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1 Introduction

Mathematical Fuzzy Logic was born in the last decade of the XXth century as a sys-
tematical study of a particular kind of systems of non-classical many-valued logic with
the works of Baaz, Cignoli, Esteva, Godo, Gottwald, Hajek, Montagna, Mundici, Novak,
and others (see e.g. [2, 13, 49-52, 57, 58, 69, 72]). Because of their motivation in the
theory of fuzzy sets, the first studied systems were those that admitted a semantics based
on particular well-known continuous t-norms: Lukasiewicz, product, and minimum
t-norm, which respectively corresponded to Lukasiewicz, Product, and Godel-Dummett
many-valued logics. The first comprehensive attempt at systematization of the studies
on these logics was Héjek’s celebrated monograph [53] published in 1998. This book
studied both propositional and first-order formalisms for these logics and set the agenda
for the area by considering all the usual issues in Mathematical Logic for these specific
systems, including their algebraic semantics, proof theory, decidability and computa-
tional aspects, and applications. Moreover, in order to provide a common ground for the
three aforementioned systems, the monograph presented Basic fuzzy Logic BL, which
was conjectured (and later proved [14]) to be complete with respect to the semantics of
all continuous t-norms, and was hence a common base logic that could be axiomatically
extended to the three of them.

The main outcome of the monograph was that, by setting solid logical foundations,
it gave rise to a flourishing new field of study, as witnessed by the prolific literature since
1998 (surveyed, though not exhaustively, by Chapter I of this handbook), in which an
increasing number of researchers have contributed by proposing a growing collection
of systems of fuzzy logics obtained by modifying the defining conditions of BL and its
three main extensions. For instance, the divisibility condition of BL was removed in the
logic MTL [32] which is complete with respect to the semantics of all left-continuous
t-norms [64], many axiomatic extensions of MTL were studied (see e.g. [30, 71]), nega-
tion was removed when considering fuzzy logics based on hoops [33], commutativity
of t-norms was disregarded in [54], and t-norms were replaced by uninorms in [68].
On the other hand, logics with a higher expressive power were introduced by consid-
ering expanded real-valued algebras (with projection /A, involution ~, truth-constants,
etc., see e.g. [16, 31, 34, 35, 37]). Coherently with their initial motivations, the propo-
nents of all these systems have always borne in mind an intended (so called standard)
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semantics based on real-valued algebras, and tried to show soundness and complete-
ness of the logics with respect to them. However, in recent works fuzzy logics have
started emancipating from the real-valued algebras as the only intended semantics by
considering systems complete with respect to rational, finite or hyperreal linearly or-
dered algebras [18, 30, 36, 38, 70].

When dealing with this huge variety of fuzzy logics, and in order to avoid a useless
repetition of analogous results and proofs, one may want to have some tools to prove
general results that apply not only to a particular logic, but to a whole class of logics. To
some extent this has been achieved by means of the notions of core and A-core fuzzy
logics from [56] that have provided a useful framework for some papers such as [18, 70].
However, those classes contain only axiomatic expansions of MTL and MTL » logics,
so they do not cover the aforementioned weaker systems. Therefore, we need to look
for a more general framework able to cope with all known examples and with other new
logics that may arise in the near future.

In doing so, one certainly needs some intuition about the class of objects one would
like to mathematically determine, namely some intuition of what are the minimal prop-
erties that should be required for a logic to be fuzzy. The evolution outlined above shows
that almost no property of these systems is essential as they have been step-by-step dis-
regarded. Nevertheless, there is one that has remained untouched so far: completeness
with respect to a semantics based on linearly ordered algebras. It actually corresponds
to the main thesis of [5] that defends that fuzzy logics are the logics of chains. Such a
claim must be read as a methodological statement, pointing at a roughly defined class of
logics, rather than a precise mathematical description of what fuzzy logics are (or should
be), for there could be many different ways in which a logic might enjoy a complete se-
mantics based on chains.

On the other hand, Algebraic Logic is the branch of Mathematical Logic that studies
logical systems by giving them a semantics based on some particular kind of algebraic
structures. The development we have just outlined shows how Algebraic Logic has been
fruitfully applied to fuzzy logics, and it has also been very useful in many other families
of non-classical logics. Moreover, in the last decades, it has evolved to a more abstract
discipline, Abstract Algebraic Logic, which aims at understanding the various ways in
which a logical system can be endowed with an algebraic semantics and developing
methods and results to deal with broad classes of those systems (see the survey [40] or
the comprehensive monographs [7, 24, 39, 88]). Therefore, it is a reasonable candidate
to provide the general framework we are looking for.

The aim of this chapter is to present a marriage of Mathematical Fuzzy Logic and
(Abstract) Algebraic Logic. In other words, we want to use the notions and techniques
from the latter to create a new framework where we can develop in a natural way a par-
ticular technical notion corresponding to the intuition of fuzzy logics as the logics of
chains. Since the order relation in the algebraic counterparts of fuzzy logics is typically
determined by an implication connective, we will present our framework in the context
of weakly implicative logics (introduced in [17]) which generalize the well-known class
of implicative logics studied by Rasiowa in [76]. These logics enjoy an implication con-
nective — such that for any algebra A in the algebraic semantics one can define an order
relation by setting for any pair of elements a, bin A: a < biffa —4 b € F, where F is
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the subset of designated elements of the algebra representing truth (in typical examples
F= {TA} orF={acAla AT = TA}). This allows to characterize fuzzy logics,
in this context, as those which are complete with respect to the class of algebras where
implication defines a linear ordering or, equivalently, as those logics whose finitely sub-
directly irreducible algebraic models are linearly ordered by the implication. We call
them weakly implicative semilinear logics inspired by the tradition in Universal Algebra
of calling a class of algebras ‘semiX’ whenever their subdirectly irreducible members
are X. We choose the term ‘semilinear’ instead of ‘fuzzy’ in spite of the fact that a first
step towards the general definition we are offering here had been done by the first author
in [17], when he introduced the class under the name weakly implicative fuzzy logics,
because the term ‘fuzzy’ is probably too heavily charged with many conflicting potential
meanings. It needs to be stressed that by this mathematical definition we do not expect
to capture the whole intuitive notion of arbitrary fuzzy logic. Even if we agree that the
linear ordering in the semantics is crucial for a formal logic to be fuzzy, there might still
be several other ways in which a logic might have a complete semantics somehow based
on chains (see e.g. [8, 9]). But still, the notion of weakly implicative semilinear logic
will be able to include (and provide a useful mathematical framework for) almost all
the prominent examples of fuzzy logics known so far and exclude non-classical logics
which are usually not recognized as fuzzy logics in the Logic community.

The chapter is structured as follows. In Section 2 we introduce the necessary notions
from (Abstract) Algebraic Logic, the definition of weakly implicative logic and some
refinements thereof and provide three increasingly stronger completeness theorems for
them. Moreover, we present a very general notion of substructural logics as a particular
family of weakly implicative logics, discuss their syntactical properties and deduction
theorems, and we conclude with a rather general study of disjunction connectives. Sec-
tion 3 presents and studies the main notion of this chapter: semilinearity. It characterizes
semilinear logics in terms of properties of filters and properties of disjunctions, and gives
methods to axiomatize semilinear logics. Section 4 studies first-order predicate systems
built over weakly implicative semilinear logics. It gives axiomatizations, completeness
theorems, and a general process of Skolemization. We conclude with Section 5 provid-
ing historical remarks to understand the genesis of the ideas and results presented in this
chapter and many bibliographical references for further studies in related topics.

2  Weakly implicative logics

This section provides the general basis for the framework presented in this chapter.
Subsection 2.1 gives the most elementary necessary syntactical and semantical notions
and proves completeness of all logics with respect to the class of their models. Sub-
section 2.2 introduces the notion of weakly implicative logics and proves their com-
pleteness with respect to the class of their reduced models. Subsection 2.3 introduces
other semantical notions, including relatively subdirectly irreducible models (RSI), and
proves completeness of weakly implicative logics with respect to the class of their RSI
reduced models. Subsection 2.4 studies the class of algebraically implicative logics, i.e.
those weakly implicative logics enjoying a stronger link with their algebraic semantics.
Subsection 2.5 studies particular kind of algebraically implicative logics: a wide class
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of substructural logics based on the non-associative version of full Lambek logic. Sub-
section 2.6 proves local forms of deduction theorems for associative substructural logics
and shows their relation with proof by cases properties. Finally, Subsection 2.7 consid-
ers proof by cases properties in the framework of a general notion of disjunction and
gives some characterizations that will be very useful in the rest of the chapter.

2.1 Basic notions and a first completeness theorem

In this preliminary subsection we give the most basic syntactic and semantic notions
we need for a general framework to study propositional logics and we prove a first
completeness theorem for them.

DEFINITION 2.1.1 (Language). A propositional language £ is a countable type, i.e.
a function ar: Cr — N, where C is a countable set of symbols called connectives,
giving for each one its arity. Nullary connectives are also called truth-constants. We
write {c,n) € L whenever c € C and ar(c) = n.

The restriction to countable languages is necessary for very few results and simpli-
fies the formulation of many others. The same holds for the following restriction of the
cardinality of the set of propositional variables. Note that, in particular, all the notions
and results of this subsection do not rely on these restrictions.

DEFINITION 2.1.2 (Formula). Let Var be a fixed infinite countable set of symbols
called (propositional) variables. The set F'm, of (propositional) formulae in a proposi-
tional language L is the least set containing Var and closed under connectives of L, i.e.
foreach {c,n) € L and every p1,...,0n € Fmg, c(¢1,...,¢n) is a formula.

In what follows, beginning with the next definition, it will be convenient to identify
Fm, with the domain of the absolutely free algebra F'm of type £ and generators
Var." The variables will be usually denoted by lower case Latin letters p, q, 7, ... The
formulae will be usually denoted by lower-case Greek letters ¢, 1, x, ... and their sets
by upper-case ones I', A, X, ... The set of all sequences (including infinite sequences)
of formulae is denoted by Fm 5.

DEFINITION 2.1.3 (Substitution). Let L be a propositional language. An L-substitut-
ion is an endomorphism on the algebra Fmy, i.e. a mapping o: Fmp — Fm, such
that o(c(p1,...,0n)) = clo(p1),...,0(en)) holds for each {c,n) € L and every
P1,y---50n € Fmg.

Since an L-substitution is a mapping whose domain is a free L£-algebra, it is fully
determined by its values on the generators (propositional variables).

DEFINITION 2.1.4 (Consecution). A consecution® in a propositional language L is a
pair (T, p), where T U {¢o} C Fm/.

Instead of (T, ¢)’ we write ‘T’ > . To simplify matters we will identify a for-
mula ¢ with the consecution of the form () > ¢. Clearly, each subset X of the set of
all consecutions can be understood as a relation between sets of formulae and formulae.
We will use an infix notation and write ‘T" - ¢’ instead of ‘I' > ¢ € A"

IRecall that F'm - has the domain F'm and operations: cF™£ (01, ..., 0n) = c(@1,...,0n).
2The term ‘consecution’ is taken from [1] (the term ‘sequent’ is sometimes used instead).
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DEFINITION 2.1.5 (Logic). Let L be a propositional language. A set L of consecutions
in L is called alogic in the language L when it satisfies the following conditions for each
FTUAU{e} C Fmg:

e Ifpel, thenl -, ¢ (Reflexivity)
o If Aby o foreachy € T and T Fy, ¢, then Ay, . (Cut)
o If T Fy, o, then o[T'] by, o(p) for each L-substitution o. (Structurality)

A logic L is called inconsistent if L is the set of all consecutions.

Observe that reflexivity implies that any logic is non-empty and together with cut it
entails the following monotonicity condition:

o IfI'Fp pand " C A, then A F, . (Monotonicity)

Notice the difference between ‘I' > ¢’ (denoting an object) and ‘T" I, ¢’ (stating
the fact I't> ¢ € L). When the language or logic are known from the context we omit the
parameters L or £; the same convention will be followed in any other case indexed by
L or £. Moreover, instead of TUA F ¢, ‘T U {¢} F ¢, and ‘0 I ¢’ we respectively
write just ‘T, A+ ¢, ‘T, 9 F ¢’, and ‘F ¢’. Finally, we write ‘T" - 3’ instead of ‘T" - x
for each y € ¥’ and ‘T" 4+ ¥’ instead of ‘" - ¥ and ¥ - I". The formulae ¢ such that
F ¢ are called theorems of the logic.

It is easy to observe that the intersection of an arbitrary class of logics in the same
language is a logic as well. Let us introduce the notion of theory. The importance of this
notion will become apparent later when we introduce Lindenbaum matrices.

DEFINITION 2.1.6 (Theory). A theory of a logic L is a set of formulae T' such that if
T t1, o then ¢ € T. By Th(L) we denote the set of all theories of L.

Theories are sometimes also called deductively closed sets of formulae and will be
usually denoted by upper case Latin letters 7, S, R, ... Notice that for each set I' of
formulae, the set Thy,(I') = {¢ | T k1, ¢} belongs to Th(L). Observe that Thy,(T') is
the least theory containing I'; we call it the theory generated by I'. Note that the set of
theorems of L equals to Thy,(f}) and thus it is a subset of any theory T of the logic L.

Now we introduce the notion of axiomatic system as the same kind of objects as log-
ics, i.e. sets of consecutions closed under substitutions; this will simplify the formulation
of some upcoming results.

DEFINITION 2.1.7 (Axiomatic system). Let L be a propositional language. An ax-
iomatic system AS in the language L is a set AS of consecutions closed under arbi-
trary substitutions. The elements of AS of the form I 1> ¢ are called axioms if T' = (),
finitary deduction rules if I is a finite set, and infinitary deduction rules otherwise. An
axiomatic system is said to be finitary if all its deduction rules are finitary.

Notice that the convention we have made above identifying the consecution () > ¢
with the formula ¢, allows to call ¢ an axiom of the axiomatic system. Of course,
each axiomatic system can also be seen as a collection of schemata (by a schema we
understand a consecution and all its substitution instances).
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DEFINITION 2.1.8 (Proof). Let L be a propositional language and AS an axiomatic
system in L. A proof of a formula ¢ from a set of formulae T in AS is a well-founded
tree (with no infinitely-long branch) labeled by formulae such that

e its root is labeled by @ and leaves by axioms of AS or elements of T" and

e ifa node is labeled by 1) and A # () is the set of labels of its preceding nodes,
then A > € AS.

We write T’ Fas o if there is a proof of ¢ from T in AS.

Observe that formal proofs can be seen as well-founded relations (with leaves as
minimal elements and the root as a maximum), thus we can prove facts about formu-
lae by induction over the complexity of their formal proofs. Notice that a deduction
rule {¢1,vs,...} > ¢ gives a way to construct a proof of ¢ from I' if we know the
proofs of 11, 19, ... from I': we just glue them together in a single tree using the rule
{t1,12,...} > @. In contrast, the meta-rule: from I" F ¢y, A py, ... obtain ¥ - ¢
only tells us that if there are proofs of ¥1, o, ... from I, A, ..., then there is a proof of
o from X as well, though it gives no hint to its construction. We could say that rules are
inferences between formulae, whereas meta-rules are in fact inferences between conse-
cutions. We will see prominent examples of meta-rules at the end of this section and in
the next one.

LEMMA 2.1.9. Let L be a propositional language and AS an axiomatic system in L.
Then -4 is the least logic containing AS.

Proof. Obviously F4s is a logic and AS C F4s. We prove that for each logic L, if
AS C L, then F4s C L. Assume that I' F4s ¢, i.e. there is a proof of ¢ from I'. By
induction over the complexity of the proof we can show that for each formula v which
labels some node in the proof we have I" -1, 1, and hence in particular I" k-, ¢. U

DEFINITION 2.1.10 (Presentation, finitary logic). Let L be a propositional language,
AS an axiomatic system in L, and L a logic in L. We say that AS is an axiomatic
system for (or a presentation of) the logic L if L = Fas. A logic is said to be finitary if
it has some finitary presentation.

Observe that each logic has a presentation, for L understood as an axiomatic system
is a presentation of the logic L itself (due to Lemma 2.1.9). Next we show that our
definition of finitary logics is equivalent to the usual one:

LEMMA 2.1.11. Let L be a logic. Then L is finitary iff for each set of formulae T'U{ ¢}
we have: if T b, o, then there is a finite I’ C T such that T F, .

Proof. Assume that L is finitary. Then, by definition, it has a finitary presentation 4S.
Observe that proofs in a finitary axiomatic system are always finite (because by defini-
tion the tree has no infinite branches and, because of finitarity, each node has finitely
many preceding nodes, thus by Konig’s Lemma the tree is finite). This gives the impli-
cation from left to right. The reverse direction is straightforward. O

Observe that in the finitary case we can represent the tree as a linear sequence of
formulae, obtaining thus the usual notion of finite proof.
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DEFINITION 2.1.12 (Finitary companion). The finitary companion of a logic L is the
logic FC(L) defined as: ' = rc(1,y @ iff there is a finite subset I'g C I' such that T'g b, .

Note that the finitary companion of a logic L is the strongest finitary logic contained
in L and it is naturally axiomatized by the set of all finitary consecutions provable in L.

DEFINITION 2.1.13 (Expansion). Let L1 C Lo be propositional languages, L; a logic
in L;, and S a set of consecutions in Lo.

o L is the expansion of Ly by S if it is the weakest logic in Lo containing 1,1 and S,
i.e. the logic axiomatized by all Lo-substitutional instances of consecutions from
S U AS, for any presentation AS of L.

e L is an expansion of Ly if Ly C Lo, i.e. it is the expansion of Ly by S, for some
set of consecutions S.

e L is an axiomatic expansion of L, if it is an expansion obtained by adding a set
of formulae.

o L is a conservative expansion of L if it is an expansion and for each consecution
I'> pin L1 we have that T F1,, @ entails ' F1,, ¢.

If L1 = Lo, we use ‘extension’ instead ‘expansion’.’

Next we introduce the necessary basic semantical notions. Let us fix a propositional
language £. The logics in this language are given a semantical interpretation by means
of the notion of logical matrix, which is a pair formed by an L-algebra (which interprets
the formulae capitalizing on the fact that £ can also be seen as an algebraic language)
and a filter (a subset of designated elements in the domain of the algebra which gives a
notion of truth for the logic):

DEFINITION 2.1.14 (Logical matrix). An L-matrix is a pair A = (A, F') where A is
an L-algebra called the algebraic reduct of A, and F' is a subset of A called the filter
of A. The elements of F' are called designated elements of A.

A matrix is trivial if F = A. A matrix is finite if its underlying algebra has a finite
domain. The matrices where A = F'm are called Lindenbaum matrices.

DEFINITION 2.1.15 (Evaluation).  Let A be an L-algebra. An A-evaluation is a
homomorphism from Fm, to A, i.e. a mapping e: Fm,p — A, such that for each
(¢,n) € L and each n-tuple of formulae 1, ..., @, we have: e(c(p1,...,¢n)) =

cAe(er), ... elen)).

As in the case of substitutions, since an A-evaluation is a mapping whose domain
is a free L-algebra, it is fully determined by its values on the generators (proposi-
tional variables). By e[p—a| we denote the evaluation obtained from e by assigning
the element ¢ € A to the variable p and leaving the values of remaining variables un-
changed. For a formula ¢ build from variables pi, ..., p,, an algebra A, elements
ai,...,a, € Aand an A-evaluation e such that e(p;) = a;, we write p(ay,...,a,)
instead of e(o(p1, - ..,pn)). Given a matrix A = (A, F') and A-evaluation e, we will
also call e an A-evaluation.

30bserve that any conservative extension of any logic is just the logic itself.
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DEFINITION 2.1.16 (Semantical consequence). A formula ¢ is a semantical conse-
quence of a set ' of formulae w.r.t. a class K of L-matrices if for each (A, F) € K and
each A-evaluation e, we have e(p) € F whenever e[l'| C F; we denote it by I' =k .

We write =4 instead of =¢43. Obviously, |=x is a set a of consecutions, but more
can be proved (the second claim will be generalized in Proposition 2.3.13):

LEMMA 2.1.17. Let K a class of L-matrices. Then =k is a logic in L. Furthermore if
K is a finite class of finite matrices, then the logic = is finitary.

Proof. We need to check the three properties in the definition of logic. The first one
is obvious. To show the second one fix (A, F) € K and an A-evaluation e such that
e[A] C F. Then clearly e(¢)) € F foreach ¢ € T, i.e. e[I'] C F, and so e(p) € F.
The final condition: fix (A, F') and e as before and assume that e(c[I']) C F. Since
e/ = eooisan A-evaluation and €'[I'] C F, we obtain e(c(¢)) = €’(¢) € F.

The second claim: if we prove it for K = {(A, F')} the proof is done by observing
that: (1) ExuL = FEx N L, and (2) the intersection of two finitary logics is finitary.
Assume that IV £k ¢ for each finite IV C I" and we want to show that " g .

Let us consider the finite set A endowed with discrete topology and its power AY"
with product (=weak) topology. Both spaces are compact (the first one trivially and
the second one due to Tychonoff theorem). Clearly each evaluation e can be identified
with an element of AY*" and vice versa. For each formula ) we define a mapping
Hy: AV — Aas Hy(e) = e(t). It can be easily shown that these mappings are
continuous, thus (Hy,) ~![F] is a closed set and so is the set (Hy,) " [F]N(H,) A\ F)
(i.e. the set of evaluations which satisfy the formula v but not the formula ¢). Let us
now consider the system of closed sets {(Hy) ™' N (Hy,) *[A\ F]) | ¢ € T'}. This is
clearly a centered system (the intersection of any finite subsystem given by a set I/ is
non-empty, because it contains any evaluation which witnesses that I j£x ). Thus,
due to the compactness of A", the intersection of the whole system is non-empty and
the proof is done (because any element of this intersection is an evaluation satisfying the
set I' but not the formula (). O

DEFINITION 2.1.18 (L-matrix). Let L be a logic in L and A an L-matrix. We say that
A is an L-matrix if L C [Ea. We denote the class of L-matrices by MOD(L).

Observe that for each presentation AS of a logic L we have: A € MOD(L) iff
AS C [=a (one direction is obvious, the second one is Lemma 2.1.9).

LEMMA 2.1.19. Let L be a logic in L and a mapping g: A — B be a homomorphism
of L-algebras A, B. Then:

e (A g71[G]) € MOD(L), whenever (B,G) € MOD(L).

e (B,g[F]) € MOD(L), whenever (A, Fy € MOD(L) and g is surjective and
g(x) € g[F] implies x € F.

Proof. The first claim is straightforward: assume that I' 1, ¢ and e[I'] C g~![G] for

some A-evaluation e. Thus, g[e[l']] € G which, since g o e is a B-evaluation and
(B,G) € MOD(L), implies that g(e(p)) € G, i.e. e(¢) € g7 [G].
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The second claim: assume that I" 1, ¢ and for a B-evaluation f it is the case that
fIT] € g[F]. Let us define an A-evaluation e by setting e(v) = a for some a such that
g(a) = f(v) (such a has to exist because g is surjective). Next we show by induction
that f(¢) = g(e(¢)). The base is trivial. Let us assume that ¢ = ¢(¢p1, ..., @, ). Then:

fle(er,--om)) = B(fler),---, flen)) =
= B(gleler)),- -, g(elen) =
= g(cA(e((p1)7 . ae((pﬂ))) =
= gle(cler, -5 on)))-
From gle[l']] = f[I'] C g[F] we obtain e[l'] C F. Thus e(y)) € F and so f(¢)) =
g(e(¥)) € g[F]. O

DEFINITION 2.1.20 (Logical filter). Given a logic L in L and an L-algebra A, a subset
F C AisanL-Afilterif (A, F) € MOD(L). By Fiy,(A) we denote the set of all L-filters
over A.

Observe that A € Fiy,(A) and Fir,(A) is closed under arbitrary intersections, i.e.
Fir(A) is a closure system (we deal with closure systems in detail in Subsection 2.3)
which allows us to endow it with a (complete) lattice structure:

DEFINITION 2.1.21 (Generated filters and lattice of logical filters). Let L be a logic
in L and A an L-algebra. Given a set X C A, the logical filter generated by X is
Fif'(X) = "{F € FirL(A) | X C F}. FiL(A) is given a lattice structure by defining
forany F,G € Fi (A, FAG=FNGand FV G =Fif(FUG).

Moreover, some results in Subsection 2.7 will need the following definition:

DEFINITION 2.1.22 (Filter-distributivity). A logic L is filter-distributive if for each
L-algebra, the lattice Fiy,(A) is distributive.

The elements of a filter generated by a set are characterized in the next proposition
by means of the notion of proof in algebra. It consists in generalizing to any algebra the
notion of proof introduced in Definition 2.1.8 for the algebra of formulae.

PROPOSITION 2.1.23 (Proof in algebra). Let L be a logic, AS one of its presenta-
tions, A an L-algebra, and X U {a} C A. Let us define a set Vys C P(A) x A as
{(e[[],e(y)) | e is an A-evaluation and T 1> € AS}.* Then a € Fi*(X) iff there is
a well-founded tree (called proof of a from X ) labeled by elements of A such that

e its root is labeled by a, and leaves are labeled by elements x such that x € X
or (), x) € Vas and

e ifanode is labeled by x and Z # ) is the set of labels of its preceding nodes,
then (Z,x) € Vys.

“Note that if A = F'm, then V35 = AS.
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Proof. Let D(X) be the set of elements of A for which there exists a proof from X.
We can easily show that AS C =4 p(x)).- Indeed, assume that I' > ¢ € AS and
RII] € D(X) for some evaluation h. Then for each 2 € h[I'] there is a proof from X
and, since (R[], h[p]) € Vs, we can connect these proofs so that they will form a proof
of h(p). Thus D(X) € Fiy,(A) and, since X C D(X), we obtain Fi(X) C D(X). To
prove the converse direction consider z € D(X) and notice that for each y appearing
in its proof we can easily prove inductively that y € Fi(X) (because Fi(X) is closed
under all the rules of L, in particular those in AS). O

Next we show that the filters of Lindenbaum matrices can be nicely characterized.
PROPOSITION 2.1.24. For any logic L in a language L, Fir,(Fmg) = Th(L).

Proof. LetT' € Fir,(Fmyg), ie.if A Fy, ¢ then for each F'm c-evaluation e we have
e(p) € T whenever e[A] C T. Therefore, in the particular case where the evaluation e
is the identity and A =T, we obtain I' € Th(L).

Next assume that 7' € Th(L), A Fr, ¢, and e is an F'm-evaluation such that
e[A] C T, thus also T' +y, e[A]. By structurality, also e[A] by, e(y), and thus also
T k1, e(yp). Since T is a theory, we have e(p) € T O

We close the subsection observing that the notions introduced so far are enough to
obtain a first completeness theorem for any logic.

THEOREM 2.1.25 (Completeness w.r.t. all models). Let L be a logic. Then for each set
I of formulae and each formula o the following holds: T' by, 0 iff T Fmobpr) -

Proof. Soundness is obvious. For the reverse direction assume that I' ¥1, ¢ and define
T = Thy,(T"). We know that (Fm,T) € MOD(L) and then the identity mapping is
the (F'm, T)-evaluation we need to show that I' [=niop(r) - O

2.2 Weakly implicative logics and a second completeness theorem

In this subsection we first introduce the main defining notion for the framework of
this chapter: the class of weakly implicative logics. Then we use the notions of Leibniz
congruence and reduced model to prove a second completeness theorem. Although
these notions can be introduced in general for any propositional logic and completeness
with respect to its reduced models can be proved in general, we will restrict to weakly
implicative logics for the sake of simplicity.

DEFINITION 2.2.1 (Weakly implicative logic). Let L be a logic in a language L. We
say that L is a weakly implicative logic if there is a binary connective — (primitive or
definable by a formula of two variables in language L) such that:

(R) kLo — ¢

(MP) ¢, o =¥ brL e

(T) == xbLe = x

(Scng) C)O;)wvw‘)@FL C(Xla"'invQOa"',Xn) %C(le"inawa"'aXn)

foreach (c,n) € L and each 0 < i < n.
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The acronyms respectively stand for ‘reflexivity’, ‘modus ponens’, ‘transitivity’ and
‘symmetrized congruence’. The connective — is called a weak implication of L. There
could be, in principle, several different weak implications in a given logic. For the sake
of simpler notation we will avoid indexing many of the upcoming notions with a weak
implication by assuming from now on that each language comes with a fixed binary
(primitive or derivable) connective —, such that if a logic in this language is weakly
implicative, then — is one of its weak implications and all notions are defined w.r.t. this
particular implication. We will call — the principal implication of the logic. In some
rare cases, when we may need to speak at once about notions corresponding to different
weak implications, we will index these notions by their corresponding weak implication
to avoid any confusion.

EXAMPLE 2.2.2. In classical logic the usual connectives of implication and equiva-
lence, — and <, are both actually weak implications in our sense, but observe they have
a very different logical behavior (for instance, only the former satisfies ¢ F ¥ — ).
More generally, all connectives — in the various logics mentioned in Chapter I are weak
implications. Therefore, all these logics are examples of weakly implicative logics.

Now we consider the properties of the symmetrization of a weak implication — in
a logic L. Given a pair of formulae ¢, ¥, we use the expression ‘p <+ 1’ to denote the
set of formulae {¢ — ©,1 — @} (recall that, according to previous conventions, by
'L o <& Y wemeanthat ' Fy, o — ¢ and T" Fr, ¥ — ). We can easily show that
< behaves like a congruence.

THEOREM 2.2.3 (Congruence Property). Let L be a weakly implicative logic and
©, Y, x formulae. Then:

L 2R )

s oYLy o

e &0 YL Y

s oYL X
where X is obtained from x by replacing some occurrences of @ in x by .

By using the last part for x = ¢ —' 1) we obtain an important corollary:
COROLLARY 2.2.4. Let — and —' be two weak implications in a logic L. Then:

@ e L g e .

Therefore, if we had two different weak implications in a logic, their symmetriza-
tions would behave exactly in the same way as far as provability is concerned. Now,
aiming to obtain a finer complete semantics for weakly implicative logics, we introduce
some further semantic notions.

DEFINITION 2.2.5 (Leibniz congruence). Let A = (A, F') be an L-matrix for a weakly
implicative logic L. The matrix preorder < of A isdefinedasa <a biff a -4 b e F.
Further we define the Leibniz congruence Qa (F) of A as {a,b) € Qa(F)iff a <a b
and b <a a.
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DEFINITION 2.2.6 (Logical congruence). A logical congruence in a matrix (A, F) is
a congruence 6 of A compatible with F, i.e. such that for each a,b € A if a € F and
(a,b) € 0, thenb € F.

THEOREM 2.2.7 (Characterization of Leibniz congruence). Let L be a weakly implica-
tive logic and A = (A, F) € MOD(L). Then:

o <, isa preorder.
o QA (F) is the largest logical congruence of A.

o {(a,b) € Qa(F) if, and only if, for each formula x and each A-evaluation e it is
the case that e[p—al(x) € F iff e[p—b](x) € F.

Proof. The fact that <, is a preorder follows from (R) and (T). Q4 (F) is a congruence
because of (sCng), and it is logical because of (MP). To see that it is the largest one,
assume that 6 is a logical congruence of A and (a,b) € 6. Since {a,a) € 6, we have
{a =2 a,a =2 b) € fand a -4 a € F. Hence, by compatibility, a =4 b € F.
Analogously b —4 a € F, and so {a,b) € Qa(F),ie. 0 C Qa(F).

Final claim: one direction is a straightforward corollary of (sCng). The converse
direction: consider the formula p — ¢ and the evaluation e(q) = b. Then we obtain that
a—Abec Fiffb -4 bec F. Thus a < band, since using the evaluation e(q) = a
we can prove b <a a, the proof is done. O

DEFINITION 2.2.8 (Reduced matrix, MOD*(L), and ALG™(L)). Let L be a weakly
implicative logic. An L-matrix A = (A, F) is said to be reduced if Qa(F) is the
identity relation 1d o. The class of all reduced models of L is denoted by MOD*(L),
and the class of algebraic reducts of matrices of MOD™ (L) is denoted by ALG™(L).
The members of ALG™ (L) are called L-algebras.

Observe that a reduced model of a logic is non-trivial if, and only if, its algebraic
reduct has more than one element. We could alternatively define reduced matrices as
those whose matrix preorder is an order. The next lemma shows us how to turn any
model into a reduced one. Let A = (A, F') be a matrix, we use the following notation:
[alp ={be Al {a,b) € Qa(F)}, [F] = {[a]F | @ € F'}, and A" = (A/Qa(F), [F]).

LEMMA 2.2.9. Let L be a weakly implicative logic and A = (A, F) € MOD(L).
Then:

1. A* ¢ MOD(L).
2. [a]F <a- [b|F iffa =2 b € F, for every a,b € A.
3. A* € MOD*(L).

Proof. 1. Clearly [-]F is a surjective homomorphism from A onto A/Q4(F). By
Lemma 2.1.19, all we need to show is: [a]p € [F]|implies a € F. The assumption
gives us [a]p = [b]F for some b € F. Then (a,b) € Q4 (F') and, since Q4 (F') is
a logical congruence, we obtain a € F'.
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2. [a]r <a- [B]F iff [a] p —A/2AE) (0] € [F)iff [a—Ab]p €[F]iffa—2b € F.
3. [a]r <a~ [b]F and [b]p <A~ [a]F entail (a,b) € Qa(F) and so [a]p = [b]p. O

DEFINITION 2.2.10 (Leibniz operator). Let L be a weakly implicative logic in a lan-
guage L, and A be an L-algebra. The Leibniz operator associated to A is the function
giving for each F' € Fiy,(A) the Leibniz congruence Q4 (F).

PROPOSITION 2.2.11. Let L. be a weakly implicative logic L. and A an L-algebra.
Then

1. Q4 is monotone (i.e. if F' C G then Qa(F) C Qa(G)).

2. Q a commutes with inverse images by homomorphisms, that is, for every
L-algebra B, every homomorphism h: A — B and every F' € Fiy,(B),
Qa(h7UF]) = h~ QB (F)] = {(a,b) | (h(a), h(b)) € QB (F)}.

3. QalFiL(A)] = Conarg- 1) (A), where by Conay,g-(1,)(A) we denote the
set ordered by inclusion® of congruences of A giving a quotient in ALG*(L).

Proof. The proofs of the first two claims are easy (by Lemma 2.1.19 h~![F] is indeed a
filter on A). To prove the third first one observe that Q4 [Fir,(A)] € Conayg-1)(A)
(due to the Lemma 2.2.9). To show the second direction assume © € Conarg-(1)(4A).
We know that A/© € ALG*(L),i.e. (A/0, Fy) € MOD* (L) for some filter Fy. Let
k be the canonical mapping from A onto A/O, we define F' = k~![F}] and, again by
Lemma 2.1.19, we know that ' € Fiy,(A). To complete the proof just observe that
Qa(F) = Qa(k ' [F)]) = k' [Qa/0(Fo)] = K [Idase] = ©. O

Next we introduce the well-known notion of Lindenbaum-Tarski matrices, in the
traditional way as it is usually done in the literature, and show how they are related to
reduced matrices.

