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Abstract The optimum portfolio selection for an investor with particular
preferences was proven to lie on the normalized efficient frontier between two
bounds defined by the Ballestero (1998) bounding theorem. A deeper under-
standing is possible if the decision-maker is provided with visual and quantita-
tive techniques. Here, we derive useful insights as a way to support investor’s
decision-making through: (i) a new theorem to assess balance of solutions; (ii)
a procedure and a new plot to deal with discrete efficient frontiers and uncer-
tain risk preferences; and (iii) two quality metrics useful to predict long-run
performance of investors.

Keywords: Finance; portfolio selection; compromise programming; discrete
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1 Introduction

Investment decision makers not only care about profit but also about the
amount of risk accepted to achieve that profit. In portfolio selection, profit
and risk can be measured by the mean and the variance (or the standard
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deviation) of portfolio returns. In the search for the best portfolio, Compro-
mise Programming proposed that utility optimization was considered as a
distance minimization problem (Zeleny, 1982; Yu, 1985) that has been widely
used in many recent works (Bilbao-Terol et al., 2006; Amiri et al., 2011; Pla-
Santamaria and Bravo, 2013; Ballestero et al., 2015)

However, individual or collective investors may have particular risk prefer-
ences different to an average investor, i.e., one unbiased towards profitability
or risk. This bias is summarized by Ballestero (1998) through the use of a
parameter reflecting the investor’s preference. From that, a bounding theorem
was proposed by the author to determine the bounds for approximating the
optimum portfolio on the efficient frontier for an investor with particular risk
preferences. Here, efficient frontier refers to the set of non-dominated portfo-
lios in terms of profitability and risk. In an attempt to reduce the number of
available solutions, Ballestero’s theorem introduces risk preferences in the op-
timization problem to provide a bounded solution. However, this theorem does
not provide an optimum, but an approximation to the optimum characterized
by two points in the efficient frontier delimiting an efficient set of portfolios.

Subsequent works have followed two separated ways. On the one hand,
some of them have successfully applied this theorem for selecting portfolios for
mutual funds (Ballestero and Pla-Santamaria, 2004) and for eliciting balanced
solutions by using an additive linear-quadratic composite metric (Ballestero,
2007; Bravo et al., 2012). On the other hand, a number of related works have
recently mentioned Ballestero’s theorem as an important contribution to port-
folio selection (Ehrgott et al., 2004; Steuer et al., 2007; Xidonas et al., 2012).
However, little attention has been paid to the geometry of risk preferences,
its relationship with the efficient frontier and its utility to enhance the under-
standing of the multi-objective decision-making process.

The main goal of this paper is to characterize Ballestero’s bounding the-
orem to enhance its understanding and implications for investment decision
makers through:

– a new theorem to assess balance of solutions for different metrics.
– a procedure and a new stairs plot to deal with discrete efficient frontiers

and risk preference uncertainty.
– two quality metrics to predict long-run performance of investors.

The structure of this paper is as follows. Section 2 presents the Balles-
tero’s bounding theorem that we characterize using two metrics to obtain the
best compromise solutions in Section 3. Next, Section 4 compares linear and
quadratic metrics which leads to a new theorem, namely, the balance theorem.
An algorithm and a new plot is proposed in Section 6 to obtain solutions for
discrete efficient frontiers and uncertain risk preferences. Both the algorithm
an the new plot will be illustrated with an example. In Section 7, two quality
measures are proposed to predict long-run investor performance. Finally, we
elaborate some conclusions in Section 8.
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2 Background : Ballestero’s bounding theorem

Since Markowitz (1952), portfolio selection is usually approached through
mean-variance (E-V) efficient frontier techniques. Each point in this efficient
frontier represents an alternative portfolio that produces higher profitability
and lower risk than any alternative portfolio in the E-V space. It is said, then,
that this portfolio dominates the alternative one. In order to avoid meaningless
comparison, Ballestero proposed the efficient frontier to be built through the
use of the following indexes: (i) index of profitability, θ1; (ii) index of safety,
θ2, which are defined as follows:

θ1 =
E − Emin

Emax − Emin
(1)

θ2 =
Vmin − V

Vmin − Vmax
(2)

where (E, V ) is a point of the mean-variance efficient frontier, (Emax, Vmin) is
the ideal point and (Emin, Vmax) is the anti-ideal point. Note that the index
of safety, θ2, is computed as the reciprocal of the index of risk or, equivalently,
index of safety = 1 - index of risk. These indexes, θ1 and θ2, transform the
E-V space in a normalized profitability-safety (E-S) space where 0 ≤ θ1 ≤ 1
and 0 ≤ θ2 ≤ 1.

