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Abstract. The aim of this paper is to analyze how the generalizations
built by a CBR method can be used as local approximations of a concept.
From this point of view, these local approximations can take a role similar
to the global approximations built by eager learning methods. Thus,
we propose that local approximations can be interpreted either as: 1) a
symbolic similitude among a set of cases, 2) a partial domain model, or
3) an explanation of the system classification. We illustrate these usages
by solving the Predictive Toxicology task.

1 Introduction

One of the main differences between eager and lazy methods used for concept
learning is that the former generalizes a set of examples and builds a global ap-
proximation of a concept. Then, this global approximation is used for classifying
unseen examples. Instead, lazy learning methods do not explicitly generalize the
examples but they always use the complete set of examples. Thus, an unseen
problem is classified according to its similitude to a subset of known examples.
In this sense, lazy learning methods can be seen as building local approximations
of concept [?] since the similar examples define an area around the new example
which can be taken as a general description of that area. However sometimes the
general knowledge, in the sense of global approximations of concepts, could also
be useful inside lazy learning methods. PROTOS [?], one of the early Case-based
Reasoning (CBR) systems, takes the idea of generalization commonly used on
inductive learning methods to define categories of cases and also defines exem-
plars representing each category. Then, a new case is classified into a category
if a match can be found between an exemplar and the new case. Notice that
the exemplars play the same role as general descriptions of a class induced by
some inductive learning method. Bergmann et al [?] proposed the idea of gener-
alized cases, i.e. a case does not represent a single point of the problem-solution
space but a subspace of it. The use of generalized cases can be seen as general
descriptions of parts of the problem space.

In this paper we are interested in analyzing how generalizations can be used
inside CBR. In particular, from both the literature and our experience we iden-
tified some usages that generalization can have in the context of CBR. Thus, a



generalization can be taken as a representative of a subset of cases as in PRO-
TOS or in the work of Bergmann et al. [?], but also it could be interpreted as
a symbolic similitude of a subset of cases as we proposed in [?]. In addition, we
also propose the hypothesis that a set of local approximations can be seen as a
partial model of a domain. The idea is that a lazy method can produce a gener-
alization that explains the classification of a new problem, in a sense similar to
the explanations produced by explanation-based learning methods [?]. A set of
such explanations can be seen as a partial model of the domain since that model
is able to classify only a subset of the available cases.

The structure of this paper is the following. Firstly we briefly introduce LID
the method that we used in our experiments. LID produces a generalization that
we call similitude term and that serves as the basis for the analysis of general-
izations inside CBR. In particular, in section ?? we describe how generalizations
can be interpreted as a symbolic similitude among a subset of cases. Then, in
section ?? we explain how generalizations produced by a lazy method can be
used to build a lazy model of the domain. In section ?? we describe how lazy gen-
eralizations can be interpreted as the explanation of the classification proposed
by a CBR method. Finally, in section ?? we describe an application domain
where we applied all the usages of generalizations we described in the previous
sections.

2 Lazy Induction of Descriptions

In this section we briefly describe a lazy learning method called Lazy Induction
of Descriptions (LID) we introduced in [?]. LID determines which are the more
relevant features of a problem p and searches in the case base for cases sharing
these relevant features. The problem p is classified when LID finds a set of relevant
features shared by a subset of cases all belonging to the same solution class Ci.
Then LID classifies the problem as belonging to Ci (Fig. ??). We call similitude
term the description formed by these relevant features and discriminatory set
the set of cases satisfying the similitude term. In fact, a similitude term is a
generalization of both p and the cases in the discriminatory set.

The similitude term can be interpreted in several ways. Firstly, the similitude
term can be seen as a partial discriminant description of Ci since all the cases
satisfying the similitude term belong to Ci (according to one of the stopping
conditions of LID). Therefore, the similitude term can be used as a generalization
of knowledge in the sense of either PROTOS or inductive learning methods. On
the other hand, because the similitude term contains the important features used
to classify a problem, it can be interpreted as a justification or explanation of
why the problem has been classified in Ci. Finally inside the context of multi-
agent systems, where agents collaborate for solving problems, similitude terms
could be taken as the basis for both exchanging knowledge and negotiation. In
next sections the different usages of similitude terms is explained.
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Fig. 1. From a description D that is satisfied by all the cases of the case base, LID
builds successive specializations of D, until finding a similitude term (D2 in this Fig.)
that only is satisfied by cases of one class.

3 Generalizations as Symbolic Similitude

Similarity among cases is one of the key issues of lazy methods in general and
of CBR in particular. The usual approach to assess this similarity is by defining
similarity measures. Since features defining domain objects can have different
relevance concerning the classification task, some of these measures allow us to
to weigh the features differently. Emde and Wettscherek [?] analyzed how the
similarity measure influences the result of Instance-based Learning algorithm [?].