DEFINITION 2.2.12 (Lindenbaum-Tarski matrix). Let L be a weakly implicative logic
in Land T € Th(L). For every formula @, we define the set

[elr ={¢ € Fmg | p < CT}.

The Lindenbaum—Tarski matrix with respect to L and T, LindTr, is the L-matrix
whose designated set is {[¢]r | @ € T}, and whose L-algebra has the domain {[o]r |
¢ € Fm,} and operations 9T (o] .. [pn]r) = [e(@1, -5 0n)] T

Clearly, for every T' € Th(L), the matrix Lind T coincides with (Fm,,T)*
Now we are ready to prove the main result of this subsection.

THEOREM 2.2.13 (Completeness w.r.t. reduced models). Let L be a weakly implicative
logic. Then for any set I of formulae and any formula o the following holds: T' by, ¢ iff

r ':MOD*(L) P-

SLater, after Proposition 2.3.13, we show that Con a1, ~ (L) (A) is actually a lattice.
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Proof. Soundness is obvious. For the reverse direction, let 7" be the theory generated
by I'; clearly LindTr € MOD*(L) (Lemma 2.2.9). Consider a Lind T'r-evaluation e
defined as e(y)) = [¢/]r and observe that e[I'] C e[T'] C [T']. Thus fromI' =pop- (1) @
we obtain that [¢]r = e(p) € [T] and thus T by, o and so finally T -, ¢. O

The proof shows how the theorem can be strengthened: every weakly implicative
logic is complete w.r.t. the class of Lindenbaum—Tarski matrices.

2.3 Advanced semantics and a third completeness theorem

In this subsection, after recalling some further knowledge about closure systems,
closure operators and logical matrices, we obtain a third completeness theorem for fini-
tary weakly implicative logics.

DEFINITION 2.3.1 (Closure system). A closure system over a set A is a collection
of subsets C C P(A) closed under arbitrary intersections and such that A € C. The
elements of C are called closed sets.

For example, we have seen that given a logic L and (A, F') € MOD(L), Fir(A)
is a closure system over A; in particular Th(L) is a closure system over Fm .

DEFINITION 2.3.2 (Closure operator). Given a set A, a closure operator over A is a
mapping C': P(A) — P(A) such that for every X, Y C A:

1. X C O(X),
2. C(X) = C(C(X)), and
3. if X CY, then C(X) C C(Y).

Every closure operator C' defines a closure system: {X C A | C(X) = X}. Con-
versely, given a closure system C over A, one can define a closure operator as follows:
C(X)={Y €C| X CY}. This gives a one-to-one correspondence between closure
operators and systems. The closure operator associated to the closure system Th(L) will
be denoted as Thy,, analogously the one associated to Fir,(A) will be denoted as Fif;
as usual, we omit the parameters when known from the context.

A closure operator C'is finitary if forevery X C A, C(X) = J{CY)|Y C X
and Y is finite}. A closure system C is called inductive if it is closed under unions of
upwards directed families (i.e. families D # () such that for every A, B € D, there is
C € Dsuchthat AUB C C).

THEOREM 2.3.3 (Schmidt Theorem). A closure operator C'is finitary if, and only if,
its associated closure system C is inductive.

Proof. Assume that C' is finitary and take an upwards directed family D C C. It suffices
to show that C(|JD) C |JD. Take any a € C(|JD). By finitarity, a € C(aq,...,an,)
for some aq,...,a, € |JD. Since D is upwards directed, there exists a T, € D such
that a,...,a, € Ty and, hence, a € C(Ty) = Ty € D, and so a € |JD. Conversely,
assume that C is inductive, take any X C A and consider the family D = {C(F) |
F C X finite}. Since D is clearly upwards directed we have | JD € C, and therefore
UD =C(X). O
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Note that the finitarity of a logic L is equivalent to the finitarity of the corresponding
closure operator Thy,. The next corollary is the first example we meet in this chapter of
the so-called transfer theorems: theorems which transfer a given property of a logic L
(understood as the closure operator/system over the set of formulae) to the analogous
property of closure operator/system of all L-filters over any algebra.

COROLLARY 2.3.4 (Transfer theorem for finitarity). Given a logic L in a language L,
the following conditions are equivalent:

1. L is finitary.
2. Fif is a finitary closure operator for any L-algebra A.
3. FiyL(A) is an inductive closure system for any L-algebra A.

Proof. The equivalence of the last two claims is established by the previous theorem.
It is clear that 2 implies 1 by taking A = F'm . Let us see that 1 implies 3. Take an
upwards directed family 7 C Fir,(A) and define ' = |JF. We need to show that
F € Fiy(A). Assume that I' Fy, ¢ and e is an A-evaluation such that e[I'] C F.
Since L is finitary, there is a finite set 'y C I such that I'g Fy, . Then, since the
family is upwards directed, there has to be an F, € F such that e[l'g] C Fj and so
e(p)e Fy CF. O

A useful notion in the theory of closure systems is that of base, which is a distin-
guished family of closed sets allowing to describe all closed sets of the system.

DEFINITION 2.3.5 (Base). A base of a closure system C over A is any B C C satisfying
one of the following equivalent conditions:

1. C is the finest closure system containing B.

2. ForeveryT € C\ {A}, thereis a D C B such that T = (D.

3. ForeveryT € C\{A}, T=(\{Be€B|TC B}.

4. ForeveryY € Canda € A\Y thereis Z € BsuchthatY C Zanda ¢ Z.

DEFINITION 2.3.6 (Maximal w.r.t. an element, saturated, and (finitely) N-irreducible
closed sets). An element X of a closure system C over A is called

e maximal w.r.t. an element a if it is a maximal element of the set {Y € C | a ¢ Y}
w.r.t. the order given by inclusion,

e saturated if it is maximal w.r.t. some element a,

o (finitely) N-irreducible if for each (finite non-empty) set Y C C such that
X = ﬂYey Y, thereisY € YV suchthat X =Y.

Note that the set A is finitely N-irreducible but is not N-irreducible, because it is
the intersection of the empty set. Also observe that finite-N-irreducibility of X can be
equivalently defined by the following condition: for each Y7,Y5 € C such that X =
YiNYswehave X =Y or X = Y5.
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PROPOSITION 2.3.7. Let C be a closure system over a set A and T € C. Then, T is
saturated if, and only if, T is N-irreducible.

Proof. Assume that T is not N-irreducible, i.e. there is a family {T; | ¢ € I} C C such
that T' = ﬂie ;T; and T' C T; for every ¢ € I. Therefore, for every i € I we can
choose b; € T; \ T, and thus T' C C(T,b;) C T;; this gives: T = ({C(T,b;) | i € I'}
and hence T' = ({C(T,b) | b ¢ T}. Assume, in search of a contradiction, that T is
maximal w.r.t. an element @ € A. Then for every b ¢ T, we have T' C C(T,b), and the
maximality implies & € C'(T,b). Thus a € ({C(T,b) | b ¢ T} = T’; a contradiction.
Conversely, assume that T is N-irreducible. Clearly, ' C (\{C(T,b) | b ¢ T} and
thus there is a € ({C(T,b) | b ¢ T} \ T, which means that 7" is maximal w.r.t. a.
Indeed: if 77 € Cand T C T", then thereis b € T"\ T, and thus o € C(T,b) CT'. O

The next lemma allows to prove that in finitary closure systems, the N-irreducible
sets always form a base. This will be later used, as a particular consequence, to obtain a
refined completeness theorem for weakly implicative logics.

LEMMA 2.3.8 (Abstract Lindenbaum Lemma). Let C be a finitary closure operator
and C its corresponding closure system. If T € C and a ¢ T, then there is T' € C such
that T C T' and T" is maximal with respect to a.

Proof. The proof is an easy application of Zorn’s Lemma. Observe that the set 4 =
{SeC|TC Sa¢ S}is clearly non-empty because T € A. Take any chain
{Si|i e I} € A. By Schmidt Theorem | J,; S; € C and it is obvious that it contains
T and it does not have a as an element, hence | J,.; S; € A and it is an upper bound
of the chain. By Zorn’s Lemma A has some maximal element 7" which satisfies the
desired property. O

COROLLARY 2.3.9. Let C be a finitary closure operator and C its associated closure
system. Then the class of N-irreducible (i.e. saturated) sets of C forms a base of C.

On the other hand, it is also interesting to consider the maximal closed sets in a
closure system:

DEFINITION 2.3.10 (Maximal closed set). Let C be a closure system over A. A closed
set T € C\ {A} is called maximal or maximally consistent if it is a maximal element in
C \ {A} with respect to the order given by inclusion.

The following characterization is straightforward:

PROPOSITION 2.3.11. Let C be a closure system over A and T € C \ {A}. The
following are equivalent:

1. T is maximally consistent.
2. T is maximal w.r.t. everya € A\ T.

As another consequence of the abstract Lindenbaum Lemma one can show that
every closed set can be extended to a maximally consistent one:
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PROPOSITION 2.3.12. Let C be a finitary closure system over A with an inconsistent
element (i.e. an element a € A such that C(a) = A). Then every T € C\ {A} can be
extended to a maximally consistent T' € C.

Proof. Since a does not belong to 7' (otherwise we would have T' = A), by the Lin-
denbaum Lemma, there is 7 O T maximal w.r.t. a. Then T” is actually maximally
consistent. Indeed, if 77 C T", then a € T” and thus 7" = A. O

However, this last result does not entail that maximally consistent sets form a base.
Although it is well-known that this is the case in classical logic, it is not generally true.
For instance, the basic fuzzy logic BL introduced in the previous chapter provides a
counterexample.

Now we introduce some further necessary notions on matrix theory. Observe that
an L-matrix (A, F') can be regarded as a first-order structure in the equality-free predi-
cate language with function symbols from £ and a unique unary predicate symbol, with
domain A, function symbols interpreted as the operations of A, and the predicate inter-
preted by F'. From this perspective, one can define the usual notions of substructure (now
called submatrix), homomorphism (if a € F}, then h(a) € Fy), strict homomorphism
(a € Fy iff h(a) € Fy), isomorphism, direct product, reduced product and ultraproduct
for matrices. Given a class of matrices K, we will denote by S(K), H(K), Hs(K),
I(K), P(K), Pr(K) and Py (K) the closure of K under the mentioned operations. An-
other special operation on the classes of matrices we will need later is the operator of
reduced products over countably complete filters (i.e. filters closed under countable in-
tersections) which we will denote as P,_. Note that obviously P(K) C P,_#(K). It
should also be noted that a bijective matrix homomorphism is not necessarily an iso-
morphism (because its inverse need not be a matrix homomorphism). An embedding of
matrices is an injective strict homomorphism.

From the results in [24] one can obtain the following properties about the behavior of
these operators on models and reduced models (observe that the third claim generalizes
Lemma 2.1.17):

PROPOSITION 2.3.13. Let L be a weakly implicative logic. Then:
1. SP(MOD(L)) € MOD(L).
2. SP,.;(MOD*(L)) € MOD*(L).
3. If KCMOD(L), PyI(K) C I(K), and L = =k, then L is finitary.
4. Py(MOD*(L)) € MOD*(L) iff L is finitary.

As a consequence we obtain that, for every weakly implicative logic L, ALG* (L)
is closed under subalgebras and direct products; moreover for every L-algebra A the
set of relative congruences, Conayg+(1) (A) is a complete lattice w.r.t. the inclusion
order (indeed, given a family X C Conarg+(1)(A) the quotient of A by (] X’ embeds
into the direct product of the quotients of A by the elements of X and hence, since
ALG™(A) is closed under S and P, we are done).
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The notion of subdirect product from Universal Algebra is also generalized to ma-
trices. A matrix A is said to be representable as a subdirect product of the family of
matrices {A; | i € I} if there is an embedding homomorphism « from A into the direct
product [ [, ; A; such that for every i € I, the composition of o with the i-th projection,
m; o, 1S a surjective homomorphism. In this case, « is called a subdirect representation,
and it is called finite if I is finite.

Let L be a logic and K € MOD*(L). By Pgsp(K) we denote the closure of K
under subdirect products. A non-trivial matrix A € K is (finitely) subdirectly irreducible
relative to K if for every (finite non-empty) subdirect representation o of A with a family
{A; | i €I} CKthereisi € I such that 7; o « is an isomorphism. The class of all
(finitely) subdirectly irreducible matrices relative to K is denoted as Kgp)sy. Of course
Krst € Krrsi- When K = MOD* (L) these classes are characterized in the following
way:

THEOREM 2.3.14 (Characterization of RSI and RFSI reduced models). Given a weakly
implicative logic L and A = (A, F) € MOD* (L), we have:

1. A € MOD*(L)gs; if, and only if, F is N-irreducible in Fip,(A).
2. A € MOD*(L)grs1 if;, and only if, F is finitely N-irreducible in Fiy,(A).

Proof. Let us first solve the case when A is a trivial reduced matrix, i.e. F' = A = {a}.
Recall that in this case, F' is finitely N-irreducible but not N-irreducible in Fiy,(A).
Obviously, A € MOD*(L)grsr and A ¢ MOD™(L)Rgr, because the product of the
empty system of matrices is a trivial matrix.

We write only the proof for the first claim (the second one is completely analo-
gous). Suppose that A € MOD* (L)gs; and, in search of a contradiction, that F' is not
N-irreducible in Fiy,(A), i.e. ' = (,c; F; where F' C F; € Fi(A) forevery i € I.
We use these filters to define reduced matrices A; = (A, F;)* € MOD"(L) and show
that a: A — [];c; Ay, defined as a(a) = ([a]F, | i € I), is a subdirect representa-
tion of A. The homomorphisms 7; o o are indeed surjective, « is clearly is a strict
homomorphism, so it remains to show the injectivity of a. Assume that a # b. Then,
since A is reduced, we can (without loss of generality) assume that a —# b ¢ F and
soa =4 b ¢ [ for some i € I. Thus [a]p, # [b]r, and so a(a) # a(b). Since
A € MOD"(L)ggi, there must be j € I such that 7; o « is an isomorphism. Assume
now that a € Fj, this implies 7;((a)) = [a]F, € [F}] and, since 7; o a is isomorphism
it is a also a strict homomorphism of A and A; and so a € F, and hence F; = I'—a
contradiction.

We prove the converse direction contrapositively: assume that A ¢ MOD*(L)gs;,
i.e. there is a family of reduced models of the logic {A; = (A;,F;) | ¢ € I} and a
subdirect representation oc: A — [],.; A; where no projection gives an isomorphism.
This will allow us to define a collection of filters giving a decomposition of F'. Indeed,
take F; = (m; o a)"![F;] and so by Lemma 2.1.19 F; € Fir,(A). Due to the strictness
of o we have F' = ﬂiel F,. fF = F'j for some j € I, then 7; o o would be an
isomorphism, contradicting the hypothesis. Therefore F' is not N-irreducible in Fiy,(A).

O



Chapter II: A General Framework for Mathematical Fuzzy Logic 121

THEOREM 2.3.15 (Subdirect representation). If L is a finitary weakly implicative logic,
then MOD*(L) = Psp(MOD* (L)gsi), thus in particular every matrix in MOD* (L)
is representable as a subdirect product of matrices in MOD* (L)ggr.

Proof. One inclusion is relatively easy: Psp(MOD*(L)grsr) € SP(MOD*(L)) C
SP,.;(MOD"(L)) € MOD"(L), (the last inclusion is due to claim 2 in Propo-
sition 2.3.13, the others are trivial). To prove the converse inclusion consider A =
(A, F) € MOD*(L). By Corollary 2.3.4, FiLA is finitary and, by Corollary 2.3.9,
there exists a family {F; | i € I} of N-irreducible filters such that F' = ,_; Fi.
Take A; = (A, F;)*. So we have a subdirect representation a: A < [],.; A; taking
ala) = ([a]; | i € I) for every a € A. Because F; is N-irreducible, Theorem 2.3.14
tells us that (A, F;)* € MOD™(L)ggy for every i € 1. O

As a consequence of this theorem and Theorem 2.2.13 we obtain a third complete-
ness theorem (this time restricted to finitary logics):

THEOREM 2.3.16 (Completeness w.r.t. RSI reduced models). Let L be a finitary weakly
implicative logic. Then -1, = FMOD* (L)rs:-

2.4 Algebraically implicative logics

In this subsection we consider the relation between weakly implicative logics and
the equational consequence on their corresponding classes of algebras. Let us fix a
propositional language L.

DEFINITION 2.4.1 (Equation). An equation in the language L is a formal expression
of the form ¢ ~ 1), where @, € Fm.

DEFINITION 2.4.2 (Equational consequence). We say that an equation ¢ ~ 1) is a
consequence of a set of equations Il w.rt. a class K of L-algebras if for each A € K and
each A-evaluation e we have e(p) = e(y)) whenever e(«) = e(B) for each o = € II;
when this is the case, we denote it by Il =g ¢ & ).

Given any weakly implicative logic L, the equational consequence given by the class
of L-algebras can be translated into the logic in the following way:

PROPOSITION 2.4.3. Let L be a weakly implicative logic and I U {¢ =~ 1} a set of
equations. ThenI1 Fayvg-L) ¢ RV iff {a < Blax B ell} L ¢ .

Proof. We show the proof of one implication, the proof of the converse one is similar.
Assume I Farg-r) ¢ ~ 1. Tocheck that {a <+ B | a ~ B € II} FL ¢ < it
is enough (due to the completeness theorem 2.2.13) to check the equivalent semantical
statement {a <+ 3 | a = € II} Fmop- (1) ¢ <+ ¢. Take any (A, F) € MOD*(L)
and an A-evaluation v satisfying the premises, i.e. for every a ~ [ € II we have
v(a) =4 v(B),v(B) =4 v(a) € F, and hence (since the matrix is reduced) v(a) =
v(B). By the assumption (using that A € ALG" (L)) we know that v(y) = v(1) and
thus v(p) =4 v(¥),v(v) =4 v(p) € F. O

However, if we want to obtain a better connection between the logic and the equa-
tional consequence enjoying also a translation from the former to the latter, we need to
restrict to a special subclass of weakly implicative logics.
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DEFINITION 2.4.4 (Algebraically implicative logic). We say that a logic L is alge-
braically implicative if it is weakly implicative and there is a set of equations £ in one
variable such that for each A = (A, F) € MOD*(L) and each a € A holds: a € F
if, and only if, u(a) = v (a) for every u =~ v € . In this case, ALG*(L) is called
the equivalent algebraic semantics of L.

For a set I" of formulae, by £[I'] we denote the set | J{E(7) | v € T'} of equations.

THEOREM 2.4.5 (Characterizations of algebraically implicative logics). Given any
weakly implicative logic L, the following are equivalent:

1. L is algebraically implicative.

2. There is a set of equations & in one variable such that

(Alg) p b {ulp) < vp) u~=v e}

3. There is a set of equations £ in one variable such that:

o foreveryI' U{p} C Fmg, I' b @ iff E[T] FavLe-w) E(p) and
* p~qEaLc-w) E[p ¢ qland Elp < q] Fave-1) P~ ¢

4. For every L-algebra A, the Leibniz operator § 4 is a lattice isomorphism from
Fir, (A) to Conpg,g* (L) (A)

5. Forevery (A, F) € MOD* (L), F is the least L-filter on A.
In the first three items the sets £ can be taken the same.

Proof. First, we prove the equivalence of the first three claims, then the equivalence of
the last two claims, and finally we prove the implications 1—4 and 4—2.

2—1: It follows immediately from the completeness theorem and the definition of alge-
braically implicative logic.

1—3: The first condition again is easily checked by using the completeness theorem and
the definition of algebraically implicative logic. To prove p ~ ¢ = ALc+L) € [p < ¢
take (A, F) € MOD"(L) and an evaluation e on A such that e(p) = e(g). Then
e(p) =% e(q) € F (by (R)) and so u (e(p) =4 e(q)) = vA(e(p) —* e(q)) for every
p ~ v € &, and the same for the reverse implication. To prove [p <+ q] FaLa*(L)
p =~ q take (A, F') € MOD*(L) and an evaluation e on A satisfying the equations in
the premises. Then e(p) —4 e(q),e(q) =4 e(p) € F,ie. (e(p),e(q)) € Qa(F) and
since the matrix is reduced, e(p) = e(q).

3—2: We want to check p 1, {u(p) <> v(p) | p = v € £}. By the first condition in
3, this is equivalent to a (double) equational consequence w.r.t. ALG™(L) which, using
the second condition in 3 becomes a trivial statement.

4—5: Just observe that Q4 (F) = Id 4 and use the isomorphism of 2 4.

5—4: Recall that for every L-algebra A, Conarg+(1)(A) is a complete lattice (see
the comments after Proposition 2.3.13). From Proposition 2.2.11 we know that 2 4 is
surjective and it preserves meets. We show that it is one-to-one. Suppose Q4 (F) =
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Q4(G) for some F,G € Fip(A). Then, by the assumption 5, F'/Q 4 (F) is the least
L-filter on A/QA(F), and G/ 4(G) is the least L-filter on A/Q4(G) = A/Qa(F),
thus: F/Qa(F) = G/Qa(G). Now take any a € F. [a]p € F/Qa(F) = G/Qa(G),
and, since Qa(F) = Qa(G), [a]F = [a]g, and thus [a]¢ € G/Qa(G), which gives
a € G. By symmetry, we have F' = (. We show now that ) 4 is order-reflecting: if
QA(F) - QA(G) then QA(FQG) = QA(F) OQA(G) = QA(F), so FNG = F, by
injectivity, and thus F' C G. Therefore, {4 is an order-preserving and order-reflecting
bijection, and hence it is a lattice isomorphism.

1—4: We first show that Q24 is one-one. Suppose Qa(F) = Q4 (G) for some F,G €
Fir(A). Given any a € A, we have the following chain of equivalencies: a € F iff
lalp € F/Qa(F)iff p(la]r) = v([a]p) for every p ~ v € Eiff u(la]e) = v(la]e)
forevery p =~ v € £ iff [a]¢ € G/Qa(G) iff a € G. In a very similar way we can
check that it is order-reflecting. From Proposition 2.2.11 we know that 2 4 (F') is onto
and order-preserving, and thus it is a lattice isomorphism.

4—2: First we prove T' = Thr,({a < 5 | (o, 8) € Qpm/(T)}) for every T € Th(L).
Define 77 = Thy({a < 8 | (o, 8) € QFm(T)}). On the one hand, 77 C T, so by
monotonicity Qg (1) C QFm(T). On the other hand, if (o, 8) € Qpm(T), then
a+ B €T, so{a,f) € Qpm(T). Therefore, we have Qg (T7) = Qpm (T') and,
by injectivity, 7' = T”. Thus, in particular we have shown that

p-{a e B {e,f) € Qrm(Thi(p))}-

Let o be the substitution mapping all variables to p. Then

pA-{o(a) < o(B) [ (a,8) € Qpm(Thw(p))}.

Therefore the set £(p) = {o(a) = d(B) | (o, B) € QFm (Thr(p))} clearly satisfies the
condition (Alg). O

Observe that, due to Corollary 2.2.4, the definition of algebraically implicative log-
ics is intrinsic because it does not depend on the chosen implication.

EXAMPLE 2.4.6. In many cases of interest, one equation is enough to satisfy condition
(Alg). For instance, classical logic and, in general, all the expansions of MTL men-
tioned in the previous chapter are algebraically implicative by using the set {p ~ 1},
and UL is algebraically implicative by using {p A 1 ~ 1}.

PROPOSITION 2.4.7. If L is a finitary algebraically implicative logic, then ALG™ (L)
is a quasivariety and the set £ can be taken finite.

Proof. To prove that ALG™(L) is a quasivariety (i.e. a quasiequational class of alge-
bras) it is enough to take an arbitrary £-algebra A such that all the quasiequations valid
in ALG*(L) hold in A, and prove that then A € ALG"(L). Define the filter of A
asthe set FF = {a € A | p(a) = v(a) for every u ~ v € E}. Let us see that
(A, F) € MOD*(L). Suppose that " by, . By finitarity, there is a finite T’y C T" such
that g 1, . Assume that, for some evaluation e on A, e[I'] C F. By the first condition
in part 3 of the previous theorem we have £[I'o] FarLg+(L) £(¢), which can be seen
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as a quasiequation and hence also valid in A. On the other hand we have e[I'g] C F,
therefore e(yp) € F'. Finally, the second condition in part 3 of the previous theorem
implies that the matrix is reduced.

The fact that the set £ can be taken finite is a straightforward corollary of claim 2 of
Theorem 2.4.5. O

Analogously to the convention for weakly implicative logics, which always come
with a fixed principal implication, for each algebraically implicative logic we fix the de-
fault set of equations providing algebraicity and denote it as £ (in fact, this set is unique
up to interderivability in ALG*(L)). Observe that these equations can be identified
with their corresponding pairs of formulae; then we call them algebraizing pairs. The
fact that filters in reduced matrices can be defined by equations has several interesting
straightforward consequences.

PROPOSITION 2.4.8. Let L be an algebraically implicative logic, A, B € ALG*(L),
and (A, F) € MOD*(L). Then:

1. F C G forany G € Fip(A).

2. If (A,G) € MOD*(L) then F = G, i.e. A is the algebraic reduct of a unique
reduced matrix.

3. A mapping h: A — B is a homomorphism of algebras from A to B iffit is a
homomorphism between the corresponding matrices.

4. A mapping h: A — B is an embedding of algebras from A to B iff it is a
one-to-one strict homomorphism between the corresponding matrices.

5. A€ ALG"(L)gp)s1 #ff (A, F) € MOD™(L)r(r)st-
Finally, we close our excursion to Abstract Algebraic Logic by introducing two

special subclasses of algebraically implicative logics.
DEFINITION 2.4.9 (Rasiowa-implicative and regularly implicative logics). We say that
a logic L is Rasiowa-implicative if it is weakly implicative and

(W) oFLy =
We use the term regularly implicative if L satisfies only this weaker condition:

(Reg) @, ¥ FL v — o

PROPOSITION 2.4.10. A weakly implicative logic L is regularly implicative iff all the
filters of the matrices in MOD* (L) are singletons.

Proof. Elementary check. O

PROPOSITION 2.4.11. Each Rasiowa-implicative logic is regularly implicative and
each regularly implicative logic is algebraically implicative.

Proof. The first claim is obvious. For the second one it suffices to check that any reg-
ularly implicative logic satisfies the condition (Alg) (see Theorem 2.4.5) for the set of
equations £(p) = {p ~ p — p}. O
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Symbol | Arity Name Alternative names
— 2 principal implication right residuum
& 2 residuated conjunction | fusion, multiplicative/strong conj.
~ 2 dual implication left residuum
A 2 lattice protoconjunction | additive/weak/lattice conjunction
\% 2 lattice protodisjunction | additive/weak/lattice disjunction
1 0 verum multiplicative truth, unit
0 0 Sfalsum multiplicative falsum
T 0 top additive/lattice truth
L 0 bottom additive/lattice falsum

Table 1. The language of SL

The four classes of implicative logics that we have defined (weakly, algebraically,
regularly, Rasiowa-implicative) are mutually distinct. Indeed:

e The equivalence fragment of classical logic is a regularly implicative but not
Rasiowa-implicative logic (to be more precise it is easy to see that the equivalence
connective <> does not satisfy the condition (W); moreover, in [21] it is proved
that no weak implication satisfying this condition is definable in this logic).

e The uninorm logic UL is algebraically, but not regularly, implicative (because of
Proposition 2.4.10).

e The logic BCI is weakly, but not algebraically, implicative (see [7]).

2.5 Substructural logics

In this section we introduce an important broad family of weakly implicative logics,
the substructural logics, starting from a very weak one which we call SL. We present this
basic logic in an implicit way as the least logic with a certain desired behavior of connec-
tives. Then we define substructural logics as expansions of the corresponding fragment
of SL. We will study some syntactical and semantical properties, and algebraization
of these logics. Then we will be able to identify them among the substructural logics
studied under this label in the literature; indeed we will show that SL actually coincides
with the bounded non-associative full Lambek logic.

The language Lgj, consists of the connectives listed in Table 1, i.e. most of the usual
connectives in substructural logics (we will comment on the names and role played by
these connectives after the next definition). When writing formulae in this language
(or its fragments) we will assume that the increasing binding order is: first &, then
{A,V}, and finally {—, ~~}. For the sake of consistency with the general convention
in this chapter that every logic comes with a fixed principal implication —, we keep on
using this notation along with ~~ as the dual implication (soon we will prove a duality
theorem that shows that the choice between the principal and the dual implication is in
a way arbitrary). When identifying SL with the bounded non-associative full Lambek
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Consecution Symbol Name
=W —=x)FY&ep—x (Res) residuation
= (W= x) = (p~x) (E-) ~-exchange
eI~y (symm) symmetry
FeAY = o (A1) lower bound
FoAy =9 (A2) lower bound
X—= e, X—=>YEx—=>0oAY (A3) infimality
Fe—=pVY (V1) upper bound
Fy—=pVey (V2) upper bound
PP P xFeVY o x (v3) supremality
oF1—p (Push) push
e A (Pop) pop
Fo—T (Veq) verum ex quolibet
FL—=o (Efq) ex falso quodlibet

Table 2. Consecutions for SL

logic we will also show how our notation relates to the standard one for substructural
logics in the literature which uses \ and / instead of — and ~-, graphically denoting that
these implications are respectively the right and left residua of the conjunction &.

DEFINITION 2.5.1 (The logic SL). SL is the weakest weakly implicative logic in the
language Ls1, satisfying the consecutions from Table 2.

Observe that SL is a weakly implicative logic and — is its principal implication.
Even though we do not explicitly postulate any additional properties of —, we will see
in Proposition 2.5.5 that its interplay with other connectives entails some rather strong
properties usually possessed by implications in known (non-)classical logics. The con-
nective & is a residuated conjunction whose role could be described as ‘aggregation of
premises in a chain of implications’ as shown by residuation rules (Res). In fact, it
must be noted that the order of arguments in the formulation of (Res) is arbitrary (for
any connective & we could always define its transposition &° as p &' v = 1 & @);
we have decided to formulate it in this way to have a more straightforward connection
with a stronger axiomatic formulation of (Res) which is equivalent to associativity (see
Theorem 2.5.7). While (Res) allows us to aggregate premises, (E..) allows us to swap
them but at the price of replacing the inner occurrence of the principal implication by its
dual version ~ (the rule (symm) ensures that ~ can be seen as another principal im-
plication in SL interderivable with —). However, we cannot replace (E..) by a simpler
form involving only one implication, because it would entail commutativity of & (which
can be refuted by a simple semantic counterexample). On the other hand, the semantics
of these connectives is quite simple. Indeed, if we fix &% in any reduced SL-matrix A
then — has to be its right residuum and ~~* the left residuum (see part 8 of Proposi-
tion 2.5.10) and both —#4 and ~~# define the same matrix order <?. For more details
on residuated structures and their logics see [43].
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The remaining binary connectives are easily understood: the rules for A and V en-
sure that these connectives correspond to the operations of infimum and supremum in
the lattice order given by the principal implication. Note however that we do not call
them ‘conjunction’ and ‘disjunction’ in Table 1 but add the prefix ‘proto’. The reason
is that these rules are not enough to enforce by themselves a proper behavior of these
connectives:

1. in the case of A, the adjunction rule p,% s, @ A 9, essential in the intended
behavior of conjunctions, holds due to the presence of the truth constant 1 and
fails in the least weakly implicative logic satisfying all consecutions from Table 2
but (Push) and (Pop),

2. in the case of V, this protodisjunction does not enjoy the Proof by Cases Property
inSL: T',o F xand I',¥ F x entail ', o V ¢ = x (in Section 2.6 we will see
how to recover this property in some extensions of SL and Section 2.7 studies its
characterizations and consequences).

The meaning of T and L and their defining rules is self-explanatory as maximum
and minimum elements of the order induced by the principal implication. The rdle of 1
is to be the ‘least designated truth value’. Finally, the role of 0, although its value is left
unspecified (note that there is no consecution involving 0 among those in Table 2), is to
define negations by ¢ — 0 and ¢ ~ 0.

Of course we could immediately design one specific axiomatic system for SL (con-
sisting of reflexivity, transitivity, modus ponens, the congruence rules for all connectives
and consecutions from Table 2). Later (Theorem 2.5.13) we will present a more natural
axiomatic system for SL. The idea behind our definition of SL, and behind the conven-
tion for substructural logics that we will introduce soon, is to pick a short list of rules
that connectives must satisfy to have the minimal usual behavior in substructural logics.
Moreover, as we will soon see (Proposition 2.5.4), the connectives are uniquely deter-
mined by these rules. The axiomatic system mentioned above allows us to prove quite
easily the following duality theorem:

DEFINITION 2.5.2 (Mirror image). Given a formula x of Lsy, its mirror image x’ is
obtained by replacing in x all occurrences of — by ~-, and vice versa, and by replacing
all subformulae of the form o & B by B & . The mirror image of a set T of formulae of
Lgy, is T = {¢/ | (NS T}.

THEOREM 2.5.3 (Duality Theorem). For each set of formulae TU{ ¢} of Ls1, we have:
ThsLy iff  T'FsL¢

Proof. We show only one direction (the second one immediately follows from the fact
that (¢’)" = ). We prove the claim for axioms and rules from the axiomatic system
described in the last paragraph above with formulae replaced by variables and then, by
structurality and the notion of proof, we are done.

The case of (symm) is trivial. From p <> ¢ sy, p&r — g& rand p + ¢ Fgp,
r&p—r&qweobtainp ~ q,g ~prksL p&r ~ qg&rand p ~ q,q ~ p FsL
r & p ~ r & ¢, and so we have the mirror version of congruence for &. The mirror
versions of congruence rules for both implications are proved analogously.
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Next observe: ¢ ~» (¢ ~» x) dFsL ¢ = (¥ ~ x) "bsL ¥ — (¢ = x) *so
P~ (o = x)and o~ (¢~ x) Tsp o = (¥~ x) s P = (0 = x) s
o &1 — x JksL ¢ &1 ~> x, thus also mirror versions of (E..) and (Res) are proved.

Let 7' > ¢ be any of the remaining rules. We know that neither & nor ~~ appears in
any formula from TU{p} and all of these formulae are either variables or contain — ex-
actly once and as principal connective. Thus the rule (symm) gives us straightforwardly
the mirror versions of these rules. O

The following proposition shows that connectives are uniquely determined by the
rules we have introduced.

PROPOSITION 2.5.4. Let L be a weakly implicative expansion of SL with the same
principal implication — and c a connective of Lsy, \ {0}. Suppose that ¢ is a connective
(primitive or definable) of L of the same arity as c obeying the rules for c in Table 2.
Then the two connectives are equivalent in L, i.e. b1, pc <> p ¢, orby ¢ < ¢
according to the arity of c.

