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Abstract. This paper focuses of the group judgments obtained from a committee
of agents that use deliberation. The deliberative process is realized by an argu-
mentation framework calledAMAL. TheAMAL framework is completely based
on learning from examples: the argument preference relation, the argument gen-
eration policy, and the counterargument generation policy are case-based tech-
niques. For join deliberation, learning agents share their experience by forming
a committee to decide upon some joint decision. We experimentally show that
the deliberation in committees of agents improves the accuracy of group judg-
ments. We also show that a voting scheme based on assessing the confidence of
arguments improves the accuracy of group judgments than majority voting.

1 Introduction

Argumentation frameworks for multi-agent systems can be used for different purposes
like joint deliberation, persuasion, negotiation, and conflict resolution. In this paper
we focus on committees of agents that use deliberation to achieve more informed and
accurate group judgments. Since most work on multi-agents systems is oriented towards
bargain-based decision-making (like negotiation or persuasion) it is important to remark
the following difference: while bargain-based decision-making assumes that individual
preferences are “given” (i.e. preferences preexisting and/or fixed), deliberation-based
decision-making preferences are formed [15].

Argumentation-based joint deliberation involves discussion over the outcome of a
particular situation or the appropriate course of action for a particular situation. Learn-
ing agents are capable of learning from experience, in the sense that past examples
(situations and their outcomes) are used to predict the outcome for the situation at hand.
However, since individual agents experience may be limited, individual knowledge and
prediction accuracy is also limited. Thus, learning agents that are capable of arguing
their individual predictions with other agents may reach better prediction accuracy after
such an argumentation process.



Most existing argumentation frameworks for multi-agent systems are based on de-
ductive logic or some other deductive logic formalism specifically designed to support
argumentation, such as default logic [3]. Usually, an argument is seen as a logical state-
ment, while a counterargument is an argument offered in opposition to another argu-
ment [4, 14]; agents use a preference relation to resolve conflicting arguments. However,
logic-based argumentation frameworks assume agents with preexisting knowledge and
preference relations. This is similar to the difference in assumptions between bargain-
based decision-making and deliberation-based decision-making: our interest is in an
adaptive and dynamic approach for deliberation processes where agents are responsive
to external arguments or factual statements and, by integrating them, being able chang-
ing their minds.

In this paper, we focus on anArgumentation-based Multi-Agent Learning(AMAL)
framework where both knowledge and preference relation are learned from experience.
Thus, we consider a scenario with agents that (1) work in the same domain using a
shared ontology, (2) are capable of learning from examples, and (3) communicate using
an argumentative framework. Having learning capabilities allows agents effectively use
a specific form of counterargument, namely the use ofcounterexamples. Counterexam-
ples offer the possibility of agents learningduringthe argumentation process. Moreover,
learning agents allow techniques that use learnt experience to generate adequate argu-
ments and counterarguments. Specifically, we will need to address two issues: (1) how
to define a technique to generate arguments and counterarguments by generalizing from
examples, and (2) how to define a preference relation over two conflicting arguments
that have been generalized from examples.

This paper presents a case-based approach to address both issues. The agents use
case-based reasoning (CBR) [1] to learn from past cases (where a case is a situation
and its outcome) in order to predict the outcome of a new situation. We propose an
argumentation protocol inside theAMAL framework at supports agents in reaching a
joint prediction over a specific situation or problem — moreover, the reasoning needed
to support the argumentation process will also be based on cases. In particular, we
present twocase-based measures, one for generating the arguments and counterargu-
ments adequate to a particular situation and another for determining preference relation
among arguments. Finally, we experimentally show that the deliberation in commit-
tees of agents improves the accuracy of group judgments compared to voting without
deliberation. We also show that a voting scheme based on assessing the confidence of
arguments improves the accuracy of group judgments compared to majority voting.

The paper is structured as follows. Section 2 discusses the relation among commit-
tees, deliberation and social choice. Then Section 3 introduces our multi-agent CBR
framework and the notion of justified prediction. After that, Section 4 formally de-
fines our argumentation framework. Sections 5 and 6 present our case-based preference
relation and argument generation policies respectively. Later, Section 7 presents the
argumentation protocol in ourAMAL framework. After that, Section 8 presents an ex-
emplification of the argumentation framework. Finally, Section 9 presents an empirical
evaluation of our apparoach. The paper closes with related work and conclusions sec-
tions.
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2 Deliberation, Committees and Social Choice

While there is ample research work on multi-agent systems concerning teams (agents
associated in some joint action) and coalitions (agents that temporarily combine their
action for a specific purpose), this paper focuses on committees. A common defini-
tion of committee is “A group of people officially delegated (elected or appointed) to
perform a function, such as investigating, considering, reporting, or acting on a mat-
ter.” Considered as an institution, the committee is a widespread form of coordination,
deliberation, and joint decision-making. Philip Pettit inRepublicanismsays that “the
committee is the enzyme of the body politic” (page 239, [9]) because committees are
ubiquitous and because of the importance of their proper functioning to sustain a reli-
able working of the whole body politic.

