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Abstract. In a previous paper by Bou et al., the minimal modal logic
over a finite residuated lattice with a necessity operator O was charac-
terized under different semantics. In the general context of a residuated
lattice, the residual negation — is not necessarily involutive, and hence
a corresponding possibility operator cannot be introduced by duality. In
the first part of this paper we address the problem of extending such a
minimal modal logic with a suitable possibility operator ¢. In the sec-
ond part of the paper, we introduce suitable axiomatic extensions of the
resulting bimodal logic and define a logic to reason about fuzzy pref-
erences, generalising to the many-valued case a basic preference modal
logic considered by van Benthem et al.

Keywords: many-valued modal logic, necessity and possibility modal
operators, finite residuated lattice, reasoning about graded preferences

1 Introduction

Theoretical studies of fuzzy or many-valued modal logics have attracted an in-
creasing attention in the last years, both following general and foundational
approaches e.g. in [15,4, 9, 14], as well as focusing on particular families of fuzzy
logics, mainly those based on Gédel logic [7,6, 8,11, 10], Lukasiewicz logic [12, 3]
or more recently on Product logic [17].

In particular, in [4] the authors study in depth minimal modal logics with
a necessity operator O (and canonical truth-constants) over a finite residuated
lattice, considering different classes of many-valued Kripke frames and getting
complete axiomatizations with respect to them.

In the first part of this paper, Section 2, we address the problem of extending
those minimal modal logics with a possibility modal operator <. Note that in the
general context of a residuated lattice, if the residual negation — is not involutive,
then O and < are not dual in the usual sense (< is not definable as —=[J-).

In the second part, in Section 3 we define suitable axiomatic extensions of
the above fuzzy bi-modal logics, and then in Section 4 we define a logic to
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reason about fuzzy preferences, generalising to the many-valued case one of the
preference modal logics considered by van Benthem et al. in [1].

2 The minimal bimodal logic of a finite residuated lattice

We start from basic definitions in [4], with which we assume the reader certain fa-
miliarity. Through the following sections, we will be assuming A = (A, A, V, ®, —
,0,1) to denote a finite (bounded, integral, commutative) residuated lattice, and
we will consider its canonical expansion A€ by adding a new constant @ for every
element a¢ € A (canonical in the sense that the interpretation of @ in A° is a
itself.) The logic associated with A® will be denoted by A(A®), and its logical
consequence relation =ac is defined as follows: for all sets I' U {¢} C Fm of
formulas built in the usual way from a set of propositional variables V in the
language of residuated lattices (possibly including constants from {@: a € A}),

I'Eac ¢ < VheHom(Fm,A°), if h[[] C {1} then h(¢) =1, (1)

where Hom(Fm, A¢) denotes the set of evaluations of formulas on A€.

In order to introduce the minimum bimodal logic over A€, let us consider the
modal language MFm being the expansion of Fm with two modal operators O
and <. Kripke-style semantics for the bimodal logic is defined as follows.

Definition 1. An A-Kripke model is a triple MM = (W, R, e) where
— W is a set of worlds,
— R:W XxW — A, is an A-valued accessibility relation between worlds,
— e: W xV — A is the evaluation of the model, and it is uniquely extended to
formulas by letting e(w, @) = a for everya € A, e(w, pxtp) = e(w, p)*e(w, )
for any propositional connective x in the language,® and

e(w,0p) =\ {R(v,w) = e(w,9)}, e(w,0p) = \/ {R(v,w)&e(w,¢)}.
weW weW
We let BMa denote the class of all A-Kripke models.

Observe that the above values are always well-defined because the lattice is finite.

We say that, in a Kripke model 91, a formula ¢ follows from a set of premises
I, and write I IFoy ¢, whenever for any v € W such that e(v,v) = 1 for all
~ € I', it holds that e(v, ) = 1 too. Whenever we have a class of models C, we
will write I IF¢ ¢ meaning that ¢ follows from I” in all the models of the class.