Proof. The only non-trivial case is for ~». From by, (¢ ~ ) — (¢ ~ 1) we use
(E-.) to obtain Fr, ¢ — ((p ~ 1) — ). Using (E.,) this time for ~> gives us
Fr (@ ~ ¢) = (p~>1). The second implication is completely analogous. O

PROPOSITION 2.5.5. The following are derivable in SL:
(PsLl)  Fo—=((¢ =)~ v)

(Psr2) Fo&(p—9) =9

(PsL3) Fo—=(p~9) =)

(Pst4) @b (p—9) =9

(Ps15) o=y @ —=x) = (¢ —X) (Suffixing)
(Ps16) ¥ —=xF(p =)= (p—=X) (Prefixing)
(PsL7) Fe—= @ —=1v&yp)

(Ps18)  p =Y Fx&o—x&y

(Ps19) ¢ —=vkFp&kx v &x

(PsL10) @1 — 1,00 — o b 01 & o — b1 & 1o

(PsLll) @, F @AY

(PsL12) E(x = @) A(x—=¥) = (x = e AY)

(PsL13) F (=)A= x) = (pVY = x)

(Psp14) 1

(Psp15) F1—= (p— @)

(Psp16) o+ (1 — @)

(PsL17) Fp&l o

(Psp18) F1&p <o
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(Psp19) F T ¢ (L — 1)

(Ps1.20) Fx& (o V) o x&oVx&y
(Psr2l) F(pVy)&x o p&x vyl
(Ps1.22) F (A& (W AT) = pAl
(Psp.23) F(pAD)& (W AT) = AT

(PSL24) F ((p — ’(/)) Al — ((p/\T—) 1/)/\1)
For = € {A,V}, SL also proves:

(C.)
(L)
(As)

Foxih—=xp
Foxpe o
F(p*ah) * x < @x (¢ *x).

Proof. The proof of the second part is straightforward. We give hints of the proofs of
the more complicated statements in the first part:

(Ps.1)
(Psr.4)
(Ps1S)
(Ps1.6)
(Ps1.8)

(Ps1.9)
(Pgr11)
(PSL 12)

(Ps,13)

(PsL16)

(Ps1,20)

(Ps1.21)
(Ps1.22)

From (¢ — 1) — (p — 9) using (E..).
From (Pgp,1) using (MP) and (symm).

From ¢ = 4,4 = ((¢ = x) ~ x) F ¢ = (¢ = x) ~ x) vsing (E..).
From (Pg,2) we obtain ¢» — x F ¢ & (¢ — ¢) — x and (Res) completes
the proof.

From ¢ — (x — x & ¢) we obtain ¢ — ¥ ¢ — (x = x & ¢) and (Res)
completes the proof.

Use the previous claim together with the duality theorem and (symm) twice.
pF1— @andy 1 — 1 andthus p,% =1 — ¢ A 1. The rest is trivial.
Using (A1), (Ps1.2), and (Pgp,8) we prove x & ((x = @) A (x = ¥) = ¢)
and analogously also x & ((x — ¢) A (x — ¥) — ¥), (A3) and (Res)
complete the proof.

First, we obtain ((¢ — x) ~ x) = (¢ = x) A (¥ = x) ~ x) from
(A1) and the dual of (Pg,5). Then from ¢ — ((¢ — x) ~ x) (Psp1) we
obtain ¢ — ((¢ = x) A (¥ = x) ~ x). Analogously we can prove that
P = ((p = x)A (¥ = x) ~ Xx). Finally, (V3) and (E..) complete the proof.
From 1 — (¢ ~ ¢) using (E..) we obtain ¢ — (1 — ¢). The converse
implication follows from (Pgy,4) and (Pgr,14).

From (V1) (or (V2) respectively) and (Pgr,8) we obtain: x& ¢ — x & (¢ V1))
and x & ¢ — x & (¢ V ), and so (V3) completes the proof of one implica-
tion. The converse one: from (Res) and (V1) (or (\V2) respectively) we obtain
o= (x—=x&epVx&y)andy — (x = x& ¢V x&). (V3) and (Res)
complete the proof.

Analogous (or using duality theorem and (symm)).

We apply (Psr.8) to ) A1 — Tandobtain (0 A1) & (Y AT) = (p A1) & T
and (Pgr,17) completes the proof. O
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Next we study some notable extensions of SL.

DEFINITION 2.5.6. Let us consider the following consecutions:

a1 p&W&x) = (p&y)&x re-associate to the left
a2z (&) &x =& (W&y) re-associate to the right
e p=2>@W=ax)FY=(@—x) exchange
c vk contraction
A ()] left weakening
o 0—e¢ right weakening

Given any X C {aj,a9,€,c,1,0} and any weakly implicative logic L in a sufficiently
expressive language, by L x we denote the expansion of L by X. If both a; and ay are
in X we replace them by the symbol a. Analogously if both i and o are in X we replace
them by the symbol w.

The next theorem shows how the axioms of exchange, contraction and weakening
can be described as properties of &. Moreover, it also shows under which conditions the
conjunction & is associative. It turns out that both halves of associativity are equivalent
to other interesting logical laws, usually resulting from strengthening rules of SL into an
axiomatic form.

THEOREM 2.5.7. Each one of the following axiomatic extensions of SL is axiomatized
by any one of the corresponding indicated rules:

SLa,

SLa,

SLe

SL,

SL;

L Fp&y—=x)— @ —(@—X)
e —=Y) = ((x =) = (x =)

= (

CF(

3 E=@W~x) = @~ (p—=x)
F(
= (

~

Y= (p—=x) = (p&y —x)
Y~ (= X)) = (0= (P~ X))
L Fo&yp =&

2. F(p~9) = (¢ —Xx)

3 (=)= (p~Xx)

L Fo—=p&kep

FoAy — p&.

Fo&y =

Yo=Y

I—ap—)T

Fp&i—o

Fo&yp— oA

I

S
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Proof. Recall that axioms are regarded as rules with empty set of hypotheses. The
claims of this theorem will be proved by showing (a chain of) implications of the form
‘the extension of SL by the rule = derives the rule 3 ([zt-y] in symbols), where z and y
are either the names of the rules or numbers denoting the formulae in question.

SL,,

SLa,

SL,

SL.

SL;

[1F2] From x & (x — ) — ¢ we obtain (¢ — ) = (x & (x = ¢) — ¥) (by
Suffixing). Thus 1 (in the form (x & (x = ) = ¥) = (x = ¢) = (x = ¥)))
and transitivity complete the proof.

[2F3] From ¢» — ((¢» ~» x) — x) (an instance of (Pgy,3)) and 2 we obtain
= ((p—= (Y~ x)) = (¢ = X)) (E..) finishes the proof.

[BE1 (p &t = x) = (p &y = x) and so p & ih = ((p & p = x) ~» X)
by (E..). Thus ¢ — (p — ((¢ & ¥ — x) ~ X)), thus by 3 and transitivity
Y= ((p&y — x) ~ (¢ = x)). (E-.) finishes the proof.

[1Fa1] From (& ¢) & x = (p & ¢) & x we get x = (9 &1p = (9 & ) & x)
by (Res); by 1 and transitivity we obtain x — (¢ — (¢ — (@ & ) & x)); (Res)
used twice completes the proof.

[a1F2] x & (x — @) — ¢ thus by Suffixing (¢ — ©¥) = (x & (x = ¢) = ¥);
(Res) gives us (x & (x = ¢)) & (¢ — ) — 1 and so using a; we obtain
x & ((x = ©) & (¢ = ) — 1; (Res) completes the proof.

[1Fas] From ¢ & (¥ & x) — ¢ & (¢ & x) by (Res) used twice we obtain
X = (¥ = (¢ = & (¢ & x))); by 1 and transitivity we obtain y — (p & 1) —
v & (¥ & x)); (Res) completes the proof.

[2F1] From (¢ — (¢ — X)) = (¢ — (¢ — x)) and (E..) we obtain ) —
(b = (¢ = x)) ~ (¢ = x)). Thus also ¢ — (¢ = ((¢» = (¢ = X)) ~ X))
(by 2 and transitivity). Using (Res) and (E...) complete the proof.

[a2F2] From (¢ ~ (¢ — X)) — (¥ ~ (¢ — X)) and (E..) we obtain
v = (Y~ (¢ = x)) = (¢ = X)) and so by the (Res) used twice we have
& (¥~ (¢ = X)) &¢) = x. Thus also (p & (¥ ~ (¢ — X))) & — x by
ag. Using (Res) and (E..) we obtain ¢ & (¥ ~ (p — X)) — (¥ ~ x); (Res)
completes the proof.

[1Fe] is obvious using (Res); [eF2] follows from Proposition 2.5.4. To prove
[2F3] we start with (Pg,1): ¢ — ((¢p — ¥) ~ 1)), then 2 and (E..) complete the
proof. To prove [3F1] we start with (Pg,7) and by 3 we obtain ¢ — (1) ~ &),
then (E..) and (Res) complete the proof.

[1Fc] is obvious using (Res); for [cH2] observe that from (A1) and (A2) be
obtain (p A ) & (¢ A1) = ¢ &1 by (Pgr,10) and so (Res) and ¢ complete the
proof. The final claim [2F1] follows easily using (I4).

The proofs of [1Hi], [iF2], [2F3], [3F1], [3F4], and [4F-3] are almost straightfor-
ward. To conclude the proof observe that from the fact that [i-4] we obtain [iF5]
using (A3); the final implication [5Hi] is trivial. O
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Now we can easily obtain the duality theorem (cf. Theorem 2.5.3) for notable ex-
tensions of SL. Recall that by x’ we denote the mirror image of .

THEOREM 2.5.8 (Duality theorem for SLx). Let X C {a, e, c,i,0}. Then for each set
of formulae T'U {p} we have:

T }_SLX %2 lﬁF T/ }_SLX (p/.

Based on the logic SL we introduce now a general notion of substructural logic. By
doing so we do not expect to encompass all logics that may have been labeled in this
manner in the literature, but we only intend to introduce a broad class of substructural
logics in the framework of weakly implicative logics to which our methods will usefully
apply. We could achieve a greater level of generality by means of a more complex, and
probably less natural, definition, however we think the following convention is broad
enough for the purposes of the present text.

CONVENTION 2.5.9 ((Associative) substructural logic). A weakly implicative logic in
a language L is substructural if it is an expansion of the L N Lg1,-fragment of SL. A
substructural logic is associative if it expands the L N Lg1,-fragment of SL,.

Note that this convention clearly covers many well-known systems such as BCK
and BCI, all fuzzy logics introduced in Chapter I, intuitionistic and classical logic.
Later, in Theorem 2.5.13, we identify SL with a well studied logical system: a bounded
non-associative variant of full Lambek logic FL [43]. Then it will become apparent that
our convention also covers most logics referred to as substructural logics in the litera-
ture. In particular it covers all substructural logics over FL as deeply studied in [43]
(axiomatic extensions of FL) or substructural logics as logics of residuated structures
as proposed in the final remarks (Section 6) of [74] (fragments of axiomatic extensions
of FL).

Our design choices make the definition of substructural logic a normative one in the
sense that, when using a traditional symbol for a connective of a given logic, we are pos-
tulating that it must at least satisfy the logical rules derivable in SL. This may have some
unexpected consequences. For instance, the logic BCK, of BCK-semilattices [62] in
the language {—, A} is not a substructural logic in the sense of our convention (it does
not satisfy (Pgr,12) from Proposition 2.5.5); however, if we formulated it in the lan-
guage {—, A}, then it would indeed satisfy the convention (because then the only Lgr,
connective present in its language, namely —, behaves as it should). Other examples
which illustrate this situation are Avron’s logics RMI,,;, and RMI, excluded from our
notion because they do not satisfy (Pgy,11).

The previously proved syntactical properties of SL and its prominent extensions
(Proposition 2.5.5 and Theorem 2.5.7) clearly hold for all substructural logics in a suf-
ficiently expressive language. Let us list several further observations on substructural
logics (L. stands for an arbitrary weakly implicative substructural logic in a sufficiently
expressive language):

e In L, the truth constants 0 and | coincide (Fgr,, L <> 0) using Proposition 2.5.4.

e In L; the truth constants 1 and T coincide (Fs,, T <+ 1) using Proposition 2.5.4,
and furthermore tgp,, 1 <> (p — ).



Chapter II: A General Framework for Mathematical Fuzzy Logic 133

e L, is axiomatized (relative to L) by (¢ — (¢ — x)) = (¥ = (p — X)).

o L. proves (¢ — (p — ) = (p — ) (but, in general, this axiom is not
sufficient to axiomatize L, relative to L).

e L is Rasiowa-implicative iff it proves i (and thus all these logics are algebraically
implicative). Furthermore, in Rasiowa-implicative substructural logics we prove
14 (¢ — ) and so 1 can be viewed as a defined connective.

The following are some basic semantic properties of the connectives in substructural
logics, which can be easily checked.

PROPOSITION 2.5.10. Let L be a substructural logic in a sufficiently expressive lan-
guage and A = (A, F') € MOD*(L). Then:
L1 = min<, F.
. TA =max<, Aand TAC€ F.
. 1A =minc, Aand 124 ¢ F if A isnot trivial.
. <A is a V-semilattice order.

. <A is a N-semilattice order.

. . —A . . .
. &4 is monotone in both arguments w.r.t. <a and 1" is its unit.

2
3
4
5
6. —“ is antitone in the first argument and monotone in the second one w.r.t. <a.
7.
8. Foreveryx,y,z EA,x&AySA ziff y <axz 4 ziff x gAywA z.

9

. Foreveryx,y,z € A, x =4 y=max{z |z &2 2 <a y}.
10. Foreveryx,y,z € A, &~ y=max{z | 2 &4z <a y}.

11. Foreveryx,y,z € A, x &2 y=min{z |y <a z =4 2} =
=min{z |z <a y ~4 z}.

Proof. All claims are easily checked. The eighth item follows from (Res) and the dual-
ity theorem, and the last three items follow from this one. O

THEOREM 2.5.11. Any substructural logic with \V or A in its language is algebraically
implicative.

Proof. The proof would be simpler if we further assumed that 1 is in the language of
our logic, because then the algebraizing pair would be simply (x A 1,1) (or {x V 1, x)),
which can be proved in a straightforward way or using the previous proposition. Let us
give a more general proof not assuming the presence of 1.

Assume that our logic has A in its language; we show that ((x — x) A X, X = X)
is an algebraizing pair (in the second case we would analogously prove that claim for
((x = x) V X, X)). One direction is easy: trivially x - (x = x) A x = (x — x) and
xF(x = x) = (x = x) A x (because x F (x = Xx) — X). The second direction:
clearly (x = x) <> (x > x)AxF (x = x)Axandso (x = x) < (x 2> x) AxFx
(as obviously (x = x) A x F x). O
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e\e  pe\vEY R (p\Y)\ ¥
e\ E @A)\ (e\x) P \xF(e\¥)\(e\X)

e\ (W /e)\Y)  e\NW\)FY\(x/9)  Y/eFe\Y
eAYpNe oA \Y (XN AN\ \NIX\eAY) e EeAy
e\eVvy  P\evy (@A) (VYY) (/@) AKX/ D\ (X/eVY)
YA (P\eY) PN\ X)Fev\x
T I\(e\e)  e\([I\y)

Table 3. The axiomatic system for the ‘non-associative’ full Lambek logic

Our next aim is to identify our basic logic SL and its extensions SLx among well-
known substructural logics. Since many substructural logics are introduced in the liter-
ature in their unbounded form, we need the following convention:

CONVENTION 2.5.12. Let L be a weakly implicative logic. The logic called bounded
L, denoted as L |, is the expansion of L in the language with the additional truth con-
stant L satisfying the axiom L — .

Reputably, the most prominent substructural logic is the full Lambek calculus [43],
denoted as FL. FL is formulated in a variant of our language Lgr,, which we will call
here Lpr,, with truth constants 0 and 1, two implication connectives \ and / (in the
commutative extension of FL, denoted as FL., these two connectives coincide and then
they are denoted by the symbol —), residuated conjunction &.% and lattice connectives
A, V. An axiomatic system for FL (taken from [43, Figure 2.10]) is presented in Table 4.

Another important substructural logic is a non-associative variant of full Lambek
calculus, also in the language Ly, given by the axiomatic system in Table 3 (presented
in [45, Figure 5]). The name and the symbol for this logic are not yet settled and thus
we avoid any explicit reference.

Before we show how these two logics are related with SL we provide a transla-
tion between their languages. We actually present two possible translations (the duality
theorem ensures the validity of the following theorem no matter which one we use).’

L1, notation  direct translation  indirect translation

oy p& V&
e\ o= © ~ 1
Y/ o~ =

SThere is a usual convention in the papers on this logic and its variants to omit the symbol & and write just
1 instead of ¢ & 1.

"This independence from the choice of the translation also ensures that any fragment of (non-associative)
full Lambek logic containing at least / or \ is substructural in the sense of Convention 2.5.9.
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(id) o\ (identity)
®f) (VNN \(X\D)] (prefixing)
asp)  P\[(Y/e)\Y] (assertion)
@  [(\X)/eN\[P\(x/9)] (associativity)
&\ [@\e)/P\(/¥) (fusion divisions)
&N [(eAD) (W AT N\(p AD) (fusion conjunction)
(A (e AP)\p (conjunction division)
(A (e AP)\Y (conjunction division)
AN [(e\) A (@\x)\[@\(¥ A x)]  (division conjunction)
V) p\(p V) (division disjunction)
V) P\ V) (division disjunction)

VY L) A @I V)\X] - (disjunction division)

(&) P\(p\p¥) (division fusion)
&\ [\ @)\ (e\x) (fusion division)
n 1 (unit)

1V T\(p\p) (unit division)

AD  o\(T\p) (division unit)
(mp;) @, e\ (modus ponens)
(adjy) @FeAl (adjunction unit)

(pny) @ Y\py (product normality)
(pn;) @Yo/ (product normality)

Table 4. An axiomatic system for FL

THEOREM 2.5.13. The logic SL, is termwise equivalent to bounded full Lambek logic
using any of the translations given above. Analogously, the logic SL is termwise equiv-
alent to bounded non-associative full Lambek logic.

Proof. All the axioms and rules of (non-associative) full Lambek logic are among the
consecutions in Table 2, those proved in Proposition 2.5.5 or are equivalent to associa-
tivity as shown in Theorem 2.5.7. We leave the converse direction as an exercise. 0

Therefore, all the prominent extensions of SL, that we have considered here are
the bounded versions of the well-known extensions of FL studied in the mainstream
literature on substructural logics, namely for every X C {e,c,i,0} SL, x coincides
with the bounded version of FL x (modulo language translation). The logics FLx are
called basic substructural logics in [43].

Since in any substructural logic extending SL. only one implication is needed, we
obtain a simplified axiomatic system for FL, in Table 5 (taken from [43, Figure 2.9]).
One can easily observe that the axiomatic system for FL,,, can be simplified by taking
the one for FL, and replacing (&A) with ¢ & 1) — A 1) and removing the axioms (1),
(1 —), and the rule (adj,).
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id) ¢—o (identity)

e (p—=9¢) = ((x—=9) = (x—v) (prefixing)
(per) (v = (v = x)) = (Y = (¢ = X)) (permutation)
&N [(eAD)WAD] = (pAY) (fusion conjunction)
A=) (pAY) = (conjunction implication)
A=) (pAY) = (conjunction implication)
=N [(e=UV)A(p—=Xx)]—[e— (WAx)] (implication conjunction)
=V) o= (pVY) (implication disjunction)
(=V) Y= (V) (implication disjunction)
V=) [(le—=x)AN0W—=x)]—[(pVeY) —x] (disjunction implication)
(=&) Y — (p— oY) (division fusion)
&—=) [Y—=(p—=x)]— (e = x) (fusion implication)

1 1 (unit)
A=) 1= (p—) (unit implication)
(mp)  p,p =P (modus ponens)
(adju) ¢FeAl (adjunction unit)

Table 5. An axiomatic system for FL,

2.6 Deduction theorems and proof by cases in substructural logics

In this subsection we deal with various forms of deduction theorems and use them
to obtain proof by cases properties for prominent substructural logics. Recall that we
work with a fixed set of propositional variables Var. A x-formula is built using Var and
a fixed propositional variable * not occurring in Var, a x-substitution is defined for the
extended language as expected. These notions will play a technical rdle in the upcoming
definitions. Let ¢ be a formula, § be a x-formula, and ¢ a x-substitution defined as
o(x) = ¢ and op = p for p € Var. By §(p) we denote the formula (in the original set
of variables) 0.

DEFINITION 2.6.1. Given a set of x-formulae T, we define the set I'* of x-formulae as
the smallest set such that

o xc I and
e §(x) €T foreach 6 € T and each x € T*.

If L has & and 1 in its language we define the set TI(T') of x-formulae as the smallest
set of formulae containing T' U {1} and closed under &.

Note that the elements of II(I") can be uniquely described by finite trees labeled by
elements of ' U {1}.%

8 A problem could arise here if I" contains a conjunction of some of its elements; then there are (at least)
two trees ‘representing’ this formula as conjunction of elements of I". Clearly there has to be a tree containing
all the possible tree-representation as subtrees; we take this maximal one as the unique representation.
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DEFINITION 2.6.2 ((Almost) (MP)-based logic, basic deduction terms). Let bDT be
a set of x-formulae. A substructural logic L is almost (MP)-based w.r.t. the set of basic
deduction terms bDT if:

o the set bDT is closed under all x-substitutions o such that o(x) = *,

o L has a presentation where the only deduction rules are modus ponens and those
Srom {p>x(¢) | ¢ € Fmc,x € bDT}, and

e for each 5 € bDT and each formulae , ), there exist 31, B2 € bDT such that:
FL Bile = ¥) = (B2(p) = B(Y)).

L is called (MP)-based if it admits the empty set as a set of basic deduction terms.

Note that the described axiomatic system is indeed closed under all substitutions.
FL, is almost (MP)-based with bDT = {x A 1} (recall the axiomatic system in Table 5
and (Pgr,24)), while FLg, is (MP)-based. Also notice that any axiomatic extension of
an almost (MP)-based logic is almost (MP)-based too. Finally observe that ¢ 1, x(p)
for each y € II(bDT™), and, if L is (MP)-based (i.e. has bDT = (}), then bDT* = {*}.

THEOREM 2.6.3 (Almost-Implicational Deduction Theorem for almost (MP)-based
logics). Let L be a substructural logic with & and 1 in the language, and assume that
it is almost (MP)-based with a set of basic deduction terms bDT. Then for each set
T'U{p, ¥} of formulae the following holds:

LypbL vy iff T Fpd(p)— 9 for some s € TI(bDT™).

Proof. To prove the right-to-left direction just recall ¢ 1, §(¢) for any § € II(bDT™)
and use modus ponens. To prove the left-to-right direction we show that for each y
in the proof of 1 from the assumptions I' U {¢} there is 6, € II(bDT™) such that
I 0y () = x. If x = ¢ we set §,, = *; if x € " or it is an axiom we set d, = 1.

Assume that x is obtained by modus ponens from 1 and n — x. By induction
hypothesis, we have I" 1, 6,(¢) = nand T Fr, 0, (¢) = (n — x). From the
former we derive I' Fr, (n — x) — (d,(¢) — x), and so, by using the latter, I" -,
On—x () = (0y(¢) = x), and thus I" k1, 6, () & 0, (p) — X, and it suffices to set
0y = 0y & 6, to complete the proof.

Assume that x is obtained by a rule of the form 7 > y, where x = §(n) for some
B € bDT. By the induction hypothesis, we know that I k-, d,(¢) — 7. We first
observe one simple claim and prove another two:

Claim 1: For each # € bDT and formulae ¢, 1, there exists B € bDT such that
o — 1 by Ble) = BY).
Claim 2: For each 8 € bDT and formulae , 1, there exist 31, 82 € bDT such that:

b Bi(p) & B2() — Blp & ).
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Proof of Claim 2: From the assumption of the theorem we obtain:

L BQ(go = &) = (B1(v) = B(p & 1)) for some B1, P2 € bDT.

Using Claim 1 for 3 = B, and the fact that -1, ¢ — (¢ — ¢ & 1)) we obtain:

Fr B2(¥) — Ba(p — ¢ & 1) for some B € bDT.

The rest of the proof is simple.

Claim 3: For each 8 € bDT, 6 € II(bDT"), and formula ¢ there exists = II(bDT™)
such that:

P 0(p) = B(0(0))-

Proof of Claim 3. We proceed by induction via the depth of the tree representing J.
If § € bDT* or § = 1 the proof is done by setting & = 3(5) or & = 1 respectively.
Next assume that § = 1y & 7, for some 11,72 € II(bDT"). By Claim 2 we obtain

B1, B2 € bDT such that -1, B1(n1(¢)) & B2(n2()) — B(m(p) & n2()). Then by the
induction assumption we obtain 41,02 € II(bDT") such that Fr, 41(p) — B1(m(p))

and b, 05(p) — B2(n2(e)). Setting 6 = 81 & &5 completes the proof using (Psg,10).
The rest of the proof of the theorem. Recall that we have I' b, 6,(¢) — n. Therefore

via Claim 1 we obtain 3 € bDT such that T 1, 5(5,(¢)) — 5(n). Claim 3 gives us d,
such that " Fr, 9, () — x. O

DEFINITION 2.6.4 (Almost-Implicational Deduction Theorem, deduction terms). Let
DT be a set of x-formulae. A logic L has the Almost-Implicational Deduction Theorem
w.r.t. the set of deduction terms DT, if for each set T' U {¢, ¥} of formulae:

Lobyy iff I' 1, d(¢) — ¢ for some § € DT.

The previous theorem says that all almost (MP)-based logics enjoy the Almost-
Implicational Deduction Theorem with DT = II(bDT"). We improve this result in two
ways: first we notice under which assumption we can simplify the set of deduction terms,
and second we show that the condition that L is almost (MP)-based in Theorem 2.6.3 is
in fact necessary.

THEOREM 2.6.5. Let L be a substructural with & and 1 in the language satisfying the
Almost-Implicational Deduction Theorem w.r.t. a set DT.

o L has the Almost-Implicational Deduction Theorem w.r.t. a set DT C DT if,
and only if, for every x € DT and every formula o there is § € DT’ such that

FL (@) — x(»)-

o [If L is finitary, then L is almost (MP)-based with the set

bDT = {06 | § € DT, 0 a * -substitution such that o(*) = *}.
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Proof. The proof of the right-to-left direction of the first claim is straightforward. The
converse one is also easy: from b1, x(p) — x(y) we obtain (using Almost-Implicational
Deduction Theorem w.r.t. DT) ¢ 1, x(¢) and so (using Almost-Implicational Deduc-
tion Theorem w.r.t. DT’) we obtain -1, () — x(¢) for some § € DT".

For the proof of the second claim, let us define the logic I’ axiomatized by all the
theorems of L, modus ponens and the rules {¢ > §(¢) | ¢ € Fmz,6 € bDT} (note
that this set is closed under substitutions). From t1, §(¢) — d() and the right-to-left
direction of the Deduction Theorem we obtain that ¢ Fr, (), as L is substructural,
it has modus ponens and so L' C L. Assume that I Fr, 1. Due to the finitarity we
have @1, ..., ¢, F1, ¥ for p; € I'. By repeatedly using the left-to-right direction of the
Deduction Theorem we obtain by, 1(p1) — (02(p2) = (- = (dn(on) = ¥)...)
for §; € DT. Thus we obviously have 1, ..., ¢, Fr/ 9. The last defining condition of
a set of basic deduction terms is easily obtained by a double application of the Deduction
Theorem to ¢ — 1, p 1, ad(1). O

Let us recall the standard notation " = "~ & ¢ (where ¢©° = 1). Note that in
associative substructural logics the bracketing in ¢" is irrelevant.

COROLLARY 2.6.6 (Implicational Deduction Theorem for associative (MP)-based
logics). Let L be an associative substructural logic with & and 1 in the language. Then
L is (MP)-based iff L is finitary and for each set T' U {p, ¥} of formulae the following
holds:

T,obp v iff Tk o™ — 4 for some n > 0.

We have seen that FL,,, is an example of (MP)-based logic, thus we have just
shown that it enjoys this form of deduction theorem (and obviously the same holds for
its axiomatic extensions). In contrast, we can use the previous theorem to show that
FL, is not (MP)-based: indeed, ¢ rr, ¢ A 1 would entail provability of the formula
@™ — ¢ A 1 for some n which can be refuted by a simple semantical counterexample.
On the other hand, since FL, is associative and Fpr,, (p A1) <> (p A1) A1, we know
that for each x € II(bDT%y, ) there is some n such that Fpr, (p A 1)" — x, therefore
for each set I" U {¢, ¢} of formulae the following holds:

T, o bpL, ¥ iff I kgL, (o AT)™ — 1) for some n > 0.
The situation in FL is more complicated. First we introduce the notion of conjugate.

DEFINITION 2.6.7 (Left, right and iterated conjugates). Given formula o, we define left
and right conjugates w.r.t. v as Ao (*) = (a0 = *& ) Al and po(x) = (o ~ a&*) AT
An iterated conjugate is a formula of the form v(x) = Yo, (You (- - - (Yo, (X)) - . . ), where
each 7y, is either Ay, OF pq,;.

A formula of the form v(p) where ~ is a left, right, or iterated conjugate is called
left, right, or iterated (resp.) conjugate of .

THEOREM 2.6.8 (Almost-Implicational Deduction Theorem for FL). The logic FL is
almost (MP)-based with the set of basic deduction terms { Ao (%), po(*) | &« € Fm}.
Therefore, for every set ' U {p, ¢} of formulae the following holds:

Dyoben ¥ iff T FpL x(p) — 9 for some conjunction x of iterated conjugates.
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Proof. Let bDTyy, be the set of all left and right conjugates. Note that this set is
closed under every substitution for which o(*) = « and that the following derivations
are valid in FL: Ap(p) 4 pr(e) 4= @ AL, o F pa(e), ¢ b Aa(p). Therefore the
product normality and adjunction unit rules could be equivalently replaced by the rules
¢ F x(¢p) for x € bDTrr,. To complete the proof that bDTgy, is a set of basic deductive
terms of FL, it is enough to prove the following:

Fpale = ) = (pale) = pa(i))
FXale = 9) = (Aalp) = Aa(¥)).

The proof is heavily based on associativity; we use its variant forms introduced in
Theorem 2.5.7. First we prove (¢ — ¢) — (@ & ¢ — a & 1): from (Pg7) in the
form (¢ — (o — a & v)) and prefixing get (¢ — ¥) = (p = (@ = a & 1)) and so
associativity finishes the proof. Now we prove the first claim:

a (p~1v) = (a~ @)~ (a~ 1)) mirror of associativity
b (¢~ (p~a))—= W&o~ a) mirror of associativity
c (p—=9) = (a&kp—ak)) proved above
da&o— (=)~ ak)) cand (E..,)
e (a~a&y)—=la~ ((p—= )~ aky) d and mirror of (Pgr,6)
f(a~a&p)—=a&(p—1Y)~a&) e and an instance of b
g (awa&yp)—[(a~wa&(p—19Y))~ (e~ a&)] fandaninstance of a
h (@~ al&(p—=19)) = lawaky) = (avaky) gand (E..)
i(awa&(p—=P))AT = [(a~a&e) AT — (a~ a&i)Al] h and

(Ps1.24) twice.

Proof of the second claim:

a (g~ v) = (pkawid&a) mirror of ¢
b = (0 =)~ 9)) (Psil)
o= ((p=v)&awip&a) a’ and an instance of b’
d (=) &a—=(p=v&a) ¢’ and (E..)
¢ (a=(p=y)&a)=a—(p—=y&a) d’" and (Psr6)
f (a—=(p=>P)&a)— (pka—yp&a) ¢’ and associativity
g (a=(p—=P)&a)=[(a—=p&ka)— (o= P &a)] f and associativity
W (a—=(p—=P)&a)Al—[(a—=p&a) AT — (a1 &a)Al] g’ and

(Pg1.24) twice.
O
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Interestingly enough, the deductions theorems studied in this section yield a con-
nection with a variant of the classical proof by cases property. Recall that classical logic

enjoys this meta-rule:
Lobx  Tigpkx

LooVvyx
We will see now how a similar property can be obtained for almost (MP)-based sub-

structural logics with a more complex form of disjunction built from their sets of basic
deduction terms.

THEOREM 2.6.9 (Proof by Cases Property). Let L be a substructural logic with & and
1 in its language and assume that it is almost (MP)-based with a set of basic deduction
terms bDT such that

e foreach B € bDT" \ {x} we have -1, B(p) — 1 for any formula ¢ and
o there is By € bDT such that by, Bo() — ¢ for any formula .

Then the following meta-rule is valid in L:

Ik x Iy x
FU{a(e)VB(®) | a,pebDT*} x

Proof. We start by showing that L enjoys the Almost-Implicational Deduction Theorem
w.r.t. the set DT = {§ € II(bDT") | b, 6(¢) — 1}. We use Theorem 2.6.5: for each
§ € II(bDT*) we consider 6 € II(bDT*) resulting from & understood as a tree (see
footnote 8) by replacing the node-labels x by 3y (x); then using (Pgr,8) and (Pg1,9) and
the assumptions of this theorem we can easily show that for each formula ¢ we have
b, 6(p) — 6(p) and b, 6(p) — 1. Note that for all § € DT we can easily prove
Fro(p) & — Y and b, ¢ & 6(p) — 9.

Next, assume that I', o 1, x and ', ¢ -, x. From the Almost-Implicational Deduc-
tion Theorem we obtain d,,, dy, € DT such that " Fr, 6,(w) — x and I' Fr, 0y (¢) — x
and so I' Fr, 0,() V 6, (10) — x. The proof is done by showing by induction over the
sum of the depths of the trees representing 6, 0y, that:

{ale) VBY) [ a,f € DT} 1 d,(0) V 0y ().

The base of induction (when d,, 6, € bDT*) is trivial. For the induction step assume
that §, = 1 & d2. Using (Ps,20), (Ps1.21), (V1), (V2), and (V3) we obtain the
following chain of implications:

(0 () vV 01()) & (65 () V 02(9)) —

= [65(¢) & 60 (9)] V [0 () & G2(10)] V [61 (1)) & b ()] V [61(4) & b2 (¢)] —
- 650(90) v 5@(90) v 690(80) V [01 () & d2()] — 5@0(90) v 5w(¢)-

The induction assumption used for d,(y) V d1(¢) and 6, () V d2(1)) together with
(Ps1.7) completes the proof. O
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COROLLARY 2.6.10 (Proof by Cases Property for logics with weakening). Let L be
a substructural Rasiowa-implicative logic with & and 1 in its language. Assume that
it is almost (MP)-based with a set of basic deduction terms bDT. Then the following
meta-rule is valid in L:

Ik x Iy x
FU{a(e)VB(¥) | a,pebDT*} - x

Proof. Let us define bDT, = bDT U {x} and note that bDT, satisfies the conditions
of the previous theorem. As clearly, bDT}; = bDT* the proof is done. O

As a corollary we obtain the proof by cases property for three prominent substruc-
tural logics (note that in the case of FL, we can simplify the form given by the theorem
above using the provability of kg, (p A1) > (pAT) AT).