The efficient frontier takes the form T (θ1, θ2) = 0 and the investor’s utility
function is expressed as U(θ1, θ2). Then, if Uθ1 and Uθ2 are the partial deriva-
tives of U with respect to θ1 and θ2, the marginal rate of substitution (MRS)
is defined as:

MRS(θ1, θ2) =
−dθ2
dθ1

=
Uθ1
Uθ2

(3)

As argued in Ballestero (1998), a number of common assumptions are usu-
ally accepted in economics which are enumerated as follows:

– A1: More is better, in the sense of increasing profitability and safety.
– A2: Differentiability of U .
– A3: MRS monotonically decreases as θ1 increases.
– A4: Convexity, regarding the efficient set of portfolios.
– A5: Differentiability of T .
– A6: θ2 is a decresing function of θ1 along T , that is, dθ2/dθ1 < 0.
– A7: Strict concavity, that is, d2θ2/dθ

2
1 < 0.

– A8: The Lagrangean maximum of the investors utility function U is given
by the intersection of T with Uθ1/Uθ2 = Tθ1/Tθ2 where Tθ1 and Tθ2 are
the partial derivatives of T with respect to θ1 and θ2 and it exists on the
efficient frontier.

Moreover, it is assumed that, in the investor’s utility function, the MRS
has a stable and constant value r0 along the path θ1 = θ2, which is called the
investor’s particular risk preference. For instance, an investor willing to lose
1.2 marginal units of safety for increasing her profitability in one marginal
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unit it is said to have r0 = 1.2 and to be a risky investor. On the other
hand, an investor willing to lose 0.5 marginal units of safety for increasing
her profitability in one marginal unit it is said to have r0 = 0.5 and to be a
conservative investor. From the previous set of assumptions and definitions,
the Ballestero’s bounding theorem is expressed as follows:

Theorem 1 The Langrangean maximum M of the investor’s utility U on the
efficient frontier T (θ1, θ2) = 0 with θ1 ≥ 0 and θ2 ≥ 0 is bounded between the
points L∞ and L defined as:

– L∞ is the intersection of θ1 = θ2 with T (θ1, θ2).
– L is the maximum of the linear utility V = r0θ1 + θ2 subject to T (θ1, θ2).

It is interesting to point out that L∞ does not depend on the particular
investor’s preferences, expressed here as r0, but L does. The reader interested
in the proof of this theorem is referred to Ballestero (1998). The underlying
idea behind the Ballestero’s bounding theorem is approximating solutions (op-
timum portfolio selections) for an investor with particular risk preferences. In
this sense, it generalizes a previous model by Ballestero and Romero (1996),
for the case of an average investor without bias for profits or risk. To this
end, risk preferences are expressed through risk parameter r0, resulting in the
transformation of Yu’s bounds (Yu, 1973) into the Ballestero’s bounds L∞
and L, the latter depending on r0.

As a result, the utility of the Ballestero’s bounding theorem roots in the
possibility to precisely delimit the efficient set of portfolios according to the
particular bias for risk of an investor. This theorem has been recently used in
portfolio selection research (Ballestero and Pla-Santamaria, 2004; Ballestero,
2007; Bravo et al., 2012). Next we characterize this theorem to the selection
of the best portfolio according to particular preferences.

3 Characterizing Ballestero’s bounding theorem for different
metrics

The main goal of this section is to provide a visual and quantitative charac-
terization of Ballestero’s bounding theorem for different metrics. This charac-
terization consists of: (i) providing an optimal solution within the bounds L
and L∞; and (ii) improving understanding of the selection of best portfolios
through graphical tools.

