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A B S T R A C T

Embryo selection is a critical step in assisted reproduction: good selection criteria are expected to increase
the probability of inducing a pregnancy. Machine learning techniques have been applied for implantation
prediction or embryo quality assessment, which embryologists can use to make a decision about embryo
selection. However, this is a highly uncertain real-world problem, and current proposals do not model always
all the sources of uncertainty.

We present a novel probabilistic graphical model that accounts for three different sources of uncertainty,
the standard embryo and cycle viability, and a third one that represents any unknown factor that can drive a
treatment to a failure in otherwise perfect conditions. We derive a parametric learning method based on the
Expectation–Maximization strategy, which accounts for uncertainty issues.

We empirically analyze the model within a real database consisting of 604 cycles (3125 embryos)
carried out at Hospital Donostia (Spain). Embryologists followed the protocol of the Spanish Association for
Reproduction Biology Studies (ASEBIR), based on morphological features, for embryo selection. Our model
predictions are correlated with the ASEBIR protocol, which validates our model. The benefits of accounting
for the different sources of uncertainty and the importance of the cycle characteristics are shown. Considering
only transferred embryos, our model does not further discriminate them as implanted or failed, suggesting that
the ASEBIR protocol could be understood as a thorough summary of the available morphological features.
1. Introduction

Assisted reproductive technologies (ARTs) are a set of invasive
medical techniques that attempt to induce a pregnancy. Each trial of
treatment is known as a cycle. The woman first follows a treatment
of ovarian stimulation for several weeks to induce the development
of multiple follicles with a large number of oocytes. Then, oocytes
are retrieved and fertilized, and the resulting embryos are cultured
for several days. Finally, clinicians need to select which embryos are
transferred to the woman’s uterus [1]. This process is physically and
psychologically tough, especially for women, and success is not guar-
anteed. The Spanish Society of Fertilization (SEF) reported in 2018 that
only 35.6% of the ART cycles succeeded (ended up in pregnancy) [2].
The probability of success can be improved by increasing the number
of transferred embryos [3], but this also leads to higher multiple-birth
rates, which is considered risky for both mother and fetuses [3,4].
Thus, many countries restrict the number of embryos that can be
transferred (e.g., Spanish law limits it to 3). Therefore, the selection
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of the most viable embryos is a critical step to optimize the probability
of pregnancy.

Embryo selection is a complex and partially subjective task. The
evaluation of embryos is based mainly on the evolution of their mor-
phological characteristics. The protocol of the Spanish Association for
Reproduction Biology Studies (ASEBIR) [1], the criteria of reference
in Spain, classifies embryos into an ordinal scale (from A –high-quality
embryos– to D –low-quality embryos–) using morphological criteria and
posed a unified protocol to address the lack of consensus in embryo
quality assessment [5].

In recent years, machine learning (ML) techniques have been used to
assist embryologists in embryo selection and pregnancy prediction [6–
9]. Most of them rely on supervised classification and require complete
and fully labeled training data. That is, we would need to know, for
each embryo in our training dataset, its viability to induce a pregnancy.
However, in ARTs, viability can only be determined after transference
by the occurrence of embryo implantation. Moreover, for a transfer of
vailable online 5 October 2022
010-4825/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.compbiomed.2022.106160
Received 29 April 2022; Received in revised form 8 September 2022; Accepted 1 O
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ctober 2022

http://www.elsevier.com/locate/compbiomed
http://www.elsevier.com/locate/compbiomed
mailto:jeronimo.hernandez@ub.edu
https://doi.org/10.1016/j.compbiomed.2022.106160
https://doi.org/10.1016/j.compbiomed.2022.106160
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2022.106160&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers in Biology and Medicine 150 (2022) 106160J. Hernández-González et al.
multiple embryos, current techniques are unable to identify individu-
ally which embryo(s) implanted. This implies that many embryos are
not (fully) labeled in ART data samples, and previous works usually
discarded all the embryos lacking a full labeling. Nowadays, specific
methods [8] have been proposed to learn also using information from
cycles with partial implantation (not all the transferred embryos were
implanted).

All current methods, ML-based or not, use a combination of embryos
and cycles descriptive characteristics to predict embryo implantation.
Yet, there exists a recurrent situation in assisted reproduction units: ap-
parently viable cycles, using embryos allegedly viable, do not succeed.
The repeated occurrence of this type of failure suggests that there exist
still unknown factors which also determine cycle success.

In this paper, we propose a novel probabilistic graphical model
that works under the assumption of independence between embryo
and cycle viability, and accounts for a third source of uncertainty
corresponding to unknown factors that can lead a cycle to fail. We
have derived a learning algorithm specifically for this model based
on the Expectation–Maximization (EM) strategy, given the context of
partially labeled data and latent variables. We use two probabilistic
classifiers to approximate the probabilistic distribution for embryo and
cycle viability given their respective descriptive features.

We perform a thorough experimental validation of the model using
real data. It is compared with several baseline approaches designed
in an incremental way in order to test different working hypotheses.
We also test the importance for embryo implantation prediction of the
cycles features, as well as the relationship of the predictions of our
model with the ASEBIR protocol. A preliminary version of this last
part of the empirical validation was presented in [10]. The results
show the ability of our model to learn and take advantage of all the
available information. Its behavior is in line with the ASEBIR score,
which validates our model.

The rest of the paper is organized as follows. First of all, the state
of the art is reviewed. Then, we describe the real data available for
this study and the proposed model, as well as the learning technique
derived for it. In Section 4, we discuss a complete empirical evaluation
of our model against several baseline techniques. The paper finishes
drawing conclusions and future work.

2. State of the art

ART treatments are complex processes involving maternal hormonal
changes, immune responses, and maturational events in the embryo.
A treatment can fail when these events are not synchronized [11].
Despite the great improvements in ovarian stimulation protocols and
fertilization procedures, implantation rates per embryo remain at ap-
proximately 15% and many patients experience multiple failed at-
tempts [12]. Recurrent implantation failure (RIF) is a condition re-
sulting from repetitive unsuccessful ART cycles [13], and it provides
evidence of the existence of still unknown factors that affect ART
success.

All this has provided an ideal context for the application of ML
methods. Since more than 20 years ago, ML techniques provide the
standardized and efficient tools demanded in laboratories for evaluat-
ing the different processes in ARTs: from embryo selection to assessing
patient reproductive potential, or individualizing stimulation proto-
cols [14]. Since the popularization of infertility treatments, many works
have focused on the problem of ART outcome prediction and one of
its critical steps: the selection of embryos [15–17]. This subfield has
rapidly evolved in the last decade due to technological advances. In the
classical scenario, embryologists collect the most relevant morphologi-
cal traits of embryos by visual inspection of them via microscopes [18].
More recently, the use of (static) photographs of the embryos enabled
the use of automated image processing techniques [19,20]. Current
embryo incubators incorporate cameras that allow embryologists to
inspect the whole evolution of the embryos through time-lapse videos.
2

This data is being fed directly to ML models for embryo viability
prediction [21]. Indeed, these sources of data are complementary and
can be combined in a single ML method [22,23].

The technological breakthroughs have brought novel machine learn-
ing methods too, which have been applied to ARTs. Standard ar-
tificial intelligence techniques have been used, such as ranking al-
gorithms [24], statistical models, ensemble techniques, neural net-
works [25], Bayesian networks [6,8,26], Support Vector Machines [27],
classification and regression trees, logistic regression, case-based rea-
soning systems, etc. [15,17]. More recently, deep learning methods [9,
28] have been used to analyze the vast amount of data coming from
time-lapse incubators. ML techniques are of great interest since tradi-
tional morphokinetic grading systems can be subjective and variable.
It is generally agreed that ML methods are promising for the ART com-
munity but still require further validation [29]. For example, fully au-
tomated (time-lapse imaging) approaches require costly equipment and
have not demonstrated sufficient predictive ability yet [30]. Moreover,
there exist doubts about the deployment of these systems in the medical
domain, regarding technological and ethical aspects. Recently, Müller
et al. [31] proposed a list of ten principles for designing ML-based
decision support systems: an ethical system should be transparent,
explainable, fair, repeatable, under responsibility and monitored by a
physical person, and its suggestions must imply no human harm.