COROLLARY 2.6.11 (Proof by Cases Property for extensions of FL). The following
meta-rule is valid in FL:
Lok x Lok x
TU{v1(p) V() | 11,72 iterated conjugates} = x

The following meta-rule is valid in FL,:

Lok x Iy x
L, (0 AV (AT Fx

The following meta-rule is valid in FLey:

Iokx Iy x
LoVt x '

2.7 Generalized disjunctions

As we have seen in the previous subsection, substructural logics may retain a form
of the classical proof by cases property at the price of using a more complex disjunction.
For instance, in the case of FL we have used a rather complicated set {1 (¢) V y2(¢) |
71,2 iterated conjugates} of infinitely many formulae involving two variables and pa-
rameters. The proof by cases property will play an important role in the following
sections where we study the interplay of disjunctions and implications (in particular,
disjunctions will be used to provide a powerful characterization of semilinear implica-
tions and, moreover, as we will see in Section 4, they are crucial for first-order logics).
In order to prepare the ground for that, in this subsection we provide an abstract analysis
of disjunction connectives general enough to cover their possible complicated forms, as
the one we have seen in FL. Although a number of results we prove in this section hold
in general, for the sake of simplicity here we will mostly restrict ourselves to the case of
finitary logics which will allow us to provide easier proofs. We will indicate in which
results the finitarity assumption is not actually used.
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DEFINITION 2.7.1 (Notation for generalized disjunctions). Let V(p, q,7) be a set of
formulae in two variables p, q and a sequence (possibly empty, finite or infinite) of fur-
ther variables 7’ called parameters. We define:

V= V(e v, d) | a e Fmz*}.

Given sets ®, ¥ C Fmg, ®V U denotes the set | J{p V¢ | ¢ € &,¢p € U}. When
there are no parameters in the set V(p, q) and it is a singleton, we write ¢ \ 1) instead
of p V 1.

CONVENTION 2.7.2 (Protodisjunction and p-protodisjunction). A parameterized set
of formulae ¥ (p, q, ) will be called a p-protodisjunction in L whenever it satisfies:

(PD) oL VY and PFL Vi
If ¥V has no parameters we drop the prefix ‘p-’.

This convention does not define an interesting notion on its own because, actually,
any theorem (or set of theorems) in two variables of a given logic would be a protodis-
junction in this logic; we only introduce it as a useful means to shorten the formulation
of many upcoming definitions and results. In contrast, requiring the property of proof
by cases results in more interesting notions of disjunction.

DEFINITION 2.7.3 (p-disjunction, disjunction). Given a logic L, a (p-)protodisjunction
V is called a (p-)disjunction (in L) whenever it satisfies the Proof by Cases Property,
PCP for short:
Lipbox  Dibox
Fa ® \Y 1/} FL X

Observe that if V is a disjunction in a logic it remains a disjunction in all its ax-
iomatic extensions and in its fragments containing the connectives used in V. Later we
will give sufficient and necessary conditions for the preservation of the Proof by Cases
Property in expansions. Interestingly enough, all p-disjunctions in a given logic are
interderivable as we can easily prove:

LEMMA 2.7.4. Let L be a logic and V,V' parameterized sets of formulae. Assume
that V is a p-disjunction in L. Then V' is a p-disjunction in L iff o V ¢ 41, o V' ).

Thus the notion of p-disjunction is intrinsic for a given logic and in the upcom-
ing definition it does not matter which p-disjunction we choose since all of them are
interderivable.

DEFINITION 2.7.5 (p-disjunctional logic, disjunctional logic, disjunctive logic). Let L
be a logic. We say that L is a (p-)disjunctional logic if it has a (p-)disjunction. We use
the term disjunctive instead if the disjunction is just a single parameter-free formula.

As we will see in Example 2.7.9, in substructural logics the connective V need not be
a disjunction in the technical sense just defined. Therefore, we introduce the following
terminology:



144 Petr Cintula and Carles Noguera

DEFINITION 2.7.6 (Lattice-disjunctive logic). Let L be weakly implicative disjunctive
logic L with principal implication — and disjunction \/. Then L is lattice disjunctive if:

(V1) FLo =@V
(V2) Fry—= oV
(V3) ¢—=x, ¥ = xFLeVe—x

Thus a substructural logic with V in its language is lattice-disjunctive iff V satisfies
PCP. Note that if a logic L satisfies the conditions (V1)—(V3) for two different (prim-
itive or derivable) connectives V and V', then we can easily prove a stronger version of
Lemma 2.7.4: 1, o V1 < V' ). Also note that for any lattice-disjunctive logic L and
A € MOD*(L), the algebra (A, V4) is a join-semilattice with semi-lattice order <4.

Clearly the classes of lattice-disjunctive, disjunctive, disjunctional and p-disjunc-
tional logics form an increasing chain under inclusion. Next, we present several ex-
amples of lattice-disjunctive logics to show that all these inclusions are proper, thus
demonstrating the non-triviality of our hierarchy.

LEMMA 2.7.7. Any (MP)-based substructural Rasiowa-implicative logic with & and 1
in its language (e.g. any axiomatic extension of FLey,) is a lattice-disjunctive logic.

Proof. The PCP for these logics is shown in Corollary 2.6.10 by using the connective
V and hence they are lattice-disjunctive. O

THEOREM 2.7.8. There is a p-disjunctional logic which is not disjunctional, a disjunc-
tional logic which is not disjunctive, and a disjunctive substructural logic which is not
lattice-disjunctive.

The proof of this theorem is established by the following three examples.

EXAMPLE 2.7.9. The logic ¥FL, is disjunctive but not lattice-disjunctive. In Corol-
lary 2.6.11 we have seen that V(p,q) = (p A1) V (¢ A 1) satisfies the PCP. Since it
clearly satisfies (PD) too, it is a p-disjunction.

Assume now that the lattice connective V satisfies the PCP. From ¢ - ¢ A 1 we
easily get o = (A1) V). Asalso ) - (pA1) Ve, we could use the PCP of V to obtain
©V1p = (pAT)Vap. Consider the FL-matrix with the domain { L, a, b, 1, T }; designated
set {1, T}; the lattice connectives defined in the way that the elements form the non-
distributive lattice diamond where _L is the minimum element and T is the maximum;
residual conjunction: z & 1 = 1& v = zand v &y = = Ay for z,y # 1; and
implication: ©+ — y = max{z | z & < y}. Then, we reach a contradiction from these
simple observations: a Vb= T but (a A1)Vb= LVb=b.

EXAMPLE 2.7.10. The implicational fragment of Gédel-Dummett logic G_, (intro-
duced in Chapter 1) is disjunctional but not disjunctive. First we show that the set
eV ={(lp = ¢¥) > ¥, = ¢) = ¢} is a disjunction. Since G is an ax-
iomatic extension of FLe,, it satisfies: ¢ - (p — ¥) — ¢ and ¥ - (¢ — 1) — ¢ and
so V satisfies (PD). Now observe that I, o — ¥, (¢ — ¥) = ¥, (¥ — ¢) = o F 9
and as we assume that I'; ¢ - x thus I', o — 1, ¢ V 9 | x and so by the Deduction
Theorem I', o V¢ - (¢ — ¥) — x. Analogously we prove I', o VY = (¢ — @) — x
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and as ((¢ = ¥) = x) = (¥ = ¢) = x) — X) is a theorem of Godel-Dummett
logic we obtain I', ¢ V 1 |- x as needed.

Assume that ¢(p, ¢) is a disjunction. As a consequence of the standard complete-
ness theorem for G, we know that G_, is complete with respect to the matrix A whose
universe is the real unit interval [0, 1], the filter is {1} and the only operation is:

1 ifa<bd
A )
a—="b= { b otherwise.

By Lemma 2.7.4, the formula ¢(p, ¢) and the set ¢ V ¢ are mutually derivable in
G_,. Asin Godel logic we have: ¢ V¢ < ((¢ = ¥) = ) A ((¢p = @) — @), we can
use the Deduction Theorem (Theorem 2.6.3) we obtain that ¢(p, q) is interpreted in A
as the function maximum. So, in particular, for every a,b € [0, 1) we have ¢ (a,b) =
max{a, b}. We show by an infinite descent argument that this is impossible. Since — is
the only connective in the language, the formula must be ¢(p, q¢) = a(p,q) — 5(p, q).
Take any a,b € [0,1). If a < b, 2 (a,b) = a®(a,b) = B2 (a,b) = b, which implies
BA(a,b) = b. Analogously, if a > b, we have 32 (a,b) = a. Thus, 3(p,q) would
be a strictly shorter formula with the same property. Following this line of reasoning
we would derive that for each a,b € [0,1) we have either a —* b = max{a,b} or
b —A a = max{a, b}—a contradiction.

EXAMPLE 2.7.11. The implicational fragment of intuitionistic logic IPC_, is p-dis-
Junctional but not disjunctional. The fact that IPC_, is p-disjunctional follows from
Theorem 2.7.20 (the filter-distributivity of this logic was proved in [27]). Assume, for
contradiction, that a set V is a disjunction in IPC_,. Thus by Corollary 2.7.17 it also a
disjunction in the full intuitionistic logic IPC. From Lemma 2.7.7 we know that IPC is
lattice-disjunctive and so, by Lemma 2.7.4, we have pV ¢ 41, pVg. Using finitarity, the
presence of the lattice conjunction A in the language of IPC and the Deduction Theorem
we obtain a formula V' of two variables p, g built using only implication and lattice con-
junction such that Fipc pV’ g <+ pV g—which is known to be impossible (see e.g. [67]).

On the other hand, we have seen in Corollary 2.6.11 that in FL the set V(p, ¢, 7) =
{71(p) V v2(q) | 71,72 iterated conjugates} satisfies the PCP. As it clearly satisfies
also (PD) it is a p-disjunction. Sato in [79, Proposition 6.9] showed that there is no
protodisjunction in FL which would satisfy the PCP, i.e. that FL is not disjunctive.
Thanks to the presence of the lattice conjunction in FL. we could derive that not even a
finite set of formulae would suffice to define a disjunction in FL, but, unfortunately, we
are not able to extend this result to the non-existence of disjunctions defined by infinite
sets. However we conjecture:

CONJECTURE 2.7.12. The logic FL is another example of a p-disjunctional logic
which is not disjunctional.

The Proof by Cases Property implies other interesting syntactical properties that a
disjunction is expected to satisfy: commutativity, idempotency, and associativity.® The
proof of the next lemma is straightforward.

9Observe that commutativity, idempotency, and associativity are typically also satisfied by conjunction,
whereas (PD) and the PCP are typically satisfied only by disjunction connectives.
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LEMMA 2.7.13. If L is a logic and V is a p-protodisjunction satisfying the PCP, then
it also satisfies the following conditions:

(Cv) ViYL Ve
(Iv) eVelLe
(Av) oV (@ Vx) 4L (e VYY) Vx.

Next we provide a characterization of (p-)disjunctions, essentially by showing what
needs to be added to the properties of the previous lemma to obtain a (p-)disjunction.

DEFINITION 2.7.14 (V-form). Let V be a p-protodisjunction and R = T" > ¢ be a
consecution. We define the N-form of R, denoted by RY, as the set of consecutions
{TVx>d|xe€Fmeandd € ¢V x}

THEOREM 2.7.15 (Syntactic characterization of p-disjunctions). Let L be a finitary
logic with a presentation AS and V a (p-)protodisjunction. Then the following are
equivalent:

1. V is a (p-)disjunction.

2. 'V enjoys the strong Proof by Cases Property, sSPCP for short,

Fa(I')I_LX F7\I’}_LX
TovVUF,x

3. V satisfies (Cy), (Iv), and RV C L for each R € L.
4. V satisfies (Cy), (Iv), and RV C L for each R € AS.

Proof. We start by showing the equivalence of the first three properties, and then we
complete the proof by showing the implication 4—3 (the implication (3—4 is trivial).

1—2: we proceed by using induction. First observe that due the finitary of L we
can assume that both ®, ¥ are finite. Call a pair I, ® Fy, x and I', ¥ b, x a situation;
define the complexity of a situation as a pair (n, m) where n and m are respectively the
cardinalities of ® \ ¥ and ¥ \ ®. We show by induction on k& = n + m that in each
situation we obtain I', ® V U |-, .

First assume & < 2. If n = 0, 1.e. ® C P, we obtain ® VP® C & V ¥ and
since I',® V & k1, T" U ® the proof is done. The proof for m = 0 is analogous. If
n =m = 1 we use the PCP. The induction step: consider a situation with complexity
(n,m), where n + m > 2. We can assume without loss of generality that n > 2, take
a formula ¢ € @ \ ¥ and define &' = & \ {p}. We know that I, &', » 1, x and
I, ¥ k. Thus we also know that T', &', 1, x and ', ®', ¥ 1, x; notice that the
complexity of this situation is (1, m) and so we can use the induction assumption to
obtainI", &', o V ¥ F, x.

Thus we have the situation ', o V W, ®' b yand T, o V ¥, ¥ Fp x (the second
claim is trivial); the complexity of this situation is (n’,m’), where n’ < n — 1 and
m’ < m, and so by the induction assumption we obtain ', o V ¥, &' V ¥ F, x (which
is exactly what we wanted).
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2—3: from " k1, ¢ we obtain and I 1, ¢ V x using (PD). By (PD) we also obtain
X FL ¢ V x and the sSPCP completes the proof.

3—1: assume than I', o 1, x and ;9 b1, x. Using the assumption we obtain
IViy,pVibr xVyandT'V x,v V x Fr, x V x. Using (Cy) and (Iy) we obtain
VY, TVy,op Vg x. By (PD) weknown that T' 1, ' V¢ and I b, T'V y and
so the proof is done.

4—3: assume that I F1, ¢ and we show I' V x Fy, § V x for each formula x and
each § appearing in the proof of ¢ from I'. If § € I" or ¢ is an axiom, the proof is trivial.
Now assume that R = X D> ¢ is the deduction rule we use to get 6. From the induction
assumption we have I' V y 1, ¥ V x. As we know that RV € L the proof is done. [

REMARK 2.7.16. Notice that the equivalence of conditions 2,3, and 4 could be es-
tablished even without the assumption of finitarity. Moreover, any of these conditions
implies in general condition 1.

In Example 2.7.9 we have seen a connective V which clearly satisfies (PD), (Cv),
(Iy), and (Ay) but it is not a disjunction. This demonstrates that the condition R C L
for each R € L (resp. R € AS) is necessary in parts 3 and 4 of the previous theorem (in
fact to prove this we have shown that the VV-form of the rule (adj,) is not valid in FL).

As a corollary of the previous theorem we can answer the question when V remains
a p-disjunction in an expansion of a given logic.

COROLLARY 2.7.17. Let V be a p-disjunction in a finitary logic L and let Ly be an
expansion of Ly by a set C of finitary consecutions. Then V is a p-disjunction in Ls iff
RY C Ly foreach R € C. In particular, V is a p-disjunction in any axiomatic expansion
Of Ll.

Proof. The left-to-right direction is a straightforward application of the previous theo-
rem. For the reverse direction take a presentation AS of L;. We know that Lo has a
presentation AS’ = {o[I'] > o | o is an Ly-substitution, I' > ¢ € AS U C}. Thus we
need to prove that for each I' > ¢ € AS U C and for each Lq-substitution ¢ we have
(o[l > o)V C Ly, i.e. for each Lo-formula x, each §(p, q,71,...,7,) € V and each
sequence qu, . .., ay, of Lo-formulae we have o[l V x b1, d(op, x,a1,...,a,). If
I' > ¢ € C, this is the assumption; we solve the remaining case.

Consider any enumeration of the propositional variables such that pg = ¢, p; = r;,
and £ -substitutions p, p~! and Lo-substitution & defined as:

® PPi = Pi+n+1,
o p~lp; = pi_n_1 fori > n and p; otherwise,
® Gp; = 0(pi—n—1) fori >n,ap; = ; for 1 <i < mnandapy = x.

Observe that p~1pyp = 1 and Gpyp = otp. From I’ > ¢ € AS we get p[['] > pp € AS
and because (p[I'] > pp)V C L; C Ly we obtain: p[[']V ¢ 1, 6(pp,q,71,...,7,) and
so g[p[l'] V ¢] b, 6(pp,q,71,...,7). Because obviously, 56 (pp,q,r1,...,7r) =
(o, X, a1, .., an),if we prove a[p[T'] V ¢q] C o[I'] V x the proof is done. It is enough
to observe that the formulae in &[p[[] V ¢] are of the form 6(c4), x, 5y, ..., 504) € V
forsome vy € T, 5(]9, q,71,...,7x) € V and a sequence of Lo-formulae a, ..., . O
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Next, we prove that PCP also enjoys a transfer theorem (recall the commentary
before Corollary 2.3.4).

THEOREM 2.7.18 (Transfer theorem for PCP). Let L be a finitary logic with a presen-
tation AS and V a (p-)protodisjunction. Then the following are equivalent:

1. V is a (p-)disjunction.
2. Fi(Y) NFi(Z) = Fi(Y VA 2) for each L-algebra A and eachY,Z C A.

3. Fi(X,2) NFi(X,y) = Fi(X,z VA y) for each L-algebra A and each
X U{z,y} CA

Proof. 1—2: The inclusion Fi(X VA Y) C Fi(X) N Fi(Y) follows easily from (PD).
To prove the converse one, we start by showing that for each z € Fi(X) we have
rVAy C Fi(X VAy) foreach y. If z € Fi(X), then (due to Proposition 2.1.23) there is
a proof of = from X in some presentation .AS of L. We show that z VAy C Fi(X VAy)
for each z labeling any node of that proof, i.e. for each x(p, q,r1,...,7,) € V and each
sequence u1, . . ., U, of elements of A we have x(z,y,u1,...,u,) € Fi(X VA y).

It is trivial if z € X. Otherwise there is a set Z of labels of the preceding nodes
(possible empty), a consecution I" > ¢ € AS, and an evaluation h, such that h[['] = Z
and h(p) = z. Without loss of generality we could assume that variables ¢, 71, ...,7,
do not occur'® in T' U {¢} and so we can set h(q) = y and h(r;) = u; for every i €
{1,...,n}. Thus h[T'Vq] € ZVAy C Fi(X VAy) (the last inclusion follows from the
induction assumption). From Theorem 2.7.15 we know that 'V ¢ by, x(¢,q,71,...,75)
and so X (z, Y, u1, .., un) = h(x(p, ¢, 71, ... ,7)) € Fi(X VA ).

Now we can finally prove that Fi(X) N Fi(Y) C Fi(X VAY). If z € Fi(X) then
by the just proved claim for each yy € Y holds: z VA y C Fi(X V4 y) and so, by (Cv),
yVA 2z C Fi(X VAy). This can be more compactly written as: Y VA2 C Fi(X VAY).
Analogously we obtain z V4 z C Fi(Y VA 2) from z € Fi(Y). Thus z € Fi(Y V4 2)
(by (Iy)) and so z € Fi(X VAY).

2—3: One inclusion again easily follows from (PD). To prove the other one we use
2 to obtain Fi(X,z) NFi(X,y) C Fi(X VA X, X VAy,2 VA X,2 VA y) and (PD)
completes the proof.

The final implication is trivial. O

REMARK 2.7.19. We have actually proved transfer of sPCP in all (not necessarily
finitary) logics. Furthermore the equivalence of conditions 1 and 3 (but not 2) holds in
all (not necessarily finitary) weakly implicative logics [20]. Later (in Theorem 3.2.13)
we will prove equivalence of all these three conditions (and those from Theorem 2.7.15)
for a special subclass of (not necessarily finitary) weakly implicative logics.

10We could define a new suitable T" > ¢ with the same properties using a Hilbert-hotel style argument:
consider any enumeration of the propositional variables such that po = g, p; = 74, a substitution o(p;) =
Di+n-+1, and any evaluation k' such that A’ (op) = h(p). Then o[['] > o is the consecution we need: indeed
olll>op € AS, W [o[l']] = Z, and b’ (o) = z. Note that here we have used our assumption that the
axiomatic systems are closed under substitutions.
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The following theorem gives an intrinsic characterization of p-disjunctional logics
in terms of (filter-)distributivity (recall Definition 2.1.22), as opposed to Theorem 2.7.15
characterizing particular p-disjunctions.

THEOREM 2.7.20 (Characterization of p-disjunctional logics). For any finitary weakly
implicative logic L the following are equivalent:

1. L is p-disjunctional.
2. L is filter-distributive.

3. The lattice Th(L) is distributive.

Proof. 1—2: Given a p-disjunction V and F, G, H € Fir,(A), we can write the follow-
ing chain of equations (the non-trivial ones are due to part 2 of Theorem 2.7.18):
FN(GVH) = Fi(F)NFi(GUH)=

= Fi(FV(GUH))=

= Fi((FVG)U(FVH))=

= Fi(FVGVFI(FVH)=
Fi(F)NFi(GQ)) v (Fi(F)NFi(H)) =
FNG)V(FNH).

o~ o~

2—3: Trivial.

3—1: Define V = Thy,(p) N Thy,(¢). Given a pair of formulae ¢, 1), take a surjec-
tive substitution o such that op = ¢ and 0q = ¥. If we knew that Thy, (cp)NThy,(0q) =
Thy,(c[pV g]), then we could write the following chain of equations demonstrating that
V is a p-disjunction (we use the definition of join in Th(L), the distributivity of Th(L),
the definition of o, the fact mentioned above, and we observe that, due to the surjectivity
of o, we have o[p V ¢q] = ¢ V 9):

Thy(I', ) N Thy(I',9p) = (Thy(T) V Thy(¢)) N (Th(I') V Thy(v)) =
= Thy(') vV (Thr(e) N Thr(¢)) =
= Thy(I)V Thy(olp V q]) =
= Thy(l') v ThL(ep V) =
= Thy(l,e V).

The rest of the proof is dedicated to proving Thy,(op) N Thy,(0q) = Thr(o[p V q]).
We define a theory Y = o~ [Thy,(0)] (clearly Y € Th(L) by Lemma 2.1.19), an in-
terval in the lattice of theories [V, F'mz] = {T' € Th(L) | Y C T}, and mappings
o:[Y,Fmz] — Th(L) and o~': Th(L) — [Y, Fm,] defined as o(T) = o[T] and
o~ (T) = o7 YT). Clearly 0 [T € [Y, Fm] foreach T' € Th(L) (by Lemma 2.1.19
and the fact that Thy, () C T). To prove that o(T') € Th(L) for each T € [Y, Fm],
taking into account Lemma 2.1.19, all we need to show is o () € o[T] implies « € T":
the assumption gives us caw = of for some S € T, therefore 1, 08 — o«, hence
B — a €T (because f — a € Y and Y C T), and thus by (MP) we obtain o € T'.
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Claim 1: o is an isomorphism. Clearly both o and o~ are order-preserving, thus
all we need to show is 0~ (o(T)) = T and (0~ !(S)) = S foreach T € [Y, Fm/]
and S € Th(L). The two non-trivial inclusions are o ~!(o(T)) C T (which follows
from the already proved fact: o(«) € o[T] implies o € T') and o(~1(S)) D S (which
follows from the surjectivity of o).

Claim 2: Thy(o[X]) = o(Y V Thy (X)) for each set of formulae Y. The first
inclusion follows from: o[¥] C o (Y V Thy(X)) and o(Y V Thi(X)) € Th(L).
The second inclusion: if y € o (Y V Thr (X)), then x = o6 and Y, X b, 6. Thus
olY],o[XZ] FL o(d),ie. o[Z] FL x.

Now we can finish the proof of the theorem by a series of equations (we use Claim 2,
Claim 1, distributivity of Th(L), and Claim 2 again):

Thy,(op) N Thy,(0q) o(Y vV Thy(p)) No(Y VvV Thy(q))
(Y v Thy,(p)) N (Y V Thy (g))) =
o (Y V (Thy(p) N Thy(q))) =

Thy (o[ The,(p) 1 Thi,(g)]) =

= Thy(co[p V q)). O

Next, we introduce the notion of V-prime filter by generalizing the classical notion
of prime filter in Boolean algebras.

DEFINITION 2.7.21 (Prime filter). Let L = (L,Fy,) be a logic, V a (possibly parame-
terized) set of formulae in two variables, A an L-algebra, and F' € Fir,(A). Then, F
is called V-prime if for every a,b € A, aVAbC Fiffa € Forbe F.

Notice that when V defines a disjunction connective V, the previous definition gives
just the usual notion of prime filter.

DEFINITION 2.7.22 (Prime Extension Property). A logic L has the prime extension
property, PEP for short, with respect to a set V if V-prime theories form a base of the
closure system Th(L).

In the parameter-free case, we have the following characterizations of disjunctions
in terms of prime filters and their properties:

THEOREM 2.7.23 (Characterizations of disjunctions). Let L be a finitary logic and V
a protodisjunction. Then the following are equivalent:

1. V is a disjunction.

2. Forevery L-algebra A and every F € Fir,(A), F is finitely N-irreducible iff it is
V-prime.

3. Forevery (A, F) € MOD*(L), (A, F) € MOD*(L)grst iff F' is V-prime.
4. Forevery'U{p} C Fmc, ' b @ iff T' F((a,F)eMOD* (L) | F is V-prime} ¥
5. For every L-algebra A, V-prime filters form a base of Fir,(A).

6. L has the PEP w.rt. V.
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Proof. 1—2: Consider any F' € Fiy,(A), assume first that F' is not V-prime, i.e. there
arex ¢ Fandy ¢ F such that z VA y C F (the second implication in the definition
of prime filter holds always due to (PD)). Thus from Theorem 2.7.15 we know that
F = Fi(F,x VA y) = Fi(F,z) N Fi(F,y), i.e. F is the intersection of two strictly
bigger filters. Next assume that F' is finitely reducible, i.e. F' = Fy; N Fy and F' C Fj.
Let us consider a; € F; \ F. Thus, by (PD), we know that a; V4 ay C F; and so
a1 VA ay C F,ie. Fisnot V-prime.

The implication 2—3 is a direct consequence of Theorem 2.3.14 and 3—4 follows
directly from Theorem 2.3.16.

4—1: We will show that V has the PCP. Assume that ', V ¢ ¥y, x. Thus
there is an (A, F') € MOD* (L) where F is V-prime and an A-evaluation e such that
ell,o V] C Fand e(x) ¢ F. Since V is parameter-free, we obtain e(¢) V e(¢)) =
elpVy] C F, and since F'is V-prime, we have e(p) € Fore(y) € FandsoT', ¢ ¥, x
or I', ¢ ¥, x.

We have established the equivalence of the first four claims. To complete the proof
we first observe that 2—5 follows immediately from the fact that (finitely) N-irreducible
filters form a base of Fir,(A) (Corollary 2.3.9). The implication 5—6 is trivial. We
complete the proof by showing 6—1: assume that I', ¢ V 1 F1, x, then using the PEP
there is a V-prime theory IV D T'U ¢ V 1) such that TV ¥y, x. Thus TV 1, p or TV b, 9.
Andsoclearly I', o 1, x or I', ¥ 41, x. O

REMARK 2.7.24. Notice that the hypothesis in the previous theorem about the absence
of parameters in NV has only been used to show 4—1. In fact, in the general case,
condition 1 (V is a p-disjunction) still implies all the rest, and conditions 1,5, 6 are still
equivalent.

We consider now the problem of finding the minimal p-disjunctional extension of a
given logic. Observe, on the one hand, that if V is a p-disjunction in a family of logics, it
remains a p-disjunction in their intersection. On the other hand, any V is a p-disjunction
in the inconsistent logic. Thus, the following definition is sound:

DEFINITION 2.7.25 (Logic LV). Let L be a finitary logic and ¥V a p-protodisjunction.
We denote by LY the least logic extending L where ¥ is a p-disjunction.

PROPOSITION 2.7.26. Let L be a finitary logic and ¥ a p-protodisjunction. Then LY
is finitary and it is the intersection of all finitary extensions of L where ¥V has the PCP.

Proof. Recall the notion of finitary companion of a logic S, denoted as FC(S), which
is the largest finitary logic contained in S. Thus, since L is finitary, we know that L. C
FC(LV) C LV. If we show that V has the PCP in FC(LV), we obtain FC(LV) = LV
and hence LV is finitary. Actually, one can easily show in general that if ¥ has the PCP
in S, then it has the PCP in FC(S) as well. O

Moreover, in the parameter-free case, we can easily present a simple axiomatization
and a complete semantics for LV.

THEOREM 2.7.27 (Axiomatization of LY). Let L be a logic with a finitary presentation

AS and let ¥ be a p-protodisjunction satisfying (Cy), (Iy), and (Ay). Then LV is
axiomatized by AS UJ{RY | R € AS}.
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Proof. Let L denote the logic axiomatized by AS’ = AS U J{RY | R € AS} (note
that this set is closed under all substitutions because we assume V to be parameter-free).
First observe that for each R € AS’ we have RV C L (obviously if R € AS’, otherwise
we use (Ay)) hence we can use Theorem 2.7.15 to obtain that V has the PCP in L and
thus LV C L. On the other hand clearly AS C LV and thus also RV C LV for each
R € AS (by Theorem 2.7.15 which we can use because Proposition 2.7.26 tells us that
LV is finitary) and so LCLV O

THEOREM 2.7.28 (Semantics of LY). Let L be a finitary logic and ¥V a protodisjunc-
tion. Define MOD, (L) = {(A, F') € MOD*(L) | I is V-prime}. Then:

Fiv = Emobs(L)-

Proof. We prove that |:M0D;(L) is the least extension of L where V is a disjunction.
It is clear that it is an extension of L and that V is a disjunction there (because of claim
4 in Theorem 2.7.23 and the fact that MOD*(LY) € MOD*(L)). Finally, assume
that L’ is another extension of L where V is a disjunction and I’ ):MOD;(L) , then

r ':MOD;‘,(L/) ©, andso I l_L’ ©. O

Let us recall that matrices can be regarded as first-order structures where the filter
corresponds to a unary predicate F', i.e. all atomic formulae in the corresponding clas-
sical first-order language are of the form F'() where ¢ is a formula. A set of positive
clauses C = {V c5  F'(¢) | C € C} is said to be valid in a matrix Ml = (A, F'), writ-
ten as M |= C, if for each C' € C and each M-evaluation e there is a ¢ € X such that
e(p) € F. A positive universal class of matrices is the collection of all models of a set
of universal closures of positive clauses.!! The next theorem presents an axiomatization,
by means of a p-disjunction, of any logic given by a positive universal class of matrices.

THEOREM 2.7.29 (Axiomatization of the logic of a positive universal class of matri-
ces). Let L be a finitary logic with a p-disjunction V and C a set of positive clauses.
Then:
EBemon+ 1) By = L+ | {Vyerv | \/ F(¥) €C}.
YeT

Proof. Letus first denote the formula Vyez¢) as Cy foraclause C =/, .7 F(y) € C
and observe that for each matrix M = (A, F') we have: if M as a first-order structure
satisfies C, then M as a matrix satisfies the propositional formula C'yy. Moreover, if F'
is V-prime, the reverse implication holds as well.

We denote the left-hand side logic as L” and the right-hand side one as L¢. Clearly
L C L" and due to the observation above also F,» Cy for each C' € C. Thus L* C L".

The converse direction L” C L¢ will be proven counterpositively. Assume that
there is a set I' U {¢} of formulae such that: T /1. . Since V is a p-disjunction

Ppositive universal classes are usually defined as the collection of all models of a set of positive universal
formulae, i.e. the universal closures of formulae built from atoms using conjunction and disjunction. Clearly
each formula of this kind can be written as the universal closure of a conjunction of positive clauses and so
its generated positive universal class is just the positive universal class generated by the collection of these
positive clauses.
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in L* (by Corollary 2.7.17), we know that there is A = (A, F) € MOD"(L%) where
F' is V-prime (by Theorem 2.7.23) such that I' - . If we show that A = C, the
proof is done. Assume that A [~ C for some C' € C. Then, by the observation at the
beginning of the proof, A as matrix would not satisfy the propositional formula Cy—a
contradiction. O

As a consequence we obtain a general method to axiomatize the intersection of
axiomatic extensions of a common base logic by means of a generalized disjunction.

THEOREM 2.7.30 (Axiomatization of intersections of axiomatic extensions). Let L be
a finitary logic with a p-disjunction V, and let 1.1, Lo be axiomatic extensions of L
respectively given by the sets of axioms Ay and Ay (without loss of generality we can
assume that Ay and As share no propositional variables). Then:

LinLy =L+ | J{e Ve |ped,ie A}

Proof. It is easy to see that L1 N Ly = FEmop* (1, )uMoD*(L,)- Consider the set of
positive clauses C = {F(¢) V F(¢) | p € A1,¢ € Az},

If we show that MOD"(L;) U MOD*(L;) = {B € MOD*(L) | B = C},
the proof is done by Theorem 2.7.29. One inclusion is trivial. We prove the con-
verse one counterpositively: consider A € MOD™(L) such that A ¢ MOD"(L,) U
MOD*(Ly), i.e. there is ; € A; such that =4 ¢;; consider evaluations e; witnessing
those facts. As ¢; and @5 do not share any propositional variable there is an evaluation
e witnessing both facts (e is defined as e; in the variables occurring in ¢, and arbitrarily
elsewhere). This evaluation also shows that A = F(p1) V F(p2). O

As another consequence of Theorem 2.7.29 the following example shows that in
some cases one can easily axiomatize the logic defined by linearly ordered models of
a given logic in terms of disjunction. Logics complete with respect to linearly ordered
matrices are the central topic of the next section.

EXAMPLE 2.7.31. Since V is a disjunction in FL.,, and any matrix M € MOD (FL,,,)
is linearly ordered iff Ml = F'(¢ — ¥)V F () — @), we can apply Theorem 2.7.29 and
obtain:

F{BEMOD* (FL..,) | B is lincarly ordered} = F Liew + (¢ — ¥) V (¢ — ).

3 Semilinear logics

This section is devoted to the central topic of the chapter: logics complete with
respect to linearly ordered matrices, which we call semilinear. We aim to encompass by
this notion the vast majority of fuzzy logics in the literature. Always in the context of
weakly implicative logics, in the first subsection we provide the technical definition of
semilinear logic and some auxiliary notions which allow for an approach to a large extent
analogous to that we have followed for disjunctions. In the second subsection, we study
the strong interplay between semilinear implications and disjunctions and obtain several
interesting consequences. In the last subsection we focus on completeness properties
with respect to finer semantics, i.e. distinguished subclasses of linearly ordered matrices.
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3.1 Basic definitions, properties, and examples

We want to study a general notion of logic complete with respect to a semantics
of linearly ordered matrices. A natural design choice is to restrict to the context of
weakly implicative logics presented in the previous section because in these logics the
implication connective induces a preorder in the matrices, which is actually an order
relation in reduced models.

DEFINITION 3.1.1 (Linear filter and linear model). Let L be a weakly implicative logic.
Take any non-trivial A = (A, F) € MOD(L). The filter F is called linear if < is a
total preorder, i.e. for every a,b € A, a -2 b € F orb —4 a € F. Furthermore, we
say that A is a linearly ordered model (or just a linear model) if <a is a linear order
(equivalently: F is linear and A is reduced). We denote the class of all linear models

as MOD*(L).
Now, based on linear models, we can introduce the central concept of this section:

DEFINITION 3.1.2 (Semilinear implication, semilinear logic). Let L be a weakly im-
plicative logic. We say that — is a semilinear implication if the linear models it defines
are a complete semantics for L, i.e. F, = |:MOD4(L). A weakly implicative logic is
semilinear if it has a semilinear implication.