Eager learning methods induce discriminant descriptions of classes, i.e. they
build descriptions with features that are only satisfied by examples belonging to
one of the classes. For instance, an inductive learning method such as ID3 [?]
produces a decision tree where each path from the root to a leaf gives the pairs
attribute-value that are important to classify an example as belonging to a class
Ci. Notice that, in fact, a path is a general and discriminant description di of Ci

that can be interpreted as a symbolic similitude among the cases in Ci. In other
words, di contains the features shared by a set of examples belonging to Ci.

What is the role of the similitude term produced by LID? On one hand, LID
classifies a new problem p as belonging to a class Ci because it is similar to a
subset of cases in Ci that share some features that have been considered as the
most important for the classification. Therefore, in this sense the similitude term
plays the role of symbolic similitude as the paths of a decision tree. On the other
hand, because LID is a lazy method, that similitude term shows the similitude
of the particular problem p to the subset of cases belonging to Ci that satisfy
the similitude term.

4 Lazy Generalizations for building Lazy Domain Models

Lazy learning methods classify a new problem based on the similarity among
that problem and a subset of known cases. Commonly, once the system proposes
the solution, all the generalizations used to achieve the solution are rejected.



The justification of this is that any generalization is constructed based on the
new problem. Our point is that, although these generalizations define a local
approximation to the concept defined by the new problem, they can be useful
for solving other problems inside such area. Therefore, as well as a CBR system
is solving new problems, it can store all the local approximations supporting the
classification of these problems. The set of such approximations can be seen as
a partial model of the domain. The partiality of that domain comes from the
fact that each local approximation is build from a subset of examples instead of
being a model including all the known examples as in eager learning methods.

This lazy way to build a domain model can be useful in domains such as
Predictive Toxicology [?] or some medical problems, where experts are interested
in finding models about the domain. The usual tool in such domains is an eager
learning method inducing general domain knowledge. The main problem of these
approaches is that sometimes the models have to be induced from a set of cases
with high variability and the result is a set of rules that are too general to be
useful for classification. An example of a lazy construction of a domain model
is the Lazy Decision Trees (LDT) proposed by [?]. Differently from pure eager
techniques, LDT build a decision tree in a lazy way, i.e. each time that a new
problem has to be classified, the system reuses, if possible, the existing tree.
Otherwise, a new branch classifying the new problem is added to the tree. Notice
that, in fact, the decision tree represents a general model of a domain and LDT
builds it in a lazy way. The main difference between inductive learning methods
and LDT is that the former generalize from all the examples of a class whereas
the latter takes into account only the characteristics of the problem at hand.

A similar idea is behind the method C-LID [?]. C-LID is implemented on top
of LID by storing the similitude terms provided by LID and using them as domain
knowledge useful for solving new problems. C-LID uses two policies: the caching
policy and the reuse policy. The caching policy determines which similitude terms
(patterns) are to be retained. The reuse policy determines when and how the
cached patterns are used to solve new problems. The caching policy of C-LID
states that a similitude term D is stored when all cases covered by a pattern
belong to one class only. The reuse policy of C-LID states that patterns will be
used for solving a problem p only when LID is unable to univocally classify p.

The assumption of C-LID is that the similitude term is a partial description
of the solution class in the same sense as in inductive learning methods. Thus
the set of patterns stored by C-LID can be seen (an used) as a domain model,
even if this model is partial because it does not cover all the available examples.

5 Generalizations and Explanations

Explaining the outcome of a CBR system has been an issue of growing interest
in recent years. In 2004 was the first workshop on explanations in the framework
of the EWCBR held in Madrid [?]. The focus of this workshop was to analyze
how CBR applications from very different domain explain their result to the
user. Then, in 2005 Roth-Berghofer and his colleagues organized an international



workshop in the framework of the AAAI conference [?] with the same focus: to
analyze different forms to explain the results. In the latter workshop the scope
was not only CBR but authors participating in it coming from very different
fields.

Focusing on CBR, in particular in recommender systems, the most common
form of explanation is to show the user the set of cases that the system has
assessed as the most similar to the new case at hand. Nevertheless some authors
agree that in some situations this may not be a good explanation. For instance,
McSherry [?] argues that the most similar case (in addition to the features that
have been taken as relevant for selecting that case) also has features that could
act as arguments against that case. For this reason, McSherry proposes that
the explanation of a CBR system has to explicitly distinguish between the case
features in favor of an outcome and the case features against it. In this way,
the user could decide about the final solution of the problem. A related idea,
proposed in [?], is to use the differences among cases to support the user in
understanding why some cases do not satisfy some requirements.

Explanations had received attention from the early rule-based systems, that
explained the result by showing the user the chain of rules that produce the
solution. Inductive learning methods can also explain their results by showing
the general descriptions satisfied by the new problem. The explanation of a
decision tree outcome could be formed by showing the conditions satisfied in the
path from the root to a leaf used to classify a new problem. Explanation-based
learning (EBL) [?] is a family of methods that build explanations by generalizing
examples. In short, EBL solves a problem and then analyzes the problem solving
trace in order to generalize it. The generalized trace is an explanation that, in
fact, is used as a new domain rule for solving new problems. This explanation is
represented using the same formalism as the problems, therefore it is perfectly
understandable and usable by the system. In other words, the generalization of
the process followed for solving a problem has been taken as explanation of the
result and can be also used for solving future problems. Conceptually similar is
the use that [?] makes of the similitude terms given by LID. The similitude term
can be seen as a justification of the classification given by LID since it contains
all the aspects considered as relevant to classify an example.