As usual, in any deductive system used along this article (including the ones
defined in the above lines), we will omit writing () whenever the set of premises
is empty, and simply write F .

3 For the sake of clarity, we use the same symbol (e.g. ®,—) both as syntactic con-
nective in the language MFm and as the corresponding algebraic operation.

4 This logical consequence is usually referred to as the local modal logic arising from
a class of Kripke models, in contrast with the global one that considers truth in the
whole model. It is out of the scope of this work to introduce and study the global
modal logic over residuated lattices.
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2.1 Axiomatization

In this section we present a modal axiomatic system over a finite residuated lat-
tice A, as an extension of the axiomatic modal system presented in [4, Def. 4.6],
called A(Fr, A¢), and that will be shown to be complete with respect to IFgy,
defined above.

Before proceeding to the definition of the axiomatic system, observe that a
sort of symmetric version of the axiom (Ax,) in [4, Prop. 3.10] is valid in all
A-Kripke models. Namely, for every a € A,

IFepm, O(p — @) < (O = a).

This follows immediately from the fact that in any residuated lattice A, for

any X U {a} C A, it holds that A {z — a} = \ {&} — a whenever the
reX reX
corresponding inf. and sup. exist (which is our case since the algebra is finite).

It looks then natural to consider that formula as a member of the axiomatic
system, and as we prove below, this one is indeed the only formula referring to <
that we need to consider in order to get a complete axiomatic system for kg, -

Definition 2. Let BMa be the deductive system given by:
1. The aziomatic basis of A(Fr, A®), i.e.:

- an aziomatic basis for A(A®)

- modal axioms for O:
OI, (MD) (OpAOy) —O(pAY), (Ax.) O@— ¢) « (@— Oyp)

2. The axiom schemata
(OC,) O(p —a) « (v —a), for eacha € A
3. The rules of the basis for A(A€) and the Monotonicity rule:

(Mon)  from ¢ — ¢ derive Op — )

We will denote by Fgm, the corresponding notion of proof, and by Th(BMa)
the set of theorems of the logic BMa, i.e. Th(BMa) = {¢ € MFm : Fgu, ¢}.

In order to prove completeness of the previous logic with respect to the
relation IFpy, we will resort to the usual canonical model construction. However,
we need to define a canonical model different from the one used in [4, Lemma
4.8] in order to capture the behaviour of the & operator. Before doing so, let us
state a useful lemma that will allow to move from deductions in the modal logic
BMa to deductions in the underlying propositional logic A(A€).

Lemma 1. For any I'U{p} C MFm, I' bagm, ¢ iff TR(BMA) U T Faca) ¢.°

Proof. Right-to-left direction is immediate, since BMa expands A(A€). The
other direction is easily proved by induction on the length of the proof of ¢ from
I', observing that the rule (Mon), the only new inference rule added to A(A€)
in doing the modal expansion, only applies to theorems of the logic. a

5 We do not detail this issue here due to lack of space and interest, but for the interested
reader, it should be clear that the language from the right side of this equivalence
counts with an extended -countable- set of variables that capture the modal formulas.
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If I" /gm, 0, the previous result allows us to obtain a non-modal homomor-
phism h that evaluates to 1 the formulas in I" and all theorems of BM 4, and does
not do the same for ¢. This is the reason behind the definition of the canonical
model that follows.

Definition 3. The canonical Kripke model of BMa is the A-valued model
Mme = (We, R e®) where:
— We:={h € Hom(MFm, A): h(Th(BMa)) = {1}},
- Roow:=" A (v([¢) = w(@)) A (w(e) = v(C9)),
PYeEFm
— e“(v,p) = v(p), for any propositional variable p.

As usual, the key fact in using the previously defined model to prove com-
pleteness is that it enjoys the so-called truth lemma, ensuring that the behaviour
of e¢ coherently extends to all formulas.

Lemma 2 (Truth lemma). For any v € W€ and any modal formula ¢, it
holds that e“(v, p) = v(p).