In our approach, a committee of agents is a form of electronic institution designed to
performgroup judgments. The issue ofgroup judgments, following Cass Sunstein [16],
is answering the following question: How can groups obtain or use the information that
their members have? The author then studies three approaches: deliberation, statistical
means, and information markets. In our previous work on committees of agents [11] we
focused on statistical means, in the sense of using voting schemes as the aggregation
function to achieve group judgments. These approaches are based on what is called
theensemble effect[11] in Machine Learning and theCondorcet Jury Theorem[16] in
social choice theory — stating succinctly that the accuracy of the group judgement is
higher than that of the best individual member when some properties are satisfied by
the members and an adequate aggregation function (e.g. majority voting) is used.

Since human committees also employ deliberation, we focus on this paper on de-
veloping a framework for deliberative committees of agents. Figure 1 shows the main
aspects of a committee of agents: a way to select the members of the committee, the
selection of the issues to be addressed by that committee, a deliberation stage and (if a
consensual agreement is not achieved) a voting stage. Notice that if the committee ad-
dresses not a single issue but several related issues the stages of deliberation and voting
can be iterated. In this paper we focus on single-issue committees of agents and on the
deliberation and voting stages. We offer no contribution to the problems of selecting
relevant issues and member selection, focusing on the internal workings of a committee
proposing an argumentation-based approach to deliberation and new confidence-based
voting mechanism.



The argumentation-based framework assumes agents capable of learning — in par-
ticular in agents capable of reasoning with (and learning from) cases. This approach
gives an empirical grounding to several important issues of argumentation frameworks,
like generation and selection of arguments and counterarguments. In our approach, the
agents using case-based reasoning (CBR) will argue based on what they have learnt, and
they will accept or reject counterarguments posited by other agents based on what they
have learnt. Finally, since deliberation is only useful if agents are capable of changing
their mind as a result of their argumentation with others, learning offers a basis from
which individual changes in judgment are integrated with (and based on) the acquisition
of new information from communicating with other agents. The next section introduces
CBR agents and the requirements for sustaining an argumentation framework.

3 Multi-Agent CBR Systems

A Multi-Agent Case Based Reasoning System(MAC) M = {(A1, C1), ..., (An, Cn)}
is a multi-agent system composed ofA = {Ai, ..., An}, a set of CBR agents, where
each agentAi ∈ A possesses an individual case baseCi. Each individual agentAi in
aMAC is completely autonomous and each agentAi has access only to its individual
and private case baseCi. A case baseCi = {c1, ..., cm} is a collection of cases. Agents
in aMAC system are able to individually solve problems, but they can also collaborate
with other agents to solve problems.

In this framework, we will restrict ourselves to analytical tasks, i.e. tasks like classi-
fication, where the solution of a problem is achieved by selecting a solution class from
an enumerated set of solution classes. In the following we will note the set of all the
solution classes byS = {S1, ..., SK}. Therefore, acasec = 〈P, S〉 is a tuple contain-
ing a case descriptionP and a solution classS ∈ S. In the following, we will use the
termsproblemandcase descriptionindistinctly. Moreover, we will use the dot notation
to refer to elements inside a tuple; e.g., to refer to the solution class of a casec, we will
write c.S.

Therefore, we say a group of agents performjoint deliberation, when they collabo-
rate to find a joint solution by means of an argumentation process. However, in order to
do so, an agent has to be able tojustify its prediction to the other agents (i.e. generate
an argument for its predicted solution that can be examined and critiqued by the other
agents). The next section addresses this issue.

3.1 Justified Predictions

Both expert systems and CBR systems may have an explanation component [17] in
charge of justifying why the system has provided a specific answer to the user. The line
of reasoning of the system can then be examined by a human expert, thus increasing the
reliability of the system.

Most of the existing work on explanation generation focuses on generating expla-
nations to be provided to the user. However, in our approach we use explanations (or
justifications) as a tool for improving communication and coordination among agents.
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Fig. 2. An example of justification generation in a CBR system. Notice that, since the only rel-
evant feature to decide isTraffic_light (the only one used to retrieve cases), it is the only one
appearing in the justification.

We are interested in justifications since they can be used as arguments. For that pur-
pose, we will benefit from the ability of some machine learning methods to provide
justifications.

A justificationbuilt by a CBR method after determining that the solution of a partic-
ular problemP wasSk is a description that contains the relevant information from the
problemP that the CBR method has considered to predictSk as the solution ofP . In
particular, CBR methods work by retrieving similar cases to the problem at hand, and
then reusing their solutions for the current problem, expecting that since the problem
and the cases are similar, the solutions will also be similar. Thus, if a CBR method has
retrieved a set of casesC1, ..., Cn to solve a particular problemP the justification built
will contain the relevant information from the problemP that made the CBR system
retrieve that particular set of cases, i.e. it will contain the relevant information thatP
andC1, ..., Cn have in common.