Observe that the class of linear models and the notion of semilinearity thereof are
not intrinsically defined for a given logic: they depend on which possible implication
has been chosen as principal. For instance, in classical logic both — and = are weak
implications, but only — makes the logic semilinear (linear models w.r.t. to — are the
trivial model and that based on the two-element Boolean algebra, while the only linear
model w.r.t. = is the trivial one).

The following simple lemma has an important corollary and will be used later to
provide some useful counterexamples.

LEMMA 3.1.3. Let L be a weakly implicative logic, A an L-algebra, and I a linear
filter. Then the set [F, A] = {G € Fir(A) | F C G} is linearly ordered by inclusion.'

Proof. Assume that there are two incomparable filters G1, G2 € [F, A] and take ele-
ments a; € Gy \ G2 and ay € G5 \ G;. Assume (without a loss of generality) that
a1 <(a,r) az. Thus also a; —4 a4, € F C Gy and so by (MP) also a; € G1—a
contradiction. O

PROPOSITION 3.1.4. Let L. be a weakly implicative logic. Then, all linear filters are
finitely N-irreducible, and thus MOD*(L) C MOD*(L)grs1.

Proof. If Ais an L-algebra and F' € Fir,(A) is a linear filter, by the previous lemma we
know that [F, A] is linearly ordered by inclusion. Assume that F' = G N G, for some
G1,Gs € Fir,(A). Then we must have Gy C Go, and hence F' = G4, or G2 C Gy, and
so F' = (Go; therefore F' is finitely N-irreducible. The second claim follows immediately
from Theorem 2.3.14. 0

120bserve that if L is algebraically implicative and (A, F) € MOD?(L), then Fir,(A) = [F, AJ.
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In particular, linear theories are linear filters over the algebra F'm, and they are
finitely N-irreducible. Recall (from Corollary 2.3.9) that in finitary logics the finitely
N-irreducible theories form a base of the closure system Th(L). Thus, an interesting
question is to determine under which conditions linear theories form a base of Th(L).
We can characterize (see [17]) it by means of a generalization of the so-called prelin-
earity property which we rename to semilinearity property. This change of terminol-
ogy follows the tradition from Universal Algebra of calling a class of algebras ‘semiX’
whenever its subdirectly irreducible members have the property X because, indeed, as
will see in Theorem 3.1.8, finitary semilinear logics are characterized as those where all
subdirectly irreducible models are linearly ordered.

DEFINITION 3.1.5 (Linear Extension Property, Semilinearity Property). We say that a
weakly implicative logic L. has the

e Linear Extension Property LEP if linear theories form a base of Th(L), i.e. for
every theory T € Th(L) and every formula o € Fm\T, there is a linear theory
T O T suchthat o ¢ T'.

e Semilinearity Property SLP if the following meta-rule is valid:

o= x Iy —phkLx
Fl_LX ’

Next we prove a transfer theorem for the SLP. Recall our standing assumption that
the set Var of propositional variables is denumerable.

THEOREM 3.1.6 (Transfer of SLP). Assume that a weakly implicative logic L satisfies
the SLP. Then for each L-algebra A and each set X U {a,b} C A the following holds:

Fi(X,a — b) NFi(X,b — a) = Fi(X).
Proof. To prove the non-trivial direction we show that for each ¢ ¢ Fi(X) we have
t ¢ Fi(X,a — b) ort ¢ Fi(X,b — a). We distinguish two cases:
1) Firstly assume that A is countable. We can assume that the set Var of proposi-

tional variables contains (or is equal to) the set {v, | z € A} (where v, # v,, whenever
z # w). Consider the following set of formulae:

I'={v,|z€eFi(X)} U U {e(vays v vsvz,) & Vea(s, 2 | 20 € A}
(e,n)eL

Clearly, I" ¥1, v; (because (A, Fi(X)) € MOD(L) and for the A-evaluation e(v,) = z:
e[l'] C Fi(X) and e(v;) ¢ Fi(X)). Thus by the SLP we have I', v, — vy ¥, v; or
T vy — v #1 ve. Assume (without loss of generality) the former case and denote
T = Thy(T,v, — vp). We show that the mapping h: A — Fm,/QT’ defined as
h(z) = [v.]7 is a homomorphism by a simple chain of equalities:

h(CA(Zlv ey Zn)) = [UCA(Zl,...,zn)]T’ = [C(UZ1 PR 7’UZ7L)]T’
= Fme /T [y, Ny [vs 1) = F™E/OT (R(zy), ... h(zn)).

Thus F = h=1([T"]) € Fir(A) and, since clearly X U {a — b} C Fandt ¢ F, we
have established that ¢ ¢ Fi(X,a — b).
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2) Secondly assume that A is uncountable. We introduce a new set of propositional
variables'® Var’ = {v, | 2 € A}; we can safely assume that it contains the original
set Var. We define a new logic I’ in the language £’ which has the same connectives
as £ and variables from Var’. If we show that this logic has the SLP we can repeat the
constructions from the first part of this proof. From our assumption we know that there
is a presentation AS of L such that each of its rules has countably many premises.

Let us define AS" = {o[X] > 0(¢) | X > ¢ € AS and o is an £’'-substitution }
and L' = t_45/. Observe that I' Fr, ¢ iff there is a countable set IV C T such that
I k. ¢ (clearly any proof in .AS’ has countably many leaves, because all of its rules
have countably many premises). Next observe that L’ is a conservative expansion of L
(consider the substitution ¢ sending all variables from Var to themselves and the rest to
afixed p € Var, take any proof of ¢ from I' in AAS’ and observe that the same tree with
labels 1 replaced by o is a proof of ¢ from I' in L).

We show that L has the SLP: assume that T, o — ¢ b xand T, ¢ — ¢ Fr/ x.
There is a countable subset IV C T" such that I, o — ¢ b1, x and IV, ¢ — ¢ 10 x.
Consider the set Var of variables occurring in IV U{, v, x} and a bijection g on the set
Var’ such that the image Var is a subset of Var (such bijection clearly exists). Thus
for the £’-substitution o induced by g exists an inverse substitution c~! and o[["] U
{op,0v,0x} C Fm,. Clearly also o[I'],0c0 — o 1, ox and o[I"],0¢ — o b1,
ox. Using the fact that L” expands L conservatively, we obtain o[I"], 00 — ot by, ox
and o[I"],0¢p — o b1 ox. From the SLP of L we know that o[I"] k1, ox and
o[I'] ks o) so by structurality for the inverse substitution o ~! also I s x. O

THEOREM 3.1.7 (Properties of semilinear logics). Let L. be a semilinear logic in lan-
guage L. Then:

1. L has the LEP.
2. L has the SLP.

3. L has the transferred SLP, i.e. Fi(X,a — b) N Fi(X,b — a) = Fi(X) for each
L-algebra A and each set X U {a,b} C A.

4. Linear filters coincide with finitely N-irreducible ones in each L-algebra.
5. MOD*(L)rrst = MOD*(L).
6. MOD*(L)rsr € MOD*(L).

Proof. 1f T ¥, X, then there is a B = (A, F) € MOD*(L) and a B-evaluation e such
thate[T] C F and e(x) ¢ F. We define T' = e~ ![F]. Obviously T" is a theory, T C T’
and 7" ¥y, x. Since <g is a linear order, e(¢) <p e(¥) or (1)) <g e(p) for each ¢
and ¢. Thus either e(p — 1)) € Fore(y — p) € Fyie.p >y €T orp = p € T".

13Notice that this set of variables is not countable, so it does not satisfy the cardinality restriction that we
have assumed from the beginning of the chapter for the sake of simplicity. However, an inspection of the
relevant parts of the general theory of logical calculi that we have introduced so far shows that everything
needed for this proof would work as well without that restriction. Therefore, in this proof we can violate our
general assumption without problems.
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The second claim: if T ¥, x, then (using the LEP) there is a linear theory 77 D T,
such that 7" ¥, x. Assume (without a loss of generality) that 77 1, ¢ — %), then
obviously T', o — 9 1, x.

The third claim: follows from the SLP using the transfer theorem proved above.

The fourth claim: let A be an L-algebra. One direction is Proposition 3.1.4. The
other one obviously holds for 7 = A and otherwise follows from the previous claim
counterpositively: assume that there are a,b € Asuchthata - b ¢ Fandb — a ¢ F,
ie. F C Fi(F,a — b) and F' C Fi(F,b — a). Therefore we obtain F' = Fi(F') =
Fi(F,a — b) NFi(F,b — a) and so F is finitely N-reducible.

The fifth claim: it is an easy corollary of the previous claim and Theorem 2.3.14.

The final claim is a trivial consequence of the previous one. U

Observe that, in fact, only the LEP has been proved directly from semilinearity;
all the remaining claims of the theorem above have been shown from their direct pre-
decessors. Now, an obvious question is when these claims are equivalent. First notice
that claim 5 tells us that semilinear logics are complete w.r.t. MOD™(L)grsr, @ known
property of finitary logics established in Theorem 2.3.16, where even more is shown:
completeness w.r.t. MOD*(L)gsy, which is exactly the property needed for the final
implication in the proof (namely, that claim 6 implies semilinearity). However, this
property is rather obscure, and hence we choose to formulate the following characteri-
zation theorem in terms of finitarity.

THEOREM 3.1.8 (Characterization of semilinear logics). Let L. be a weakly implicative
logic. The following are equivalent:

1. L is semilinear.
2. L has the LEP.
Furthermore, if L is finitary the list of equivalences can be expanded with:

3. L has the SLP.

4. L has the transferred SLP.

5. Linear filters coincide with finitely N-irreducible ones in each L-algebra.
6. MOD*(L)gps1 = MOD*(L).

7. MOD*(L)grs; € MOD*(L).

Proof. All we have to do is to prove two implications. One of them, 7 implies 1, is an
immediate consequence of Theorem 2.3.16; we show the final one: 2 implies 1. Assume
that T" ¥, ¢, let T be the theory generated by I and 77 2 T a linear theory such that
T’ ¥1, . From part 3 of Lemma 2.2.9 we know LindT7 € MOD™(L) and its second
part trivially entails that [1”] is a linear filter, i.e. LindT7 € MOD*(L). The rest of
the proof is the same as the proof of the completeness theorem 2.2.13. O

The previous theorems have several interesting and important corollaries. The first
one uses the trivial observation that ¢,9 — ¢ ¥ — ¢ and for regular implications
also ¢, ¢ — ¥ F ¢ — . Thus, by the SLP, we derive ¢ F 1) — .
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COROLLARY 3.1.9. Every regularly implicative semilinear logic is also Rasiowa-
implicative.

Another interesting corollary is obtained by observing that the LEP of a logic is
preserved in all its axiomatic extensions (it is based on the fact that any theory of a
logic L which contains a set of axioms A is a theory in L. 4+ A as well).

COROLLARY 3.1.10. All axiomatic extensions of a semilinear logic are semilinear too.

This corollary is particularly useful when presenting a large class of weakly im-
plicative logics which are not semilinear no matter which weak implication we might
take as principal.

It is quite easy to show that a given logic is not semilinear for a fixed principal
implication. Consider e.g. intuitionistic logic with its usual implication: the well-known
fact that the linear Heyting algebras do not generate the variety of Heyting algebras
does the job. The next example uses again our characterization theorem (together with
Lemma 3.1.3) to show much more:

EXAMPLE 3.1.11. Intuitionistic logic is not semilinear w.r.t. any principal implication.

Proof. We provide two alternative proofs of this fact. First a very simple ad hoc one,
and then a more sophisticated proof using the machinery introduced in the present chap-
ter which has the advantage of providing a general method to show undefinability of
semilinear implications in many logics.

(1) Let TPC be the intuitionistic propositional logic. Assume that —' is a semilinear
implication in TPC and we show that p —' ¢ "Fpc p — ¢ (where — is the usual
implication of intuitionistic logic), which entails that — is a semilinear implication—a
contradiction. One direction is simple: from p,p —' ¢ Fpc ¢ we obtain (using De-
duction Theorem) p —' ¢ Fipc p — ¢. The reverse direction: using the first direction
we obtain ¢ —' p,p — ¢q bpc ¢ — p. Since, trivially, ¢ =’ p,p — ¢ Fipc P — ¢
and the symmetrizations of any pair of weak implications are interderivable (Corol-
lary 2.2.4), we obtain ¢ —' p,p — ¢ F1pc p —' q. Now, using the following trivial fact
p —' ¢,p — qF1pc p —' q and the SLP, we conclude that p — g Fipc p —' q.

(2) IPC can be presented as FLcy., and hence it is a substructural logic in the scope
of Theorem 2.5.11. In fact, it is a Rasiowa-implicative logic and MOD™*(IPC) =
{(4, {TA}> | A € HA}, where HA is the variety of Heyting algebras. The isomor-
phism (see Theorem 2.4.5) between filters and congruences in any Heyting algebra A
tells us that {TA} is N-irreducible in Fiipc(A) if, and only if, the identity relation is
N-irreducible in Con(A), i.e. A is subdirectly irreducible. Thus, MOD* (IPC)gs =
{(A, {TA}> | A € HAg}. Assume now, in search of a contradiction, that —' is a weak
implication in IPC, MOD*(IPC) is the class of its linear models and IPC is com-
plete w..t. MOD*(IPC). By Theorem 3.1.8, we have {(A, {TA}> | A € HAg} C
MOD* (IPC). Now, it is sufficient to consider a subdirectly irreducible Heyting algebra
where the natural lattice order is not linear (it is well-known that these algebras exist)
and it will have two incomparable filters (IPC-filters are known to be the same as lattice
filters over the Heyting algebra). Then Lemma 3.1.3 gives the contradiction. O

Combining this example and the previous corollary we obtain:
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PROPOSITION 3.1.12. If L is a substructural logic that can be axiomatically extended
to IPC, then it is not semilinear w.r.t. any principal implication.

Prominent logics falling under the scope of the previous proposition are the follow-
ing: SLx and FLx for any X C {e,c,i,0}. On the other hand, observe that the second
proof in Example 3.1.11 can be used in many other weakly implicative finitary logics L:
all one needs is to find a member of MOD™(L)grps whose algebra admits two incom-
parable logical filters. For instance, consider now the variety V of pointed residuated
lattices generated by the symmetric rotation (see this construction e.g. in [46, 63]) of all
Heyting algebras. Clearly, its corresponding logic has an involutive negation, that is, it
proves =@ — . Reasoning exactly in the same way as before, we can show that this
logic is not semilinear w.r.t. any principal implication and thus the same holds for any
substructural logic whose algebraic semantics contains V. A particular case of that is
Girard’s linear logic (without exponentials).

At the end of this subsection we present another corollary of Theorem 3.1.8 that
shows that semilinearity of implications is preserved under intersections of logics and
discuss some of its consequences.

COROLLARY 3.1.13. The intersection of a family of semilinear logics in the same
language is a semilinear logic.

Proof. Let 1 be a family of semilinear logics and L its intersection. We show that L has
the LEP. Let T" be a theory in L and @ € T,ie. T ¥; . Thus there has to be a logic
L € Zsuch that T ¥y, ¢, i.e. ¢ & Thy,(T'). Thus by the LEP of L there is a linear theory
T’ in L such that 77 D Thr(7T) 2 T and ¢ ¢ T'. Since T" is also a theory in L, the
proof is done. O

On the other hand, the inconsistent logic is trivially semilinear. Thus, the following
definition is sound:

DEFINITION 3.1.14 (Logic L*). Given a weakly implicative logic L, we denote by L
the least semilinear logic extending L.

In the next subsection we will give a method to axiomatize L’. However, it is very
simple to determine a complete semantics for this logic:
PROPOSITION 3.1.15. Let L be a weakly implicative logic. Then L' = |:M0De(L)
and MOD*(L!) = MOD*(L)

Moreover, finitarity is preserved when taking the least semilinear extension:
PROPOSITION 3.1.16. If L is a finitary weakly implicative logic, then so is L.

Proof. Recall the notion of finitary companion of a logic S, denoted as FC(S), which
is the largest finitary logic contained in S. Thus, since L is finitary, we know that L. C
FC(L*) C L*. If we show that FC(L*) is semilinear, we obtain FC(L*) = L* and hence
L’ is finitary. Actually, one can easily show, by checking that the SLP is preserved, that
semilinearity is preserved in general when taking the finitary companion of a logic. [

Note that the proof of the previous theorem also says that if L is finitary, then L’ is
the intersection of all its finitary semilinear extensions.
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L Axiom(s) needed to axiomatize L*
FL {m(p = V) V(b — ¢) | 71,72 iterated conjugates}
FLc (=) AD) V([ =) AT
FLew (p=9) V(Y =)
IPC, {[(p =)= (=)l = @ = 9), (Y= ¢) = (= Y)] = (¢ =)}

Table 6. Axiomatization of notable substructural semilinear logics

3.2 Disjunction and semilinearity

In this subsection we consider the relationships between p-disjunctions, semilinear
implications, and their related properties. In particular, provided that a couple of sim-
ple syntactic conditions are satisfied, we will see that a logic is p-disjunctional iff it is
semilinear, we will obtain axiomatizations for L¢ logics, and new characterizations of
p-disjunctions.

We start by demonstrating that for a p-disjunctional logic we can very easily ax-
iomatize its least semilinear extension (in particular, we show that it is an axiomatic
extension).

THEOREM 3.2.1 (Axiomatization of L¢). Let L be a finitary p-disjunctional weakly
implicative logic. Then LY is the extension of L with the axiom(s):

(Pv) Fr(p—=9) V(¥ — o).

Proof. Using Proposition 3.1.15 we know that L’ = Fmone (). The proof is com-

pleted by Theorem 2.7.29; we only need to observe that a matrix A € MOD*(L) iff
A = P, where P is the positive clause F'(¢ — ) V F(¢) — ). O

The axiom(s) (Pv) is (are) called the prelinearity axiom(s). Observe that these
axioms holds in a semilinear logic for an arbitrary p-protodisjunction V (using SLP to
=YL (= V)V = )andp — o Fr (¢ = )V (¥ — ¢)). As we have seen
in Subsection 2.7, substructural logics over FL are typical examples of finitary weakly
implicative p-disjunctional logics. This allows us to achieve some well-known results
(collected in Table 6) as corollaries of the theorem above.

Later in this subsection (Example 3.2.7) we will see alternative axiomatizations of
FLﬁ and in Theorem 3.6.5 of Chapter IV we will see a substantially simplified axiomatic
system for FLY A natural question is how to axiomatize the least semilinear exten-
sions of logics which are not p-disjunctional or where the p-disjunction is unknown. Of
course, a first idea is to choose a suitable p-protodisjunction V and extend this logic
into LV and then proceed by the previous theorem. But it is not so simple: how would
we know that LV C L‘? In order to overcome this problem, we introduce a pair of
consecutions which play a kind of dual réle to (Py):

(MPy) ¢—=v¢,oVebry  and o =9, VebL.
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PROPOSITION 3.2.2. (MPv) is satisfied in:
o any logic for any V satisfying the PCP,
o any substructural (not necessarily lattice-disjunctive!) logic for V = V.

Proof. The first claim is simple (from ¢, ¢ — 1 ¢ and ¥, o — ¥ = ). To prove the
second one observe that any substructural logic proves: ¢ — ¥ F V¢ — ). 0

The introduced consecutions (Py) and (MPy) are indeed natural binding condi-
tions for implication and disjunction, as shown by the next lemma and theorem.

LEMMA 3.2.3. Let L be a weakly implicative logic in L, V a p-protodisjunction, and
A an L-algebra.

o If L fulfils (MPv), then each linear filter in A is V-prime.
o If L fulfils (Pv ), then each V-prime filter in A is linear.

Proof. The first claim: assume that F is linear (@ -2 b € Forb =4 a € F) and
a VA b C F. Thus from (MPy ) we obtain that b € F ora € F.

The second claim: assume that F’ is not linear, i.e. there are elements a, b such that
r=a—2bgFandy=b—-2ag¢ F.2VAy=(a—=2b)VADb—-42a)CF
because L satisfies (Pv ), thus F' is not V-prime. O

THEOREM 3.2.4 (Interplay of p-disjunctions and semilinearity). Let L be a finitary
weakly implicative logic. The following are equivalent:

o L is p-disjunctional and satisfies (Pv).
o L is semilinear and satisfies (MPy).
Thus in particular:

1. Let L be a weakly implicative logic satisfying (Pv) and (MPv). Then, L is
semilinear iff L is p-disjunctional.

2. Let L be a p-disjunctional weakly implicative logic. Then, L is semilinear iff L
satisfies (Py).

3. Let L be a semilinear logic and NV a p-protodisjunction. Then, L is p-disjunctional
iff L satisfies (MPv).

Proof. Top-to-bottom implication: we know that each finitary p-disjunctional logic sat-
isfies (MPy ) and has the PEP (Theorem 2.7.23) and, since from (Py) we know that
V-prime theories are linear, we obtain the LEP and the proof is done. The second
direction is analogous. O

Notice that the first claim of this theorem provides many additional characterizations
of semilinearity by means of Theorems 2.7.15 and 2.7.23 in a broad class of finitary
logics satisfying (Pv) and (MPy). Similarly, notice that the other two claims reduce,
in huge classes of logics, the validity of a meta-rule, SLP or PCP, to the validity of a
simple rule, (Pv) or (MPy).
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This theorem has two interesting corollaries. First, we can use Corollary 2.7.17 to
extend Corollary 3.1.10 from axiomatic extensions to axiomatic expansions.

COROLLARY 3.2.5. Let L1 be a p-disjunctional weakly implicative logic and let L be
an axiomatic expansion which is weakly implicative with the same principal implication.
If L is semilinear, then so is Lo.

Second, we can return to our original goal of providing an axiomatization for L‘
Recall that by LV we denote the weakest logic extending L where V is a p-disjunction
(see Theorem 2.7.27 for an axiomatization of this logic).

COROLLARY 3.2.6. Let L be a finitary weakly implicative logic and ¥V a p-proto-
disjunction satisfying (MPv). Then LY is the extension of IV by (Pv).

Proof. Since LV + (Py) is an axiomatic extension of LV, V remains a p-disjunction
there (by Corollary 2.7.17). Thus, by Theorem 3.2.4, it is a semilinear logic.

Let L’ be a finitary semilinear extension of L. Clearly L’ satisfies (MPy) as well
and thus by Theorem 3.2.4 it is a p-disjunctional logic. Thus LV C L’ and, since the
Theorem 3.2.4 also tells that L satisfies (P ), the proof is done. O

The restriction of this corollary to p-disjunctional logics (which, of course, satisfy
(MPy) and LV = L) gives an alternative proof of Theorem 3.2.1. As we have seen,
substructural logics with V in the language form a big class of logics satisfying (MP\)).
Let us summarize some consequences of the previous claims for these logics and add
some more interesting ones. In the beginning of this subsection we have seen one way
to axiomatize L*: identify a good p-disjunction and add the prelinearity axioms for this
p-disjunction. The previous corollary provides an alternative way for substructural log-
ics with V in the language which produces less elegant axiomatizations, but can be seen
as more robust, because it does not require to identify a p-disjunction in L. We simply
extend L into LY (just by adding the V-forms of all rules, see Theorem 2.7.29) and then
we add prelinearity written using V.

EXAMPLE 3.2.7. FL! is the extension of FL by the rule ¢ \VV ¢ - (o AT) V ¢ and the
axiom (¢ — )V (¥ — ¢). The V-form of modus ponens, oV x, (¢ — V)V x F ¥V,
already holds in FL., which is not difficult to prove.

LEMMA 3.2.8. Let L be a lattice-disjunctive substructural logic. Then the following
are equivalent:

(Pyv) FLe—=v)V (@ —e)
(linn)  FL (@AY = x) = (0= Xx) V(= X)
(liny) FL(x =@ VY) = (x = @) V(X =)

Proof. We prove the equivalence of the first two claims; the equivalence of the first and
the third ones is prove analogously. First recall that ¢ — ¥ 1, ¢ — ¢ A ¢ and so
o =YL (A = x) = (¢ — x). The proof is completed by (V1) and the PCP.
The other direction: from ¢ A1) — ¢ A1) we obtain (¢ — @ A1)V (¥ — ¢ A). The
rest is simple. O
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PROPOSITION 3.2.9. Let L be a finitary substructural logic with V in its language.
Then:

o L is semilinear iff it is lattice-disjunctive and satisfies (Py).
e L’ is the extension of L by any of these axioms: (P\), (lin,), or (liny).
The next proposition is a generalization of Example 2.7.10.

PROPOSITION 3.2.10. Let L be a finitary Rasiowa-implicative substructural semilin-
ear logic. Then the set V = {(p — q) — q, (¢ — p) — p} is a disjunction.

Proof. We can easily show that V is a protodisjunction because p k1, (p — q) — ¢
((Pgp4) of Proposition 2.5.5) and g 1, (p — q) — ¢ (W).

Next we show that V satisfies the PCP. Assume that ', o 1, x and ', ¢ I x. Thus
clearly I', o = ¥, o Vo b ¢ and so ', o — 9, ¢ V ) b1, x; analogously for ¢ — .
The SLP completes the proof. O

Notice that if the logic from the previous proposition would contain V in the lan-
guage, we would obtain (p — ¢) — ¢,(¢ — p) — p -+ pV ¢ A question is
whether we could internalize this equivalence. First observe that V' = {(p ~ ¢q) — g,
(¢ ~ p) — p} would be a disjunction as well. Then we can prove:

PROPOSITION 3.2.11. Let L be a Rasiowa-implicative substructural semilinear logic.
Then:

FL oV < [~ 1) = Y] A [ ~ ¢) = ¢

FLo Ay < [p& (o= 9]V [ &Y — 9)].

Furthermore the logic L extends SL, iff

LoV o (e = 9) = YA Y = o) = ¢l.
Proof. The first claim: Left-to-right direction is simple. The converse one is based on a
simple observation: ¢ — ¥ k1, [(¢ ~ ¥) — ] — 1, a consequence of (symm) and
(Ps4) of Proposition 2.5.5.

The second claim: clearly ¢ & (¢ — ) — ¢ and ¥ & (v — ¢) — 1, thus
[p& (p — V)| V[ & (¢ — ¢)] — 1; the rest is simple. The converse direction: assume
that p — . Thus ¢ — (p&(p — 1)) and s0 pAY < (& (p = ¥))V (P& (Y — ¢)).
The rest easily follows from the SLP.

One direction of the third claim trivially follows from the first claim. To prove the
converse one, observe that the assumption x V ¢ <> [(x = ) = Y] A [(¢¥ = x) = X]
entails: ¥ — ((¢¥ = x) — x). Then we obtain [((v» — x) — x) — (¢ = x)] —
[v — (¢ — x)] (using (Sf)). The proof is completed by another instance of (Sf),
namely: ¢ — (¢ = x) = (¥ = x) = x) = (¢ = X). O

The following proposition is a straightforward corollary of the fact that semilinear

logics are complete with respect to linearly ordered matrices, whose algebraic reducts
are clearly distributive lattices.

PROPOSITION 3.2.12. Let L be a substructural semilinear logic with N\ and V in its
language and A € ALG™(L). Then the {N\,V}-reduct of A is a distributive lattice.
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We end this subsection by using the characterization theorems 2.7.15 and 2.7.23,
and Remark 2.7.24, to demonstrate many equivalent conditions for a connective V to be
a disjunction. These theorems were formulated for finitary logics; now we show that in
the case of semilinear logics we can drop this condition.

THEOREM 3.2.13 (Characterizations of (p-)disjunctions in (possibly infinitary) semi-
linear logics). Let L be a semilinear logic with a presentation AS and p-protodisjunction
V. Then the following are equivalent:

1. L has the PCP w.r.t. V.
2. L proves (MPy).

3. L has the PEP w.r.t. V.
4. L has the sPCP w.rt. V.

V satisfies (Cv), (Iy), and RV C L for each R € L.

AN

V satisfies (Cv), (Iy), and RV C L for each R € AS.

N

Fi(Y) NFi(Z) = Fi(Y VA Z) for each L-algebra A and each Y, Z C A.

8. Fi(X,z) NFi(X,y) = Fi(X,z VA y) for each L-algebra A and each
X U{z,y} CA

Moreover, if V is parameter-free, we can add:

9. For every L-algebra A and every F' € Fiy,(A), F is finitely N-irreducible iff it is
V-prime.

10. Forevery (A, F) € MOD*(L), (A, F) € MOD"(L)grrs1 iff F is V-prime.
11. ForeveryT' U{¢} C Fmg, T by, ¢ if, and only if, T FMOD;(L) ®.

Proof. Recall that L satisfies (Py). The implications 1—2 and 2—3 are trivial (recall
that each semilinear logic has the LEP).

3—4: assume that I', ®V U 4}, x, then using the PEP there is a V-prime theory
T DT U(PV ¥) such that T ¥, x. If @ C T we know that I', ® ¥, x. Assume
otherwise, i.e. there is ¢p € ® \ T. Then, since {} V¥ C T and T is V-prime, we
obtain W C T and so ', ¥ ¥y, x.

From Remarks 2.7.16 and 2.7.19 we know that conditions 4, 5, 6, and 7 are equiva-
lent and because implications 7—8 and 8—1 are trivial, we have established the equiv-
alence of the first eight claims.

1—9: on one hand, we know that linear and V-prime filters coincide; on the other
hand, from Proposition 3.1.4, we know that linear filters are finitely N-irreducible. From
8 we have that Fi(F,z —4 y) NFi(F,y =4 z) = Fi(F, (z =4 y) VA (y =4 2)) =
F' and so we obtain that finitely N-irreducible filters are linear.

9—10: direct consequence of Theorem 2.3.14.
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10—11: we know that L is complete w.r.t. MODZ(L), thus by Proposition 3.1.4 it
is also complete w.r.t. MOD™(L)rrs;, and the claim follows from 10.

The final implication 11—1 is proved in the same way as the corresponding impli-
cation in Theorem 2.7.23. O

COROLLARY 3.2.14. Let Ly be a semilinear logic with a p-protodisjunction which
satisfies (MPv ) and Ly a finitary weakly implicative expansion of Ly by a set of conse-
cutions C. Then, Ly is semilinear if, and only if, RV C Ly for each R € C.

Proof. Observe from the assumption we obtain that L; satisfies (MPy/) and (Pv) for
i=1,2and RY C L, foreach R € L;.

Because Ly is semilinear we can use Theorem 3.2.13 to complete the proof of one
direction. The converse direction: we know that Lo has an axiomatic system closed
under the formation of V-forms of its rules. Therefore, since it is finitary, we know that
it is p-disjunctional (Theorem 2.7.15) and so Theorem 3.2.4 completes the proof. 0

EXAMPLE 3.2.15. We show that the logic MTL A (introduced in Chapter I) is semilin-
ear. Recall that this logic is an expansion of MTL (i.e. the logic FLéw) by a new unary
connective A\, by adding the deduction rule ¢ Fyrr,,, Ay and some additional axioms
(see Chapter I) which ensure that it remains weakly implicative with the same principal
implication. Clearly the logics MTL and MTL A satisfy the conditions of the previous
corollary, so if we show that ¢ V p -y, A V p the proof is done.

Using the deduction rule we obtain ¢ V p Fyrr,. A(p V p) and then it is enough
to recall that A(p V ) — Ap V Ay and Ay — 1) are among the axioms of MTLA.

3.3 Strengthening completeness: densely ordered chains

We have proposed semilinear logics as a useful mathematical notion to encompass
and study most examples of fuzzy logics by characterizing them as the logics of lin-
early ordered matrices. However, a genuine item in the agenda of fuzzy logics is that
of looking for finer complete semantics based on some particular kind of linearly or-
dered models such as standard models based on the real unit interval, or models defined
on the rational unit interval, or models over finite chains. In this section we focus on
the semantics of densely ordered linear matrices, a common feature of both real- and
rational-valued ones. We will characterize completeness with respect to this semantics
by means of a special kind of filter and some meta-rules, in a similar fashion to what we
have already done for disjunctions and semilinear implications.

DEFINITION 3.3.1 (Dense filter). Let L be a weakly implicative logic and A = (A, F)
an L-matrix. Then F is called a dense filter if F' is linear and for every a,b € A such
that'* o < bthereis z € Asuchthata <a zand z <a b.

A matrix A is called a dense linear matrix if it is reduced and F' is dense (equiv-

alently: if <a is a dense order). The class of all dense linear L-models is denoted as
MOD?’(L).

14By 4 <o bweunderstand @ < band b €A a; note that we are not assuming that A is reduced, so this
convention is not trivial.
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The Dense Extension Property DEP will be defined analogously as the LEP and the
PEP but with some non-trivial changes. Like in the case of disjunctions, where we char-
acterize (in finitary logics) the defining meta-rule PCP by some suitable filter extension
principle, we start with the meta-rule DP which was already introduced in the literature.
Thus, our goal is to provide a corresponding filter extension principle. The problem is
that DP is not structural because it refers to an unused propositional variable. That is
the reason why we will be forced to formulate the DEP only in Lindenbaum matrices,
and not for theories but for some particular sets of formulae. These definitions will still
allow us to obtain a nice interplay between a filter extension principle, a completeness
property, and a logical meta-rule, as in the previous cases.

DEFINITION 3.3.2 (Density Property). Let L be a weakly implicative logic and V a
p-protodisjunction. We say that L. has the Density Property DP with respect to V if for
any set of formulae T'U {p, 1, x} and any variable p not occurring in T U {p, 1, x} the
Sollowing holds: if ' 1, (¢ = p) V(p = 0) V x, thenT by, (o = ¥) V x.

DEFINITION 3.3.3 (Dense Extension Property). Let L be a weakly implicative logic.
We say that L. has the Dense Extension Property DEP if every set of formulae T such
that I ¥y, @ and there are infinitely many variables not occurring in I can be extended
into a dense theory T DO T such that T ¥, .

In order to prove the characterization of dense completeness in terms of the DEP,
we need the following technical lemma.

LEMMA 3.3.4. Let L be a weakly implicative logic, A € MOD‘S(L), T a theory, and
© a formula. If T VA @, then there is a countable submatrix A’ of A such that
A’ € MOD?(L) and T - .

Proof. Clearly A is non-trivial and so it is infinite (because its matrix order < is dense).
Let e be any evaluation witnessing T’ -4 ¢; we define K as the subset of A containing
valuations assigned to all subformulae of formulae from 7' U {¢} by e. Clearly K is
countable. We define two sequences K; of countable subsets of A and A ; of submatrices
of A as: K1 = K and for i > 0:

e A, is the submatrix generated by K. (Clearly each A; is countable.)

e K. is any countable dense subset of A containing A4;."