Most of these ML works take the standard supervised classifica-
tion approach, which requires completely labeled datasets. However,
labeling all the embryos is not always possible: in a cycle where not
all the transferred embryos get implanted, the use of current medical
techniques allows for knowing how many embryos got implanted, but
not to know exactly which embryo did. Many previous works [9,
32,33] directly disregard the embryos from these partially observed
cycles. Morales et al. [26] proposed, to circumvent this issue, joining
the descriptive vectors of all embryos in each cycle and learning to
predict a pregnancy. Hernández-González et al. [8] reformulated the
task as a weakly supervised learning problem, and learned using all the
embryos and the available information of supervision (label proportions
or counts of implanted embryos per cycle).

Another widespread approach is the embryo–uterine model (EU), in-
troduced by Speirs et al. [34] and later extended by Zhou and Weinberg
[35]. It assumes that, for a pregnancy to happen, both a fertile patient
(receptive uterus) and a viable embryo are required. Two separate
modules (embryo [E] and uterus [U]) compose it: the probability of
implantation is predicted as the product of the probabilities given by
both submodules. These models suffer from even harder issues of partial
observability: if a cycle fails and no embryo implants, one cannot
know if the embryos were not viable, if the cycle was not fertile, or
both. Roberts [18] addressed this via the Expectation–Maximization
(EM) algorithm, and Corani et al. [6] used a Bayesian network trained
with an averaging approach as an alternative to MAP estimation using a
very limited set of descriptive features for cycles and embryos. Roberts
and Stylianou [36] used an EU model to try to assess other unknown
factors that might be related to a given patient when they undergo
several ART cycles.

3. Materials and methods

3.1. Data

The database, originally presented by Hernández-González et al.
[8], was collected by the Unit of Assisted Reproduction of the Hospital
Donostia (Spain) from January 2013 to June 2015. In total, 604 cycles
were carried out, compiling a total number of 3125 embryos. Each cycle
has a certain number of embryos associated, only some of which were
actually transferred. As detailed in Table 1, in this period 412 cycles
failed to induce a pregnancy (839 embryos), and only in 57 cycles did

all the transferred embryos (108) result implanted. In the remaining
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Fig. 1. Embryo counts for each of the categories of the ASEBIR scoring system [1].

135 cycles, only a subset of the 307 transferred embryos were im-
planted. This last subset is of relevance in our analysis, as we cannot
determine the real fate of each embryo individually (it is not possible
to know which specific embryos are the ones implanted). Among all the
cycles, up to 1871 embryos were not selected for transfer. The criteria
for limiting the number of embryos to transfer goes from the low quality
of the embryos to legal restrictions (in Spain, the maximum number of
embryos that can be transferred in a single trial is 3).

Each cycle is described by 25 features including characteristics of
the patients (female and male) and stimulation procedure. Moreover,
summary variables of the associated embryos are provided (e.g., cycle’s
fertility rate, i.e., the proportion of oocytes successfully fertilized). Each
embryo is described by 20 features, mainly morphological characteris-
tics at different stages of development (up to 48 h after fertilization,
when transference was carried out). Appendix A details the descriptive
features of both subsets. In practice, only informative variables were
considered. We used one-hot encoding to transform categorical into
numeric features. All of them were then standardized (centered and
scaled to unit variance). After all, 36 features for cycles and 25 for
embryos were left.

A key feature is success rate (∈ [0, 1]), which indicates the percentage
f transferred embryos in the cycle that implanted. Note that this is the
ltimate information we would like our models to predict. The value
indicates that all the embryos of the cycle failed to implant, 1 that

ll of them implanted, and any value in the interval (0, 1) indicates
the proportion of implanted (and failed) embryos. This latter case is
directly related to the aforementioned problem of partially observed
data: we cannot know the identity of the implanted embryos (we do
not know their actual outcome) in the cycle, we only know that some
of them were implanted.

For each embryo, we also have a quality score (A–D, from high to
low-quality embryos) given by embryologists according to the ASEBIR
protocol [1], which assigns each embryo to a category based on its
morphological characteristics. The distribution of embryos among cate-
gories is rather balanced, although category C (mid-low quality) stands
out (see Fig. 1). This quality score is a decisive factor in the selection
process performed by embryologists, as can be seen in Fig. 2(a).

Ideally, there should be a clear difference in the implantation rate
of embryos graded in different categories. We display in Fig. 2(b) the
fraction of transferred embryos with different outcomes for each quality
category. It can be observed that there is a small signal: as the quality
score increases, the proportion of non-implanted embryos decreases.
Being aware of the difficulty of this problem, these numbers support
the effectiveness of the ASEBIR protocol to indicate implantation.

3.2. A probabilistic implantation model for ART

In this paper, we propose a probabilistic model that comprehen-
sively accounts for three different sources of uncertainty in the ART
problem, which is presented in this section. Later on, we present
3

its learning method that uses all the available information, even the
partial label information from cycles where not all the embryos were
implanted.

We model the problem of ART by means of a probabilistic graphical
model (PGM) [37], which grounds on a solid mathematical back-
ground. A directed acyclic graph is used to encode a set of conditional
independencies between the random variables, and the join distribution
factorizes as the product of conditional probability distributions for
each variable given its parents. Given a fixed structure, the model
parameters can be estimated from data.

The proposed model takes into account three sources of uncertainty
related to the success of an ART procedure, namely the viability of
embryos and cycles, and other unknown factors.

The viability of the embryo. A widely accepted assumption in ART is
that the individual characteristics of an embryo (𝒙𝑒) are relevant in or-
der to predict the probability of such embryo implanting in the uterus.
According to the provided data, an embryo’s viability is assumed to be
related to its morphological traits. Here, the distribution

𝑝(𝑤𝑒 ∣ 𝒙𝑒; 𝛼) (1)

measures the probability of the embryo to implant in a ‘‘perfect cycle’’
(fully fertile patient), where 𝒙𝑒 represents the descriptive characteris-
tics of embryos. We will model this distribution with a probabilistic
classifier.

The viability of the cycle. Another common assumption is that the
individual patient features and the undergone stimulation treatment
exert an influence on the likelihood of her fertility potential. This is
how we define cycle viability. The distribution

𝑝(𝑟𝑐 ∣ 𝒗𝑐 ; 𝛽) (2)

assesses how the descriptive characteristics of the cycle, 𝒗𝑐 , influ-
ence fertility potential. We will model this distribution through a
probabilistic classifier too.

These two components form the classical embryo–uterine modeling
approach. It implies that we assume that the fertility potential of the
patient is statistically independent from the embryo characteristics.
This is a practical assumption, but highly unlikely when the patient’s
own oocytes are used, as was the case in this study.

Other unknown factors. There is consensus in the ART scientific
literature that there are still unknown factors that (partially) determine
the outcome of an ART treatment, like those provoking recurrent
implantation failure [38]. We model this uncertainty by means of a
Bernoulli distribution, with parameter 𝜃1 ∈ [0, 1]. The implantation of
a viable embryo in a fertile cycle follows a distribution

𝑖𝑐𝑒 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃𝑟𝑐 ⋅𝑤𝑒⋅𝑠𝑐𝑒 ) (3)

where 𝑠𝑐𝑒 is 1 if embryo 𝑒 was transferred in cycle 𝑐, and 0 otherwise.
𝜃1 is the probability that in a cycle that has been properly configured
(𝑟𝑐 = 1), a viable embryo (𝑤𝑒 = 1), selected for transfer (𝑠𝑐𝑒 = 1),
gets implanted. Ideally, there would be no such unknown factor and
𝜃1 = 1. For modeling convenience, we use a second Bernoulli with fixed
parameter 𝜃0 = 0, which tells that there will not be implantation if
any r.v. 𝑤𝑒, 𝑟𝑐 or 𝑠𝑐𝑒 is 0 (no viable embryo or cycle, or embryo not
transferred).