The previous lemma can be proved by structural induction, the only non
trivial cases being the formulas beginning by a modality. One of the inequalities
(for both modalities) is easy to prove, as shown next.

Lemma 3. For any formula ¢ € Fm, and any v € W€, the following hold:
1. v(0p) 2 \4V {R(v, w) © w(p)},
weWe

2. v(0¢) < A {R(v,w) = w(p)}-

weWe
Proof. We prove the first inequality, the other can be proved analogously. Ap-
plying the definition of R¢(v,w) and the monotonicity of ® in any residuated
lattice, it is possible to prove the following inequality for any v,w € W¢:

Re(v,w) 0w(p) =\ (0(09) = w()) A (w() = v(O9)) © w(ep)

peFm
< (w(p) = v(Cp)) ©w(p) < v(Cp).

Since this holds for any world w, we have \/ {R°(v,w) 0 w(p)} <v(Cp). O
weWwe

As for the converse inequalities, it is worth to first prove a powerful technical
lemma (cf. [16, Lem. 6.12]) that generalizes and provides a more modular and
scalable proof of the truth lemma compared to that in [4, Lem. 4.8]

Lemma 4. Let v € W¢ and ¢ € Fm be such that for all w € W€ it holds that
Ré(v,w) < w(p). Then v(Oyp) = 1.

Proof. For the sake of a clearer notation, let o: Fm — F'm be given by

o() = () = P) A (P = v(OY)).
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In this way, we have that R°vw = A ., w(o(¢)). Now, observe that by defi-
nition, R°(v, w) < w(y) if and only if

for all a € A, if a < R°vw then a < w(y). (2)

By hypothesis, this holds for each w € W¢€. Unfolding all the definitions, this
means that for any w € Hom(Fm, A) such that w(Th(BMa)) = {1}, and for
any a € A, if a < w(o(vy)) for all ¢p € F'm then a < w(y). Clearly, we can now
formulate this fact in terms of the propositional consequence relation =4 :

Th(BMa)U{a — o(¥): ¢ € Fm} Eac @ — . (3)

Since the propositional logic is finitary, then for each a € A there is a finite set
of formulas X,,% such that (3) holds iff

Th(BMa)U{a— N\ o(¥)} Faca— o
YeEX,

Let ¥ = J,ca Y, which is clearly finite. Since Fac A o(¥) = A o(¥),
Yex YeEX,
we have for each a € A, Th(BMa)U{a — A o(¥)} Eac @ — ¢, from where
Ppex

Th(BMa) Fas /\ o(¥)) = ¢,

Yexr

by taking for each h € Hom(Fm, A) such that h(Th(BMa),) = 1, the constant
= h(A\,ex 0(¥)) in the deduction above.
We can now successively apply completeness of A(A) w.r.t =a, Lemma 1,
(Mon) rule and then Lemma 1 and non-modal completeness again to get

Th(BMa) Eac O( A o) = Ogp.

Pexr

To conclude the proof it suffices to check that v(O(Aycxo(¥)) = 1. By
axiom (MD), v(O(Ayex o(¥)) = v(Ayes Do(¥)), so we only need to check
v(do(v)) = 1 for each o € X. This is proved by the following chain of equalities:
v(0o(¥)) =o(O((0(0%) = ) A (¥ = v(O))))
=0(0(v(@¢) = ¥) A DO — v(OY)))
=v((v(Tv) — Op) A (O = v(OY)))

=(0(@) = v(0p)) A (v(Cp) = v(OYP)) = 1. 0O

We have now the two main pieces to provide a clear proof of the truth lemma.

5 Note that for a finite set of formulas ©, A 6 is a formula in the language too.
0o
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Proof of Lemma 2. Let us prove the converse inequalities of Lemma 3. Let
© = Oy for some 1. Since we already know that e(v,0v) > v(T), to prove the
equality is enough to prove that for all a € A, if a < e(v,0v) then a < v(0Y).
Thus, let a € A be such that

a < e(v,0yY) = inf{R°(v,w) — e(w, ) : w € W},

By the induction hypothesis, it is enough to prove that a < R¢(v,w) — w(v)
for all w € W. By residuation, R°(v,w) < a — w(v), and so,

Ré(v,w) <w(@— ) forall we We.