The concept of ideal point is at the core of compromise programming (Ze-
leny, 1982; Yu, 1985; Ballestero and Romero, 1998). In portfolio selection, the
ideal point in the normalized E-S space is (1, 1), because the goal is to maximize
profit and safety. Since this ideal point is usually unfeasible, it is necessary to
look for compromise solutions by minimizing the distance to this ideal point.
A general distance function between two bidimensional points P1 = (x1, y1)
and P2 = (x2, y2), is the Minkowski distance of order h defined as:(

|x1 − x2|h + |y1 − y2|h
)1/h

(4)
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Then, by computing the distance between the ideal point (1, 1) and a par-
ticular point in the efficient frontier (θ1, θ2), we are in a position to determine
whether a given portfolio is better than another. Moreover, when consider-
ing particular preferences defined by r0, distances must be computed between
(r0, 1), as the new ideal point, and (r0θ1, θ2), as the new particular point in
the efficient frontier. From that, a family of normalized distance functions that
includes parameter r0 determining the investor’s risk preferences (Ballestero
and Romero, 1998) can be expressed as:

Lh =
[
rh0 · (1− θ1)h + (1− θ2)h

]1/h
(5)

Note that L1 is the Manhattan distance, L2 is the Euclidean distance, and
L∞ is the Chebyshev distance. They are the most used distances in practice for
interpretation and computational reasons (Ringuest, 1992; Ballestero, 2007).
In order to characterize Theorem 1, we rely on the concept of isometric curves
in the normalized E−S space (Zeleny, 1982; Yu, 1985; Ballestero and Romero,
1998), defined by varying a parameter over the previous family of distance
functions to the ideal point. The CP objective function is given by the family
of distances defined in (5) to be minimized subject to an efficient frontier,
which is equivalent to maximize the following Yu-Zeleny utility (Ballestero,
2007):

U = K − Lh (6)

where K is a constant sufficiently large to assure non-negativity. From that, we
are in a position to obtain the best solutions derived from Ballestero’s theorem
for both Manhattan and Euclidean distances.

3.1 Characterization of the solution for Manhattan distances

The Manhattan distance between two points in a bidimensional space is the
sum of the absolute values of the differences between the first and second com-
ponents of each point. Given two points (x1, y1) and (x2, y2), their Manhattan
distance is calculated as:

|x1 − x2|+ |y1 − y2|. (7)

It can be graphically represented by the strictly horizontal and vertical path
between two points located in an imaginary grid. The Manhattan distance is
linear and this fact facilitates computations within an optimization problem. In
practice, isometric points in terms of Manhattan distances can be represented
by lines in a E-S space. Indeed, practitioners can graphically derive the optimal
portfolio by plotting the line with slope r0 that is tangent to the efficient
frontier as the following theorem formally states.

Theorem 2 The Lagrangean maximum M of the investor’s utility:

U1 = K − L1 = K − r0(1− θ1)− (1− θ2) (8)
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is the solution to r0θ1 + θ2 − bM = 0, with bM > 0, being the intercept of the
tangent to the efficient frontier T (θ1, θ2) = 0 between the L and L∞ bounds,
with θ1 ≥ 0 and θ2 ≥ 0.

Proof A family of parallel isometric lines with slope r0, that is, with the same
particular preferences, can be obtained by varying a parameter b over:

r0θ1 + θ2 = b. (9)

Hence, there is only a value bM > 0 such that the line defined by r0
and bM is tangent to the efficient frontier T (θ1, θ2) between L and L∞. In
this tangential point, r0θ1 + θ2 − bM = T (θ1, θ2) and the condition for the
Lagrangean maximum, Uθ1/Uθ2 = Tθ1/Tθ2 , holds. Then, the maximum utility
portfolio is given by r0 and bM as shown in Figure 1.

θ1

θ 2

L

L∞

M

(1, 1)

T(θ1, θ2)

bM

Fig. 1 Normalized efficient frontier T (θ1, θ2) and position of relevant points in the charac-
terization for Manhattan distances

3.2 Characterization of the solution for Euclidean distances

The Euclidean distance between two points in a bidimensional space is the
square root of the sum of the squared differences between the first and sec-
ond components of each point. Given two points (x1, y1) and (x2, y2), their
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Euclidean distance is calculated as:√
(x1 − x2)2 + (y1 − y2)2. (10)

It can be graphically represented by the straight line between two points.
The Euclidean distance is non-linear and this fact makes computations within
an optimization problem more difficult than in the linear case. In practice,
isometric points in terms of Euclidean distances can be represented by ellipses
in a E-S space. Indeed, practitioners can graphically derive the optimal port-
folio by plotting the ellipse with horizontal semiaxis depending on r0 that is
tangent to the efficient frontier as the following theorem formally states.