Finally, the number of embryos implanted in cycle 𝑐, i.e., the
outcome 𝑦𝑐 , is deterministically assessed as:

𝑦𝑐 =
∑

𝑒∈𝐸𝑐
𝑖𝑐𝑒 . (4)

Note that depending on the practice of the specific ART unit, more
than one transference could be carried out for the same cycle. Following
the practice of our Unit of reference (and as reflected in the data),
here we only consider the case where a single transfer of one or more
embryos is carried out in each cycle.

The graphical structure of our model is shown in Fig. 3. The
𝑐
observed variables are shadowed (𝒙𝑒, 𝒗𝑐 , 𝑠𝑒 , 𝑦𝑐), whereas white nodes
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Fig. 2. Distributions of embryos in the database regarding the ASEBIR scoring system [1].
Fig. 3. Graphical description of the model. Shadowed nodes represent observed
variables. Double lines denote deterministic variables.

Table 1
Number of cycles and embryos, separated by use (transferred or not) and success
(pregnancy or not, embryo implanted or not).

Cycles Embryos

Unsuccessful 412 839 All failed to implant
Successful 135 307 Some failed to implant
Successful 57 108 All implanted

Total no. 604 1254 Transferred (Subtotal no.)
1871 Not transferred

3125 Total no.

(𝑤𝑒, 𝑟𝑐 , 𝑖𝑐𝑒) represent latent variables, the value of which need to be
inferred. In certain cases, the values of some of these latter r.v. can
be known. Finally, 𝛼, 𝛽, 𝜃 are the hyper-parameters of the cycles’ and
embryo’s classifiers (Eqs. (1) and (2)) and of the Bernoulli distribution
(Eq. (3)). All the notation is summarized in Table 2.

The joint probability distribution of the model is

𝑝(𝒙,𝒘, 𝒗, 𝒓, 𝒔, 𝒊, 𝒚; 𝛼, 𝛽, 𝜃)
= 𝑝(𝒘|𝒙; 𝛼)𝑝(𝒙)𝑝(𝒓|𝒗; 𝛽)𝑝(𝒗)𝑝(𝒔)𝑝(𝒚|𝒊)𝑝(𝒊|𝒘, 𝒓, 𝒔; 𝜃).

To obtain the likelihood expression of the observed data we need to
marginalize out the latent unobserved variables, 𝒊, 𝒓,𝒘:

𝑝(𝒙, 𝒗, 𝒔, 𝒚; 𝛼, 𝛽, 𝜃) =
∑

𝒊,𝒓,𝒘
𝑝(𝒙,𝒘, 𝒗, 𝒓, 𝒔, 𝒊, 𝒚; 𝛼, 𝛽, 𝜃)

=
∑

𝒘

∑

𝒓

∑

𝒊
𝑝(𝒚|𝒊)𝑝(𝒊|𝒘, 𝒓, 𝒔; 𝜃)𝑝(𝒘|𝒙; 𝛼)

× 𝑝(𝒙)𝑝(𝒓|𝒗; 𝛽)𝑝(𝒗)𝑝(𝒔).
4

Remember that the relationship between 𝒊𝑐 and 𝑦𝑐 is deterministic
(see Eq. (4)). If we look at 𝒊𝑐 as a binary vector, given the observed real
value 𝑦𝑐 , there are only a few valid vectors 𝒊𝑐 . Let 𝒊𝑐 be a valid vector
that assigns value 𝑖𝑐𝑒 = 0 to all non-transferred embryos (𝑠𝑐𝑒 = 0) and
assigns value 𝑖𝑐𝑒 = 1 exactly 𝑦𝑐 times among transferred embryos so that
Eq. (4) is satisfied. E.g., consider a single cycle with 5 embryos, where
the second and third ones were transferred (𝑠𝑐2 = 𝑠𝑐3 = 1) but only one of
them was implanted (𝑦𝑐 = 1): there are only 2 valid vectors, [0, 𝟏, 𝟎, 0, 0]
and [0, 𝟎, 𝟏, 0, 0]. Let 𝒔,𝒚 be the set of valid vectors that assign value to
all the embryos (implanted or not) according to the known outcomes
{𝑦𝑐}𝑁𝑐=1 and the selections {𝒔𝑐∶}

𝑁
𝑐=1, and 𝒔𝑐∶ ,𝑦𝑐 the same for a specific

cycle 𝑐. By the deterministic relationship, for any vector 𝒊 ∉ 𝒔𝑐∶ ,𝑦𝑐
then 𝑝(𝑦𝑐 ∣ 𝒊) = 0. We can introduce this deterministic relation in the
marginalization step by summing only over the valid vectors 𝒊 ∈ 𝒔,𝒚 :

𝑝(𝒙, 𝒗, 𝒔, 𝒚; 𝛼, 𝛽, 𝜃) =
∑

𝒘

∑

𝒓

∑

𝒊∈𝒔,𝒚

𝑝(𝒊|𝒘, 𝒓, 𝒔; 𝜃)𝑝(𝒘|𝒙; 𝛼)

× 𝑝(𝒙)𝑝(𝒓|𝒗; 𝛽)𝑝(𝒗)𝑝(𝒔)

= 𝑝(𝒙)𝑝(𝒗)𝑝(𝒔)
∑

𝒓
𝑝(𝒓|𝒗; 𝛽)

×
∑

𝒊∈𝒔,𝒚

∑

𝒘
𝑝(𝒊|𝒘, 𝒓, 𝒔; 𝜃)𝑝(𝒘|𝒙; 𝛼).

By assuming independence among instances given the parameters,
we add more structure:

𝑝(𝒚,𝒙, 𝒗, 𝒔; 𝛼, 𝛽, 𝜃) =
𝑁
∏

𝑐=1
𝑝(𝑣𝑐 )

∑

𝑟𝑐

𝑝(𝑟𝑐 |𝑣𝑐 ; 𝛽)
∑

𝒊𝑐∈𝒔𝑐∶ ,𝑦𝑐

∏

𝑒∈𝐸𝑐
𝑝(𝑥𝑐𝑒)𝑝(𝑠

𝑐
𝑒)

×
∑

𝑤𝑐
𝑒

𝑝(𝑖𝑐𝑒|𝑤
𝑐
𝑒 , 𝑟𝑐 , 𝑠

𝑐
𝑒; 𝜃)𝑝(𝑤

𝑐
𝑒|𝑥

𝑐
𝑒; 𝛼) (5)

as well as considering Eqs. (1)–(3).
We are interested in finding the set of parameters ⟨𝛼, 𝛽, 𝜃⟩ that

maximize the likelihood:

𝛼∗, 𝛽∗, 𝜃∗ = arg max
𝛼,𝛽,𝜃

𝑝(𝒚,𝒙, 𝒗, 𝒔; 𝛼, 𝛽, 𝜃).

3.3. Machine learning method

In the presented model, there are latent variables (𝒓, 𝒘 and 𝒊) whose
value is (generally) unknown, which makes the learning of the model
parameters ⟨𝛼, 𝛽, 𝜃⟩ difficult. We use an Expectation–Maximization
(EM) algorithm [39] to overcome this issue. The EM is an iterative
strategy to find (local) maximum likelihood estimators of the model
parameters in the presence of missing data or latent variables. First,
the expected value of the missing data is obtained. Then, the MLE
parameters are obtained for that completed data.