Lemma 4 implies that v(d(@ — v)) = 1. Then, by axiom (Ax,) we get that
a — v(Oy) =1, and so, a < v(OY).

In a very similar way we can prove the analogous result for ¢. Let ¢ = Ot
for some . To check that e(v,>v) > v(Oe) is enough to prove that for all
a € A, ifa>e(v,O) then a > v(Oy). Thus, let a € A be such that

a > e(v,01) = sup{R°(v,w) @ e(w, ) : w € W}

By induction, this is equivalent to a > R°(v,w) ® w() for all w € W. By
residuation, R°(v, w) < w(y) — a, and so,

R(v,w) < w(y — @) for all w e W€

From Lemma 4, we know that v(J(¢) — @)) = 1. Then, by axiom (0C,) we get
that v(OY) — a =1, and so, a > v(<OY). O

Completeness of BM 4 is now a corollary of the Truth Lemma and Lemma 1.

Theorem 1 (Completeness of BMa). For any I'U{p} C MFm, I Fgm, ¢
fof“‘]ﬂ;MA @Y.

Proof. Soundness was already justified before Definition 2. Concerning complete-
ness, let I' i/gm, . From Lemma 1, there is a homomorphism A from MFm
into A evaluating to 1 all theorems of BMs and all elements in I', and such
that h(p) < 1. Then, h is by definition a world of the canonical model of BM4.
Using the truth lemma, we know that e®(h,y) = h(y) = 1 for all v € I', while
e“(h, ) = h(p) < 1, and so, the canonical model serves to prove that I" [Fpp, .

3 Some useful axiomatic extensions

It is reasonable to ask ourselves whether some interesting frame and model con-
ditions can be characterized by means of adding some axiom schemata to the
system BMa. While a systematic study of these properties is far from being
developed in the context of modal fuzzy logics, we can still obtain some results
for particularly interesting conditions. Motivated by the application to prefer-
ence modelling in Section 4, we will study the classes of transitive, reflexive and
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symmetric models, and also the class of models whose accessibility relation is
erisp (i.e., evaluated only on {0, 1}).

Even though most of the literature addresses fuzzy relations as those evalu-
ated over the interval [0, 1], there is no motivation for that restriction in general,
and most of the conventions, notions and results known for fuzzy relations are
preserved in the more general context of relations evaluated over bounded inte-
gral residuated lattices (i.e., those where there exists a top and bottom elements
that coincide with the usual constants 0 and 1). From this reflection, the defini-
tion of reflexive, ®-transitive and symmetric A-Kripke models is immediate: an
A-Kripke model 91 is:

R: Reflerive when R(v,v) =1 for all v € W.
S: Symmetric when R(v,w) = R(w,v) for any v,u € W.
T: ®-Transitive when R(v,w) ® R(w,u) < R(v,u) for any v,u,w € W.

If P denotes one or more of the previous conditions, we will denote by (P)BM ,
the class of A-Kripke models satisfying the conditions from P. It is not hard
to see that the well-known modal axioms that characterize the previous frame
conditions in classical modal logic also characterize their corresponding many-
valued counterpart defined above.