Theorem 3 The Lagrangean maximum M of the investor’s utility

U2 = K − L2 = K −
[
r20(1− θ1)2 + (1− θ2)2

]1/2
(11)

is the solution to r20(θ1 − 1) + (θ2 − 1)2 − d2M = 0, with dM > 0, being dM
the semiaxis of the ellipse centered in the ideal point (1, 1) and tangent to
T (θ1, θ2), between L and L∞, with θ1 ≥ 0 and θ2 ≥ 0.

Proof A family of isometric ellipses centered in (1, 1), with particular prefer-
ences defined by r0, can be obtained by varying a parameter d over:

r20(θ1 − 1)2 + (θ2 − 1)2 = d2. (12)

This family of ellipses is characterized by having the same ratio a/b, be-
tween the horizontal semiaxis (a) and the vertical semiaxis (b), which depends
only on r0, since equation (12) can be rewritten as:

(θ1 − 1)2

d2/r20
+

(θ2 − 1)2

d2
= 1 (13)

where a = d/r0 is the horizontal semiaxis and b = d is the vertical semiaxis.
Then, a/b = 1/r0 or b/a = r0.

Hence, there is only a value dM > 0 such that the isometric ellipse is
tangent to the efficient frontier T (θ1, θ2). In the tangential point, given by
r20(θ1 − 1)2 + (θ2 − 1)2 − d2M = T (θ1, θ2), the condition for the Lagrangean
maximum, defined as Uθ1/Uθ2 = Tθ1/Tθ2 , holds. Then, the maximum utility
portfolio is given by dM and r0 as shown in Figure 2.

4 Comparing linear and quadratic metrics

The bounding theorem is characterized by L and L∞ in the normalized E-S
space. Then, the vector eL starting at L∞ and ending at L characterizes the
bounding theorem. By translating the origin of coordinates from (0, 0) to point
L∞ = (θ1∞, θ2∞), this vector eL presents the following properties:

1. A negative first coordinate of eL denotes a conservative bias or r0 < 1.
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θ1

θ 2
L

L∞

M

(1, 1)

T(θ1, θ2)

dM

Fig. 2 Normalized efficient frontier T (θ1, θ2) and position of relevant points in the charac-
terization for Euclidean distances

2. A positive first coordinate of eL denotes a risky bias or r0 > 1.
3. The norm ||eL|| is proportional to r0.
4. The angle α of eL with respect to the x-axis is determined by L.

This vector eL does not only depend on an investor’s particular risk pref-
erences, but also on the efficient frontier and its particular form in the E-S
space. Next, we use this vector eL when comparing balance of solutions.

Choosing the appropriate metric Lh in equation (5) is an ongoing issue in
the compromise programming setting (Ballestero, 2007). Manhattan distances
tend to outcome imbalanced solutions, i.e., close to the corner solutions (1, 0)
and (0, 1) given by the intersection of T (θ1, θ2) with the x-axis and the y-axis.
On the other hand, Euclidean distances produce more balanced solutions.

Definition 1 We say that a solution R = (θ1R, θ2R) is more balanced than
P = (θ1P , θ2P ) if R is closer than P to L∞, in terms of Euclidean distance,
i.e., if ||eR|| < ||eP ||, being eR and eP vectors from L∞ to R and L∞ to P ,
respectively.

Within the limits set by Ballestero’s bounding theorem, we next provide a
necessary condition to obtain balanced solutions using metrics L1 and L2.