For example, Figure 2 shows a justification build by a CBR system for a toy problem
(in the following sections we will show justifications for real problems). In the figure,
a problem has two attributes (Traffic_light, andCars_passing), the retrieval mechanism
of the CBR system notices that by considering only the attributeTraffic_light, it can
retrieve two cases that predict the same solution:wait. Thus, since only this attribute
has been used, it is the only one appearing in the justification. The values of the rest of
attributes are irrelevant, since whatever their value the solution class would have been
the same.

In general, the meaning of a justification is that all (or most of) the cases in the case
base of an agent that satisfy the justification (i.e. all the cases that aresubsumedby
the justification) belong to the predicted solution class. In the rest of the paper, we will
usev to denote the subsumption relation. In our work, we useLID [2], a CBR method
capable of building symbolic justifications such as the one exemplified in Figure 2.
When an agent provides a justification for a prediction, the agent generates ajustified
prediction:



Definition 1. A Justified Predictionis a tupleJ = 〈A,P, S, D〉 where agentA con-
sidersS the correct solution for problemP , and that prediction is justified a symbolic
descriptionD such thatJ.D v J.P .

Justifications can have many uses for CBR systems [8, 10]. In this paper, we are
going to use justifications as arguments, in order to allow learning agents to engage in
argumentation processes.

4 Arguments and Counterarguments

For our purposes anargumentα generated by an agentA is composed of a statement
S and some evidenceD supportingS as correct. In the remainder of this section we
will see how this general definition of argument can be instantiated in specific kind
of arguments that the agents can generate. In the context ofMAC systems, agents
argue about predictions for new problems and can provide two kinds of information: a)
specific cases〈P, S〉, and b) justified predictions:〈A,P, S,D〉. Using this information,
we can define three types of arguments: justified predictions, counterarguments, and
counterexamples.

A justified predictionα is generated by an agentAi to argue thatAi believes that
the correct solution for a given problemP is α.S, and the evidence provided is the
justificationα.D. In the example depicted in Figure 2, an agentAi may generate the
argumentα = 〈Ai, P, Wait, (Traffic_light = red)〉, meaning that the agentAi believes
that the correct solution forP is Wait because the attributeTraffic_lightequalsred.

A counterargumentβ is an argument offered in opposition to another argumentα.
In our framework, a counterargument consists of a justified prediction〈Aj , P, S′, D′〉
generated by an agentAj with the intention to rebut an argumentα generated by an-
other agentAi, that endorses a solution classS′ different from that ofα.S for the
problem at hand and justifies this with a justificationD′. In the example in Figure 2,
if an agent generates the argumentα = 〈Ai, P, Walk, (Cars_passing = no)〉, an agent
that thinks that the correct solution isWait might answer with the counterargument
β = 〈Aj , P, Wait, (Cars_passing = no∧ Traffic_light = red)〉, meaning that, although
there are no cars passing, the traffic light is red, and the street cannot be crossed.

A counterexamplec is a case that contradicts an argumentα. Thus a counterexample
is also a counterargument, one that states that a specific argumentα is not always true,
and the evidence provided is the casec. Specifically, for a casec to be a counterexample
of an argumentα, the following conditions have to be met:α.D v c andα.S 6= c.S,
i.e. the case must satisfy the justificationα.D and the solution ofc must be different
than the predicted byα.

By exchanging arguments and counterarguments (including counterexamples), agents
can argue about the correct solution of a given problem, i.e. they can engage a joint de-
liberation process. However, in order to do so, they need a specific interaction protocol,
a preference relation between contradicting arguments, and a decision policy to gen-
erate counterarguments (including counterexamples). In the following sections we will
present these elements.
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5 Preference Relation

A specific argument provided by an agent might not be consistent with the information
known to other agents (or even to some of the information known by the agent that
has generated the justification due to noise in training data). For that reason, we are
going to define a preference relation over contradicting justified predictions based on
cases. Basically, we will define aconfidencemeasure for each justified prediction (that
takes into account the cases owned by each agent), and the justified prediction with the
highest confidence will be the preferred one.

The idea behind case-based confidence is to count how many of the cases in an
individual case baseendorsea justified prediction, and how many of them are coun-
terexamples of it. The more the endorsing cases, the higher the confidence; and the
more the counterexamples, the lower the confidence. Specifically, to assess the confi-
dence of a justified predictionα, an agent obtains the set of cases in its individual case
base that are subsumed byα.D. With them, an agentAi obtains the Y (aye) and N (nay)
values:

– Y Ai
α = |{c ∈ Ci| α.D v c.P ∧ α.S = c.S}| is the number of cases in the agent’s

case basesubsumedby the justificationα.D that belong to the solution classα.S,
– NAi

α = |{c ∈ Ci| α.D v c.P ∧ α.S 6= c.S}| is the number of cases in the agent’s
case basesubsumedby justificationα.D that donot belong to that solution class.

An agent estimates the confidence of an argument as:

CAi
(α) =

Y Ai
α

1 + Y Ai
α + NAi

α

i.e. the confidence on a justified prediction is the number of endorsing cases divided by
the number of endorsing cases plus counterexamples. Notice that we add 1 to the de-
nominator, this is to avoid giving excessively high confidences to justified predictions
whose confidence has been computed using a small number of cases. Notice that this
correction follows the same idea than the Laplace correction to estimate probabilities.
Figure 3 illustrates the individual evaluation of the confidence of an argument, in partic-
ular, three endorsing cases and one counterexample are found in the case base of agents
Ai, giving an estimated confidence of0.6
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Fig. 4.Example of a real justification generated byLID in the marine Sponges data set.