Formally, let 𝑋 be the observed variables in the model and 𝑍

the unobserved latent ones. The complete log-likelihood is 𝑙(𝜂;𝑋,𝑍),
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Table 2
Notation employed in this paper.

Symbol Description

𝑐 Index for cycle
𝑒 Index for embryo
𝐶 Set of cycles
𝑁 Number of cycles
𝐸𝑐 Set of embryos associated to cycle 𝑐
𝑆𝑐 Set of embryos selected for transfer in cycle 𝑐
𝑠𝑐𝑒 Indicates if an embryo 𝑒 is selected to transfer in cycle 𝑐
𝒙𝑒 Characteristics of embryo 𝑒
𝒗𝑐 Characteristics of cycle 𝑐
𝑤𝑒 Boolean random variable that represents whether embryo 𝑒 is willing to implant
𝑟𝑐 Boolean random variable that represents the fertility potential of patient/cycle 𝑐
𝑖𝑐𝑒 Boolean random variable that represents whether embryo 𝑒 is willing to implant in cycle 𝑐
𝑦𝑐 Number of embryos implanted in cycle 𝑐
1
1
1

where 𝜂 are the parameters which we want to estimate maximizing the
ikelihood.

The expectation (E) step consists in computing the conditional
xpected value of the log-likelihood given the observed variables and
he current fit of the parameters 𝜂(𝑡):

𝑄(𝜂; 𝜂(𝑡)) =E𝑍∼𝑝(𝑧|𝑋;𝜂(𝑡))[𝑙(𝜂;𝑋,𝑍)]

=∫ 𝑙(𝜂;𝑋, 𝑧)𝑝(𝑧|𝑋; 𝜂(𝑡))𝑑𝑧

where 𝑝(𝑧|𝑋; 𝜂(𝑡)) is the conditional probability distribution of the
unobserved variables 𝑍 conditioned to the observed variables 𝑋 and
the current fit of the parameters 𝜂(𝑡).

The maximization (M) step consists in finding the parameters 𝜂 that
maximize the conditional expectation of the E-step,

𝜂(𝑡+1) ∶= argmax
𝜂

𝑄(𝜂; 𝜂(𝑡)).

In our case, the latent variables are 𝑍 = (𝒓,𝒘, 𝒊), the observed ones
are 𝑋 = (𝒚,𝒙, 𝒗, 𝒔), and the parameters 𝜂 = ⟨𝛼, 𝛽, 𝜃⟩. From Eq. (5), the
expected value of 𝑟𝑐 can be probabilistically calculated in the E-step as,

𝑞(𝑟𝑐 = 𝑟) ∝
(

∑

𝒊𝑐∈𝒔𝑐∶ ,𝑦𝑐

∏

𝑒

∑

𝑤𝑐
𝑒

𝑝(𝑖𝑐𝑒|𝑤
𝑐
𝑒 , 𝑟𝑐 = 𝑟, 𝑠𝑐𝑒; 𝜃)𝑝(𝑤

𝑐
𝑒|𝒙

𝑐
𝑒; 𝛼)

)

𝑝(𝑟𝑐 = 𝑟|𝒗𝑐 ; 𝛽)

(6)

for 𝑟 ∈ {0, 1}, where ∑

𝑟∈{0,1} 𝑞(𝑟𝑐 = 𝑟) = 1.
Similarly, for each embryo 𝑒 in cycle 𝑐, the expected value of the

variable indicating embryo viability, 𝑤𝑐
𝑒, is calculated as,

𝑞(𝑤𝑐
𝑒 = 𝑤) ∝

∑

𝑟𝑐

(

∑

𝒊𝑐∈𝒔𝑐∶ ,𝑦𝑐

𝑝(𝑖𝑐𝑒|𝑤
𝑐
𝑒 = 𝑤, 𝑟𝑐 , 𝑠

𝑐
𝑒; 𝜃)𝑝(𝑤

𝑐
𝑒 = 𝑤|𝒙𝑐𝑒; 𝛼)

×
∏

𝑒′≠𝑒

∑

𝑤𝑐
𝑒′

𝑝(𝑖𝑐𝑒′ |𝑤
𝑐
𝑒′ , 𝑟𝑐 , 𝑠

𝑐
𝑒′ ; 𝜃)𝑝(𝑤

𝑐
𝑒′ |𝒙

𝑐
𝑒′ ; 𝛼)

)

× 𝑝(𝑟𝑐 |𝒗𝑐 ; 𝛽) (7)

for 𝑤 ∈ {0, 1}, where ∑

𝑤∈{0,1} 𝑞(𝑤𝑐
𝑒 = 𝑤) = 1.

Finally, the expected value associated with each possible implanta-
tion vector, 𝒊, is calculated as,

𝑞(𝒊𝑐 = 𝒊) ∝
∑

𝑟𝑐

(

∏

𝑒

∑

𝑤𝑐
𝑒

𝑝(𝑖𝑒|𝑤𝑐
𝑒 , 𝑟𝑐 , 𝑠

𝑐
𝑒; 𝜃)𝑝(𝑤

𝑐
𝑒|𝒙

𝑐
𝑒; 𝛼)

)

𝑝(𝑟𝑐 |𝒗𝑐 ; 𝛽) (8)

for all 𝒊 ∈ 𝒔𝑐∶ ,𝑦𝑐 , where ∑

𝒊∈𝒔𝑐∶ ,𝑦𝑐
𝑞(𝒊𝑐 = 𝒊) = 1.

Then, our specific M-step can be expressed as finding the set of
parameters ⟨𝛼, 𝛽, 𝜃⟩ as,

argmax𝛼,𝛽,𝜃 E(𝒘,𝒓,𝒊)∼𝑞 log 𝑝(𝒓,𝒘, 𝒊, 𝒚|𝒙, 𝒗, 𝒔; 𝛼, 𝛽, 𝜃)

where 𝑞 denotes the expected values described by Eqs. (6) to (8). The
conditional expectation to maximize has the following form:
∑

𝑐

∑

𝑐
𝑞(𝒊𝑐 )

[

∑

𝑟
𝑞(𝑟𝑐 )

[

log 𝑝(𝑟𝑐 |𝒗𝑐 ; 𝛽)
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𝒊 ∈𝒔𝑐∶ ,𝑦𝑐 𝑐
Algorithm 1 Our EM algorithm
1: procedure EM
2: 𝑡 ← 0
3: 𝛼(𝑡), 𝛽(𝑡), 𝜃(𝑡) ← initialization()
4: while 𝑞 not converged do
5: 𝑞 ← 𝑝(𝑖, 𝑤, 𝑟|𝑦, 𝑥, 𝑣; 𝛼(𝑡), 𝛽(𝑡), 𝜃(𝑡)) ⊳ Update 𝑞: E-step

(Eqs. (6), (7), (8))
6: 𝛼(𝑡+1) ← argmax𝛼 E𝒘∼𝑞 log 𝑝(𝒘|𝒙; 𝛼(𝑡)) ⊳ Update 𝛼: M1-step
7: 𝛽(𝑡+1) ← argmax𝛽 E𝒓∼𝑞 log 𝑝(𝒓|𝒗; 𝛽(𝑡)) ⊳ Update 𝛽: M2-step
8: 𝜃(𝑡+1) ← argmax𝜃 E𝒊∼𝑞 log 𝑝(𝑦|...; 𝜃(𝑡)) ⊳ Update 𝜃: M3-step

(Eq. (9))
9: 𝑡 ← 𝑡 + 1
0: end while
1: return ⟨𝛼, 𝛽, 𝜃⟩
2: end procedure

+
∑

𝑒

∑

𝑤𝑐
𝑒

𝑞(𝑤𝑐
𝑒)
[

log 𝑝(𝑖𝑐𝑒|𝑤
𝑐
𝑒 , 𝑟𝑐 , 𝑠

𝑐
𝑒; 𝜃) + log 𝑝(𝑤𝑐

𝑒|𝒙
𝑐
𝑒; 𝛼)

]

]

]

.