Theorem 4 Given an efficient frontier T (θ1, θ2), a point R within L and L∞
maximizing utility U2 is more balanced than point P = (θ1P , θ2P ) derived by
maximizing U1, when θ1 > dM/

√
2r0.
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Proof From Theorem 2, we know that the slope of the tangent determining P
is r0. Then, if S is a more balanced solution than P , then the absolute value
of the slope of the tangent line to T (θ1, θ2) at R must be greater than r0. The
slope of the tangent line to T (θ1, θ2) at R is given by the first derivative with
respect to θ1 of the iso-ellipse equation:

θ′2 =
dθ2
dθ1

=
−r20θ1

[d2M − r20θ21]1/2
(14)

with 0 < dM < 1. If |θ′2| > r0 then:

r0θ1 > [d2M − r20θ21]1/2 (15)

which holds when:

θ1 >
dM√
2r0

(16)

5 The balance theorem

From the previous section, we know that solutions maximizing U2 are more
balanced than solutions maximizing U1 when θ1 > dM/

√
2r0 holds. This prop-

erty can be generalized to Uh through the following theorem:

Theorem 5 The Lagrangean maximum M of the investors utility for met-
ric Lh:

Uh = K − Lh = K −
[
rh0 (1− θ1)h + (1− θ2)h

]1/h
(17)

between L and L∞ for investors with risk preferences determined by r0 > 0 is
more balanced that the maximum for metric Lh−1.

Proof From A8, we know that the condition for a minimum distance to the
optimum is Uθ1/Uθ2 = Tθ1/Tθ2 , which is given by:

dUh/dθ1
dUh/dθ2

=
r0r

h−1
0 θh−11

θh−12

=
Tθ1
Tθ2

or
θ2
θ1

=

[
r0Tθ2
Tθ1

] 1
h−1

(18)

which tends to one if h tends to ∞ with r0 > 0, and which is an increas-
ing function of h when r0Tθ2/Tθ1 < 0, and a decreasing function of h when
r0Tθ2/Tθ1 > 0. Then, as long as h increases, the maximum moves closer to
L∞, producing more balanced solutions according to Definition 2.

From that, balance of solution R defined by vector ||eR(Lh)|| depending on
metric Lh is proportional to h, i.e., vector norms are monotonically increasing
with h or ||e(Lh−1)|| ≤ ||e(Lh)|| ≤ ||e(Lh+1)||.

Corollary 1 The most balanced solutions are produced using the Chebyshev
distance L∞.
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6 Dealing with discrete efficient frontiers and uncertain risk
preferences

In practice, most of the efficient frontiers are discrete and most of the risk
preferences are uncertain. Discrete efficient frontiers are the set of E-S points
representing each of the available portfolios. On the other hand, risk prefer-
ences are uncertain in the sense that they are likely to be expressed in a loosely
manner rather than as a single value r0. For instance, my r0 is around 1.5,
neither higher than 2 nor lower than 1. Here, we translate these expressions
into a interval that is used as the main input to Algorithm 1 that selects
the best set of compromise solutions. This algorithm outputs the best set of
compromise solutions when given: (i) a discrete efficient frontier as a set of
n points, namely, F = {(θ11, θ21), . . . , (θ1n, θ2n)}; (ii) an interval [rmin, rmax];
(iii) a metric Lh.

Algorithm 1: Approximation algorithm to obtain compromise solutions
based on interval risk preferences.

1 Inputs: Discrete efficient frontier F ; risk preference interval
[rmin, rmax]; metric Lh;

2 Output: Interval compromise solutions M = [Mmin,Mmax];
3 Obtain Lmin ∈ F for rmin;
4 Obtain Lmax ∈ F for rmax;
5 Dmin = h-distances for points in F ranging in [Lmin, L∞];
6 Dmax = h-distances for points in F ranging in [Lmax, L∞];
7 Obtain Mmin as the point minimizing Dmin;
8 Obtain Mmax as the point minimizing Dmax;
9 M = [Mmin,Mmax];

For illustrative purposes, let us consider the efficient frontier from the ex-
ample given in Ballestero (1998) summarized in Table 1. Assume now that
three different investors express their risk preferences using common words.
Chances are that risk preferences are expressed as: (i) a declaration of being
risky or conservative (recall that the efficient frontier has a risky zone when
θ1 > θ2, and a conservative zone when θ1 < θ2); (ii) a threshold value, i.e.,
greater/less than a particular value; or (iii) as an interval, between a minimum
and a maximum value. These expressions have an equivalent representation in
the form of an interval [rmin, rmax], that can be used as an input to Algorithm 1
to obtain the set of compromise solutions that fits their risk preferences. For
instance, consider that the following hypothetical investors are willing to min-
imize distances to the ideal with metric L1 by means of Algorithm 1:

1. Investor 1: I am a conservative investor but I am unable to specify any
particular risk preference, equivalent to [rmin, rmax] = [0, 1], since the con-
servative zone ranges in 0 ≤ r0 ≤ 1.
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2. Investor 2: I am a risky investor but I am willing to loose no more than 1.5
units of safety to achieve an increase of one unit of profitability, equivalent
to [rmin, rmax] = [1, 1.5].