Moreover, we can also define thejoint confidenceof an argumentα as the confi-
dence computed using the cases present in the case bases of all the agents in the group:

C(α) =
∑

i Y Ai
α

1 +
∑

i

(
Y Ai

α + NAi
α

)
Notice that, to collaboratively compute the joint confidence, the agents only have to

make public the aye and nay values locally computed for a given argument.
In our framework, agents use this joint confidence as the preference relation: a jus-

tified predictionα is preferred over another oneβ if C(α) ≥ C(β).

6 Generation of Arguments

In our framework, arguments are generated by the agents from cases, using learning
methods. Any learning method able to provide a justified prediction can be used to gen-
erate arguments. For instance, decision trees andLID [2] are suitable learning methods.
Specifically, in the experiments reported in this paper agents useLID. Thus, when an
agent wants to generate an argument endorsing that a specific solution class is the cor-
rect solution for a problemP , it generates a justified prediction as explained in Section
3.1.

For instance, Figure 4 shows a real justification generated byLID after solving a
problemP in the domain of marine Sponges identification. In particular, Figure 4 shows
how when an agent receives a new problem to solve (in this case, a new sponge to de-
termine its order), the agent usesLID to generate an argument (consisting on a justified
prediction) using the cases in the case base of the agent. The justification shown in
Figure 4 can be interpreted saying that “the predicted solution is hadromerida because
the smooth form of the megascleres of the spiculate skeleton of the sponge is of type
tylostyle, the spikulate skeleton of the sponge has no uniform length, and there is no
gemmules in the external features of the sponge”. Thus, the argument generated will be
α = 〈A1, P, hadromerida, D1〉.



6.1 Generation of Counterarguments

As previously stated, agents may try to rebut arguments by generating counterargument
or by finding counterexamples. Let us explain how they can be generated.

An agentAi wants to generate a counterargumentβ to rebut an argumentα when
α is in contradiction with the local case base ofAi. Moreover, while generating such
counterargumentβ, Ai expects thatβ is preferred overα. For that purpose, we will
present a specific policy to generate counterarguments based on thespecificitycriterion
[12].

The specificity criterion is widely used in deductive frameworks for argumentation,
and states that between two conflicting arguments, the most specific should be preferred
since it is, in principle, more informed. Thus, counterarguments generated based on the
specificity criterion are expected to be preferable (since they are more informed) to the
arguments they try to rebut. However, there is no guarantee that such counterarguments
will always win, since, as we have stated in Section 5, agents in our framework use a
preference relation based on joint confidence. Moreover, one may think that it would
be better that the agents generate counterarguments based on the joint confidence pref-
erence relation; however it is not obvious how to generate counterarguments based on
joint confidence in an efficient way, since collaboration is required in order to evalu-
ate joint confidence. Thus, the agent generating the counterargument should constantly
communicate with the other agents at each step of the induction algorithm used to gen-
erate counterarguments (presently one of our future research lines).

Thus, in our framework, when an agent wants to generate a counterargumentβ to
an argumentα, β has to be more specific thanα (i.e.α.D @ β.D).

The generation of counterarguments using the specificity criterion imposes some
restrictions over the learning method, althoughLID or ID3 can be easily adapted for
this task. For instance,LID is an algorithm that generates a description starting from
scratch and heuristically adding features to that term. Thus, at every step, the descrip-
tion is made more specific than in the previous step, and the number of cases that are
subsumed by that description is reduced. When the description covers only (or almost
only) cases of a single solution classLID terminates and predicts that solution class.
To generate a counterargument to an argumentα LID just has to use as starting point
the descriptionα.D instead of starting from scratch. In this way, the justification pro-
vided byLID will always be subsumed byα.D, and thus the resulting counterargument
will be more specific thanα. However, notice thatLID may sometimes not be able
to generate counterarguments, sinceLID may not be able to specialize the description
α.D any further, or because the agentAi has no case inCi that is subsumed byα.D.
Figure 5 shows how an agentA2 that disagreed with the argument shown in Figure 4,
generates a counterargument usingLID. Moreover, Figure 5 shows the generation of a
counterargumentβ1

2 for the argumentα0
1 (in Figure 4) that is a specialization ofα0

1.
Specifically, in our experiments, when an agentAi wants to rebut an argumentα,

uses the following policy:

1. AgentAi usesLID to try to find a counterargumentβ more specific thanα; if found,
β is sent to the other agent as a counterargument ofα.

2. If not found, thenAi searches for a counterexamplec ∈ Ci of α. If a casec is
found, thenc is sent to the other agent as a counterexample ofα.
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Fig. 5.Generation of a counterargument usingLID in the Sponges data set.