The 𝜃1 value that maximizes this expression, i.e., the maximum
likelihood estimator of 𝜃1, is:

�̂�1 =

∑

𝑐
∑

𝒊𝑐∈𝒔𝑐∶ ,𝑦𝑐

∑

𝑒 𝑞(𝒊𝑐
′ )𝑞(𝑟𝑐 = 1)𝑞(𝑤𝑐

𝑒 = 1)𝑖𝑐𝑒
∑

𝑐
∑

𝒊𝑐∈𝒔𝑐∶ ,𝑦𝑐

∑

𝑒 𝑞(𝒊𝑐
′ )𝑞(𝑟𝑐 = 1)𝑞(𝑤𝑐

𝑒 = 1)
(9)

which is the probability that a viable embryo selected for transfer in a
fertile cycle gets implanted. And it can be understood as our ability to
model the uncertainty of the problem: the higher this probability is, the
more portion of the uncertainty is modeled by the classifiers of embryos
and cycles, and thus the more explanatory the model can be for new
cycles. The full derivation of this expression is given in Appendix B.

As aforementioned, both Eqs. (1) and (2) are approximated by
means of probabilistic classifiers, and the model parameters 𝛼 and
𝛽 represent the hyperparameters of the respective classifier. In this
sense, the values of 𝛼 and 𝛽 that maximize the previous conditional
expectation are obtained by learning a new fit for the classifiers using
Eqs. (6) and (7), respectively, to weigh the instances of the training set.

To sum up, after initialization, our EM algorithm repeats iteratively
these two steps:

(i) Expectation: The expectation of the latent variables 𝑟𝑐 , 𝑤𝑐
𝑒 and 𝑖𝑐𝑒

is computed with Eqs. (6) to (8), using the current fit of the model
⟨𝛼(𝑡), 𝛽(𝑡), 𝜃(𝑡)⟩. Note that there exist cases where we do know the value
of the latent variables, 𝑟𝑐 , 𝑤𝑐

𝑒, 𝑖𝑐𝑒. When successful cycles ended up in a
pregnancy (𝑦𝑐 ≥ 1), we do know that the cycle was viable (𝑟𝑐 = 1),
so we can safely use 𝑞(𝑟𝑐 = 1) = 1 and 𝑞(𝑟𝑐 = 0) = 0. Moreover,
when the number of implanted embryos is the same as the number of
transferred embryos (𝑦𝑐 = |𝑆𝑐

|, success rate = 1), we do know that
all the transferred embryos were viable (𝑤𝑐

𝑒 = 1), so we can safely use
𝑞(𝑤𝑐 = 1) = 1 and 𝑞(𝑤𝑐 = 0) = 0, for all 𝑒 ∈ 𝑆𝑐 . In this case, there also
𝑒 𝑒
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exists a single valid implantation vector 𝒊 ∈ 𝒔𝑐∶ ,𝑦𝑐 (|𝒔𝑐∶ ,𝑦𝑐 | = 1), and
hus 𝑞(𝒊𝑐 = 𝒊) = 1.

ii) Maximization: A new fit of the parameters of the model
𝛼(𝑡+1), 𝛽(𝑡+1), 𝜃(𝑡+1)⟩ is obtained. The probabilistic classifiers for Eq. (1)
𝛼) and (2) (𝛽) are learned with the weighted samples from the previous
-step. Similarly, the MLE for 𝜃1 is obtained with Eq. (9).

The method iterates these two steps until the stopping condition is
et. The pseudocode of the resulting method is shown in Algorithm 1.

.3.1. Set up
To initialize Algorithm 1, we assign initial probabilities directly to

he sample weights (𝑞𝑟 for cycles, 𝑞𝑤 for embryos, and 𝑞𝑖 for implanta-
ion vectors) and obtain a first fit of the model with them (as if it were
n M-step). All the weights are randomly generated and normalized
o sum up to 1. The only exceptions are the special cases previously
iscussed where we actually know the value of these latent variables,
or which no random initialization is required.

We have considered a stop condition that is actually two-fold:
e test convergence by comparing the sample weights assigned in

onsecutive iterations, and we fix a maximum number of iterations
100) that the algorithm can run.

As known, the EM strategy is only guaranteed to reach local maxima
r saddle points of the likelihood. We run our algorithm multiple (10)
imes with different initializations to try to reach other local maxima
nd keep only the best one, mitigating thus the local-maximum problem
f EM algorithms.

. Empirical validation

In this section, we aim to perform a robust validation of the pro-
osed model. To do so, we use different probabilistic classifiers for our
mbryo viability (Eq. (1)) and cycle fertility potential (Eq. (2)) modules,
nd compare them to others learned with up to 3 different baseline
pproaches. In particular, we carry out three sets of experiments:

• Experiment #1: we compare the results of our model against the
classifiers obtained with a series of baseline approaches to test the
behavior of our proposal.

• Experiment #2: we estimate the relevance of the information of
the cycle in the embryo implantation predictive task by including
the cycle’s characteristics as descriptive variables for the baseline
approaches too.

• Experiment #3: we validate our model by comparing its results
to the ASEBIR protocol. Specifically, we compare the performance
of our model using or not this score as a feature.

The interpretation of the predictions that we can obtain from our
odel needs proper consideration. For instance, by using the whole
odel we obtain the probability of implantation of an embryo in a

ycle (it assumes independence between embryo and cycle), which is
alculated as:

(𝑖𝑐𝑒 = 1|𝑥𝑐𝑒 , 𝑠
𝑐
𝑒 , 𝑣𝑐 ; 𝛼, 𝛽, 𝜃) = 𝑝(𝑖𝑐𝑒 = 1|𝑤𝑐

𝑒 = 1, 𝑠𝑐𝑒 , 𝑟𝑐 = 1; 𝜃)

× 𝑝(𝑤𝑐
𝑒 = 1|𝑥𝑐𝑒; 𝛼)𝑝(𝑟𝑐 = 1|𝑣𝑐 ; 𝛽) (10)

where 𝑝(𝑖𝑐𝑒 = 1|𝑤𝑐
𝑒 = 1, 𝑠𝑐𝑒 , 𝑟𝑐 = 1; 𝜃) = 𝜃1 ⋅ 𝑠𝑐𝑒. Remember that if 𝑠𝑐𝑒 = 0,

𝑝(𝑖𝑐𝑒 = 1|𝑤𝑐
𝑒 , 𝑠

𝑐
𝑒 = 0, 𝑟𝑐 ; 𝜃) = 0. This is the reason why the evaluation

will be only performed with embryos that were transferred (𝑠𝑐𝑒 = 1).
The other two terms (Eqs. (1) and (2)) represent the probabilistic
classifiers of embryo and cycle viability, respectively. In fact, we could
unplug these classifiers from the learned model and use them to predict
embryo/cycle viability. Note that in real practice, in embryo-selection
time, the cycle’s stimulation is already finished; thus, if we fix the cycle,
the ranking of embryos given by Eqs. (1) and (10) is the same.

As aforementioned, we approximate Eqs. (1) and (2) by means of
6

probabilistic classifiers. By the no free lunch theorem, we know that
different classifiers may perform differently depending on the context.
In order to make a fair comparison, in these experiments we have tested
three types of classifiers of different nature: Logistic Regression (LR),
Random Forest (RF) and Gradient Boosting (GBOOST) classifiers. We
use the default parametrization of these techniques, as implemented
by Python’s Scikit-learn library [40].

4.1. Baseline approaches

The two main characteristics of our model are the way it combines
the information from the cycle and the embryos, as well as its ability
to learn using all the available examples independently of the amount
of class information that they carry. The baselines that we use in
this study for comparison follow simplistic approaches to these two
aspects. All of them use the same types of probabilistic classifiers pre-
viously described, for the sake of fair comparison. Note that the models
learned with these baseline methods directly predict implantation. This
is slightly different from the embryo module of our probabilistic model
(Eq. (1)), which actually predicts whether an embryo is willing to
implant (viability).