Clearly A; is a directed family of reduced matrices and so their union A’ is in
MOD*(L) (see [24, Theorem 0.7.2]). Obviously A’ is a countable submatrix of A
such that A’ € MOD? (L) (because of the construction) and T' A+ ¢ (the evaluation
e does the job because K C A’). O

THEOREM 3.3.5 (Characterization of dense completeness). Let L be a weakly implica-
tive logic. Then, 1, = |:M0D5(L) if, and only if, L has the DEP.

15Consider any two elements a,b € A; such that a < b and there is no element of A; between a and b.
There has to be a set X, € AN la, b], Xq,p isomorphic to Q. Then we construct A; 1 with the desired
properties simply by adding all such sets to A;.
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Proof. Right-to-left: we repeat the usual completeness proof via constructing the appro-
priate Lindenbaum-Tarski matrix with an interesting twist to overcome the restrictions
of the DEP.

Let us consider a set of formulae T" U {(} such that T’ ¥[, . Let us enumerate
the propositional variables and define substitutions o and o’ by setting: o(v;) = va;,
o' (vy;) = v;, and o’ (vg;41) = v; for each i > 0. Observe that o’cy) = 1) for any
formula v. Thus also o[I'] ¥, oy (otherwise, by structurality, o’c[T'] b1, o’o, i.e.
I" k1, p—a contradiction). Notice that there are infinitely many variables not occurring
in o[I'] and so we can use the DEP to obtain a dense theory T such that T 2 o[l
and T ¥1, op. Take the matrix A = LindTr = (Fm,/Qu(T),[T]), observe that
A € MOD? (L), and consider the A-evaluation e(¢)) = [1/]7. We know that e[T"] C [T
and e(op) ¢ [T].

Let us now consider the A-evaluation e’(¢)) = e(o1)) and observe that €'(p) =
e(op) ¢ [T]. As o[l'] C T, we obtain that e’'[I'] = e[o[[]] C e[T] C [T]. Thus, we
obtain T' A .

Left-to-right: consider a set I' of formulae with infinitely many unused variables
and a formula § such that I" /1, §. We can use our assumption to obtain a dense linear
L-matrix A = (A, F') and an A-evaluation e such that e[['] C F and e(d) ¢ F. Without
loss of generality we can assume that A is countable (due to previous lemma). Let us
consider, for any a € A, a variable v, not occurring in T" U {¢} (such variables exist).
Further consider an A-evaluation e’ such that €’ (p) = e(p) for variables in ' U {6} and
€'(vy) = afora € A.

Consider the set of formulae T' = {¢ | ¢/(¢) € F'}. Clearly T is a theory, T D T,
and ¢ T'; it remains to be shown that 7" is dense in L. Linearity is simple (for each
¢ and 9, clearly €'(¢) =4 €'(v) € For e () =2 €'(p) € F). Observe that
© <(pm,ry ¥ iff €/() <a €(3). In this case, since A is dense, there is a € A such
that €’(¢) <a a = €'(vy) <a €' (¥). Thus ¢ <(pm,7) Vo and vq <(Fm,7) V- O

Combining this result with the characterization of semilinearity in terms of LEP
in Theorem 3.1.8 we obtain:

COROLLARY 3.3.6. Let L be a weakly implicative logic. Then, if L has the DEP then
it has the LEP.

We consider now the relation of the DEP with the Density Property DP.

LEMMA 3.3.7. Let L be a weakly implicative logic with a p-protodisjunction V satis-
fying the (MPv). Then, the DEP implies the DP.

Proof. Assume that T ¥, (¢ — )V xand T Fp, (¢ = p) V (p — ¢) V x for
some variable p not occurring in I', ¢, %, x. From the first assumption we know that
there is a formula 6 € ((¢ — ) V x) such that I' ¥, §. Thus there is a dense linear
L-matrix A = (A, F') and an A-evaluation e such that e[I'] C F and e(d) ¢ F'. Clearly
e(p) £ e(y) (otherwise e(¢ — ) € F andso e(d) € F)and so e(v)) < e(p) (because
A is linear). Since A is dense, there is an element e(¢)) < a < e(p). Take evaluation
e'(v) = a for v = p and e(v) otherwise (clearly e’[I'] C F). Then for the elements
v =€ (¢ — p) and vy = €’'(p — 1) we have €’(v;) € F. Notice that also e’(x) € F
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(otherwise e(d) € F). Using Lemma 3.2.3 we know that F' is also a V-prime filter
and so ¢/(v1) V€' (ra) Ve'(x) € F. Therefore, I' ¥, (¢ — p) V (p = ¢) V x—a
contradiction. O

For finitary logics, and in the absence of parameters in V, we can prove the equiva-
lence of the DEP and the DP, and thus give the main result of this subsection: the syn-
tactical characterization of completeness with respect to dense linear models by means
of a meta-rule.

THEOREM 3.3.8 (Characterization of dense completeness). Let L be a finitary semilin-
ear disjunctional logic. Then the following are equivalent:

]. |_L = ):MOD'S(L)'
2. L has the DEP.
3. L has the DP.

Proof. 1t is enough to prove that 3 implies 2. Consider a set of formulae I" such that
I" ¥#1,  and there are infinitely many variables not occurring in I'. Let us enumerate all
pairs of formulae. We introduce two sequences of sets of formulae I'; and A; such that
[; ¥, A;. We start with Ty = T and Ag = {}. Given any ¢ > 0 consider the following
cases:

o IfT';, 0, — Wy ¥y, Aj;, then we define Fi-i-l =I,uU {(pi — ’(ﬂl} and Ai+1 = A;.

o If T';,; — t; b1, A;, then we define I'; 11 = T, U{¢; — ¢;} and A;11 =
A;V (vi = p)V(p — 1);) for some variable p not occurring in T'; U A; U{¢;, ¥; }
(since there are infinitely many variables not occurring in I', we can find in each
step some unused one; notice that this would be no longer true if V would be
parameterized).

Now we prove by induction that I'; ¥, A; for every i. When i = 0 it is true
by assumption. For the induction step, if we have proceeded by the first case, clearly
i1 ¥1 A;41. Otherwise, assume, by the way of contradiction, that I'; 1 Fr, A; 41, i.e.
that T';, ¢; — ¢; b Asjp1. Asclearly also I';, ; — t; F1. A; 41 (using the assumption
of the second case and properties of protodisjunction) we can use the SLP to obtain
I'; b1, A;41. Thus we also have I'; k1, 4; V (¢; — ;) using DP. Finally observe that
from I';, A; Fi, A; and T';, ; — 9; 1, A; we can obtain I';; A; V (Qpi — 1%) Fi, A;
via the syntactical characterization of p-disjunctions in Theorem 2.7.15. Putting this
together we obtain I'; k1, A;,—a contradiction with the induction hypotheses.

Define T as the L-theory generated by the union of all I';’s. First observe that
T ¥y, A, for each ¢ (otherwise by finitarity there would be some j such that I'; Fy, A;
and so clearly 'y ax i} FL Amax{i,j)—=@ contradiction).

Thus T' ¥1, ¢ and from the construction it follows that 7" is linear. Now assume
that T 1, ¢; — 1;, then we had to proceed via the second case in the construction
(otherwise already I';+1 Fr, w; — o) thus also T ¥y, o; — pand T K, p — ¢
(because otherwise 7' Fy, A;41). O
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Note that the premises of the previous theorem are fulfilled by any substructural
semilinear logic with V in its language. Analogously to the case of L’ and LV, we con-
sider now the problem of finding the weakest extension of a logic enjoying completeness
with respect to dense linear models.

LEMMA 3.3.9. Let T be a family of weakly implicative logics in the same language and
L its intersection. If every logic of I has the DEP, then so has L.

Proof. Let I be a set of formulae with infinitely many variables not occurring in it and
 a formula such that I" ¥; . Thus there has to be a logic L € Z such that I' ¥, ¢.
Thus by the DEP of L there is a dense L-theory 7" O T" and ¢ ¢ T'. Since clearly T is
also an I:—theory, the proof is done. O

This, together with the fact that any weakly implicative logic has at least one exten-
sion which is complete with respect to its dense linear models (namely the inconsistent
logic), gives the following result:

THEOREM 3.3.10 (The logic L° and its semantics). Let L be a weakly implicative
logic. Then there is the weakest logic extending L which is complete w.rt. its dense
linear models. Let us denote this logic as 1.°.

The proofs of the following two results run parallel to those of their analogues in
previous sections.

PROPOSITION 3.3.11. Let L be a weakly implicative logic. Then t-1s = ’:MOD‘S(L)
and MOD? (L%) = MOD’(L).
PROPOSITION 3.3.12. Let L be a finitary weakly implicative logic. Then L° is finitary.

THEOREM 3.3.13 (L° in finitary logics). Let L be a finitary semilinear disjunctional
logic. Then, LY is equal to the intersection of all its extensions satisfying the DP iff this
intersection is finitary and semilinear.

Proof. Let us denote that intersection as L. One direction is a simple consequence
of Corollary 3.3.6. The converse direction: clearly L enjoys the DP and is disjunc-
tional (due to Theorem 3.2.4). Thus by Theorem 3.3.8 it has the DEP and so LY C L.
Lemma 3.3.7 tells us that each extension of L with the DEP has also the DP, thus
LCL. O

These results simplify and give a new insight into an approach used in the fuzzy
logic literature to prove dense completeness (presented in Section 4.2 of Chapter III).
Indeed, this approach starts from a suitable proof-theoretic description of a logic L,
which then is extended into a proof-system for the intersection of all extensions of L
satisfying the DP just by adding DP as a rule (in the proof-theoretic terms, not as we
understand rules here). This rule is then shown to be eliminable (using analogs of the
well-known cut-elimination techniques). Thus we can conclude by the previous theorem
that L = LY (or equality of their finite derivations, or equality of their sets of theorems,
depending on how the elimination of DP was done), and hence the original logic is
complete w.r.t. its dense linear models (of course, our general theory is not helpful in
this last step, because here one needs to use specific properties of the logic in question).
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3.4 Strengthening completeness: arbitrary classes of chains

We move now to arbitrary semantics of linearly ordered matrices. So far we have
only considered completeness as the equality of two logics, i.e. two structural conse-
quence relations, one syntactically presented, the other semantically defined. However,
it is usual in the literature to study weaker notions of completeness: equality of the
sets of theorems and equality of finite sequents. We formalize this by introducing three
types of completeness properties according to the cardinality of the sets of premises in
the derivations. Later we will obtain characterizations for these properties and relations
between them.

DEFINITION 3.4.1 (Completeness properties). Let L be a weakly implicative semilin-
ear logic and K C MODY(L). We say that L has the property of:

e Strong K-completeness, SKC for short, when for every set of formulae T' U {p}:
by wif, and only if, T |k .

e Finite strong K-completeness, FSKC for short, when for every finite set of for-
mulae T'U{p}: T by, pif, and only if, T |=x .

e K-completeness, KC for short, when for every formula ©: ‘1, @ if, and only if,
Fk .

Of course, the SKC implies the FSKC, and the FSKC implies the KC. Our next
aim is to prove characterizations of these properties that will allow, for particular choices
of semilinear logics and classes of linearly ordered models, either to show or to falsify
the corresponding completeness properties. Although a more general approach is possi-
ble, here such characterizations will be obtained by using the algebraizability condition
of the logics.

In reduced matrices of algebraically implicative logics, as have seen, the filters are
equationally definable, and so each reduced matrix is uniquely determined by its alge-
braic reduct. Thus, by a slight abuse of language, we will use the symbol =k (for a
class of L-chains K) not only for the equational consequence but also for the semantical
consequence on the set of formulae given by the corresponding class of matrices. The
confusion cannot happen as it is always clear from the context whether we speak about
formulae or equations (see, e.g. the next theorem).

CONVENTION 3.4.2. From now on, until the end of this subsection, we assume that L.
is an algebraically implicative semilinear logic with a principal implication — and K a
class of L-chains.

First, we can obtain the following equivalent algebraic properties for each type of
completeness:

THEOREM 3.4.3 (Algebraic characterization of completeness properties).
1. L has the KC if, and only if, V(ALG* (L)) = V(K).
2. L has the FSKC if, and only if, Q(ALG* (L)) = Q(K).
3. L has the SKC if, and only if, ALG"(L) = ISP,._;(K).



Chapter II: A General Framework for Mathematical Fuzzy Logic 171

Proof. Let us prove the first claim. For the left-to-right direction take an arbitrary equa-
tion ¢ ~ t. Then: Farg-) ¢ = Y iff L ¢ < Y iff Fx ¢ < Yiff Fx ¢ = ).
Therefore ALG* (L) and K satisfy the same equations and hence they generate the same
variety. The other direction is straightforward.

The remaining points are proved analogously using that quasivarieties are charac-
terized by quasiequations, and the classes closed under the operator ISP, ¢ are charac-
terized by generalized quasiequations with countably many premises (we can omit this
operator on the left side of the equation because that ALG™ (L) is closed under ISP,,_¢,
see Proposition 2.3.13). O

Observe that in the first claim of the previous theorem we could have written only
H(ALG"(L)) instead of V(ALG™(L)) and if ALG™(L) is a quasivariety (e.g. if L is
finitary) we could write just ALG™ (L) instead of Q(ALG™(L)) in the second claim.

Other useful characterizations of completeness properties are obtained in terms of
embeddability. To present them, we need first one definition and one lemma.

DEFINITION 3.4.4 (Directed set of formulae). A set of formulae ¥ is directed if for
each p, € VU there is x € V such that both p — x and v — x are provable in L (we
call x an upper bound of ¢ and ).

LEMMA 3.4.5. Assume that L is finitary and has the SKC. Then for every set of for-
mulae ' and every directed set of formulae VU the following are equivalent:

o ' 1 4 foreachy € .

e There is a matrix (A, F) € MOD*(L) with A € K and an A-evaluation e such
that e[l'] C F and e[¥] N F = .

Proof. One direction is obvious. For the other one, first assume that there exists a propo-
sitional variable v not appearing in I' U W. Define the set IV =T U {4 — v | ¢p € U}
We show that I /1, v by the way of contradiction. Assume that T i1, v. Thus there
are finite sets ' C " and ¥ C \I/suchthatFU{z/) — | eV}, v Letd e
denote an upper bound of the formulae in U. Since T' ¥, 8, we know that there is a
matrix (A, F) € MOD(L) and an evaluation e such that e[I'] C F and e(d) ¢ F.
We define the evaluation e’ as ¢/(p) = e(p) for each p # v and €’(v) = e(§). Clearly,
¢[TU{y —v| eV} C Fande(v) ¢ F—a contradiction.

Now, by the SKC, there are (B, G) € MOD(L) with B € K and e such that
eI"] C G and e(v) ¢ G. Thus e[¥] N G = () (if e(¢p) € G for some 3p € T then, since
e[l”] C G, we would obtain e(v) € G—a contradiction).

Assume now that I' U W uses all propositional variables. In this case we consider
an enumeration of all propositional variables {v,, | n € N} and take the substitutions
0,0’ defined by o(v,) = vp41 and o’ (v, 11) = v, (and o/ (vg) = vg); note that o’ o
is the identity. Observe that o[T'] 1, o(4) for each 1) € W (indeed, if o[['] by, o(¢)), by
structurality we would have o’[c[T]] b1, 0’c (1)), i.e. T by, ). The variable vy does not
appear in o[I'] U o[¥], so we can apply the previous reasoning to these sets an obtain a
model and an evaluation e o o as desired. 0
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THEOREM 3.4.6 (Characterization of strong completeness). Assume that L is finitary
and lattice-disjunctive. Then the following are equivalent:

1. L has the SKC.

2. Every non-trivial countable member of ALG"(L)gpg; is embeddable into some
member of K.

3. Every countable member of ALG™(L)gq; is embeddable into some member of K.

Proof. 1—2: Take a countable A € ALG"(L)gpg; and let F' be its filter. Consider a
set of pairwise different variables {v, | a € A} (we can do it because A is countable)
and the following sets of formulae:

I'={c(Vay,---Va,) ¢ VeA(ay,....an) | {c;n) € Land ay, ..., a, € A},

U ={vg, V...Vu,, | n€Nanday,...,a, € A\ F}.

Clearly ¥ is directed and I" ¥y, ® for each ¢y € W. Indeed, take the A-evaluation
e(vy) = a; we have e[I'] C Fbutay V...V a, ¢ F (otherwise, since F is prime,
a; € F for some i—a contradiction).

Now we use the SKC and Lemma 3.4.5 to obtain (B, G) € MOD*(L) with B € K
and a B-evaluation e such that e[I'] C G and e(¢)) ¢ G for each 1) € U. Consider the
mapping f: A — B defined as f(a) = e(v,). Itis clear that f is a homomorphism from
A to B. We show that it is one-one: take a,b € A such that a # b and assume, without
loss of generality, a —4 b ¢ F. Therefore, f(a) =B f(b) = e(vy) =B e(vy) =
e(vy_sap) ¢ G and thus f(a) # f(b).

2—3: Obvious.

3—1: Suppose that for some I' and ¢ we have I' ¥, ¢. Then, since L is finitary,
by Theorem 2.3.16, there are (A, F') € MOD"(L)grgr and e such that e[T'] C F and
e(p) ¢ F. Let B be the countable subalgebra of A generated by e[ F'm]. Consider the
submatrix (B, BN F) € MOD*(L). B is not necessarily subdirectly irreducible but
it is representable as a subdirect product of a family of {C; | i € I} C ALG"(L)pg;
let G; be their corresponding filters and let « be the representation homomorphism.
It is clear that e[I'] € BN F and e(p) ¢ B N F. There is some j € I such that
(mjoa)(e(p)) ¢ G;. Cj is a countable member of ALG™ (L), so by the assumption
there is a matrix (C,G) € MOD*(L) with C' € K and an embedding f: C; — C,
and hence, using this model and the evaluation f o m; o a o e, we obtain I" feg . [

DEFINITION 3.4.7 (Partial embeddability). Given two algebras A and B of the same
language L, we say a finite subset X of A is partially embeddable into B if there is a
one-to-one mapping f: X — B such that for each {c,n) € L and each ay,...,a, € X
satisfying c?(ay,...,a,) € X, f(cA(ay,...,a,)) = cB(flar),..., f(an)).

A class K of algebras is partially embeddable into a class K’ if every finite subset of
every member of K is partially embeddable into a member of K'.
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THEOREM 3.4.8 (Characterization of finite strong completeness). Let L be a finitary
lattice-disjunctive logic with a finite language L. Then the following are equivalent:

1. L has the FSKC.

2. Every countable non-trivial member of ALG"(L)gpg; is partially embeddable
into K.

3. Every non-trivial member of ALG™(L)gpg; is partially embeddable into K.
4. Every member of ALG"(L)gg; is partially embeddable into K.
5. Every countable member of ALG™ (L)gq; is partially embeddable into K.

Proof. The implications 3—4 and 4—5 are trivial; 5—1 is proved analogously to the
implication 3—1 of Theorem 3.4.6.

1—2: Take a countable A € ALG"(L)ypg;, With filter F, and a finite set B C A.
Define the set B’ = BU {a —4 b | a,b € B}. Consider a set of pairwise different
variables {v, | a € A}, aformula ¢ =\ ,c g\ p Va, and the following set of formulae
(notice a difference between this set and the set I" from the proof of Theorem 3.4.6):

L={c(Vay;--+»Va,) < VeA(ay,....an) | (G;n)ELAN a1, ..., ap, A(ay,...,a,)€B'}.

Observe that I is finite and T ¥1, ¢ (use the A-evaluation e(v,) = a). Thus, by the
FSKC, there is C € K, with filter G, and a C-evaluation e such that ¢[I'] C G and
e(p) ¢ G. Define a mapping f: B — C as f(a) = e(v,). Obviously f is a partial
homomorphism. We show that f is one-to-one. Take a,b € B such that a # b. We
know that a —4 b € B; also, without loss of generality, we can assume a —Ap ¢ F.
Thus, f(a) =€ f(b) = e(va) =€ e(vy) = e(v,_a3) ¢ G (because e(yp) ¢ G) and so
f(a) # £(b).

2—3: Take any A € ALG"(L)gpg, a finite X C A and consider the countable
subalgebra B C A generated by X. It is enough to prove that B is finitely subdirectly
irreducible relative to ALG*(L). Let F, G be the filters such that (A, F), (B,G) €
MOD*(L) (we know that G = B N F and, because the logic is algebraically implica-
tive, FiA(G) = F)). Suppose, by the way of contradiction, that G = G; N G2 for some
G1,Go € Fir,(B) such that G C G4, Gs. Take b; € G; \ G. Observe that by, bs ¢ F
and thus F' C FiA(Gl-). By Theorem 2.7.15 we have: G; N Gy = FiB(G1 V Gy) =
G C F. Finally we obtain: Fi*(G1) NFi?(Gy) = Fi* (G, V G3) C F, which implies
that F' is not finitely N-irreducible—a contradiction. O

REMARK 3.4.9. Notice that the implications from 2, 3, 4, or 5 to 1 hold also for infinite
languages, whereas the converse ones do not (as shown by the following example).

EXAMPLE 3.4.10. Consider the language £ resulting from £y = {&,—, A, V,0,1}
by adding a denumerable set C' = {¢,, | n € N} of new 0-ary connectives. Let G¢ be
the conservative expansion of Godel-Dummett logic in this language with no additional
axioms or rules. It is a semilinear Rasiowa-implicative logic (in fact, it is a core fuzzy
logic; see Chapter I). Let G¢ denote its equivalent algebraic semantics, which in fact is
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the variety of Godel algebras with infinitely many constants arbitrarily interpreted. Now
consider the subclass R of algebras from G ¢ defined over [0, 1] in which all constants,
except for a finite number, are interpreted as 1.

Consider any finite set I' U {¢} such that T ¥, . Then also I" ¥ ¢, where we
understand the new constants just as propositional variables. Thus by the strong standard
completeness of Godel-Dummett logic, there is a [0, 1]g-evaluation e such that e[I'] C
{1} and also e(¢) < 1. We construct a G¢-algebra A resulting from [0, 1]¢ by setting
e = e(c,) for every ¢, occurring in ' U {¢} and ¢4 = 1 otherwise. Notice that e
can be viewed as an A-evaluation and, since A € R; (because I' U {} contains only
finitely many constants) we obtain, I' [£%, . Thus we have shown that the FSR,C
holds for G¢.

On the other hand, let us by [0, 1]y denote the Gddel algebra on [0, 1] with all new
constants interpreted as 0. Clearly, any partial subalgebra of [0, 1]y containing 0 does
not partially embed into any algebra in R;.

Nevertheless, we can give the following characterization for the FSKC that holds
even for logics in infinite languages without disjunction.

THEOREM 3.4.11 (Characterization of finite strong completeness). If L is finitary, then
the following are equivalent:

1. L satisfies the FSKC.

2. Every L-chain belongs to ISPy (K).

Proof. 1—2: if L satisfies the FSKC then, by Theorem 3.4.3, ALG*(L) = Q(K). It
follows from [25, Lemma 1.5] that every relative finitely subdirectly irreducible member
of Q(K) (i.e. each L-chain) belongs to ISPy (K).

2—1: if every L-chain belongs to ISP (K), since every L-algebra is representable
as subdirect product of L-chains we have that

ALG*(L) € Psp(ISPy(K)) € Q(K) € ALG™(L).
Therefore by Theorem 3.4.3, L has the FSKC. O

We know that the SKC means that L and =k coincide; we can also formulate the
FSKC in a similar manner:

PROPOSITION 3.4.12. Assume that L is finitary. Then L has the FSKC if;, and only if,
L is the finitary companion of |=k.

Proof. The direction from right to left is obvious. Assume that L has the FSKC and
take L' = FC([=k), the finitary companion of =k. Then we have: I" - ¢ iff there is
a finite IV C T such that I e ¢ iff there is a finite IV C T such that T by, ¢ (by the
FSKC) iff T k1, o (by finitarity of L). O

COROLLARY 3.4.13. Assume that L is finitary and =k is finitary too (e.g. whenever
PyI(K) C I(K)). Then L has the SKC if, and only if, L has the FSKC.

COROLLARY 3.4.14. Assume that L is finitary and enjoys the FSKC. Then L has the
SPy(K)C.
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Now we show that the failure of completeness properties is inherited by conservative
expansions.

PROPOSITION 3.4.15. Let L/ be a conservative expansion of L, K' a class of L'-chains
and K the class of their L-reducts.

o If L/ enjoys the K'C, then L enjoys the KC.
o If L enjoys the FSK'C, then L enjoys the FSKC.
o If I enjoys the SK'C, then L enjoys the SKC.

Proof. All the implications are proved in a similar way. Let us prove as an example the
first one. We want to show that L has the KC and we do it contrapositively: assume
/1, . Since L/ is a conservative expansion of L, we also have I/1, ¢ and so by the K'C
we obtain £ 4/ ¢ for some A’ € K'. Thus also [~ 4 ¢ for the reduct A of A’ Because
A € K we obtain g . O

An interesting semantics for which we can apply the characterization of strong com-
pleteness is that formed by finite chains:

PROPOSITION 3.4.16. Assume that L is finitary and lattice-disjunctive and let us by F
denote the class of all finite L--chains. Then the following are equivalent:

1. L enjoys the SFC.

2. All L-chains are finite.

3. There exists n € N such each L-chain has at most n elements.
4. There existsn € N such that -1, \/, ., (x5 = Ti41).

Proof. 1—2: From Theorem 3.4.6 we know that every countable L-chain is embeddable
into some member of F, thus there are not infinite countable L-chains and so by the
downward Lowenheim—Skolem Theorem there are no infinite chains.

2—3: If all the algebras in ALG™(L) are finite then there must a bound for their
length, because otherwise by means of an ultraproduct we could build an infinite one.

3—1: Trivial.

3—4: Take an arbitrary L-chain A, with filter F', and elements ag,...,a, € A.
Since A has at most n elements it is impossible that ag > a3 > --- > a,,, thus there is
some k such that a; < ag1,i.e. ag —A ar+1 € F, and hence it satisfies the formula.
Since the logic is complete w.r.t. chains, the proof is done.

4—2: Suppose that there is an Li-chain A, with filter F' and elements ag, ...,a, € A
such that ag > a1 > -+ > a,. Then a; —4 ai+1 ¢ F, forevery i < n, and as F'is
V-prime we know that 4 \/,_,, (25 = 2i41). O

COROLLARY 3.4.17. For a finitary lattice-disjunctive logic L. and a natural number
n, the axiomatic extension L<,, obtained by adding the schema \/,_, (x; — iy1), is a
semilinear logic which is strongly complete with respect the Li-chains of length less than
or equal to n.
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Finally, as other examples of meaningful semantics based on some particular class
of chains, we consider chains defined over intervals of real or rational numbers. Com-
pleteness with respect these kind of semantics has been a traditional item in the agenda
of fuzzy logics (giving rise to some of the so-called standard completeness theorems).

DEFINITION 3.4.18 (Real and rational semantics). The class R € MOD*(L) is de-
fined as: A € R if the domain of A is the closed, open, or semi-open real unit interval
and < 4 is the usual order on reals. The class Q C MODZ(L) is analogously defined
requiring rational unit intervals as domains.

THEOREM 3.4.19 (Relations between real and rational completeness properties). Let
L be a finitary logic.

1. L has the FSQC iff it has the SQC.
2. If L has the RC, then it has the QC.
3. If L has the FSRC, then it has the SQC.

Proof. The three claims are proved in a similar way by using the downward Léwenheim—
Skolem Theorem. Let us show the first one as an example. If L has the FSQC, then
it also has the SPy(Q)C by Corollary 3.4.14. Assume that T" ¥, ¢. Then there is
A € Py(Q), with filter F', and an evaluation e such that e[I'] C F and e(p) ¢ F. Itis
clear that A is a densely ordered chain. Consider the countable set S = {e(p) | p propo-
sitional variable in I" U {¢} }. By the downward Léwenheim—Skolem Theorem (consid-
ering algebras as first-order structures), there exists a countable elementary substructure
B C A, such that S C B. Therefore, B is also densely ordered and hence isomorphic
to an element of Q,'° and so we have a counterexample showing the SQC. O

Observe that, if we restrict ourselves to finitary logics, the completeness proper-
ties with respect to Q are, in fact, equivalent to completeness properties with respect to
the whole class of densely ordered linear models. Indeed, when we have an evaluation
over a densely ordered linear model providing a counterexample to some derivation, we
can apply the downward Lowenheim—Skolem Theorem to the (countable) subalgebra
generated by the image of all formulae by the evaluation and obtain a rational counter-
model. In particular, the SOC turns out to be the completeness property characterized in
Theorem 3.3.8.

4 First-order predicate semilinear logics

In this section we introduce the basics of the theory of first-order predicate semi-
linear logics. We will see that for each semilinear logic L one can define fwo natural
predicate logics: LV™, the minimal one (because it is complete w.r.t. all matrices), and
its strengthening LV (complete w.r.t. linearly ordered matrices). Interestingly enough,
and unlike what happens in the propositional case, these two logics need not coincide
(see Example 4.1.18).

16We use the well-known fact that any two countable (bounded) dense orders are isomorphic.
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Our goal is to find axiomatizations for both logics. We will show that LY™ can be
nicely axiomatized for nearly all weakly implicative logics (in fact we could axiomatize
it for all of them but at price of increased complexity). However, to axiomatize LV we
need to restrict to logics with a reasonable disjunction connective. Thus we make the
following convention:

CONVENTION 4.0.1. In order to simplify the formulation of upcoming definitions and
results, let us assume from now on that each logic L has the following properties:

o L is a weakly implicative semilinear logic with principal implication — .

e L has a p-protodisjunction V satisfying (MPv) (and thus all the properties from
Theorem 3.2.13, like the PCP and the PEP).

o The language of L contains a truth constant 1 satisfying the consecutions
a1 = .

Typical (though not exhaustive) examples of logics satisfying the above conditions are
substructural semilinear logics which either have both 1 and V in their language or are
Rasiowa-implicative.

Notice that for any L satisfying this convention and any L-matrix A = (A, F') it is

the case that T = min<, F. Itis important to add that all the results about the minimal
predicate logic LV™ proved in this section would also hold for logics satisfying only
the third condition of the above convention; however to minimize the complexity of this
section, we prefer to keep all the assumptions from the beginning.

In the first subsection we deal with basic syntactic and semantic notions. Notice that
our restriction to the class of logics above (in particular the third condition) is used for
the first time in Example 4.1.15 to demonstrate the soundness of generalization rule. The
other two assumptions are used in Example 4.1.17 to show the soundness of the V-form
of this rule in the semantics based on chains. The second subsection presents axiomati-
zations of both predicate logics and proves their soundness. The third subsection shows
alternative simpler axiomatizations in predicate substructural logics and other syntacti-
cal properties of these logics like the Local Deduction Theorem. The fourth subsection
contains the proof of completeness of both kinds of predicate logics with respect to the
presented axiomatizations by means of a generalization of the Henkin-style proof used
for classical and some non-classical first-order logics. Finally, the fifth subsection stud-
ies a notion of Skolemization for our first-order logics and considers the semantics of
witnessed models.

4.1 Basic syntactic and semantic notions

The following definitions are absolutely standard; we present them for the reader’s
convenience. Let us fix a propositional language £ and a logic L.

DEFINITION 4.1.1 (Predicate language). A predicate language P is a triple (P, F, ar),
where P is a non-empty set of predicate symbols, F is a set of function symbols, and ar
is a function assigning to each predicate and function symbol a natural number called
the arity of the symbol. The functions f for which ar(f) = 0 are called object constants.
The predicates P for which ar(P) = 0 are called truth constants.
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Let us further fix a predicate language P = (P, F, ar) and a denumerable set V'
whose elements are called object variables.

DEFINITION 4.1.2 (Term). The set of P-terms is the minimum set X such that:
o V C X, and
o ifty,...,.t, € X and f is an n-ary function symbol, then f(t1,...,t,) € X.

DEFINITION 4.1.3 (Formulae). An atomic P-formula in any expression P(ty, ..., ty)
where P is an n-ary predicate symbol and t,, . . . ,t, are P-terms. Atomic P-formulae
and nullary logical connectives of L are called atomic (L, P)-formulae. The set of
(L, P)-formulae is the minimum set X such that:

o X contains the atomic (L, P)-formulae,
e X is closed under logical connectives of L, and
e if o € X and x is an object variable, then (Vx)p, (3x)p € X.

CONVENTION 4.1.4. We speak about P-formulae if the propositional language is
clear from the context and we speak about terms and formulae if both the proposi-
tional and the predicate languages are clear from the context. The same convention
will be used for any other notion defined in this section parameterized by propositional
or predicate languages.

Given a set of formulae T', we denote by Pr the predicate language containing
exactly the predicate and function symbols that occur in formulae of T.

DEFINITION 4.1.5 (Bound and free variables, closed terms and formulae). An occur-
rence of a variable x in a formula o is bound if it is in the scope of some quantifier
over x; otherwise it is called a free occurrence.

A variable is free in a formula o if it has a free occurrence in . A term is closed if
it contains no variables. A formula is closed if it has no free variables; closed formulae
are also known as sentences.

CONVENTION 4.1.6. Instead of &1, ..., &, (Where &;’s are terms or formulae and n is
arbitrary or fixed by the context) we shall sometimes write just E

Unless stated otherwise, by the notation p(Z) we signify that all free variables of ¢
are among those in the vector of pairwise different object variables Z.

If o(x1,...,2n,72) is a formula and we replace all free occurrences of x;'s in p by
terms t;, we denote the resulting formula in the context simply by (t1,...,t,,2).

DEFINITION 4.1.7 (Substitutability). A term t is substitutable for the object variable x
in a formula o(x, 2') iff no occurrence of any variable occurring in t is bound in ¢(t, Z')
unless it was already bound in ¢(x, 7).

DEFINITION 4.1.8 (Theory). A theory T is a pair (P,T'), where P is a predicate
language and T is a set of P-formulae. A theory is called closed if all its formulae
are sentences.
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For convenience we sometimes identify the theory 7" and its set of formulae I' and
say that T" is a P-theory to indicate that its language is P (see e.g. Definition 4.1.12).

DEFINITION 4.1.9 (Structure). A P-structure & is a pair (A, S) where A€ MOD™(L)
and S has the form (S, (Ps) pcp , (fs) jcp), where S is a non-empty domain; Ps is an
n-ary fuzzy relation, i.e. a function S™ — A, for each n-ary predicate symbol P € P
withn > 1 and an element of A if P is a truth constant; fs is a function S™ — S for
each n-ary function symbol f € F with n > 1 and an element of S if f is an object
constant.

Sometimes, S is called an A -structure for P and we write Pg instead of Ps.

DEFINITION 4.1.10 (Evaluation). Let & be a P-structure. An G-evaluation of the
object variables is a mapping v which assigns to each variable an element from S.

Let v be an G-evaluation, x a variable, and a € S. Then v|x—a] is an G-evaluation
such that viz—a)(x) = a and vix—al(y) = v(y) for each object variable y # .