3. If no counterexamples are found, thenAi cannot rebut the argumentα.

7 Argumentation-based Multi-Agent Learning

The interaction protocol ofAMAL allows a group of agentsA1, ..., An to deliberate
about the correct solution of a problemP by means of an argumentation process. If
the argumentation process arrives to a consensual solution, the joint deliberation ends;
otherwise a weighted vote is used to determine the joint solution. Moreover,AMAL also
allows the agents to learn from the counterexamples received from other agents.

TheAMAL protocol consists on a series of rounds. In the initial round, each agent
states which is its individual prediction forP . Then, at each round an agent can try to
rebut the prediction made by any of the other agents. The protocol uses a token passing
mechanism so that agents (one at a time) can send counterarguments or counterexam-
ples if they disagree with the prediction made by any other agent. Specifically, each
agent is allowed to send one counterargument or counterexample each time he gets the
token (notice that this restriction is just to simplify the protocol, and that it does not
restrict the number of counterargument an agent can sent, since they can be delayed for
subsequent rounds). When an agent receives a counterargument or counterexample, it
informs the other agents if it accepts the counterargument (and changes its prediction)
or not. Moreover, agents have also the opportunity to answer to counterarguments when
they receive the token, by trying to generate a counterargument to the counterargument.

When all the agents have had the token once, the token returns to the first agent, and
so on. If at any time in the protocol, all the agents agree or during the lastn rounds no
agent has generated any counterargument, the protocol ends. Moreover, if at the end of
the argumentation the agents have not reached an agreement, then a voting mechanism
that uses the confidence of each prediction as weights is used to decide the final solution
(Thus,AMAL follows the same mechanism as human committees, first each individual
member of a committee exposes his arguments and discuses those of the other mem-
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bers (joint deliberation), and if no consensus is reached, then a voting mechanism is
required).

At each iteration, agents can use the following performatives:

– assert(α): the justified prediction held during the next round will beα. An agent
can only hold a single prediction at each round, thus is multiple asserts are send,
only the last one is considered as the currently held prediction.

– rebut(β, α): the agent has found a counterargumentβ to the predictionα.

We will defineHt = 〈αt
1, ..., α

t
n〉 as the predictions that each of then agents hold at

a roundt. Moreover, we will also definecontradict(αt
i) = {α ∈ Ht|α.S 6= αt

i.S} as
the set of contradicting arguments for an agentAi in a roundt, i.e. the set of arguments
at roundt that support a different solution class thanαt

i.
The protocol is initiated because one of the agents receives a problemP to be

solved. After that, the agent informs all the other agents about the problemP to solve,
and the protocol starts:

1. At roundt = 0, each one of the agents individually solvesP , and builds a justified
prediction using its own CBR method. Then, each agentAi sends the performative
assert(α0

i ) to the other agents. Thus, the agents knowH0 = 〈α0
i , ..., α

0
n〉. Once all

the predictions have been sent the token is given to the first agentA1.
2. At each roundt (other than 0), the agents check whether their arguments inHt

agree. If they do, the protocol moves to step 5. Moreover, if during the lastn rounds



no agent has sent any counterexample or counterargument, the protocol also moves
to step 5. Otherwise, the agentAi owner of the token tries to generate a counterar-
gument for each of the opposing arguments incontradict(αt

i) ⊆ Ht (see Section
6.1). Then, the counterargumentβt

i against the predictionαt
j with the lowest con-

fidenceC(αt
j) is selected (sinceαt

j is the prediction more likely to be successfully
rebutted).

– If βt
i is a counterargument, then,Ai locally comparesαt

i with βt
i by assessing

their confidence against its individual case baseCi (see Section 5) (notice that
Ai is comparing its previous argument with the counterargument thatAi itself
has just generated and that is about to send toAj). If CAi

(βt
i ) > CAi

(αt
i),

thenAi considers thatβt
i is stronger than its previous argument, changes its

argument toβt
i by sendingassert(βt

i ) to the rest of the agents (the intuition
behind this is that since a counterargument is also an argument,Ai checks if
the newly counterargument is a better argument than the one he was previously
holding) andrebut(βt

i , α
t
j) to Aj . Otherwise (i.e.CAi

(βt
i ) ≤ CAi

(αt
i)), Ai

will send onlyrebut(βt
i , α

t
j) to Aj . In any of the two situations the protocol

moves to step 3.
– If βt

i is a counterexamplec, thenAi sendsrebut(c, αt
j) to Aj . The protocol

moves to step 4.
– If Ai cannot generate any counterargument or counterexample, the token is

sent to the next agent, a new roundt + 1 starts, and the protocol moves to state
2.

3. The agentAj that has received the counterargumentβt
i , locally compares it against

its own argument,αt
j , by locally assessing their confidence. IfCAj

(βt
i ) > CAj

(αt
j),

thenAj will accept the counterargument as stronger than its own argument, and it
will sendassert(βt

i ) to the other agents. Otherwise (i.e.CAj (β
t
i ) ≤ CAj (α

t
j)), Aj

will not accept the counterargument, and will inform the other agents accordingly.
Any of the two situations start a new roundt + 1, Ai sends the token to the next
agent, and the protocol moves back to state 2.