Baseline approaches use, to learn the classifiers, a transformed
dataset using different assumptions to assign a label to examples that
are originally (partially) unlabeled (Table 1 summarizes the number of
embryos in our database with (un)known fate). We design the baseline
approaches in an incremental way regarding these assumptions on the
partially labeled embryos, as summarized in Table 3.

Our pessimistic approach assumes that all the embryos with un-
known fate are negative examples (unviable embryos). This is the
simplest decision as it leads to a completely labeled dataset that can be
directly learned using standard supervised learning techniques. How-
ever, it holds a heavy assumption: all non-transferred embryos are not
viable for implantation (questionable), and all the embryos in partially
implanted cycles are not viable for implantation (wrong: some of them
are, but we do not know their identity). This approach brings a severe
class imbalance problem, with only a tiny portion of embryos labeled
as positive.

With the objective of relaxing this heavy assumption, our second
baseline approach does not assign any label to embryos of unknown fate
(see Table 3). This decision leads to a semi-supervised learning setting.
We use a standard EM algorithm [41], which we call simple EM, to learn
from this type of data. Thus, we allow the learning technique to unveil
the class label of the embryos of unknown fate, alleviating at the same
time the class imbalance problem.

This previous approach still dismisses the class information of em-
bryos in partially implanted cycles: the label proportions or counts
of implanted embryos per cycle. Our third baseline approach lets the
model be learned from these counts of implanted embryos per cycle
(see Table 3). This decision leads to a learning from label proportions
setting. We use the EM algorithm proposed by Hernández-González
et al. [8], which we call LP-EM, to learn from this type of data. One can
arguably consider that this approach uses all the available information
of supervision.

4.2. Evaluation

As a weakly supervised problem [42], a fair evaluation of the mod-
els is not trivial and needs to be properly addressed. Fully unlabeled
examples (embryos non-transferred) might be used for learning but not
for model performance assessment. Fortunately, partially labeled exam-
ples (transferred embryos in cycles with partial implantation), where
only the proportion of implanted embryos is known, can carefully be
used for evaluation.

Performance is assessed in terms of different metrics, which are
applied in each of the experiments only if all the required information

is available.
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Table 3
Description of the labeling used by the baselines. In each method, embryos of different (un)known fates receive these labels:
negative (0), positive (1), unknown (?), or label-proportions (lp).

Method Failed Partial implantation Implanted Non-transferred

Pessimistic 0 0 1 0
Simple EM 0 ? 1 ?
LP-EM 0 lp 1 ?
Fig. 4. Workflow of our study.
To test the ability to predict embryo implantation, we use the area
under the ROC curve (AUC–ROC) [43,44], which plots the true positive
rate against the false positive rate as the discrimination threshold is
varied. It does not require fixing a threshold to estimate the predictive
performance of a probabilistic classifier. It represents the probability
that the classifier will assign to a positive instance higher probability
than to a negative one. The higher the score, the better the classifier
(a random classifier would obtain a value of 0.5). Note that AUC–ROC
could not be appropriate when the dataset is highly unbalanced, as it
produces overly optimistic measurements [45,46]. Many alternatives
have been proposed to address this limitation, including partial AUC–
ROC [46] (which focuses on the most relevant parts of the ROC curves)
and the area under the Precision–Recall curve [45] (which focuses
exclusively on the minority and relevant class). In our study, this issue
is expected to impact mainly one of our baselines, the pessimistic
approach, the results of which should be interpreted accordingly. As
all the labels of the individual embryos are needed to calculate this
metric, only those belonging to failed or completely-implanted cycles
are considered.

To account also for the embryos in cycles with partial implantation,
we use the negative log-likelihood. It measures the confidence of the
model in predicting each of the labels. Formally, we calculate the mean
probability of the real number of implanted embryos per cycle given the
current model:

(𝒀 ; 𝛼, 𝛽, 𝜃) = − 1
𝑁

𝑁
∑

𝑐=1

|𝑆𝑐
|

∑

𝑗=0
I[𝑦𝑐 = 𝑗] log 𝑝(𝑦𝑐 ) (11)

where |𝑆𝑐
| is the number of transferred embryos in cycle 𝑐, and 𝑝(𝑦𝑐 ),

the probability of cycle 𝑐 having 𝑦 implanted embryos over all valid
7

𝑐

implantation vectors 𝒊𝑐 , is,

𝑝(𝑦𝑐 ) =
∑

𝒊𝑐∈𝒔𝑐∶ ,𝑦𝑐

∏

𝑒

[

𝑖𝑐𝑒𝑝(𝑖
𝑐
𝑒 = 1) + (1 − 𝑖𝑐𝑒)𝑝(𝑖

𝑐
𝑒 = 0)

]

(12)

where 𝑝(𝑖𝑐𝑒) is given by Eq. (10).
For model performance assessment, we use 10 × 5-fold cross-

validation. All the results show the average value. Fig. 4 displays the
workflow of this study.

4.3. Experiment #1: Performance comparison

In this first snapshot of the experiments, we show a comparison
between our model and the different baseline approaches when used
for embryo implantation prediction, for different base probabilistic
classifiers. Table 4 shows the results in terms of different metrics.

Our model obtains the best performance in terms of the AUC–
ROC metric (consistently for all the classifier types). From the detailed
inspection of the densities produced by these approaches,1 we can
appreciate signs of learning, though they might be limited, for clas-
sifiers learned with all the approaches (e.g., the high-quality embryos
receive a higher probability of implantation). However, the results of
the baselines in terms of AUC–ROC are rather limited. As mentioned
previously, AUC–ROC is calculated using only embryos with known
fate. Thus, it is reasonable to think that it favors those approaches
which can detect if the cycle is actually a critical factor. In this set of

1 Figures available in the supplementary material at https:
//jhernandezgonzalez.github.io/supp_arts_pgm.html

https://jhernandezgonzalez.github.io/supp_arts_pgm.html
https://jhernandezgonzalez.github.io/supp_arts_pgm.html
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Table 4
Results in terms of AUC–ROC and log-likelihood of classifiers of different type learned
with our model and the 3 baseline approaches.

Method Base classifier AUC–ROC Log-likelihood

Pessimistic

LR

0.58 ± 0.06 0.63 ± 0.18
Simple EM 0.56 ± 0.06 0.51 ± 0.11
LP-EM 0.56 ± 0.06 0.47 ± 0.05
Our model 0.62 ± 0.08 0.52 ± 0.10

Pessimistic

RF

0.61 ± 0.06 0.62 ± 0.18
Simple EM 0.55 ± 0.07 0.46 ± 0.11
LP-EM 0.58 ± 0.08 𝟎.𝟒𝟐 ± 𝟎.𝟎𝟔
Our model 0.71 ± 0.05 𝟎.𝟒𝟐 ± 𝟎.𝟎𝟕

Pessimistic

GBOOST

0.62 ± 0.05 0.67 ± 0.26
Simple EM 0.61 ± 0.08 0.51 ± 0.12
LP-EM 0.60 ± 0.08 0.44 ± 0.05
Our model 𝟎.𝟕𝟑 ± 𝟎.𝟎𝟕 0.43 ± 0.06

Table 5
Results in terms of AUC–ROC and log-likelihood of classifiers of different type learned
with our model and the pessimistic baseline (considering or not the cycle features).