3. Investor 3: I am a risky investor but I am willing to loose neither more
than 2 nor less than 1.5 units of safety to achieve an increase of one unit
of profitability, equivalent to [rmin, rmax] = [1.5, 2].

Following the steps detailed in Algorithm 1, we can determine the set of
portfolios that would satisfy each investor. As an example, consider Investor
1 with [rmin, rmax] = [0, 1]. From Theorem 1, we know that Lmin = P1 and
Lmax = P5. In this case, L∞ is a point between P5 and P6, set to (0.62, 0.62)
in the example by Ballestero (1998). Next, we compute Manhattan distances
for each point in the efficient frontier ranging in [P1, L∞] and [P5, L∞], as
shown in Table 1. The rest of points are excluded from the analysis because
the optimum does not lie among them according to Theorem 1. From this
set of distances, we compute the minimum values to the ideal to determine
the range that satisfies Investor1, namely, any portfolio between P1 and P5.
Following the same procedure for the rest of investors, we obtain that any
portfolio between P5 to P7 satisfies Investor 1, and that any portfolio between
P7 to P8 satisfies Investor 2 as detailed in Table 1.

Table 1 Efficient frontier and satisfactory portfolios (marked with 3) for different investors.

Portfolio θ1 θ2 L1(r0 = 0) L1(r0 = 1) Investor 1 Investor 2 Investor 3

P1 0 1 1.00 – – –

P2 0.105 0.991 1.01 – – –

P3 0.267 0.939 1.06 – – –

P4 0.406 0.851 1.15 – – –

P5 0.532 0.736 1.26 0.73 –

P6 0.669 0.576 – – – –

P7 0.803 0.389 – – –

P8 0.893 0.232 – – – –
P9 1 0 – – – – –

Further insight can be achieved through a graphical representation of the
change of the best compromise solution for different values of the risk pref-
erence parameter r0. Two consecutive points in any discrete efficient frontier
present different values for θ1 and θ2. Then, plotting the variation of the par-
ticular values θ1 or θ2 of the best solution for r0 ranging in [0,∞] shows how
the best solution M changes with r0. Since θ2 is usually used as the vertical
axis variable, here we choose θ2 to show changes in the best compromise so-
lution. The outcome is a kind of decreasing stairs plot as shown in Figure 3.
Just as the efficient frontier representation in Figures 1 and 2 is divided in
two areas by the diagonal θ1 = θ2, the stairs plot is divided by a vertical line
r0 = 1, delimiting the risky zone and the conservative zone.

The utility of such a plot is double: (i) risky/conservative investors should
look for portfolios in the risky/conservative zone according to the their risk
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
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0.0
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0.4

0.6

0.8

1.0

θ 2
L

P3

P9

Risky zone

Conservative
zone

Fig. 3 Stairs plot: safety index θ2M of the best compromise solution M for different risk
preferences r0 and metric L1

preferences, regardless of whether these preferences are defined by a single
value or by an interval statement; (ii) validity of particular portfolios for dif-
ferent ranges of r0 is immediately assessed by the width of the step of each
portfolio, e.g., in Figure 3, portfolio P7 is valid for a wider range of risk pref-
erences than P6, thus, P7 can be considered a more stable portfolio.

Moreover, from the particular characteristics of the stairs plot, an interest-
ing property of discrete efficient frontiers in contrast to continuous frontiers
can be derived as follows:

Theorem 6 Given a discrete efficient frontier F = {(θ11, θ21), . . . , (θ1n, θ2n)},
of n points and a metric Lh with finite h, there exists a value rmax, which de-
pends on h, such that the best compromise solution M in a normalized space
is always (1, 0) for all r0 > rmax.