4. The agentAj that has received the counterexamplec retains it into its case base
and generates a new argumentαt+1

j that takes into accountc, and informs the rest
of the agents by sendingassert(αt+1

j ) to all of them. Then,Ai sends the token to
the next agent, a new roundt + 1 starts, and the protocol moves back to step 2.

5. The protocol ends yielding a joint prediction, as follows: if the arguments inHt

agree then their prediction is the joint prediction, otherwise a voting mechanism is
used to decide the joint prediction. The voting mechanism uses the joint confidence
measure as the voting weights, as follows:

S = arg max
Sk∈S

∑
αi∈Ht|αi.S=Sk

C(αi)

Moreover, in order to avoid infinite iterations, if an agent sends twice the same
argument or counterargument to the same agent, the message is not considered.

Figure 6 graphically illustrates this process. Where the greyed area is the loop
formed by steps 2, 3, and 4.



8 Exemplification

Let us consider a system composed of three agentsA1, A2 andA3. One of the agents,
A1 receives a problemP to solve, and decides to useAMAL to solve it. For that reason,
invitesA2 andA3 to take part in the argumentation process. They accept the invitation,
and the argumentation protocol starts.

Initially, each agent generates its individual prediction forP , and broadcasts it to
the other agents. Thus, all of them can computeH0 = 〈α0

1, α
0
2, α

0
3〉. In particular, in

this example:

– α0
1 = 〈A1, P, hadromerida, D1〉

– α0
2 = 〈A2, P, astrophorida,D2〉

– α0
3 = 〈A3, P, axinellida,D3〉

A1 starts (Round 0 ) owning the token and tries to generate counterarguments for
α0

2 andα0
3, but does not succeed, however it has one counterexamplec13 for α0

3. Thus,
A1 sends the the messagerebut(c13, α

0
3) to A3. A3 incorporatesc13 into its case base

and tries to solve the problemP again, now takingc13 into consideration.A3 comes
up with the justified predictionα1

3 = 〈A3, P, hadromerida,D4〉, and broadcasts it to
the rest of the agents with the messageassert(α1

3). Thus, all of them know the new
H1 = 〈α0

1, α
0
2, α

1
3〉.

Round 1 starts andA2 gets the token.A2 tries to generate counterarguments forα0
1

andα1
3 and only succeeds to generate a counterargumentβ1

2 = 〈A2, P, astrophorida,
D5〉 againstα1

3. The counterargument is sent toA3 with the messagerebut(β1
2 , α1

3).
AgentA3 receives the counterargument and assesses its local confidence. The result is
that the individual confidence of the counterargumentβ1

2 is lower than the local con-
fidence ofα1

3. Therefore,A3 does not accept the counterargument, and thusH2 =
〈α0

1, α
0
2, α

1
3〉.

Round 2 starts andA3 gets the token.A3 generates a counterargumentβ2
3 = 〈A3, P,

hadromerida,D6〉 for α0
2 and sends it toA2 with the messagerebut(β2

3 , α0
2). Agent

A2 receives the counterargument and assesses its local confidence. The result is that the
local confidence of the counterargumentβ2

3 is higher than the local confidence ofα0
2.

Therefore,A2 accepts the counterargument and informs the rest of the agents with the
messageassert(β2

3). After that,H3 = 〈α0
1, β

2
3 , α1

3〉.
At Round 3, since all the agents agree (all the justified predictions inH3 predict

hadromerida as the solution class) The protocol ends, andA1 (the agent that received
the problem) considershadromerida as the joint solution for the problemP .

9 Experimental Evaluation

In this section we empirically evaluate theAMAL argumentation framework for deliber-
ative committees. We have made experiments in two different data sets:Soybean(from
the UCI machine learning repository) andSponges(a relational data set). The Soybean
data set has 307 examples and 19 solution classes, while the Sponges data set has 280
examples and 3 solution classes. In an experimental run, the data set is divided in 2
sets: the training set and the test set. The training set examples are distributed among
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Fig. 7. Accuracy in Sponges data set for committees of 2 to 5 agents where predictions are
achieved individually, by majority voting, by justification-based voting, and by the fullAMAL
argumentation framework.

5 different agents without replication, i.e. there is no example shared by two agents. In
the testing stage, problems in the test set arrive randomly to one of the agents, and their
goal is to predict the correct solution.

The experiments are designed to test the hypothesis that argumentation-based de-
liberation is useful for group judgment and improves over other typical methods such
as majority voting. Moreover, we also expect that the improvement achieved from ar-
gumentation will increase as the number of agents participating in the argumentation
increases (since more information will be taken into account). For this purpose, we ran
four experiments, using committees of 2, 3, 4, and 5 agents respectively (in all experi-
ments each agent has a 20% of the training data, since the training is always distributed
among 5 agents).