Method Base classifier AUC–ROC Log-likelihood

Pessimistic
LR

0.58 ± 0.06 0.63 ± 0.18
Pessimistic with cycle feat. 0.63 ± 0.07 0.70 ± 0.25
Our model 0.62 ± 0.08 0.52 ± 0.10

Pessimistic
RF

0.61 ± 0.06 0.62 ± 0.18
Pessimistic with cycle feat. 𝟎.𝟕𝟒 ± 𝟎.𝟎𝟔 0.58 ± 0.15
Our model 0.71 ± 0.05 𝟎.𝟒𝟐 ± 𝟎.𝟎𝟕

Pessimistic
GBOOST

0.62 ± 0.05 0.67 ± 0.26
Pessimistic with cycle feat. 0.72 ± 0.05 0.64 ± 0.12
Our model 0.73 ± 0.07 0.43 ± 0.06

experiments, the only approach that uses the cycle information is our
complete model. This could provide an explanation for the performance
gap observed in the results, and it is precisely the idea that we test in
the second set of experiments.

In terms of negative log-likelihood, which measures the confidence
of the model about its predictions and allows us to use also the partially
implanted cycles for evaluation, the pessimistic approach, which deals
with a highly unbalanced dataset due to its unrealistic but simplifying
assumption, shows the worst results. The EM-based approaches perform
better: they use partially labeled cycles in model learning without any
hard assumptions. These approaches, mainly the one that considers also
label proportions, seem promising as their performance reaches that of
our model: they match the best global result (with RF classifiers) of our
model and even outperform it when learning LR classifiers.

4.4. Experiment #2: cycle characteristics for embryo implantation predic-
tion

In this second snapshot of the experiments, we pay attention to
a different dimension of the problem: the importance of the features
describing the cycle configuration for the predictive task of embryo
implantation. Our model includes them, whereas the baselines do not
(as configured so far). Table 5 shows the results in terms of different
metrics for our model and the pessimistic approach (already shown
in the previous section), together with the results of the pessimistic
approach when the training dataset is enlarged with the cycle features.

The results in terms of log-likelihood are not conclusive: in some
cases, the inclusion of cycle features improves the performance of the
models, but it is not consistent. However, we can observe clearly a
relevant improvement in the results in terms of AUC–ROC, competitive
with our complete model. Inspecting the density of the probability
values (available in the Supplementary Material), we observe that,
although true unviable embryos are clearly concentrated around prob-
ability equal to 0, the density for the truly implanted embryos is clearly
shifted towards higher probability values. That is, in some cases where
8

the cycle is identified as viable, the models are more confident when
Table 6
Results in terms of AUC–ROC and log-likelihood of classifiers of different type learned
with our model (considering or not the ASEBIR score as a feature). The last column
shows the mean value learned for the 𝜃1 model parameter.

Model version Base classifier AUC–ROC Log-likelihood 𝜃1
With ASEBIR score LR 0.63 ± 0.08 0.51 ± 0.10 0.52 ± 0.01
Without ASEBIR score 0.62 ± 0.08 0.52 ± 0.10 0.51 ± 0.00

With ASEBIR score RF 𝟎.𝟕𝟏 ± 𝟎.𝟎𝟓 𝟎.𝟒𝟐 ± 𝟎.𝟎𝟕 0.48 ± 0.01
Without ASEBIR score 0.71 ± 0.05 𝟎.𝟒𝟐 ± 𝟎.𝟎𝟕 0.48 ± 0.01

With ASEBIR score GBOOST 𝟎.𝟕𝟏 ± 𝟎.𝟎𝟒 0.45 ± 0.05 0.49 ± 0.00
Without ASEBIR score 𝟎.𝟕𝟑 ± 𝟎.𝟎𝟕 0.43 ± 0.06 0.49 ± 0.01

predicting implantation. This seems to explain the differences in the
AUC–ROC values of the pessimistic approach using or not the cycle
features.

To fully grasp the behavior of our model, we inspect the probability
densities for successful and failed cycles in Fig. 5, separately for embryo
viability prediction (Eq. (1), left column), cycle fertility-potential pre-
diction (Eq. (2), middle column), and cycle success prediction (whole
model, right column). An ideal model would completely separate the
densities in this last column. The results of all classifiers show a large
intersection between both densities, but the mode of the density for
successful cycles (pregnancy) is shifted to the right of the density of
the failed cycles. This points out a small signal: the model seems to
predict success, on average, more for actually implanted embryos than
for those that failed. According to the plots of the first column (embryo
viability), there is almost no difference between successful and failed
treatments. At a first glance, embryos seem to be irrelevant to predict
a pregnancy. Nevertheless, it is noteworthy that the embryos employed
in this part of the study are only the transferred ones, that is, a subset of
the set of embryos manually selected by the embryologists as the best
embryos for transference (see Fig. 2(a)). Most of the predictive power
of the model seems to come from the cycle descriptors. The middle
column of Fig. 5 shows that cycles that actually induced a pregnancy
receive a higher probability of cycle viability. One can conclude that
the protocol followed by the embryologists for embryo selection based
on the morphological features performs well, as our model seems not
to be able to further discriminate the embryos based on this data (the
same they used) alone.

4.5. Experiment #3: Our model and the effect of the ASEBIR score

So far, we have focused on analyzing the performance of our model
and the baselines regarding their ability to predict ART success. We
have also available a measure of embryo quality, calculated by the
embryologists according to the ASEBIR protocol [1], for each individual
embryo in our database. In this last set of experiments, we test whether
our model agrees with the ASEBIR quality score.

To study the agreement between our method and the ASEBIR score,
we compare two versions of our complete model: (i) a model trained
with an embryos dataset where the ASEBIR score is just another de-
scriptive feature (the ASEBIR score is an element in vector 𝒙), and
(ii) a model trained with a dataset from which the ASEBIR score has
been completely removed. In Table 6, we show the results obtained
with both models (with and without the ASEBIR score feature) for the
different probabilistic classifiers.

It is noteworthy that there are no significant differences between
both models. Including the ASEBIR score as a descriptive feature of
the embryos does not apparently boost the performance of the model.
Table 6 also shows the mean value estimated for the 𝜃1 parameter,
which measures the probability that a viable embryo actually gets
implanted in a viable cycle. It represents the third source of uncertainty
in our proposal, which measures the effect of any unknown factors.
Its value is usually close to 0.5. This means that in these cases, even
if the classifiers consider that both embryo and cycle are viable, the
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Fig. 5. Densities of the predicted probabilities of our model separated by outcome (pregnancy or not). Each row shows results with different types of base classifiers. Each column
shows densities of the predicted probabilities (i) for embryo viability (left column), (ii) for cycle viability (middle column), and (iii) for cycle success (whole model, right column).
model expects that only half of these pairs will succeed. The standard
deviation is low, implying a consistent estimation.

As before, we also inspect the probability densities to understand
the behavior of the model regarding the ASEBIR score in Fig. 6. Specif-
ically, we show the results with the version of the model that does
not use the ASEBIR score feature. Under the independence hypothesis,
the quality of an embryo should not be related to the probability
that a cycle is viable and, in general, we observe that the embryo
information has not leaked into the cycle classifier (the probability
density of cycle viability –middle column– is almost the same for all
the ASEBIR categories). Embryo quality has the highest impact on the
model ability to predict embryo viability (left column). All classifiers
(mainly LR and GBOOST) tend to separate the best (A) and worst (D)
quality embryos, but barely discriminate embryos of medium quality
(B and C). The model mostly agrees with the ASEBIR score in the
identification of the most and least promising embryos, even without
explicitly considering the ASEBIR score as a feature.

All in all, although our method seems not to directly consider the
ASEBIR score feature as relevant, it is important to bear in mind that
9

the rest of descriptive variables of the embryos, 𝒙, are exactly the ones
used in ASEBIR protocol [1]. Given the alignment between the ASEBIR
score and our model’s results observed in Fig. 6, the irrelevance of the
ASEBIR score feature is possibly due to the fact that our method finds
the relevant information among the rest of variables when this key
feature is not given. This interpretation would suggest that the ASEBIR
protocol already extracts the relevant information out of the available
morphological features, which is also captured by our model.