Proof For h = 1, let P = (θ1P , θ2P ) be the next-to-last point and (1, 0) the
last point in F , if rmax = θ2P /(1−θ1P ), is the slope of the line passing through
P and (1, 0), all isolines with slope greater than rmax in absolute value are
necessarily tangent to F only in (1, 0). A similar reasoning leads to the same
result for h > 1.
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For instance, in the example from Table 1, rmax = 0.232/(1−0.893) = 2.2,
as reflected in the stairs plot of Figure 3. Recall that we are dealing with
discrete efficient frontiers. In the case of continuous efficient frontiers, rmax =
∞ since the only isoline tangent to (1, 0) is a vertical line with infinite slope.
Summarizing, it is important to highlight that: (i) risk preference intervals
allow a wider and more flexible characterization than a single value; (ii) even
though risk preferences are defined by an interval for a particular investor,
the best compromise set of portfolios can be formed by a single portfolio; and
(iii) a further step can be taken by considering not only interval but fuzzy risk
preferences in which there is no sharp boundary between interval limits.

7 Predicting long-run investor performance

The basic idea in portfolio selection is diversification over a given set of avail-
able assets to achieve a maximum return for a certain level of risk. This idea
assumes the existence of only one efficient frontier for a given set of available
assets. However, chances are that different sets of assets produce different ef-
ficient frontiers and, eventually, different long-run performance. For instance,
investors may be interested in selecting their best portfolio from assets located
either in America, Europe or Asia. Other investors may focus on selecting as-
sets either in the banking, industrial or telecommunications sector. Even within
the same sector, investors may establish criteria to select companies according
to their size. Determining the location, sector or company size that is expected
to perform better and quantitatively estimating such improvement are two in-
teresting challenges that are worth tackling. To this end, we propose the use
of a single quality measure, namely, the Area Under the Curve (AUC).

Recall that the closer the portfolio to the ideal point the better the port-
folio. Similarly, the closer the whole efficient frontier to the ideal point the
better the efficient frontier. From that, a measure of quality of a particular
efficient frontier in the normalized E-S space is the AUC, a widely used metric
in machine learning (Fawcett, 2006; Hernández-Orallo et al., 2013) for assess-
ing performance. In the context of portfolio selection, we define the AUC for
a given efficient frontier T (θ1, θ2) as:

AUC(T, θ1, θ2) =

∫ 1

0

T (θ1, θ2)dθ1 (19)

ranging in [0, 1] and determining the average quality of portfolios obtained
from a given set of available assets. For example, say that a group of investors
consider alternative portfolios from assets located in Europe, America and
Asia. After normalization, they derive three different efficient frontiers: T1 for
Europe; T2 for America; and T3 for Asia, as depicted in Figure 4. Clearly, port-
folios in T1 are better than those in T2 (and portfolios in T2 are better than
those in T3) since they are closer to the ideal point (1, 1). A measure that is
able to quantitatively characterize which efficient frontier (location) is better
(and how much better) in the long-term is the AUC. The group of investors in
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the example should invest in Europe since the expected performance should
be better due to AUC(T1, θ1, θ2) > AUC(T2, θ1, θ2) > AUC(T3, θ1, θ2). Gen-
eralizing, investors considering alternative sets of assets should first derive the
efficient frontier for each set, then compute the AUC for each set, and finally
select the set of assets with the higher AUC since the expected long-term
performance is higher.
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Fig. 4 Different efficient frontiers lead to different long-term performance.

However, when particular risk preferences of investors are considered, we
know from Theorem 1 that the set of compromise solutions is bounded by L
and L∞. Then, the rest of available solutions are irrelevant to investors and can
be discarded. From that, we propose a more refined measure of the quality for
investors with particular risk preferences, which is the Area Between Bounds
(ABB), defined as:

ABB(T, θ̃1, θ̃2) =

∫ 1

0

T (θ̃1, θ̃2)dθ̃1 (20)

where T (θ̃1, θ̃2) is a re-scaled efficient frontier when the point L is now the cor-
ner solution (0, 1) and L∞ is the other corner solution (1, 0). The procedure
is shown in Figure 5. After deriving L from r0, a new origin of coordinates is
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determined by the intersection of the vertical line containing L and the hor-
izontal line containing L∞. For meaningful comparisons, the efficient frontier
is re-scaled to be fitted in a new normalized E-S space by mapping L to (0, 1)
and L∞ to (1, 0).
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Fig. 5 Two different measures to predict long-run performance: the Area Under the Curve
(AUC) and the Area Between Bounds (ABB)