Figures 7 and 8 show the result of those experiments in the Sponges and Soybean
data sets. Classification accuracy is plotted in the vertical axis, and in the horizontal
axis the number of agents that took part in the argumentation processes is shown. For
each number of agents, four bars are shown:Individual, Voting, JV, andAMAL. The in-
dividual bar shows the average accuracy of individual agents predictions; the Voting bar
shows the average accuracy of the agents using a majority voting system to aggregate
their predictions (i.e. without deliberation); the lastAMAL bar shows the average accu-
racy of the joint prediction using argumentation and (if need be) the confidence-based
voting explained in the step 5 of the protocol. Therefore, since theAMAL framework
has in fact to phases, namely deliberation and voting, then it is fair to ask how much
contributes each phase to the final result. For this purpose, we have included the JV bar
in Figures 7 and 8 that correspond to an experiment performed where the deliberation
phase is skipped. More specifically, the agents simply present their justified predictions
once (i.e.H0 is generated) and then a confidence-based voting is performed immedi-
ately (i.e. without sending any counterargument or counterexample). The results shown
are the average of 5 10-fold cross validation runs.
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Figures 7 and 8 show that collaboration (Voting, JV, andAMAL) outperforms in-
dividual problem solving. Moreover, as we expected, the accuracy improves as more
agents collaborate, since more information is taken into account. SinceAMAL always
outperformsMajority Voting, it is clear that having deliberation is better than not having
it. Moreover,AMAL always outperforms JV, indicating that having a confidence-based
voting stageafter the deliberation stage is better than skipping deliberation and use
a confidence-based voting stagebefore. Thus, we conclude that joint predictions are
based on better information that has been provided by the deliberation stage.

Moreover, Figures 7 and 8 show that the magnitude of the improvement obtained
due to the argumentation process depends on the data set. For instance, the joint accu-
racy for 2 agents in the Sponges data set is of 88.64% forAMAL, 88.42% for JV, and
82.21% for majority voting (while individual accuracy is just 81.28%). Moreover, the
improvement achieved byAMAL over voting is larger in the Soybean data set. The rea-
son is that the Soybean data set is more “difficult” (in the sense that agents need a higher
percentage of the data set to achieve a reasonably good accuracy level). These experi-
mental results show thatAMAL effectively exploits the opportunity for improvement:
the accuracy is higher only because more agents have changed their prediction during
argumentation (otherwise they would achieve the same result as Voting). For instance,
the joint accuracy for 2 agents in the Soybean data set is of 70.62% forAMAL, 66.77%
for JV, and 61.04% for majority voting (while individual accuracy is just 60.59%)

Figure 9 shows the frequency in which the agent committee was able to reach con-
sensus or needed a final voting stage for committees with 2, 3, 4, and 5 agents in the
Sponges and Soybean data set. The first bar (Unanimity) shows the percentage in which
the agents predictions on Round 0 of the protocol are equal (and no deliberation in
needed), the second bar (Consensus) shows the percentage in which all the agents agree
on a joint prediction after deliberation, and the third bar (Voting) shows the remaining
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percentage in which the agents vote to determine the joint prediction. A first difference
is between data sets: Soybean, being more “difficult” (average error is higher than in
Sponges) has as expected higher disagreement and the percentage of times a vote is
needed is higher than in the Sponges data set. We can also observe that larger commit-
tees have less unanimity (as expected), but since smaller committees also have larger
errors, the additional deliberation and voting needed is also to be expected. Concerning
deliberation, we see the committees can use the information exchanged usingAMAL
to reach a consensual solution in a fairly large number of occasions (more often in
Sponges, since in Soybean the higher error rate makes consensus more difficult).

Table 1 shows the average number rounds of argumentation performed (and also the
maximum number rounds in one deliberation) for committees of 2, 3, 4, and 5 agents.
The difficulty of the Soybean data set is reflected in the higher number of argumentation
rounds performed compared to the Sponges data set, as well as in the higher maximum
number of rounds some deliberation stages achieve..

Let us analyze in more detail the difference in accuracy obtained by theAMAL ar-
gumentation process versusVotingandJV in the scenario with 5 agents. This improve-
ment is only possible if agents change their mind about the correct prediction during

Sponges Soybean
2 Agents3 Agents4 Agents5 Agents2 Agents3 Agents4 Agents5 Agents

Average rounds 1.32 1.68 2.07 2.51 1.76 2.80 4.19 5.27
Maximum rounds 5 15 25 20 16 16 179 141

Table 1.Average and maximum rounds of argumentation.
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the deliberation phase due to the argumentation process. Figure 10 shows as percentage
the average number of times that an agent changes its prediction during the deliberation
phase, according too three possible mechanisms:

Counterargument (CA) when a counterargument received by the agent is accepted
(since it has higher individual confidence than the previously held argument)

Counterexample (CE) when a counterexample is received and since added to the in-
dividual case base the agent finds that now another argument has higher individual
confidence (this may be due to this single counterexample or to a number of previ-
ously received counterexamples in addition to this one)

Self-Argument (SA) when an agent changes its mind because, while trying to generate
a counterargument for another agent, it explores a different region of the hypoth-
esis space and finds an argument with higher individual confidence than the one
currently holding.

