, (2) solving one local ethical MOMDP
per agent, and finally, (3) aggregating the resulting solutions. Specif-
ically, we proceed as follows:

Step 1: Decompose. Following Observation 1, we need to apply
the single-agent Ethical Embedding algorithm for each agent, by
creating two Ethical MOMDPs. We first create the Ethical MOMDP
M𝐿

∗ by fixing the policy of agent R as 𝜋𝑅∗ . Then, we repeat the
process for agent R by fixing the policy for agent L to create the
ethical MOMDPM𝑅

∗ .

Step 2: Solve. Thereafter, we apply single-agent Ethical Embedding
forM𝐿

∗ andM𝑅
∗ . The single-agent ethical embedding process has

three phases [18]. First, it computes the partial convex hull3 of
the Ethical MOMDP. Afterwards, it extracts the two most ethical
policies from the hull. Finally, it makes use of the two policies to
compute an ethical weight that guarantees the learning of ethical
policies. Next, we explain how to apply these three phases of the
single-agent Ethical Embedding to the Public Civility Game.

3The partial convex hull of an ethical MOMDP, as defined in [18], consists on all the
policies that are optimal for some weight vector of the form (1, 𝑤𝑒 ) with an 𝑤𝑒 > 0.



Partial convex hull computation: Without loss of generality we start
with the ethical MOMDPM𝐿

∗ , for which we only explain the results
for the initial state 𝑠𝐿 (garbage in front of agent L)4.

Then, consideringM𝐿
∗ , we compute its partial convex hull 𝑃 ⊆

𝐶𝐻 (M𝐿
∗ ). Figure 2d depicts, in blue dots, the resulting convex hull

𝑃 for agent L in the initial state 𝑠𝐿 . It is composed of 3 different
policies named after the behaviour they encapsulate:

(1) An Unethical (uncivil) policy𝑈𝐿 , in which agent L moves to-
wards the goal and throws away the garbage without caring
about any ethical implication.

(2) A Regimented policy 𝑅𝐿 , in which agent L complies with
the norm of not throwing the garbage at the other agent.

(3) An Ethical policy 𝐸𝐿 , which we already found in the previous
step and denoted as 𝜋𝐿∗ . Following this policy, agent L always
throws the garbage to the bin when found in front.

The same three policies appear in the partial convex hull of the
ethical MOMDP M𝑅

∗ for agent R (depicted in Figure 2d with black
dots). Likewise for agent L, we only explain the results for the initial
state 𝑠𝑅 for agent R. Notice that the difference between the partial
convex hulls of the agents resides only in their respective individual
objective values. This difference is to be expected since agent R has
its goal position one cell nearer than agent L.

Extraction of the two value vectors with the greatest ethical value: For
the two possible initial states (𝑠𝐿 and 𝑠𝑅 ) the Ethical policies 𝜋𝐿∗ (𝑠𝐿)
and 𝜋𝑅∗ (𝑠𝑅) have associated the ethical-optimal value vector since
they are the policies with greatest ethical value within the partial
hull of each agent. As previously mentioned in Section 5.1.1, the
vectorial values (𝑉 𝜋𝑖

0 ,𝑉 𝜋𝑖

N + 𝑉 𝜋𝑖

𝐸
) of these policies are (-0.59, 0 +

2.4) for 𝜋𝐿∗ and (0.59, 0 + 2.4) for 𝜋𝑅∗ . In order to obtain the ethical
weight for which the ethical-optimal policy of each agent is optimal,
the single-agent ethical embedding requires another policy, which
is the second most ethical one [17].

In this case, the second most ethical value vector for each agent
corresponds to the value of their respective Regimented policies
𝜋𝐿𝑟 (𝑠𝐿) and 𝜋𝑅𝑟 (𝑠𝑅). As shown by Fig. 2d, the vectorial values (𝑉 𝜋𝑖

0 ,

𝑉 𝜋𝑖

N +𝑉 𝜋𝑖

𝐸
) of the Regimented policy are (0.59, 0 + 0) for agent L,

and (2.27, 0 + 0) for agent R.

Computation of the ethical weight: Following [18], we need to find
the ethical weight for which the Ethical policy and the Regimented
policy have the same scalarised value for each agent. For the left
agent, its solution is to set the ethical weight as𝑤𝐿

𝑒 = 0.49. We can
check it: −0.59 + 0.49 · (0 + 2.4) = 0.59 = 0.59 + 0.49 · (0 + 0).