DEFINITION 4.1.11 (Truth definition). Let & = (A,S) be a P-structure and v an
G-evaluation. We define values of the terms and truth values of the formulae in G for an
evaluation v as:

2] = v(@),
F s ata)lly = sl s 8allS),  forfeF
IP(ty, -ty = Ps(allys o [taly),  forPeP
le(r, - enllly = Aledlly, -, llealld),  forcer
I(v2)elly = infea{ll@li,q | acS)
1G2)¢elly = supca{llelly,_alac St

If the infimum or supremum does not exist, we take its value as undefined. We say that
G is safe iff Hcpr is defined for each P-formula ¢ and each G-evaluation v.

We set the following useful denotations for a structure & = ((A, F'), S). We write
o |lp(ar,...,a,)||€ instead of [|(x1, . .., xn)||S for v(z;) = as
o & olvif o]} € F,
o G = ¢if & |= ¢[v] for each G-evaluation v,
e SETIfG | pforeachp €T

To keep the traditional notation from the literature we could also write Hg0||§v instead
of ||<p||f (see e.g. Chapter XI).

DEFINITION 4.1.12 (Model). Let T be a P-theory and K C MOD™(L). A P-struc-
ture M = (A, M) is called a K-model of T if it is safe, A € K, and M = T.
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We use just the term ‘A-model’ instead of ‘{ A }-model’ and we also use this term
for its safe A-structure. When the logic L is known from the context, we just use the
terms ‘model’ and ‘/-model’ instead of ‘MOD*(L)-model’ and ‘MOD*(L)-model’.
Notice that as each theory comes with its fixed predicate language we do not need to
specify the language of 971 when we say that it is a model of the theory 7T'. By a slight
abuse of language we will use the term ‘model’ instead of ‘safe P-structure’, when the
language is clear from the context.

DEFINITION 4.1.13 (Consequence relation). Let K € MOD*(L). A P-formula ¢
is a semantical (sentential) consequence of a P-theory T w.rt. the class K, in symbols
T Ex ¢, if for each K-model M of T we have M |= .

Note that both in the definition of model and semantical consequence, the language
of the theory 7' plays a minor role; basically they could be formulated just for sets of
formulae. Indeed we can prove the following:

PROPOSITION 4.1.14. Let K € MOD*(L) and T U {¢} a set of P-formulae. Then
the following are equivalent:

1. (P'\T) Ex @ forall P’ O P.
2. (P',T) =k @ for some P’ D P.

3 (P.D) bx o

Proof. If we show that for each P’ O P we have: (P,I') Ex ¢ iff (P',T") Ex  the
proof is done. One direction is simple as any P-reduct of a K-model of (P, T') is clearly
a K-model of (P,T).

To prove the second one we need to show that for any safe P-structure 0t = (A, M)
we can construct a safe P’-structure 9" = (A, M’) such that 91 is its P-reduct. The
idea is clear: take 91, define the interpretations of additional function and predicate
symbols in an arbitrary way and check that the resulting structure is still safe. Let s
be an arbitrary element from M, ¢ an arbitrary P-sentence and a = [|/||™". For any
functional symbol f from P’ \ P we define fon,(£) = s and for any predicate symbol
P from P’ \ P we set Poy/(Z) = a. Clearly 9 is the P-reduct of 9" and if we show
that 9V is safe the proof is done.

Assume (without loss of generality) that there is a P’-formula x(x, %) and a se-

quence of elements 7 from M such that inf{||x(r, 7")”937/ | 7 € M} does not exist. Let z
be a variable different from x and ¢. Then for any P’-term ¢(x, i) we construct a P-term
t(x,y, z) by replacing each subterm of ¢(x, ) given by some f € P’ \ P by 2. Clearly
for each u, i from M we have: ||t(u, @)||”" = ||i(u, @, s)||9m Let further x(z, ¥, z) be
the P-formula resulting from x/(z, i) by replacing each:

e atomic subformula given by a predicate symbol P € P’ \ P by the sentence ),

e term ¢ by the term .
Notice that ||x(r, F)Hml = [|(r, 7, s)||™ for each r, 7" € S. Therefore, the infimum
of {||X(r, 7, s)||™* | r € M} does not exist, i.e. 9 is not safe—a contradiction. O
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Now we give a series of examples. The first two demonstrate that we need to have
unit in the language for the validity of the well-known generalization rule; the other two
show that in first-order semilinear logics, unlike in the propositional case, the conse-
quence relations =njope(r,) and Fvop+ (L) need not coincide.

EXAMPLE 4.1.15. We show that for any L: ¢ [=nop-(1) (V2)e. Consider a model
M = ((A, F), M) of © and an 9M-evaluation e. We know that [|¢|°r | € F for each

elz—a
a € M. Because L satisfies Convention 4.0.1, we know from Proposition 2.5.10 that

ian{H@H?[;_W] |a € M} >inf* F =1 e F (the first infimum exists as 01 is safe).

EXAMPLE 4.1.16. Consider the logic L given by the three-valued reduced matrix with
domain {a,b, L}, filter {a, b} and — defined as:

—>‘L a b
1l |la a a
a | L a L
b | L L b

Clearly, L is a weakly implicative logic, though not satisfying Convention 4.0.1, and it
is not difficult to build a model showing that ¢ ~nop- (L) (V).

EXAMPLE 4.1.17. We show that for any lattice-disjunctive logic L: ¢ V ¢ Enope(r)
((Vx)¢) V ¢ whenever z is not free in ¢. Consider an ¢-model 9 of ¢ V ¢ and an
M-evaluation e. If M |= ¢[e] we are done. Assume that D |~ )e], then also M =
le[x—al] for each a € M (because x is not free in ¢!). Since the filter in the matrix
is V-prime, we know that I = ¢le[z—al]; the rest of the proof is the same as in
Example 4.1.15.

EXAMPLE 4.1.18. =mobp+(q) is different from F=yope () for the Godel-Dummett
logic G and so they also differ for any logic weaker than G. Indeed, from the previous
example we know ¢ V¢ Eniope(q) ((Vo)@) V 4 and we show that o V¢ Fvop-(q)
((Vz)p) V). Consider ¢ = P(x) for a unary predicate P and 1) = ¢ a nullary predicate.
Take the G-algebra A whose domain is {0, a} U {1/n | n € N}; the lattice operations
are given by the lattice order: elements different from « are ordered as usual, 0 < a < 1,
a is incomparable with all the other elements; residual conjunction &4 = A“; and im-
plication —A s its residuum (c SA1=034c=co4c=1c23%40=c—4
1/n =1/2,and 1 =4 ¢ = 1/n =4 ¢ = ¢, and defined as usual for the remaining
values). It is easy to check that the equation (z — y)V (y — ) ~ 1 is valid in A, so we
have a non-linearly ordered G-algebra. Now take N as the domain of a first-order struc-
ture S and interpret cg = o and Ps(n) = 1/n, and we have the desired counterexample.

At the end of this subsection we introduce two special kinds of models, exhaustive
and fully-named ones.

DEFINITION 4.1.19 (Exhaustive model). Let M = (A, M) be a model for P. We
define the set

ASxh _ ® m  a P-formula and v an 9M-evaluation
v

and say that M is exhaustive if A = AP,
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Intuitively, 9 is exhaustive if A only contains the necessary values to interpret first-
order formulae of the language. The following straightforward proposition shows that
for any model we can always restrict to its exhaustive submodel.

PROPOSITION 4.1.20. Let M = ((A, F'), M) be a model. Then:

e There is a subalgebra A®™ of A with domain AP,
o There is a submatrix A" = (A®MM [ A<D of (A F),

o If we denote by M the model (A M'), where Pnyy = Py and Fap =
Fp for each predicate symbol P and functional symbol F, then O is exhaus-
tive and for each formula ¢ and each M-evaluation v holds:

m mexh
lelle™ = llelle™ -

DEFINITION 4.1.21 (Fully named model). Let 9 be a model. We say that 9 is fully
named if for each m € M there is a closed term t, such that tsn = m.

4.2 Axiomatic systems and soundness

As we have seen above, the two natural semantical consequence relations we have
introduced for first-order semilinear logics may be different in general. The goal of this
subsection is to propose axiomatizations for both of them and show their basic properties
including their soundness, their completeness will be proved later, in Subsection 4.4.

DEFINITION 4.2.1 (Predicate logics LV™ and LY). Let L be a logic in L. The minimal
predicate logic over L (in a predicate language P), denoted as LN™, is the logic defined
by the following axiomatic system:

(P) the rules resulting from the consecutions of L by substituting
propositional variables by (L, P)-formulae
V1)  Frym (Vz)e(z, 2) — @(t, Z), where t is substitutable for x in ¢
1) Frvm ot 2) = (3x)e(x, 2), where t is substitutable for x in ¢
v2)
)

32

X — ¢ bFrym x = (V)g, where x is not free in x

—~ S~

© = x FLym (32) — x, where x is not free in x.

Further, we define the predicate logic over L (in a predicate language P), denoted
as LV, as the extension of LN™ by the following two rules:

(V2)V (x = ¢) V¥ Fry (x = (Vo)) V 4, where x is neither free in x nor in 1
(32)Y (¢ = x) V¥ Fry ((3z)p — X) V 1, where z is neither free in x nor in 1.

CONVENTION 4.2.2. Many results and definitions in this section are valid for both
logics LY™ and LY. To simplify matters, when a definition or a theorem does not specif-
ically mention a particular predicate logic we mean that it holds for both of them.



Chapter II: A General Framework for Mathematical Fuzzy Logic 183

Notice that we have omitted the propositional language £ in the symbol for the
predicate logics over L for it is always that of L. Omitting the symbol for the predicate
language could be more confusing. In order to avoid possible problems, we first define
the notion of proof from a P-theory 7" in the (minimal) predicate logic over L in a
predicate language P in the same way we did it in the propositional case, denoting it by
means of . We can obtain the analog of Proposition 4.1.14 either as a consequence
of the completeness theorem or by a direct syntactical proof (as in classical logic).!”
Finally, observe that there is no need to mention the used p-disjunction in the symbol for
LV, because we know that all p-disjunctions are mutually derivable.

PROPOSITION 4.2.3. Let and T' U {p} a set of P-formulae. Then the following are
equivalent:

1. (P'.T) - @ forall P' O P.
2. (P,T) F ¢ for some P' O P.
3 (P,T) k.

PROPOSITION 4.2.4. Let AS be a presentation of L, then the group of rules (P) in
the axiomatization of LY™ can be equivalently replaced by

(Pas)  the rules resulting from the rules of AS by the substitution of the
propositional variables by (L, P)-formulae.

Furthermore, axioms (V2) and (32) are redundant in the axiomatization of LV.

Proof. The proof of the first claim is straightforward. We prove the second one: using
(PD) we know that y — ¢ F (x — ¢) V (x — (Vx)e), thus from (V2)V we obtain
X = ok (x— (Vz)p) V (x = (Vz)p). The idempotency of V completes the proof
of (V2). The proof of (32) is analogous. O

Later we will see simpler axiomatizations of Lv™ and LV for particular choices of
alogic L.

PROPOSITION 4.2.5. The following consecutions are provable:
(V0) @k (Vo)

(T1) e = E (Vo)p — (Vo)

(T2) ¢ =9 E (3z)p — (3z)Y

(T3) o< (Vo) if x is not free in ¢

(T4) F(Tx)p o if x is not free in ¢

(T5) F (Vz)p(x,2) < (Vo')p(a',Z) if z’ does not occur in p(x, 2)
(T6) F (Fx)p(x,2) < (Fz)p(a',Z) ifz’ does not occur in p(x, 2)
(T7)  F (Va)(Vy)p < (Vy) (Vo)

(T8) + (3x)(Fy)e < (Jy)(3z)e.

17 A hint of the proof in the finitary case: consider a proof of ¢ from (P’ T'), i.e. a sequence of P’-formulae.
We can transform any element of this proof by the following process: replace any term f(s), where f & P,
by an unused variable, and replace any atomic subformula Q(3), where @ is an n-ary symbol not in P, by
an arbitrary P-formula (&) with n free variables. It can be seen that the resulting sequence of formulae is a
proof of ¢ from (P, T").
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Proof. The proof of generalization (V0) is a simple corollary of rule (V2) used for
x = 1. We show the proof of odd claims (for V); the proofs for 3 are analogous.

(T1) Using (V1) and (T) we obtain ¢ — ¢ F (Va)e — 1. Rule (¥2) completes the
proof.

(T3) One implication is axiom (V1). To prove the second one starts from (R) in the
form F ¢ —  and the rule (V2) completes the proof.

(T5) Clearly - (Vz)p(z,2) — ¢(a,Z) by (V1) (2’ is clearly substitutable for z in
©). Rule (V2) completes the proof of one implication (2’ is clearly not free in
(Vx)p(z, Z)). The proof of the second implication is symmetric.

(T7) From (V1) and (T'1) we obtain (Vz)(Vy)p(x,y, 2) = (Vz)p(z,y, Z). Rule (V2)
completes the proof of one implication. The proof of the second one is symmetric.
0

Observe that the condition “z’ does not occur in ¢(x, Z)” is unnecessarily strong
and could be replaced by “z’ is both substitutable for x and not free in ¢(x, Z) and z is
both substitutable for 2’ and not free in (2, 2)”.

From the group of the rules (P) and rules (T'1), (T'2) we obtain (by induction on
the complexity of the formula y):

THEOREM 4.2.6 (Congruence Property). Let @, 1,6 be sentences. Then:
ey
s pEY ey
e p Yo

Further assume that x is a formula and X is obtained from x by replacing some occur-
rences @ by 1. Then

P x o X

The next straightforward proposition shows that we can restrict our attention to
sentences, as usual in first-order logics.

PROPOSITION 4.2.7. Let T'U{} be arbitrary formulae. We denote by ¥ the universal
closure of  (i.e. if x1,...,x, are the free variables in ¢, thenVp = (Vx1) ... (Ya,)p),
and by V' T the set of universal closures of all formulae inT'. Then: T' - ¢ iff VI' = V.

The following theorem shows that free variables behave as constants naming arbi-
trary elements.

THEOREM 4.2.8 (Constants Theorem). Let ¥ U {p(z, 2)} set of formulae and c a
constant not occurring in L U {p(x, 2)}. Then X+ (¢, 2) iff £ F ¢(x, 2).

Proof. The right-to-left direction follows easily from (V0) and (V1). Assume that ¥ +
(¢, Z). Let the sequence {(aq,...,qy,) be a proof of ¢(c,Z) from ¥ (assuming for
simplicity that the logic is finitary; for the general case the proof is analogous). Let y
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be a variable different from x and not occurring in the formulae o4, ..., a,. We de-
note by S¥(«;) the substitution in «; of each occurrence of ¢ by y. We will show that
(S¥(a), ..., SY(aw)) is a proof of S¥(ay,) = ¢(y, 2) from Lo = X N {aq,...,an}.
This will end the proof because then Xy - (Vy)¢(y, Z) (by (V0)), hence Xy F ¢(z, 2)
(by (V1)), so finally ¥ F ¢(z, 2).

If a; € 3, then SY(o;) = a; € X, because y does not occur in 3g. If o; results
from a rule in (P), then the same holds for SY(«;) because the substitution preserves the
propositional structure of formulae. Assume that o;; = (Yv)9 (v, Z) — (¢, Z), where ¢
is substitutable for v in ¢. Then SY(c;) = (Vv)SY(Y(v, 2)) — SY(Y(t, Z)), where ¢ is
substitutable for v in SY(v)), is still an instance of (V1). The case of (31) is analogous.
Assume that «; results from an application of the rule (V2), i.e. &; = x — %, for some
j < t,and a; = x — (Vv)1, where v is not free in x. Then SY(c;) = SY(x) — SY(¢¥)
and SY(a;) = SY(x) — (Yv)SY(v), where v is not free in SY (), so the formula still
results from an application of (¥2). The remaining rules are analogously checked. I

The next lemma and its two corollaries show that the p-disjunction retains some
good properties in the first-order logic LV, such as closure under V-forms and the PCP.

LEMMA 4.2.9. For each set I of formulae and formula o such that T 1y @ we have
I'V Y by ¢ V U for each sentence 1.

Proof. We show I' V ¢ 1y d V 9 for each § appearing in the proof of ¢ from I'. If
¢ € T or it is an axiom, the proof is trivial. Now assume that IV -1y § is the inference
rule we use to obtain §. From the induction assumption we have I' V ¢ by IV 'V 4.
Since IV V ¢ Fryv § V ¢ (for propositional rules due the PCP of L, for first-order rules
due to our definition of the axiomatic system for L), the proof of this claim is done. [

COROLLARY 4.2.10. The following consecution is provable in LV:
(VO)V oV Ly (Vo) V 1, where x is not free in 1.

Proof. Let ¢(x, %), (7) be formulae, 2 a variable not among %, and ¢ constants not
occurring in those formulae. By the previous lemma we obtain: ¢(x,¢) V 1(¢) Fry
(V) (p(z, €)) V(@). Since p(x,4) V4 (¥) Fry ¢(x,¢) V(E) (using (V0) and (V1)),
we obtain p(x, §) V() Fry (Vx)(¢(x, €)) ViH(E). The Constants Theorem completes
the proof. O

COROLLARY 4.2.11. LV enjoys the sPCP (and therefore also PCP) and the SLP, i.e.
for each P-theory T and P-sentences @, 1, and x holds:

T iy x S kv x T.o—=vYbtwx T, —plyx
TVS}_LvX ThFry x .

Proof. Assume that T Fry x and S Fry x. Using the Lemma 4.2.9 we obtain that
SVxFw xVxandTV Yty x Veforeachy € SandsoT V Sy x V S.
Using (Iy) and (Cy) we obtain TV S Fry x.

To prove the SLP we start from 1", o — ¢ Fry x and T,% — ¢ Fry x and by the
PCP we obtain T, (¢ — 1) V (¢ — ¢) FLy x. Knowing that L satisfies the (Py) we
obtain T Frv x. O
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We leave the proof of the soundness of both our logics with respect to their intended
semantics as an exercise for the reader. Recall that in Example 4.1.18 we have seen that
FrLv € Fmob- (1) need not be true in general.

THEOREM 4.2.12 (Soundness of first-order logics). Let L be a logic. Then:
FLy= € Emob- (L) Fuv € FEmobe) -
4.3 Predicate substructural logics

In this subsection we focus on the predicate logics over substructural logics. We will
see that the axiomatic systems corresponding to their predicate logics can be presented
in a simpler way. Recall that, according to Convention 2.5.9, a propositional weakly
implicative logic L in a language L is a substructural logic if L is an expansion of the
L N Lgr-fragment of SL. Thus in particular all £-consecutions provable in SL are
provable in L too. Unfortunately the situation is more complicated in the predicate
case. For instance, if L is the —-fragment of SL, we do not know whether LY™ is the
—-fragment of SLV™ Therefore e.g. from the fact that the upcoming formula (V2') is
a theorem of SLV™ we cannot infer that it is a theorem of LY™ even though its only
propositional connective is —.

Therefore we are not going to prove our claims just for SL and assume that they
will transfer to the proper fragments, but we formulate the forthcoming theorems for
the smallest fragments in which we can express their proofs.'® For simplicity, we will
however tacitly assume that whenever we formulate some claim in relation with some
logic, this logics has at least the necessary connectives to express the claim. We start
with the first-order version of the Duality Theorem 2.5.8 (the definition of mirror image
for predicate formulae is the natural extension of Definition 2.5.2). Its proof is straight-
forward: all new predicate axioms and rules have a principal implication — which can
be easily replaced by ~~ using the rule (symm).

THEOREM 4.3.1 (Duality Theorem). Let {—,~} C L C Lgr, and L the L-fragment
of SLx for X C {a,e,c,i,0}. For any P-theory T and any P-formula p:

Tk iff T F¢.
PROPOSITION 4.3.2. Let L be a substructural logic. Let ¢, 1, x be formulae and x a
variable not free in x. The following hold:

(T9)  Frv= (x = (Y2)p) = (Vo) (X = @)
(T10)  Fry= (Bz)p — x) = (V2)(p = X)
(T11)  Fry= (F2)(Xx = @) = (x = (F2)p)
(T12)  Frys (32)(p = x) = ((Y2)p = X)
(T13)  Frvm (Vz)p A (V)b < (V) (e A )
(T14)  Frym (3z)(p V) < Fz)p V (F2)¢
(T15)  Fpry= (Vz)p VX = (V2)(@ V X)

(T16)  Fry= (3z)(p A x) = (Fz)p A X

180f course, the resulting language restriction can be seen only as an upper bound, because one might
always expect to find a proof in smaller language, ideally using only the language of the claim itself.
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If & is in the language, then we also have:

(V2')  Frym (Yo)(x = @) = (x = (V2)p)
(T1)  Frym (Vo)(p = ¥) = ((V2)p = (V2)9).

If ~ is in the language, then we also have:

(32)  Frym (V2)(p = x) = ((32)p = x)
(T2")  Frym (Vo)(o — ¥) — (3r)p — (F2)9)
(T17)  Frym (3z)(p & x) < (3z)p & X

If V is in the language, then we also have:

(V3)  Frv (V2)(p V X) = (Vo) V X
(33) FLv Gx)p Ax = (Fz)(@ A X).

Proof. The proofs of the first four statements are simple: use (V1) or (31), then prefixing
or suffixing, and then (V2) or (32). The proofs of the left-to-right directions in the
second four statements are also simple: use (V1) or (31), monotonicity of V or A, and
then (V¥2) or (32). Let us show the proof of right-to-left direction of (7'13) ((T'14) is
fully analogous): from ¢ A ¥ — ¢ we get (Va)(¢ A1) — o using (V1) and so by (V2)
also (Vx)(¢ A ¢) — (Vz)¢p, analogously for ¢ and then rule A3 completes the proof.

(V2') From (V1) we get (Vz)(x — @) — (x — ¢) and so x & (Va)(x — ¢) — .
Using the rule (V2) and residuation again completes the proof.

(T'1") From (V1), suffixing, and prefixing we get (Vz)(p — ¥) — ((Vz)p — 9), (V2)
and (V2") complete the proof.

(32) From (V1) we get (Vz)(p — x) = (¢ = x) and so ¢ — ((Vz)(¢ = x) ~ X)-
Using the rule (32) and (E)_, again completes the proof.

(T2") The proof is analogous to the proof of (T'1").

(T'17) From (31) we get & x — (Fx)p & x. (32) completes the proof of one direction.
The reverse one: we start with y — (¢ — @& x) then apply (V2), and then (72')
completes the proof.

(V3) From (Vz)(p V x) = ¢V x we get ((Va)(p V x) @)V ((Vz) (e VX) = X)
(by (liny)). Using (V0)" we obtain (Vz)((Vz)(pVXx) = ©)V((Vz)(©VX) = X)s
and so by (¥2') we obtain ((Vz)(¢ V x) = (Vz)p) V ((Vz)(¢ V x) = Xx). The
rest is simple.

(33) From ¢ A x = (32)(p A x) we get [p = (Fz)(p AX)] V [x = (32)(p A X)]
(by (linp)). Using (V0)Y we obtain (Vz)[¢ — (3z) (e Ax)]VIx = 3z)(0AX)],
and so by (32') we obtain [(Iz)p — (Tz)(pAXx)]Vx = (3)(wAx)]. Therefore:

(Bz)p Ax — (3z) (e A X)- O

Notice that, as corollaries of (7'13) and (7'14), we easily obtain the provability of
(Vz)p A x < (Vx)(e A x) and (3z)(¢ V x) ¢ (3x)¢ V X, for z not free in x.
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REMARK 4.3.3. Notice that the quantification theory in first-order substructural logics
is almost classical. In fact, it is much closer to the intuitionistic one as the only two
unprovable quantifier shifts for implication are those which are also unprovable in intu-
itionistic logic. More formally, let 1. be any logic that can be expanded to intuitionistic
logic; then due to the soundness we know that:

(T117) - Frym (x = (Fx)p) = (Gr)(x = »)
(T127) Frym (Vo)p = x) = (F) (@ = X)-
Next we show how to simplify the axiomatic systems of our predicate logics. The

previous proposition showed us a wide class of logics satisfying the precondition of the
following theorem.

THEOREM 4.3.4 (Simpler axiomatization of LV™). Let us assume that the logic LV™
proves (V2') and (32"). Then LY™ can be alternatively axiomatized by (P) and the
following:

(V1) bFroym (Vo)p(z, 2) = @(t, Z), where t is substitutable for x in ¢
1) Froym ot 2) = Bx)e(x, 2), where t is substitutable for x in ¢
V2')  Frym (Vo) (x = ©) = (x = (Va)p), where x is not free in ¢
32)  Fprys (V2)(@ = x) = ((3z)p = X), where x is not free in ¢
V0) o bpLym (V2)e.

Furthermore, an alternative axiomatization of LY can be obtained extending this
system with:

(VO)Y @V Fry ((Yx)p) V 4, where x is not free in ).

Proof. The first part of the claim is trivial. One direction of the second claim follows
from Corollary 4.2.10. To prove the second direction observe that the logic just defined
satisfies an analog of Lemma 4.2.9 and Constants Theorem, and thus we can prove
(v2)V and (32)V in the same way we have proved (V0)V in Corollary 4.2.10. O

As a consequence we obtain the next theorem, for which we need a rather rich
language. We formulate it for expansions of SL but, in fact, the presence of ~~, &, V,
and 1 would suffice. Recall that we are restricted to semilinear logics in this whole
section.

THEOREM 4.3.5 (Axiomatization of first-order substructural logics). Let L be an ex-
pansion of SL. Then LY can be alternatively axiomatized by (P) and the following:
(V1)  bFrv (Vo)e(z, 2) = @(t, Z), where t is substitutable for x in ¢
(31) by e(t, 2) = (Fx)e(x, Z), where t is substitutable for x in ¢
(V2" oy (V2)(x = ¢) = (x = (Vz)p), where x is not free in 1)
(32" Frv (Vz)(@ = x) = ((3x)e — X), where x is not free in 1
(V3)  tFrv (Vz)(p V) = (Vo) V ¢, where x is not free in 1
(V0) ¢ Ly (Vo).
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Of course in both previous theorems in the propositional part of the axiomatic sys-
tem of LV™ and LV we can replace (P) by (Pss) where AS is an arbitrary axiomatic
system for L (see Proposition 4.2.4). Let us show that in the case of Lukasiewicz logic
both predicate logics coincide:

COROLLARY 4.3.6. LV = LV™

Proof. 1t is enough to show that £.Y™ proves (V3). From (a V 5) + ((a = B8) — B)
and (T'1") we obtain (Vx)(¢ V ) — (Vz)((» = ¢) — ¢). Now, again by (T'1"),
we have (Vz)((¢v = ¢) = @) = (Vo) = ¢) = (Vz)p). By (T9) and suffixing,
(Vx) (v — @) = (Vo)p) — (v — (Vz)p) — (Vx)p), and so finally we obtain
(¥ = (Vx)p) = (Vz)p) — (Va)p V 1. Transitivity ends the proof. O

The next proposition, which can be seen as quantifier shift of 3 over the defined
unary connectives ", is crucial in the proof of Corollary 4.3.10 which will play an im-
portant role in Subsection 4.5.

PROPOSITION 4.3.7. Let L be an associative substructural logic with V in its lan-
guage. Then:

(T18)  Frym (z)(¢") & ((Fz)@)".

Proof. The left-to-right direction is simple: using (31) n-times and monotonicity of
& we obtain " — ((3z)p)"; (32) completes the proof.' We prove the converse
direction for n = 2; the proof for n > 2 is analogous. First observe the provability of
the propositional formula

a& = a?vp?

(from o« — B we obtain a & f — S & B and so a &  — «? V $2; we obtain the
same from 8 — « and hence the SLP completes the proof). Assume that x is free in
¢ (otherwise the proof is trivial) and no other variables are free in ¢ (this assumption
only simplifies the notation, the proof for a formula with more free variables would
essentially be the same). Choose a variable y which does not occur in ¢, then clearly
() & p(y) — ¢*(z) V p?(y) and so by (31), the properties of V and (7°6) (in the
form: (3z)p? < ()2 (y)) we get o(z) & ¢(y) — (3x)p>. Thus by (32) we obtain
(Fy)(p(x) & ¢(y)) — (3x)p? and so by (T'17) and (T'6) we have p(z) & (Fx)p —
(3x)p>. We just repeat the last three steps to complete the proof. O

Our next aim is to prove a form of local deduction theorem for predicate substruc-
tural logics. Let P be a predicate language and DT be a set of x-formulae (i.e. propo-
sitional formulae in language £ built from the normal set of variables enhanced with a
new distinguished variable %; see the beginning of Subsection 2.6). By DT'» we denote
the set of formulae resulting from any *-formula from DT by replacing all its proposi-
tional variables other than x by arbitrary P-sentences. Note that elements of DTp are
not P-formulae, but if we substitute all occurrences of x by a P-sentence we get another
‘P-sentence.

19Notice that the proof of the left-to-right direction does not use the associativity assumption.
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THEOREM 4.3.8 (Local Deduction Theorem for LV™). Let L be a substructural logic
with &,~ and 1 in its language. Let P be a predicate language. Assume that L is
almost (MP)-based with a set of basic deductive terms bDT. Then for each P-theory
T, P-formula 1) and P-sentence @, we have:

T, Fprym ¥ iff ~ Tlpym d(p) = for some § € TI(bDT)p.

Proof. The observation that ¢ Fpym () for each § € II(bDT")p completes the
proof of the right-to-left direction. To prove the converse one we first observe (using
Theorem 4.3.4, Proposition 4.3.2 and the comments after Theorem 4.3.5) that LV™ can
be axiomatized using modus ponens, rules of the form ¢ Fpym 6(p) for§ € I(bDT™)p,
and ¢ Fpym (V). The proof runs along the lines of the proof of Theorem 2.6.3. The
induction base and the induction steps for all the rules except o Fpym (V) are done in
the same way as in the propositional case. Let us deal with the remaining one, i.e. assume
that x = (V). From the induction assumption there has to be d,, € II(bDT")p such
that T Frym dy () — 1. Using (V2) we obtain T Frym §y () — (Vz)y and so setting
dy = 0y completes the proof. O

Using Theorem 4.3.5 we can easily prove the analog of the theorem above for LV.

THEOREM 4.3.9 (Local Deduction Theorem for LY). Let L be a substructural logic
expanding SL. Let P be a predicate language. Assume that L is almost (MP)-based
with the set of basic deductive terms bD'T. Then for each P-theory T, P-formula 1 and
‘P-sentence o, we have:

T,obLy ¥ iff  Thrryd(e) = forsomed € I(bDT*)p.

As a corollary we obtain the following claim for LY which will be useful in Subsec-
tion 4.5.

COROLLARY 4.3.10. Let L be an axiomatic expansion of FL.. Then for each predicate
language P, each P-theory T, each P-formula ©(x), and any constant ¢ € P holds that
T U{p(c)} is a conservative expansion (in the logic LY) of T'U {(3x)¢(x)}.

Proof. Assume that T'U {¢(c)} FLy 1. Then, by the Local Deduction Theorem, there
is n such that T' by (o(c) A 1)™ — 1. Thus by the Constants Theorem and (32)
we obtain T Fry (3z)(¢(z) A 1)™ — 1. Using (7'18) and (33) we obtain T' by
((3x)(p(x) A1))" = ¢ and T Fry ((3z)@(z) A 1)™ — 1. Local Deduction Theorem
completes the proof. U

4.4 Completeness theorem

In this subsection we show that the axiomatic systems LY™ and LV are respectively
presentations of the semantically defined first-order logics =nvop+ (L) @and Fvopet ()
i.e. we prove two completeness theorems by showing that the reverse inclusions in The-
orem 4.2.12 hold as well. To this end we need the notions of linear and V-Henkin theory.
Again we proceed for both logics at once.
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DEFINITION 4.4.1 (Linear and V-Henkin theories). Let P be a predicate language. A
P-theory T is

e Linear if for each pair of P-sentences p, 1) we have T' = — Y or T ¢ — .

e V-Henkin if for each P-formula 1) such that T ¥ (Vx)iy(x) there is an object
constant ¢ in P such that T ¥ (c).

Note that the quantifier (Vx) could be omitted from the definition. Next we intro-
duce the notions of Lindenbaum-Tarski algebra and canonical model of a theory 7T'.

DEFINITION 4.4.2 (Lindenbaum-Tarski algebra). Let ¢ be a P-sentence and T a
P-theory. We define

[plr = {¢¥ | ¥ a P-sentence and T \- ¢ > 1}.

The Lindenbaum—Tarski matrix of T, denoted by LindTry, has the domain Lt =
{l¢]r | ¢ a P-sentence}, operations:

AT (o]0 [onlr) = [e(e1, - on)]T

(for each n-ary connective c of L and each 'P-sentences @1, ..., py), and the filter
[T] = {[¢]r | ¢ a P-sentence and T + ¢}

The definition is sound due to the congruence property of <> proved in Theo-
rem 4.2.6. The Lindenbaum—Tarski matrix of a theory 7" will allow us to define a model
of T', the so-called canonical model, where the formulae not provable from 7' are not
valid. The following proposition shows that the matrix belongs to the corresponding
classes with respect to which we want to prove completeness. Next proposition (and to
a large extent its proof) is analogous to Lemma 2.2.9 for propositional logics.

PROPOSITION 4.4.3. Let T a P-theory. Then:

L. [¢l7 <vtinaT, W] iff T @ — .
2. LindT7 € MOD*(L).
3. LindT; € MOD(L) if. and only if. T is linear.

Proof. We show these three claims for the minimal logic; the proofs for LV are com-
pletely analogous. Part 1 is proved by the following chain of simple equivalencies:
[Pl <inaTr W7 iff [p)r =" [Pl € [T]iff [p — )7 € [T]iff T Frym @ — 9.

If we show that LindTr € MOD(L), the proofs of parts 2 and 3 trivially follow.
Assume that I" k1, ¢ and let us fix a LindTr-evaluation e such that e[I'] C [T] and
we need to show that e(¢)) € [T]. Let us define a mapping o from propositional for-
mulae to (£, P)-sentences by induction over the complexity of formulae: o(v) € e(v)
(arbitrarily for each propositional variable v) and o (c(¢1,. .., ¢n)) = c(o@1,...,00n)
for each n-ary connective ¢ and propositional formulae ¢, ..., ¢,. Further we show
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that for each propositional formula ¢ we obtain [ocp]r = e(y) by induction: for vari-
ables it is clear, now assume that ¢ = c(p1,...,¥,), we obtain [oc(p1, ..., 0n)]T =
[C(O’g@h s 7090”)}71 = CLdeT([J(pl}Tv EERR) [UQDH]T) = CLdeT(e(wl)v —elen)) =

e(c(<p1, s a¢n)>
Since e[I'] C [T], we have T' F o[I']. From I' Fy, ¢ we obtain o[I'] Frym ot

(due to the group (P) of rules in the axiomatization of LV™). Taken together, we have
T Frym ot and so e(y) = [o(¢)]r € [T]. O

LEMMA 4.4.4. Let T be a V-Henkin P-theory. Then for any P-formula ¢ with only
one free variable x holds:

o [(Vo)olr = inf<yur, {lp(0)]r | c € C},
o [CG)¢lr = supey, 4, {le(0)]r [ c € C},
where C is the set of all closed P-terms.