Proposition 1. Let X be one or more of the following pairs of axiom schematas:

—(TO): Op — ¢ and (TO): ¢ = O (reflexivity)
— (BO): O0p — ¢ and (BO): ¢ — OO (symmetry)
— (40): Op — Oy and (40): OOp — Op  (transitivity)

Then let (X)BMa be the aziomatic extension of BMa with the azioms from X,
and let P be the model conditions corresponding to the axioms in X. Then, for

any I'U{p} € MFm, I' mx)gmp @ iff I’ I-e)BMm, ©-

Proof. Soundness is easy to check in all three cases. Concerning completeness,
it is just necessary to take into account that the canonical model for (X)BMa
is defined in the same way as the one for BMa but taking into account the new
equations arising from the additional axioms in the definition of the worlds of
the model (that now need to validate them). Under this consideration, reflexivity
follows immediately from the definition of R°(v,v). Indeed,

Re(w,v) = N\ (0(@y) = v(®)) A (0(1) = v(Op),

PYeEFm

and due to the reflexivity axioms (70J) and (7T'¢) it follows that R°(v,v) = 1.

As for symmetry, assume towards a contradiction that for some v, w € W€,
R¢(v,w) € R°(w,v). By definition, this means that there is some formula ¢ such
that R(v,w) € (w(dp) = v(p)) A (v(p) = w(Ow)), and thus, at least one of
the following situations must hold:

(1) R(v,w) £ w(lp) = v(e),
(2) Re(v,w) £ v(p) = w(Ow).



8 Esteva, Godo, Vidal

It is easy to show that any of the previous conditions leads to a contradiction
with the symmetry axioms. For if (1) were to hold, necessarily we would also
have R¢(v,w) £ w(Ogp) — v(GOp) due to axiom (B<), but this contradicts the
definition of R¢(v,w) (since R°(v,w) < w(y) — v(Cyp) for all 7). The second
possible situation (2) is handled in the same way by resorting to axiom (BO).

The case of ®-transitivity is a bit more cumbersome but equally simple.
Assume towards a contradiction that there are some v,w,u € W€ for which
R¢(v,w) ® R°(w,u) £ R°(v,u). Then, by definition of R°(w,u), there is some
formula ¢ such that R°(v,w) ® R*(w,u) £ (v(Op) = u(p)) A (u(p) = v(Op).
As above, there are two possible cases:

(1) R(v,w) © R(w, u) £ (v(0p) — u(p)) or
(27) Re(v,w) © R (w, u) £ (u(p) = v(Cp).

We can again show that none of the previous conditions can hold. We will show
the first one, the other is done analogously (using the dual (4<¢) axiom). Ob-
serve that by Axiom (40), together with the fact that — is decreasing in the
first component, (1’) implies that R°(v,w) ® R (w,u) £ (v(O0Op) — u(p)) =
A.cwe(R(v,2) = z(0p)) = u(p). In particular (resorting again to the anti-
monotonicity of —), letting z = w, we get R°(v,w) ©® R*(w,u) £ (R°(v,w) —
w(dp)) — u(p) By the residuation law it follows R¢(v,w) ® (R°(v,w) —
w(dy)) € R(w,u) — u(p) and thus, we get the contradictory statement
w(Be) £ R (w, u) = u(p). O

Interestingly enough, the previous completeness results allow us to charac-
terize the class of models with fuzzy ®-preorders (i.e. reflexive and ®-transitive
models) with axioms (TO, T<) and (BO, B<O). However, if we further add axioms
(40, 4¢) we do not get an axiomatization of the class of models with a universal
relation (i.e., for which R(v,w) = 1 for all v, w), in contrast with what happens
in the classical case.

This lack of expressibility can be solved, when the underlying truth-value
algebra A enjoys certain nice properties, by combining the previous axiomatic
extensions with a system complete with respect to the models whose accessibility
relation is crisp, i.e. evaluated only over {0,1}, Indeed, it is possible to provide
such an axiomatic system whenever A is subdirectly irreducible (SI)7, with the
same approach that the one followed in [4]. For the sake of simplicity, we will
focus in this paper in the particular case of A being a linearly ordered residuated
lattice, which is always a SI residuated lattice. The key idea is the fact that any
(finite) ST residuated lattice A, and so, any linearly ordered one, has a unique
coatom k, i.e. a unique element k < 1 such that, for any a € A, if a < 1 then
a < k. Since it coincides almost exactly with the proof of [4, Th. 4.22], we do
not detail here the proof of the following result.