Repeating this process for agent R gives us an ethical weight
𝑤𝑅
𝑒 = 0.7: 0.59 + 0.7 · (0 + 2.4) = 2.27 = 2.27 + 0.7 · (0 + 0).
Figure 2b illustrates the scalarised value of the 3 policies for

varying values of𝑤𝑖
𝑒 in (0,1) (for𝑤𝑖

𝑒>1 tendencies do not change) for
agent L, and Figure 2c illustrates the same for agent R. In particular,
we observe that the Ethical policy indeed becomes the only optimal
one when𝑤𝐿

𝑒 > 0.49 for agent L, and𝑤𝑅
𝑒 > 0.7 for agent R. Notice

that𝑤𝐿
𝑒 < 𝑤𝑅

𝑒 because, since agent L needs to traverse a longer path
to reach its destination than R, its accumulated individual reward
4If the garbage is not in front of the agent (as it is the case for agent L in the other
initial state 𝑠𝑅 ), there is a unique policy in the agent’s convex hull: to move forward
until it gets to its destination.

is smaller, and thus, it also requires a smaller reward to behave
ethically.

Step 3: Aggregate. Finally, we select the greatest ethical weight
𝑤𝑒 = max𝑖 𝑤𝑖

𝑒 = 0.7 to obtain the solution weight vector ®𝑤 =

(1,𝑤𝑒 + 𝜖) = (1, 0.71), when setting 𝜖 = 0.01. The resulting ethical
environment M∗ is thus an MG for the PCG with reward function
𝑅𝑖0 + 0.71 · (𝑅𝑖N + 𝑅𝑖

𝐸
) where the agents are guaranteed to learn

policies that jointly form a best-ethical equilibrium.

5.2 Learning in the ethical environment
Despite its simplicity, the PCG allows us to empirically check our
formal results. We generate the ethical environment M∗ with two
initial states (garbage in front of L or R). As expected, when each
agent learns with an independent Q-learner [12], both agents learn
to bring the garbage (when found in front) to a bin while moving
towards their goals. Figure 2e plots the rewards per episode that
agent L accumulates while learning, and Figure 2f plots the rewards
accumulated by agent R while learning. Now we briefly comment
the accumulated rewards per agent, starting with agent L.

For agent L, the values stabilise at 15.5 for individual rewards
and at 5 for ethical rewards so that they match precisely the values
of the Ethical policy

∑ ®𝑅𝐿 shown in Section 5.1.1. For reference, we
have added as horizontal dotted lines the values of the Unethical
policy for agent L. The difference in the width of the coloured areas
illustrate how, by behaving ethically, agent L increases by 200%
its ethical rewards at the cost of decreasing by 6% its individual
reward.

For agent R, the values stabilise at 16.5 for individual rewards and
at 5 for ethical rewards so that they match precisely the values of
the Ethical policy

∑ ®𝑅𝑅 shown in Section 5.1.1. Like for the previous
agent, we have added as horizontal dotted lines the values of the
Unethical policy for agent R. Again, the difference in the width of
the coloured areas illustrate how, by behaving ethically, agent R
increases by 200% its ethical rewards at the cost of decreasing by
6% its individual reward.

6 CONCLUSIONS AND FUTUREWORK
The literature in value alignment has largely focused on aligning
a single agent with a moral value, and with the exception of [18],
disregarding guarantees on an agent’s ethical learning. Here we
have tackled the open problem of building an ethical environment
for multi-agent systems that guarantees that all the agents in the
system learn to behave ethically while pursuing their individual
objectives. Our novel contributions are founded in the framework
of Multi-Objective Markov Games (MOMGs). First, we characterise
a family of MOMGs, the so-called ethical MOMGs, for which we
can formally guarantee the joint learning of ethical equilibria. For
such family of MOMGs, we specify the process for building an
ethical environment with a so-called multi-agent ethical embedding
process. Interestingly, our embedding approach for multiple agents
generalises that for a single agent in [18].

As future work, we plan to develop methods for testing if an
MOMG has ethically-dominant equilibria or not. This is a challeng-
ing problem since testing the existence of dominant equilibria in
Markov Games is still an open problem [33].
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