5. Conclusions

In this work, we address the problem of embryo selection for ARTs,
a complex real-world problem with partial observability issues. We pro-
pose a novel probabilistic graphical model, an extension of the standard
embryo–uterine model, which assumes independence between embryos
and cycles. It is, to the extent of our knowledge, the first one that takes
into account three different possible sources of uncertainty, accounting
for the unknown factors which cause that viable embryos, selected
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Fig. 6. Densities of the predicted probabilities of our model separated by ASEBIR quality category. The learned models do not use the ASEBIR quality score as a descriptive
feature. Each row shows results with different types of base classifiers. Each column shows densities of the predicted probabilities (i) for embryo viability (left column), (ii) for
cycle viability (middle column), and (iii) for cycle success (whole model, right column).
to transfer, fail to implant. We also derived its learning procedure,
which is able to learn from all the available information of supervision,
including partially labeled data. Using morphological data for each
individual embryo and characteristics of the cycle, the model is able
to predict embryo implantation.

We studied the effect of the ASEBIR embryo’s quality score within
our model. The models learned with and without the ASEBIR score
show a similar separation between categories. Our results suggest
that, once embryologists have made their selection, the model does
not provide more information about individual embryos. This might
indicate that the current protocol already extracts most of the value
out of the available morphological data. The performance of the model
was further validated against three baseline approaches. We show the
benefits of implementing an EM strategy for the learning process,
letting the learning technique unveil the label of embryos of unknown
fate. We observe that the cycle’s features play a key role to predict
implantation, especially when either all embryos in a cycle or none
were implanted. More importantly, we obtain an estimation of the
10
uncertainty originating from unknown, external factors, 𝜃1. The most
common result suggests that even when the embryo and cycle are
viable, there is only about a 50% probability of actually inducing
pregnancy. The novel result increases the modeling ability of the system
and may assist clinicians in decision-making in real ART practice.

Many issues are still open. The empirical validation of the method
by means of an enlarged experimental setting is still possible, as well
as using real data from more than a hospital/source. Moreover, the
learning techniques of the classifiers could be fine-tuned to optimize
their predictive power, as we only used default configurations. Another
direction would be to conceive new, maybe simpler, PGMs to test the
assumptions of our current model (independence between embryos
and cycles, awareness of a third source of error, etc.). Finally, the
most challenging idea for future work would be to try to validate,
in collaboration with embryologists, the value for 𝜃1 obtained by our
model and its relationship with the proportion of promising treatments
that failed to implant.
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Table A.7
Features collected for each ART cycle.

Variable Possible values Description

CycleId Numeric Identifier of the cycle
TEsteril Numeric Time since infertility was detected
Indicac endometriosi, iafailed, tubal, male, mix, unknown Indication of the cycle
Features related to female patient

Age Numeric Age
BMI Numeric Body mass index
PRegPrev No, Yes Has she ever got pregnant?
AboPrev No, Yes Has she ever aborted?
FSH Numeric Quantity of follicle-stimulating hormone
CiclesPrev Numeric Number of previously undergone cycles
AMH Numeric Quantity of anti-mullerian hormone
folAntral Numeric Number of antral follicles
E2 Numeric Quantity of estradiol
P4 Numeric Quantity of progesterone
lEnd Numeric Endometrial thickness
Features related to male patient

qaSemen A, N, O, OA, OAT Quality of the semen
REM Numeric Total progressive sperm recovery
Features related to stimulation

Protocol PC, PL Stimulation protocol
Stimul FSH+Lhrec, FSHrec, FSHrec+hMG, FSHur, FSHur+hMG, hMG Stimulation treatment
dEst Numeric Number of days of stimulation
unidFSH Numeric Units of FSH
unidLH Numeric Units of LH
Summary of embryos

nObtenEmb Numeric Number of embryos finally obtained
FertilRate Numeric nObtenEmb/Number of mature oocytes (MII state)
nTransfEmb Numeric Number of transferred embryos
SuccessRate Numeric Number of implanted embryos/nTransfEmb
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ppendix A. Feature descriptions

The features collected for each ART cycle are shown in Table A.7.
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The features collected for each embryo are shown in Table A.8.
Appendix B. Complete derivation of the model parameter estima-
tion

The update of the model parameters 𝛼, 𝛽, 𝜃 (M-step) can be ex-
pressed as

arg max
𝛼,𝛽,𝜃

E(𝒘,𝒓,𝒊)∼𝑞 log 𝑝(𝒚,𝒘, 𝒓, 𝒊|𝒙, 𝒗, 𝒔; 𝛼, 𝛽, 𝜃)

Let us imagine that we know the real value of all hidden variables.
Thus, the likelihood would be
∏

𝑐

∏

𝒊𝑐′

[

∏

𝑟′𝑐

[

𝑝(𝑟′𝑐 |𝑣𝑐 ; 𝛽)

×
∏

𝑒

∏

𝑤𝑐′
𝑒

[

𝑝(𝑖𝑐
′
𝑒 |𝑤

𝑐′
𝑒 , 𝑟

′
𝑐 , 𝑠

𝑐
𝑒; 𝜃)𝑝(𝑤

𝑐′
𝑒 |𝑥

𝑐
𝑒; 𝛼)

]I[𝑤𝑐′
𝑒 =𝑤𝑐

𝑒 ]
]

I[𝑟′𝑐=𝑟𝑐 ]

]I[𝒊𝑐′=𝒊𝑐 ]

and the log-likelihood:
∑

𝑐

∑

𝒊𝑐′
I[𝒊𝑐′ = 𝒊𝑐 ]

[

∑

𝑟′𝑐

I[𝑟′𝑐 = 𝑟𝑐 ]
[

log 𝑝(𝑟′𝑐 |𝑣𝑐 ; 𝛽)

+
∑

𝑒

∑
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]

]

But, if the real values are unknown, we need to resort to the
expected values as,
∑

𝑐

∑
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]

Note that the variables 𝑖 follow a Bernoulli distribution:

𝑖𝑐𝑒 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃𝑟𝑐 ⋅𝑤𝑐
𝑒 ⋅𝑠𝑐𝑒 )

where, in practice, 𝜃0 fixed to 𝜃0 = 0 (whenever 𝑟𝑐 , 𝑤𝑐
𝑒, or 𝑠𝑐𝑒 are zero:
no transfer, or bad cycle/embryo) and 𝜃1 determines the probability of
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Table A.8
Features collected for each individual oocyte/embryo.

Variable Possible values Description

CycleId Numeric Identifier of the cycle
EmbryoId Numeric Identifier of the embryo
Technique IVF, ICSI Fertilization technique
Features related to oocyte stage

Vac No, Few, Many Presence of vacuoles
Rel No, Yes Presence of smooth endoplasmic reticulum clusters
EPV Normal, Augmented Description of the perivitelline space
CP Normal, Abnormal Description of the first polar body
PN Numeric Tesarik and Greco’s pronuclear grade
Features at day 1 after fertilization

CP+1 Numeric Number of polar bodies
Z Z1, Z2, Z3, Z4 Scott’s pronuclear grade
Features at day 2 after fertilization

nCel+2 Numeric Number of cells
frag+2 Numeric Percentage of cell fragmentation
simet+2 No, Yes Symmetry of the cells
ZP+2 Normal, Abnormal Pellucid zone
vac+2 No, Few, Many Presence of vacuoles
multiNuc+2 No, Yes Presence of multi-nucleation in a cell
Quality+2 A, B, C, D ASEBIR quality grade

Transfer No, Yes Embryo selected for transference
implantation in perfect conditions. To find the parameter 𝜃1, we derive
he log-likelihood with respect to 𝜃1, and set it to 0:
𝜕
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and, thus, we reach the final formula for the update of 𝜃1:
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