Theorem 2. Let A be a finite linearly ordered residuated lattice, and Ca be the
class of crisp A-Kripke models. Define the logic CBMa as the extension of BMa
with the axiom schemata

" For the interested reader, see eg. [5] for an insight on the importance of this kind of
algebras.
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— (Ok) Ok V) — (kvOy),

and let Fcam, denote the corresponding notion of proof. Then, for any I'U{p} C
MF’ITL, r l_CBMA "2 ZﬁF H_(CA @Y.

As a direct corollary we get the following result.

Corollary 1. Let S5BMa be the axiomatic extension of BMa with the axioms
(TO), (TC), (BO), (B<), (40), (4<) and (Ok), and consider the class Ua of uni-
versal A-Kripke models. Then, if A is a finite linearly ordered residuated lattice,
for any I'U{¢} C MFm, we have I Fsspmy @ iff I IFu, o

4 Modelling fuzzy preferences

In this section, as a matter of illustrating application, we show how the logical
machinery developed in the previous sections can be used to devise a logical
framework to represent and reason with fuzzy preferences.

We take as starting point van Benthem et al.’s work [1] where, among other
logics, the authors consider a basic (classical) modal logic of weak and strict
preference interpreted in ordered models of possible worlds, provide a complete
axiomatization, and show how global preferences between propositions can be
defined by lifting the world ordering to an ordering between sets of worlds.
Actually they consider different possibilities to define such global preferences
based on (crisp) preference models, i.e. structures M = (W, <, ¢e), where < is
preorder on the set of worlds and e is a valuation. The language contains two
modal operators, a global S5 modality A and a S4 modality O, where Ay reads
that ¢ is true in all the worlds, while Uy reads that ¢ is true in all the worlds
that are more preferred (in the sense of <) than the current world. Then, one
possibility to encode that “i is weakly preferred to ¢” is by the formula

¢ <ya ¥ = Alp = OY),

to be interpreted as expressing that for any world where ¢ is true, there is a
more preferred world where v holds.

In what follows we show how the above framework can be faithfully gener-
alised to deal with both fuzzy propositions and preferences, taking values in a
linearly ordered finite residuated lattice A. The reason to restrict ourselves to
linearly ordered algebras A is due to the need of using a global modal operator,
for which we only have an axiomatization in such a case, see previous section.

Thus, for modelling preferences we consider a language PFm expanding
MFm with two additional unary operators A and E, which will the role of
global operators. The intended semantics is given by the class of reflexive and
O-transitive A-Kripke models, that we will call A-preference models.

Definition 4. An A-preference model B is a triple B = (W, R, e) such that

— W is a set of worlds,
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— R: W xW — A is an A-valued fuzzy pre-order, i.e. a reflexive and ©-
transitive relation between worlds,

—e: W xV — A is a A-evaluation of variables that is uniquely extended to
formulas of PFm as in Def. 1 for the propositional connectives and operators
O and <, and for the new operators is extended as follows:

e(,Ap) = N {e(w,9)}  e(,Ep) = \/ {e(w,9)}.

weWw weW

We will denote by P4 the class of A-preference models, and use Ip, with the
analogous meaning it had for A-valued Kripke models in the previous sections.

After the work developed in the previous sections, it is very natural the way
to provide an axiomatic system complete with respect to IFp, .

Theorem 3 (Completeness). Let Pa be the deductive system given by:

— The azioms and rules of (T4)BMa for the O and < operators
— The axioms and rules of SSBMa for the A, E operators
— The inclusion aziom schematas: Ap — Oy, O — Ep

Denoting by p, its corresponding notion of proof, then for any I'U{¢} C PF'm,
we have I' Fp, @ iff I' lFp, .