Proof. We prove only the first claim for the proof of the second one is completely anal-
ogous. It is simple to see that [(Vz)p]r is a lower bound: from axiom (V1) and part 1 of
the previous proposition we obtain [(Vz)¢]|r <vindaT, [¢(c)]r for all terms ¢ € C.
Assume that [x]7 ZrindT, [(VZ)@]r. Without loss of generality we assume that
x is not free in x (because by (TS) we know that [(Vz)p]r = [(Vy)p]r if y does not
occur in p(z)). Thus T ¥ x — (Vz)p and so T ¥ x — ¢(z) (by rule (V2)) and
T ¥ (Vx)(x — ¢(x)) (by rule (V0)). By the V-Henkin property of 7' we obtain a
constant d € C such that T ¥ x — ¢(d). Thus finally [x]r LrinaT, [¢(d)]T,ie. [X]T
is not a lower bound of {[p(c)]r | ¢ € C}. O

DEFINITION 4.4.5 (Canonical model). Let T' a Y-Henkin P-theory. The canonical
model of T, denoted by €M, is the P-structure (LindTr, S) where the domain of S
consists of the closed P-terms,

o fs(t1,...,tn) = f(t1,...,t,) for each n-ary function symbol € P, and
o Ps(ty,...,tn) = [P(t1,...,tn)]r for each n-ary predicate symbol P € P.

Now we can easily prove the following proposition which shows that €91+ is indeed
a P-model of T":

PROPOSITION 4.4.6. Let T be a V-Henkin P-theory. Then for each P-sentence :

"M
L o)™ = [¢lr-

2. EMr Ewif,andonly if, T + .

Thus €M is an exhaustive and fully-named model of T and furthermore T is linear if,
and only if, EMNy is an L-model of T.

The following two theorems are crucial for the completeness proofs of our two
logics. For now, we give the proof of the first one only; the second one is more involved
and we postpone its proof right after the completeness theorem.
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THEOREM 4.4.7. Let P be a predicate language and T U {©} a P-theory such that
T ¥rym . Then there is a predicate language P’ O P and a V-Henkin P’-theory
(in LV™) T" D T such that T' ¥#pym .

Proof. Let P’ be an expansion of P by countably many new object constants, and take
T = (P',T). Take any P’-formula ¢)(x), such that 7" Fpym (Va)tp(x). Thus 77 Frym
¥(z) and so T' Frym t(c) for any ¢ not occurring in 7" U {1/} (because 1" contains
just P-formulae and 1 is a finite object there always is such ¢ € P’ and so we can use
Constants Theorem). O

THEOREM 4.4.8. Let L be a finitary logic, P be a predicate language, and T U {¢} a
P-theory such that T ¥y . Then there is a predicate language P’ O P and a linear
V-Henkin P’-theory (in LV) T’ D T such that T ¥ry .

The proof of the next two theorems is straightforward: soundness was already es-
tablished and completeness is a corollary of Proposition 4.4.6 and Theorem 4.4.7 or
Theorem 4.4.8 respectively.

THEOREM 4.4.9 (Completeness theorem for LV™). Letr L be a logic and T U {p} a
‘P-theory. Then the following are equivalent:

o T l_LVm ®.
o T |:MOD*(L) 2

e There is a predicate language P’ O P such that M |= p for each exhaustive,
fully named, model 9 of (P, T).

THEOREM 4.4.10 (Completeness theorem for LY). Let L be a finitary logic and TU{ ¢}
a P-theory. Then the following are equivalent:

o TI—LV ®.

T ':MOD‘Z(L) ®-

e There is a predicate language P’ O P such that M |= ¢ for each exhaustive,
fully named, (-model 9 of (P',T).

The rest of this subsection is devoted to the promised proof of Theorem 4.4.8. To
this end, we first need to prepare some notions and prove a crucial lemma. From now
on we work in the logic LV:

DEFINITION 4.4.11 (Restricted Henkin theory). Let P C P’ be predicate languages.
A P’-theory T is P-V-Henkin if for each P-sentence p(x) such that T ¥ (Vx)p(x) there
is a constant ¢ € P’ such that T ¥ (c).

Notice that when P’ = P we obtain the already defined (without the prefix ‘P’)
notion of V-Henkin theory. Recall that 7' - S means that T' - ¢ for each ¢ € S and so
by T' ¥ S we mean that there is ¢ € .S such that T" ¥ .
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CONVENTION 4.4.12. Let V¥ be a set of P-theories and T a P-theory. We write T' ¥ ¥
whenever T ¥ S for each S € .

DEFINITION 4.4.13 (Deductively directed set of theories). A set of P-theories U is
deductively directed if for each T, S € V there is R € V such that T - R and S + R;
we call R an upper bound of T and S.

We are now ready to prove the Fundamental Lemma which will have Theorem 4.4.8
as a corollary. The level of generality of our result, dealing with logics with arbitrary
p-disjunctions, forces us to use the technical complication of dealing with deductively
directed sets of theories W. Theorem 4.4.8 will be an application starting from the par-
ticular case when ¥ = {{¢}}.

LEMMA 4.4.14 (Fundamental Lemma). Let L be a finitary logic, T' a P-theory and ¥
a deductively directed set of closed P-theories such that T ¥ V. Then:

1. There is a predicate language P' O P, a P'-theory T' D T, and a deductively
directed set of closed P’ -theories W' D WU, such that

o T ¥ U and
e cachtheory S O T’ in arbitrary language is P-V-Henkin whenever S ¢ V',

2. There is a linear P-theory T' O T such that T" ¥ .

Proof. 1. We construct the extensions by a transfinite recursion. The language P’ is the
expansion of P by new constants {c, | v < ||P||}. We also enumerate all P-formulae
with one free variable by ordinal numbers as x, for < [|P||. We construct P’-theories
T, and sets of closed P’-theories ¥ psuchthat T, €T, and ¥, C ¥, foreach u < v,
T, ¥ ¥,,and ¥, is deductively directed. Let Ty = T, ¥5 = ¥, and observe that they
fulfil our conditions.

For each p < ||P|| we define: T\, = U, ., T, and V), = U, ., ¥, Notice that
from the induction assumption we obtain that T'c,, ¥ ¥, (due to the finitarity) and
W, is deductively directed. We distinguish two possibilities:

HD) If T, = RV (Vx)x,(x) for some R € V_,, then we define 7T), = T, U
{(ve)xu(2)} and ¥, = W),

(H2) Otherwise we define 7, =T, and ¥, = W, U{RV x,(c,) | R € U, }.
We show that our conditions are met no matter which possibility occurred.

(H1) ¥, is obviously deductively directed. Assume for contradiction that T, = T, U
{(V2)xu(z)} F R for some R' € W,. We take an upper bound R of R and R’
and notice that T, U {(Vx)x,.(z)} F R and T<,UR F R. Thus using the
sPCP (which can be proved from the PCP as in the propositional case) we obtain
Te, URV {(Vz)xu(2)} F R and so Tey B R. Since R € ¥, we have a
contradiction with T, ¥ ¥ ;.
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(H2) Assume by the way of contradiction that T, = T'«,, = R for some R € ¥,. From
the induction assumption we know that T, ¥ R foreach R € ¥, and so R has
to be of the form R’ V x,,(c,,) for some R" € W_,,. Since ¢, does not appear in
T<, UV_,, we can use Constants Theorem to obtain 7}, = R’ V x,,(z), and also
T, + RV (Vz)x,(z) (by (V0)V), a contradiction with the fact that we are in
the case (H2). To show that ¥, is deductively directed we distinguish four cases:
firstif both R, R’ € ¥, then they have an upper bound already in ¥.,,. Second
assume that R € W, and R’ = SV x,,(c,,) for some S € U_,,. Let R € U,
be the upper bound of R and S. Thus R V Xu(cu) € ¥, is an upper bound of R
(trivially) and R (by the sSPCP and the trivial fact that x,(c,) = SV x.(cu)).
The final two cases are analogous.

Now take 7" = T_|p| and ¥ = W_|p|,. Thus by the induction assumption
T’ ¥ ¥'. Let now S be any theory such that 7/ C S and S ¥ ¥’. We show that S
is P-V-Henkin. Clearly for each o < ||P|| if S ¥ (Vz)x,(x), then we must have used
case (H2) (otherwise T}, F (Vx)x,(z) and so S F (Vz)x,.(z)). If S F x.(c.), then
S F RV xu(c,) for any R € ¥.,. Since we have used case (H2), we know that
RV xu(cu) € ¥,—a contradiction with S ¥’

2. We say that 7" is maximally consistent w.r.t. ¥ if 7' ¥ U and for each ¢ ¢ T
there is R € ¥ such that T, o = R. By Zorn’s Lemma be obtain a theory 7" D T which
is maximally consistent w.r.t. ¥. We only have to show that 7" is linear. Assume that
o =1 & T and ) — ¢ ¢ T'. Thus there are R, S € ¥ such that 77, o — ¢ - R and
T',1) — ¢ F S; consider an upper bound R of R and S and using the SLP we obtain
that 7" - R—a contradiction. O

Proof of Theorem 4.4.8. We construct our extension by induction over N. Take 7y = T'
and ¥y = {{¢}}, Po = P. We construct predicate languages P;, P;-theories T}, and
deductively directed sets W; of closed P;-theories, such that P;_; C P;, T;_1 C T,
W,_1 C W, and T; ¥ U,;. Observe that the theory T}, set ¥, and language Py satisfy
Ty ¥ Wy. The induction step: we use part 1 of Lemma 4.4.14 for P;, T;, ¥;, and define
their successors as P;, T}, and ¥} (the lemma assures us that our required conditions are
fulfilled). Then we define P’ = J{P; | i € N}, the P'-theory T" = | J{T} | i € N}, and
U = [J{¥,; | ¢ € N}. Finally, we use part 2 of Lemma 4.4.14 for P/, T, and ¥’ and
define 7" as 1"

Obviously T” is linear, T; C T", and T” ¥ W, for each i (thus in particular 7" ¥ ).
From part 1 of Lemma 4.4.14 and the definition of P’ we obtain that 7" is a P;-V-Henkin
‘P’-theory for each ¢, and so it is a V-Henkin P’-theory. O

Notice that we have proved more: the maximal consistency of 7" with respect to ¢.

4.5 d-Henkin theories, Skolemization, and witnessed semantics

In this subsection we will deal with first-order logics LV only. Our goal is twofold.
First, we study a notion of Skolemization for these logics which, provided that the prop-
erty in Corollary 4.3.10 is satisfied, allows to erase existential quantifiers in a formula
by conservatively adding new functional symbols. Second, we deal with the particu-
lar stronger semantics of witnessed models, i.e. models where the truth value of each
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quantified formula coincides with the truth-value of some of its instances. We show that
any logic LV admitting Skolemization can be axiomatically extended to a logic enjoying
completeness w.r.t. witnessed models.

We start by introducing the notion of 3-Henkin theory, dual to the already intro-
duced (and classically equivalent) notion of V-Henkin theory. It will be convenient to
restrict its validity to a class X of formulae, which later will be determined by some
particular syntactical property (e.g. those starting with the connective A, or formulae
satisfying excluded middle, or just all formulae). At the start, however, we need not
assume anything. In the extreme case X could be just a single formula. Thus, let us fix
a class X of formulae of arbitrary languages.

DEFINITION 4.5.1 (3-Henkin theory). Let P C P’ be predicate languages. We say
that a P’-theory T is:

e Y-P-3-Henkin if for each P-formula p(z) € 3 such that T = (3z)p(x) there is
a constant ¢ € P  and T F ¢(c).

e Y-Henkin if it is V-Henkin and ¥-P’-3-Henkin.
e Henkin if it is 3-Henkin and X is the class of all formulae.

DEFINITION 4.5.2 (preSkolem logic). We say that LV is 3-preSkolem if T U {p(c)}
is a conservative expansion of T U{(3x)p(x)} for each language P, each P-theory T,
each P-formula ¢(x) € ¥ and any constant ¢ ¢ P.

Again, if X is the class of all formulae we drop the prefix ‘X-.

EXAMPLE 4.5.3. In Corollary 4.3.10 we have seen that each predicate logic over an
axiomatic expansion of FL! is preSkolem. This includes all core fuzzy logics introduced
in Chapter I. We show additional examples of preSkolem logics based on A-core fuzzy
logics.

Let L be a A-core fuzzy logic, and X be a class of all formulae of the form Agp. We
show that LV is 2-preSkolem. Let us first recall that LV enjoys the Global Deduction
Theorem: I', o F ¢ iff ' F Ay — . Next assume that T U {Ap(c)} Fry 1. Then
by the Deduction Theorem T Fry AAp(c) = ¢ and so T Fry Ap(c) — 1. Thus by
the Constants Theorem and (32) we obtain 7" vy (3z)(Ap(z)) — 1 and so by modus
ponens, we have: T, (3x)(Ap(z)) FrLy 9.

LEMMA 4.5.4 (Fundamental Lemma). Let LY a X-preSkolem predicate logic, T a
P-theory, and U a deductively directed set of closed P-theories such that T ¥ V. Then
there is P' O P and a P'-theory T' O T such that

o T" ¥ W and
e cach theory S 2 T’ in arbitrary language is Y-P-3-Henkin whenever S ¥ V.

Proof. We construct our expansion by transfinite recursion as in the proof of the first
part of Lemma 4.4.14. Let ¥ be the set of all P-formulae of the form p(z) € . We
expand our predicate language with new constants {c, | v < ||3||} and enumerate all
formulae from ¥ by ordinal numbers as X,
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We construct theories 7}, such that T}, C T, for p < vand 7T, ¥ U. LetTy =T
and observe that it fulfils our condition. For each ;1 we define the set T, = |, . u 1o
Notice that from the induction assumption and finitarity we obtain that T, ¥ ¥. We

distinguish two possibilities:
W1) IfT., U{(3z)x.(z)} ¥ U, wedefine T), = T, U {xp(c)}.
(W2) Otherwise we define T, = T',,.

In the case (W1) we use the fact that T, U{x,(c,,) } is a conservative expansion of
Tep U{(32)xu(z)} (because LY is X-preSkolem) to obtain T, ¥ W. In the case (W2)
we obtain it trivially.

Take T" = T and observe that clearly 7" ¥ W. Let S be a theory in an
arbitrary language such that 7/ C S and S ¥ ¥. We show that S is ¥-P-3-Henkin. If
S F (3x)x,. () then we used case (W1) (from T« ,U{(3z)x,(z)} F R for some R € ¥
we would obtain S - R, a contradiction). Thus T), - x,(¢c,) andso S F x,(c,). O

THEOREM 4.5.5. The following are equivalent:

1. LV is X-preSkolem.

2. For each P-theory T, © such that T ¥ o there is P’ 2 P and a linear ¥-Henkin
P'-theory T' O T and T' ¥ .

Proof. Assume that LY is X-preSkolem and T ¥ ¢, some P-formulae T'U {p}. We
construct our extension by induction over N. Take Tp = T and ¥ = {{p}}, Po = P.
We construct theories ¥, and 7}, and predicate languages P; such that T; is a P;-theory,
W; is a directed set of P;-sentences, 1; ¥ ¥;, and P; C P;, T; C T and ¥; C W5 for
1 < j. Observe that the theory T, the set ¥ and the language Py fulfil these conditions.
The induction step:

e If ¢ is odd: use part 1 of Lemma 4.4.14 for P;, T;, and ¥,; define their successors
as P}, T/, and ¥}.

e Ifiiseven: use Lemma 4.5.4 for P;, T;, and U;; define their successors as P/, T7,
and ;.

Now we define P’ = (J{P; |i € N}, T = {T; |i € N},and &' = [ J{; | i € N}.
Finally, we use part 2 of Lemma 4.4.14 for P’, T, and ¥ and define 7" as 1"

Obviously T” is linear, T; C T, and T" WP W, for each ¢. Thus from part 1 of
Lemma 4.4.14 and part 2 of Lemma 4.5.4 and the definition of P’ we obtain that 7" is
3-Henkin.

Let us now prove the converse direction. Take 73 = T U {¢(c)} and To = T' U
{(3x)¢(x)}. We show that To ¥ x implies 77 ¥ x for each formula x (assuming
that ¢ does not appear in T'U {¢, x}). We know that there is P’ 2 P and a X-Henkin
P’-theory T" D Ty such that T’ ¥ x. Since T’ F (3x)¢(x), there is a P’-constant ¢ such
that 7" I o(c). Thus in any model 2 of 7" holds: 9 = ¢(c) and since EMp F~ x the
proof is done. O
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Now we are ready to prove that the preSkolem property allows (in fact, it is equiva-
lent) to perform the usual process of Skolemization, i.e. introducing functional symbols
to take care of existential quantifiers under the scope of universal quantifiers. To this
end, we need a further technical restriction on the classes .

DEFINITION 4.5.6 (Term-closed classes). A class of formulae 3. is term-closed if for
each formula o(x,y) € %, each language P, and each sequence of closed P-terms t,
we have p(z,t) € 3.

Typical examples of term-closed classes are the class of all formulae, the class of
all formulae starting with A (see Example 4.5.3), or the class of all provably classical
formulae (i.e. formulae such that 1y ¢ V =, assuming that L expands FLc.,).

THEOREM 4.5.7 (Skolemization). Let 3 be a term-closed class of formulae. Then the
following are equivalent:

1. LY is X-preSkolem.

2. TU{(VY)e(fo(¥),9)} is a conservative expansion of T U {(Vy)(3z)p(x, )}
for each language P, each P-theory T, each P-formula o(x,¥) € ¥ and any
Sfunctional symbol f, & P of a proper arity.

Proof. The proof that 2 implies 1 is trivial. The proof of the converse is analogous to
the proof of the second part in Theorem 4.5.5. We denote T' U {(V%)¢(f,(¥),¥)} as
Ty and T U {(Vy) (3x)o(z, )} as To. We show that T, ¥ x implies T3 ¥ x for each
formula . By Theorem 4.5.5 we know that there is P’ O P and a Y:-Henkin P’-theory
T" D Ty such that T" ¥ x, and hence €9} ~ x. For each sequence ¢ of closed
P'-terms T" - (3x)p(z,t) (by (V1)) and hence there is a P’-constant c; such that
T' + ¢(cpt) (we know that (z,t) € X because ¥ is term-closed). Since c; is
an element of the domain of €9V, we can define a model 91 by expanding €N,
with one functional symbol defined as: ( fw)m(f ) = ¢ Since, for each P’-formula,
obviously, M = ¢ iff €M), = 1, we obtain: M = T and M = x. Also clearly
M = (Vy)o(fo(Y), §), and thus the proof is done. O

Our next aims are to consider witnessed models as a meaningful semantics for first-
order semilinear logics and axiomatize the logic complete with respect to them. They
are defined as those models where, resembling structures for first-order classical logic,
every quantifier is realized by some particular element of the domain.

DEFINITION 4.5.8 (Witnessed model). Let Q) be either ¥ or 3. We call a P-formula
o(z, ) Q-witnessed in an (-model I in language P if for each @ € M there in an
element b € M such that

Q) (z, @)™ = llp(b,a)|™".

Given a set ¥ of P-formulae, we call a {-model 9 in language P >-Q-witnessed if
each formula from ¥ is Q-witnessed in M. Finally, we omit the prefix ‘Q-’ if the formula
(¢-model) is both V- and 3-witnessed; we also omit the prefix ‘3-" if ¥ is the set of all
P-formulae.



Chapter II: A General Framework for Mathematical Fuzzy Logic 199

DEFINITION 4.5.9 (Witnessing axioms). Given a class X of formulae, we define the
following classes

W3 = {(3B2)(F)v(y. 2) = ¥(, 7)) | ¥ € T}

Wi = {(F0) (W, 2) = (Wy)e(y, 2) | ¥ € T}
Finally, we define Ws, = W U W3.

THEOREM 4.5.10 (Completeness w.r.t. witnessed models). Let ¥ be a term-closed
class of formulae and @) be the symbol ¥, 3, or the empty sequence. Let LV be Wg -
preSkolem. Then for each T and p the following are equivalent:

e WE.TF o
o M = ¢ for each -Q-witnessed (-model M of T.

Proof. One direction is simple, just observe that the axioms from Wg are obviously tau-
tologies in X-Q-witnessed models. To prove the converse one, assume that W, T' ¥ .
Consider a Wg -Henkin theory 7" O T which T ¥ ¢ (such a theory exists due to The-
orem 4.5.5). If we show that the canonical model €917 is 3-Q-witnessed, the proof is
done. Let us assume that () = 3 and take ¢ (z,§) € o and a sequence t of elements
of the domain of the canonical model, i.e. closed terms. We know that (z,t) € %
(since X is term-closed) and thus 7" + (3z)((3y)(y,t) — ¥ (x, 1)), thus (because T’
is Wg-Henkin) there has to be a constant ¢ such that 7" - (3y)v(y,t) — ¥(c,t) and

s0 [(3y)y(y, D)7 = [W(e. )7 O

DEFINITION 4.5.11 (Witnessed extension). Let L be a logic. We define the witnessed
predicate logic over L, denoted as, LNV as the extension of LY by the following wit-
nessing axioms:

(G2)((F)d(y, 2) = (. 2))
(B)((, 2) = (Vy)¥(y, 2)).
COROLLARY 4.5.12. Let LY be a preSkolem logic. Then for each theory T and for-
mula o the following are equivalent:
o T Fryw .
o M = ¢ for each witnessed {-model MM of T.

EXAMPLE 4.5.13. As prominent examples we check the validity of the witnessing
axioms in the first-order versions of the three main logics based on continuous t-norms:

1. Lukasiewicz logic proves both witnessing axioms, i.e. LV*” = LV. Let us prove
them. For the first one it is enough to prove (a« — (3z)B8) — (Fz)(a — f)
(for x being free in «); the axiom follows by taking @ = (Fy)¢(y, 2) and § =
¥(x, Z). We can easily show that LY proves: =(3z)(a — ) — (Vz)(a & =),
V) & =8) — a & (Vz)-6, a & (V)= — —(a — —(Vz)-p), and
—(a = =(Vz)=B) = —~(aw = (3z)B). By transitivity and contraposition we are
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done. Similarly, the other axiom follows from ((Vz)8 — a) — (3z)(8 — «),
where z is not free in «, using theorems ((Vz)8 — a) — (-a — —(Vz)pB),
(ma = =(Va)p) = (ma = (3r)=fF), (na = (3z)=F) = (Fz)(-a = =p),
(Fz)(~a = =8) = (Fx)(B — «).

2. Product logic proves only one of the witnessing axioms. Indeed, it can be se-
mantically shown that (« — (Jz)8) — (3z)(a — B) is a tautology (an easy
application of the fact that the implication in Product logic is left-continuous).
For the second one, we can build a counterexample for (3z)(P(z) — (Vy)P(y)).
Consider a model over the standard chain [0, 1]1; such that N is its domain and
{||P(n)|| | n € N} is a strictly decreasing sequence converging to 0.

3. In Godel logic both witnessing axioms fail. Indeed, for the second one we can use
the same counterexample as above (over the standard Godel chain, of course). For
the first one, we give a counterexample to the formula (3z)((3y)P(y) — P(x)).
Again, consider a model over the standard chain [0, 1], such that N is its domain
and {||P(n)|| | » € N} is any strictly increasing sequence converging to r < 1.
Then | (32) (Fy) P(y) — P(@))]| = supen(suppey I[P — [P()]) =
suppen(r = [ P(n)]) = supen |[P(n)]| =7 < 1.

5 Historical remarks and further reading

Most of the basic notions used in this chapter come from the field of Algebraic
Logic. This discipline was born in the XIXth century with the pioneering works of
Boole, De Morgan, Pierce and others on classical logic, and has evolved into the study
(with a heavy use of tools from Universal Algebra; see e.g. [10]) of classes of algebras
providing semantics for non-classical logics. Typically, the connection between a propo-
sitional logic and a class of algebras is obtained by means of the Lindenbaum—Tarski
method. The attempts to generalize this method have given rise to Abstract Algebraic
Logic (AAL) as a natural evolution of the field aiming to understand the process by
which a class of algebras can be associated to an arbitrary logic. Our presentation has
strongly capitalized on the notions and methods from AAL too. Readers interested in
this area and its history are referred to the survey [40] and the comprehensive mono-
graphs [24, 39, 88].

Section 2

The first four subsections of this section can be seen as a short introduction to
AAL particularized, for didactic reasons, to the framework of weakly implicative logics
(WIL). The notion of consequence operator was introduced by Tarski in [83] and the
condition of structurality (invariance under substitutions) was added by £.o§ and Suszko
in [66]. Mainstream AAL has been extensively developed by the Polish school in the
paradigm defined by this notion (see [24, 88]). Wdjcicki introduced reduced matrices
and reduced matrix models in [87] and implicitly obtained the corresponding complete-
ness theorems. Schmidt Theorem (Theorem 2.3.3) is from [80]. The third bullet item
of Theorem 2.2.7 motivates the name ‘Leibniz congruence’ (resembling Leibniz’s prin-
ciple of identity of indiscernibles, this result shows that a pair of formulae are con-
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gruent iff they are indistinguishable in the matrix model). The name appeared first in
Blok and Pigozzi’s paper [6]. The characterization in the third bullet item of Theo-
rem 2.2.7 holds for arbitrary logics and can be deduced e.g. from Maltsev’s Lemma
(see [10, Lemma V.3.1]). Most results in Subsection 2.3 follow from Section 3.7 in [88],
in particular, the subdirect decomposition theorem for reduced matrix models of a fini-
tary logic and complete w.r.t. RSI reduced matrix models. Subsection 2.4 owes much to
Blok and Pigozzi’s 1989 memoir [7].

Weakly implicative logics were first introduced in [17] as a generalization of Ra-
siowa’s notion of implicative logics (see [76]), which we have called here Rasiowa-
implicative logics. In the terminology of [28], matrices for WIL coincide with the class
of the prestandard matrices while ordered matrices coincide with standard matrices.
Weakly implicative logics have been generalized in [21] to weakly p-implicational log-
ics, in a pure AAL fashion, by considering a generalized notion of implication which,
instead of being a binary connective, can be defined by sets of (possibly parameter-
ized) formulae. This paper also studies the position of weakly implicative logics in
the so-called Leibniz hierarchy: weakly implicative logics are a proper subclass of
finitely equivalential logics (and therefore of protoalgebraic logics), our algebraically
implicative logics are exactly those weakly implicative logics which are algebraizable
and, if furthermore they are finitary, they are algebraizable in the sense of Blok and
Pigozzi [7]. All the notions (except that of WIL) and results appearing in these four
subsections can either be found in [24] or are particularizations of notions and results
from this book to the context of weakly implicative logics. With a few exceptions,?’
all the results proved for (finitary) weakly implicative logics hold for arbitrary (finitary)
logics.

Subsections 2.5 and 2.6 are dedicated to substructural logics. These logics can
be roughly defined as those logical systems such that, when presented by means of
Gentzen-style calculus, lack some of the so-called structural rules: exchange, weak-
ening, contraction (see e.g. [75, 78, 81]). As such, this area covers a wide variety of
systems independently developed since mid XXth century, including relevant logics [1],
linear logic [48], Lambek calculus [65], fuzzy logics presented in the previous chapter,
and other many-valued logics like monoidal logic [60]. In the last two decades, Al-
gebraic Logic has developed a uniform approach to substructural logics as the logics
of residuated lattices, i.e. propositional logics algebraizable in the sense of [7] whose
equivalent algebraic semantics is a class of residuated lattices?! (most results are col-
lected in the recent monograph [43], where the weakest considered logic is FL). The
notion of substructural logic we have proposed here extends this approach by consider-
ing the weaker base logic SL from [45] and allowing for well-behaved expansions and
fragments. The definitions in these subsections are original, though most of the results
(especially the algebraic variants of the proved rules) are folklore of the theory of resid-
uated structures. The axiomatic systems for prominent existing substructural logics SL,
FL, and FL, have been taken from [45] and [43]. Also the deduction theorems for FL

20The exceptions are: the first two claims in Proposition 2.2.11, the second claim of Proposition 2.3.13, and
Theorem 2.4.5.

2IThen, classical and intuitionistic logics, although enjoying the structural rules, are included in the family
of substructural logics as extreme cases.
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and its main axiomatic extensions were already known (see e.g. [43, 44]), but our proofs
of these theorems (using the notion of almost (MP)-based logic) and showing their re-
lation with proof by cases properties are novelties of the present chapter.

The final subsection of Section 2 studies the notions of generalized disjunction de-
fined using the proof by cases property. The different variants of generalized disjunc-
tions had already been considered in the framework of Abstract Algebraic Logic in sev-
eral works (see e.g. [22-24, 29, 39, 41, 84-86]). Our approach follows that of [24],
where its wide generality is achieved by allowing a parameterized set of formulae in-
stead of a single formula p V ¢, which gives rise to the notion of p-disjunction, in our
terminology. We give a more systematic account, introducing classes of logics based on
the properties of the disjunction they possess, including a new class of lattice-disjunctive
logics (logics where V is interpreted as the supremum of the order given by implication),
show their separations (with one open problem, see Conjecture 2.7.12). The proofs of
the Theorems 2.7.15, 2.7.20, and 2.7.23 are based on the proofs of corresponding the-
orems in [24, §2.5.1] (some of these results were known before, for detailed references
see [24]), however or formulation of these theorems differs substantially from those
in [24]. For a detailed exposition of the relation between the results in this subsection
and previous works on disjunction see the paper [20], where we generalize the results for
(p-)disjunctions in finitary logics (or semilinear logics in Subsection 3.2) presented here
to arbitrary logics (non-necessarily finitary or semilinear). Finally, Theorem 2.7.29,
where we show how to use (appropriate) disjunction to axiomatize positive universal
classes of reduced matrices, was inspired by the paper [42] where the author proved
(directly and without the notion of disjunction) a particular version of our result for the
substructural logic FL.??

Section 3

The notions and results of the first subsection do not have many direct predecessors:
the notion of weakly implicative semilinear logic was introduced by Cintula in [17],
under the name ‘weakly implicative fuzzy logic’. The present authors have general-
ized this class of logics to the context of weakly p-implicational (protoalgebraic) logics
in [21] (where all the results of this subsection with exception of Theorem 3.1.6, which
is new here, can be found). This paper introduced an important terminological change:
the term ‘fuzzy’ (overloaded by other meanings) from [17] was replaced by (a more
neutral) term ‘semilinear’. This term was introduced by Olson and Raftery in [73] in
the context of residuated lattices to describe the varieties whose subdirectly irreducible
members are linear (following the tradition from Universal Algebra of calling a class of
algebras ‘semiX’ whenever its subdirectly irreducible members have the property X).
The spiritual predecessors of this work are far more numerous: from the beginning of
Mathematical Fuzzy Logic it was clear that there are numerous logical systems deserv-
ing to be studied as fuzzy logics, thus already Hdjek in his seminal monograph [53]
considered not one, or even a few logics, but all axiomatic extensions of his Basic Fuzzy
Logic. For the description of the way from extensions of BL to semilinear logics see the
introduction of this chapter.

2Inspecting his proof, one can notice that its main ingredient can be seen as the demonstration that a
particular set is a generalized disjunction in FL.
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The second subsection studies the interplay between semilinearity and p-disjunct-
ions. The importance of disjunction was well-known to the community of mathematical
fuzzy logicians since the inception of fuzzy logics (viz. the axiom of prelinearity or
its crucial role in first-order fuzzy logics). Several known important results involving
disjunction (e.g. axiomatizations of important fuzzy logics) are obtained as corollaries
of general theorems proved here. The first abstract study of this interplay was carried
out in [86, Section 6] (where a less general version of Theorem 3.2.4 and its corollaries
was proved) and will be generalized to weakly p-implicational logics in a forthcoming
paper.

The final two subsections study refined completeness properties (w.r.t. distinguished
classes of algebras), which has always been the central topic in fuzzy logic literature
since the very beginning, taking in account the original motivation of fuzzy logics as
many-valued systems taking truth values from the real unit interval. At first (in Subsec-
tion 3.3) we have concentrated on semantics given by dense chains. The crucial density
rule originally appeared in [82] in a much more specific context, then was generalized to
a wide class of fuzzy logics in [68], and finally it has been studied in [12] in a very gen-
eral context of hypersequent calculi; however, the level of generality of this final study
is clearly incomparable with ours (we subsume the first two). The final subsection gen-
eralizes the results of [18] (for (A-)core fuzzy logics) to either algebraically implicative
logic or, more specifically, lattice-disjunctive logics.

Section 4

Our approach to predicate logics follows that of Rasiowa from [76], where she gen-
eralizes the Rasiowa-Sikorski-style intuitionistic first-order predicate logic [77] to the
class of logics we call Rasiowa-implicative logics. It starts from a propositional logic,
which enjoys an equivalent algebraic semantics, and an implication connective defining
an order relation on the algebras that allows to interpret the existential (resp. univer-
sal) quantification of a formula as the supremum (resp. infimum) of the values of its
instances. The main result is the completeness w.r.t. all algebras of truth values. We can
easily generalize this approach to weakly implicative logics, but in order to obtain com-
pleteness w.r.t. linearly ordered algebras for semilinear logics (as in the propositional
case) some additional axioms are necessary. Historically speaking the first such example
is Godel-Dummett first-order predicate logic axiomatized in [61] (relative to the logic
axiomatized in Rasiowa’s way) by adding the axiom (V3): (Vz)(p V x) — (V2)¢ V x
(for z not free in x).?* Using this axiom many other first-order logics complete w.r.t.
their linearly ordered algebras were axiomatized (see e.g. [15, 32, 53]). The next step
forward was [56], where the proof of completeness was not only generalized to arbi-
trary languages (previous proofs were restricted to countable languages) but performed
uniformly for all (A-)core fuzzy logics (identifying the crucial rdle of disjunction in
the process). Another noteworthy case is [19] where the first-order implicational frag-
ment of MTL was axiomatized, using (as was later observed) axiom (V3) written for the
generalized disjunction of MTL.

231n fact the standard Lukasiewicz first-order logic was axiomatized earlier in [59], but this is a peculiar
case for two reasons: first in this logic the semantics given by all algebras and by chains coincide, and second
the actually axiomatized logic in this paper is the first-order infinitary logic of the standard M'V-algebra.
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All subsections of this section, except for the last one, are dedicated to formalizing
these ideas. The last subsection studies the so-called X-preSkolem logics, where we
can prove a general form of Skolemization (already studied before in fuzzy logics, e.g.
in [3]) and completeness w.r.t. witnessed models (i.e. models where the truth value of
each quantified formula coincides with the truth-value of some of its instances). These
models were first considered in [55] in the context of Lukasiewicz logic (see also [11]
for a weaker notion useful in product logics). Our completeness theorem generalizes
the one proved in [56] for core fuzzy logics to all preSkolem logics (which include all
semilinear axiomatic expansions of the uninorm logic UL).

Other current trends in the research on first-order fuzzy logics that have not been
covered here include the study of particular first-order Godel logics (see e.g. [4]), the
development of a model theory for fuzzy logics (see [18, 26, 56]) and works on descrip-
tion fuzzy logics (see [47, 55]).
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