The utility of the ABB metric is better understood through the follow-
ing example. Assume that two different investors, I1 and I2, want to select
portfolios from the same set of available assets that produces T (θ1, θ2) with
AUC = 0.7. Assume also that I1 is a risky investor with risk preference given
by r1 = 1.5 and that I2 is a conservative investor with risk preference given
by r2 = 0.5. After deriving L for both r1 and r2, re-scaling T and comput-
ing ABB for both investors, assume that the results yield ABB1 = 0.6 and
ABB2 = 0.55 respectively. From that, we infer that investor I1 would outper-
form I2 since ABB1 > ABB2. This different performance denotes a certain
bias of T that would act in favor of risky investors and that can be measured
by the proposed metric ABB.

Summarizing, the AUC metric help us predict the long-run performance of
investors selecting portfolios from different sets of available assets. On the other
hand, the ABB metric help us predict the long-run performance of investors
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with particular risk preferences since portfolios located out of the limits L and
L∞ are irrelevant to them.

8 Conclusions

In this paper, we characterize Ballestero’s bounding theorem in portfolio se-
lection for investors with particular risk preferences. We claim this character-
ization is necessary since investors are more interested in finding a particular
optimal solution rather than a set between two bounds. Visual techniques allow
to enhance the understanding of decision-making techniques based on compro-
mise programming. Even though this paper particularizes on two specific loss
functions, namely, L1 for Theorem 2 and L2 for Theorem 3, it is likely that no
other loss function is used in practice due to computational and interpretation
problems. Further insight in the characterization of the bounded compromise
set is given. More precisely, we show the utility of:

1. Theorem 4 determining the necessary condition to obtain more balanced
solutions using the linear and quadratic common metrics in compromise
programming. This condition depends on the particular risk preferences of
investors.

2. Theorem 5 showing the balance relation of solutions obtained using differ-
ent loss functions Lh. This theorem implies that the balance of solutions
depending on metric Lh monotonically increases with h.

3. An algorithm and a stairs plot to show the variation of solutions for discrete
efficient frontiers and risk preferences expressed as a single value r0 or as
an interval statement.

4. Two quality measures to predict long-run investor performance, the Area
Under the Curve and the Area Between Bounds which is directly linked to
Ballestero’s bounding theorem.

Finally, it is important to point out that visual techniques help enhance
the understanding of complex decision-making problems such as portfolio op-
timization. Investors with particular risk preferences can rely on this kind of
techniques to make better decisions. Plots and metrics allow a more informed
decision-making process. Discrete efficient frontiers and risk preference inter-
vals for particular criteria introduces a new practical perspective to multiob-
jective decision problems that deserves further research.

References

Amiri, M., Ekhtiari, M., and Yazdani, M. (2011). Nadir compromise program-
ming: A model for optimization of multi-objective portfolio problem. Expert
Systems with Applications, 38(6):7222–7226.

Ballestero, E. (1998). Approximating the optimum portfolio for an investor
with particular preferences. Journal of the Operational Research Society,
pages 998–1000.



Characterizing compromise solutions for investors with uncertain risk preferences 17

Ballestero, E. (2007). Compromise programming: A utility-based linear-
quadratic composite metric from the trade-off between achievement and
balanced (non-corner) solutions. European journal of operational research,
182(3):1369–1382.

Ballestero, E. and Pla-Santamaria, D. (2004). Selecting portfolios for mutual
funds. Omega, 32(5):385–394.

Ballestero, E., Pla-Santamaria, D., Garcia-Bernabeu, A., and Hilario, A.
(2015). Portfolio selection by compromise programming. In Socially Re-
sponsible Investment, pages 177–196. Springer.

Ballestero, E. and Romero, C. (1996). Portfolio selection: A compro-
mise programming solution. Journal of the Operational Research Society,
47(11):1377–1386.

Ballestero, E. and Romero, C. (1998). Multiple criteria decision making and
its applications to economic problems. Kluwer Academic Publishers.
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