Proof. Soundness is a simple exercise. As for completeness, analogously to the
approach to prove completeness for the minimal bimodal logic BM s in Section
2, one can build a corresponding canonical model ¢ = (W€, R$, RS, e¢), with
We = {h € Hom(PFm,A): h(Th(Pa)) = 1} and this time with two accessi-
bility relations RS and RS, one for the pair of operators ({0, <) and another for
the operators (A, E). By Proposition 1, it follows that RS is a fuzzy ®-preorder
(it is reflexive and G-transitive), while RS is a crisp equivalence relation. The
corresponding truth-lemma (analogous to Lemma 2) shows that if I" I/p, © there
is world vy € W€ for which e(vg,7y) =1 for all v € I" and e(vg, ¢) < 1. Note that
this does not prove yet the claim of the theorem, since R$ is not guaranteed to
be the universal binary relation on W¢. So a bit more elaboration is needed.

Due to the inclusion axioms, it is immediate to see that R$(v,w) < R§(v,w)
for any pair of worlds, so in particular

if R{(v,w) > 0 then RS(v,w) = 1. (4)

At this point, we can consider the submodel B = generated by vy with respect
to Rg, i.e., the model whose universe is W¢(vg) = {w € W¢: Ra(vo,w) = 1},
whose relations are the restrictions of RS and R§ to W¢(vy), and whose evalua-
tion of variables is the same. We only need to check that the truth-evaluations
in the submodel (in the worlds from W¢(vg)) and in the original model are the
same. Note that RS on W¢(vp) is total. This can be proved by induction on the
complexity of the formula, being immediate for the cases concerning non-modal
connectives. As for the modal operators, first observe that for any u,w € W,
if u € We(vg) and w ¢ W¢(wg) it follows that R§(u,w) = 0 (since RS is an
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equivalence relation), and hence RS (u, w) = 0 as well. Then, for any u € W¢(vg):

ep(w,0p) = A {Ri(u,w) = e(w,9)} = A {Ri(u,w) = e(w, 9)},
weWe(vg) weWe

es(uAp) = N\ ef(w,p) = A e“(w, ).
weWe(vg) weWe: RS (u,w)=1

A similar argument can be done for & and E. This concludes the proof, since
the resulting model B is an A-preference model in which there is a world vg
satisfying I" and not ¢. ad

From the above, in the frame of the Pa logic one can represent the (weak)
preference of a proposition ¢ over another ¢ by the expression A(p — O).
This preference between propositions actually enjoys the properties of a fuzzy
®-preorder, which justifies in a sense the meaningfulness of this choice. Indeed,

— Reflexivity: A(p — ) is valid in Pa, since ¢ — Oy, ie. axiom (4<), is
valid in Pa.
— O-Transitivity: one can show that

Alp = OY) © A(Y) = Ox) — A(p = Ox) (5)

is also a valid formula in P5. Namely, this follows by first showing that the
following formula expressing a form of monotonicity for & holds true in Pa:

Alp = 1) = A(Cp — OP).

This leads to A(yY — Ox) = A(CY — OOx), but since OOy — Ox holds
true, we get A(p — O9) @ A(Y — Ox) = A(p — OP) © A(O) — O), and
by axiom K for A, it follows the validity of

Alp = OP) © A(CY — Ox) — Alp = Ox),

that directly allows us to show the validity of (5).

5 Conclusions

In this paper we have been concerned with completing the notion of the minimal
modal logic over a finite residuated lattice (and with truth-constants) from [4] to
get a full-fledged modal logic with both a necessity and a possibility operators.
The gain in expressibility has been used, as a matter of example, to define a
many-valued counterpart of a modal logic studied in [1] to reason about prefer-
ences between propositions in such a many-valued setting. As for future work,
there are several interesting open research issues that are left open, among them:

— axiomatization of modal expansions of logics arising from varieties generated
by a finite residuated lattice, probably without resorting to canonical truth-
constants;
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— better understanding of the expressibility of general frame/model conditions

in residuated lattice-based modal logics;

— deepening on the axiomatization of the logic arising from crisp Kripke models

over non SI residuated lattices;

— general study of a larger set of preference relations definable in the many-

valued context introduced in this work, along the line of [1, 13].
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