In the Sponges data set, an agent changes its mind 19.66% of the times due to the
argumentation process: 7.26% of the times due to the reception of a counterargument,
2.34% of the times due to the reception of a counterexample, and the remaining 10.06%
is due to a self-argument. If we look at the same numbers in the Soybean data set, agents
change their minds a 46.98% of the times due to argumentation: 15.09% of the times
due to counterarguments, 15.13% of the times due to counterexamples, and the remain-
ing 16.77% is due to a self-argument. Clearly, we can establish a relation between the
number of times an agent changes its mind with the increase in classification accuracy.
In the Sponges data set, agents change their minds less times, and thus the increase in
accuracy (from Voting to AMAL) is lower, while in the Soybean data set they change
their minds more often, and thus the increase (from Voting to AMAL) of accuracy is
higher.

Moreover, we can further analyze these numbers. In the Sponges data set, agents re-
ceive a counterexample to their arguments a 35.23% of the times, but they only change
their minds due to them a 2.34% of the times due to them (i.e. only 1 out of 15 coun-
terexamples makes an agent change its mind). That means that the extra information



that an agent receives with one counterexample is small, and may need several coun-
terexamples before effectively making the agent change its prediction. However, in the
Soybean data set, agents receive a counterexample to their arguments a 31.49% of the
times, and they change their minds due to them a 15.13% of the times (i.e. 1 out of
2 counterexamples makes an agent change its mind). Therefore, we can see that the
amount of information that an agent receives with one counterexample is larger in the
Soybean data set (in the sense that 1 or 2 examples may suffice to change an agent’s
prediction).

Finally, notice that an agent can change its mind due to only two different rea-
sons: due to learning new information (i.e. learning new cases), or due to seeing the
information it already had from a different point of view. When an agent changes its
mind due to a counterexample, it is changing its mind due to learning new information.
When an agent changes its mind due to a counterargument or due to a self-argument
(searching through a new area in the generalizations space while trying to find a coun-
terargument), the reason is that the agent sees its cases from a new point of view. The
agents in our experiments useLID as their method to generate predictions that uses a
heuristic method to explore thegeneralizations space. The heuristic approach avoids
exploring the whole space of generalizations but does not assure that the part of the
space effectively explored is always the one with the best generalization. Thus, from a
generalizations space point of view, the argumentation process is useful for the agents
in two respects: it provides new information (by means of counterexamples) an it pro-
vides new points of view to analyze data (i.e. it forces the agents to explore parts of the
generalizations space that they have not explored following their heuristics).

10 Related Work

Our work on multi-agent case-based learning started in 1999 [6]; later Mc Ginty and
Smyth [7] presented a multi-agent collaborative CBR approach (CCBR) for planning.
Finally, another interesting approach ismulti-case-base reasoning(MCBR) [5], that
deals with distributed systems where there are several case bases available for the same
task and addresses the problems of cross-case base adaptation. The main difference is
that ourMAC approach is a way to distribute theReuseprocess of CBR (using a voting
system) whileRetrieveis performed individually by each agent; the other multi-agent
CBR approaches, however, focus on distributing theRetrieveprocess.

Research on MAS argumentation focus on several issues like a) logics, protocols
and languages that support argumentation, b) argument selection and c) argument in-
terpretation. Approaches for logic and languages that support argumentation include
defeasible logic [4] and BDI models [14]. Although argument selection is a key as-
pect of automated argumentation (see [13] and [14]), most research has been focused
on preference relations among arguments. In our framework we have addressed both
argument selection and preference relations using a case-based approach.



11 Conclusions and Future Work

In this paper we have presented an argumentation-based framework for multiagent de-
liberation. Specifically, we have presentedAMAL, a framework that allows a committee
of agents to argue about the solution of a given problem and we have shown how the
learning capabilities can be used to generate arguments and counterarguments. The ex-
perimental evaluation shows that the increased amount of information provided to the
agents during the deliberation stage increases the predictive accuracy of group judg-
ments, and specially when an adequate number of agents take part in the argumentation.

The main contributions of this work are: a) an argumentation framework for learn-
ing agents; b) a case-based preference relation over arguments, based on computing an
overall confidence estimation of arguments; c) a case-based policy to generate coun-
terarguments and select counterexamples, and d) a voting scheme based on assessing
the confidence of arguments (instead of assessing the trust on agents). Although we
introduced justification-based voting (JV) in a previous paper [8], the full capability
of this approach has not been established until now. JV is as good as the arguments
provided, and we show here that the arguments sustained by the agents are refined and
improved during deliberation; thus JV is better used not as a technique per se (as pro-
posed in [8]) but as the later stage of a deliberation process where the arguments have
been challenged and improved.

Future work will focus on extending this approach from single-issue to multiple-
issue deliberation and group judgment. Social choice theory calls this the task of ag-
gregating sets of judgments, and there is an impossibility theorem similar to Arrow’s.
The problems arise from the fact that the interdependencies between different judg-
ments may cause logical paradoxes (e.g. logical contradiction between the votes on
the premises and the votes on the conclusion). However, relaxing some properties of
aggregation strategies may be feasible for specific application purposes.
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