An explanation scheme for CBR based on the concept of least general gen-
eralization was introduced in [?]. The relation more general than (≥g) forms a
lattice over a generalization language G. Using the relation ≥g we can define
the least general generalization or anti-unification of a collection of descriptions
(either generalizations or instances) as follows:

– AU(d1, ..., dk) = g such that (g ≥g d1) ∧ ... ∧ (g ≥g dk) and not exists (g′ ≥g

d1) ∧ ... ∧ (g′ ≥g dk) such that g >g g′

In other words the anti-unification g of a set of descriptions is the most
specific generalization of these descriptions in the sense that there is no other
generalization g′ of all these descriptions that is more specific than g. The anti-
unification is a description composed of all the properties shared by the descrip-



tions. Therefore, the anti-unification can be seen as a symbolic description of
the similarity among these descriptions.

Thus, descriptions resulting from the anti-unification of a collection of cases
can be used to provide explanation of the classification of a new problem in
CBR systems. Let us explain in more detail the explanation scheme based on
the anti-unification concept we introduced in [?].

Let C be the set of cases that have been considered as the most similar to a
problem p. For the sake of simplicity we assume that there are only two solution
classes: C1 ⊆ C and C2 ⊆ C (C = C1∪C2). The explanation scheme is composed
of three descriptions:

– AU∗: the anti-unification of p with all the cases in C. This description shows
what aspects of the problem are shared by all the compounds in C, i.e. cases
in C are similar to p because they have in common what is described in AU∗.

– AU1: the anti-unification of p with the cases in C1. This description shows
what has c in common with the cases in C1.

– AU2: the anti-unification of p with the cases in C2. This description shows
what has p in common with the cases in C2.

Thus the explanation of why a case p is in a class Ci is given by what p
shares with the retrieved cases in that class. In other words, the anti-unification
AU(c1...ck, p) is an explanation of why the cases in C are similar to p, since
it is a description of all that is shared among the retrieved cases and the new
problem. Section ?? shows an example of ow this explanation scheme is used on
the Predictive Toxicology task.

In the next section we explain in detail an application on Predictive Toxi-
cology, where all the usages of generalizations explained in the previous sections
have been applied.

6 A case study: Predictive Toxicology

In this section we explain the approach we introduced to solve the predictive
toxicology task, i.e. to assess the carcinogenic activity of chemical compounds.
This is a complex problem that most approaches try to solve using machine
learning methods. The goal of these approaches is to build a general model of
carcinogenesis from both domain knowledge and examples of carcinogen and non-
carcinogen chemical compounds. Because these general models give not enough
predictivity, we take a completely different vision of the problem. Our idea is
that the low predictivity of the induced models is due to the high variability
of the chemical compounds that produces overgeneralizations. Thus, we decided
to take a lazy approach and to consider that the goal is to classify a chemical
compound as carcinogen or non-carcinogen. Therefore all the efforts have to
focus on the features allowing the classification of the chemical compound at
hand. In other words, we do not try to build a general model of carcinogenesis
as ML techniques do but we only try to classify a particular chemical compound.



Nevertheless, we benefit from the classification of that compound to build some
patterns of carcinogenesis.

In the next sections we explain how we solved the problem. First we describe
the predictive toxicology problem and a new representation of chemical com-
pounds using feature terms. Then we describe how C-LID can be used as a lazy
problem solving method but also as a form to build some domain knowledge.
Finally, we detail how the system can explain the results to a chemist by means
of the explanation scheme introduced in section ??.

6.1 The Toxicology domain

Every year thousands of new chemicals are introduced in the market for their
use in products such as drugs, foods, pesticides, cosmetics, etc. Although these
new chemicals are widely analyzed before commercialization, the effects of many
of them on human health are not totally known. In 1973 the European Commis-
sion started a long term program consisting of the design and development of
toxicology and ecotoxicology chemical databases. The main idea of this program
was to establish lists of chemicals and methods for testing their risks on people
and the environment. Similarly, in 1978 the American Department of Health
and Human Services established the National Toxicology Program (NTP) with
the aim of coordinating toxicological testing programs and developing standard
methods to detect potentially carcinogenic compounds (see more information
in www.ntp-server.niehs.nih.gov). When a chemical compound is suspected to be
toxic, it is included in the NTP list in order to perform standardized experiments
to determine its toxicity degree.

The use of computational methods applied to the toxicology field could con-
tribute to reduce the cost of experimental procedures. In particular, artificial
intelligence techniques such as knowledge discovery and machine learning (ML)
can be used for building models of compound toxicity (see [?] for a survey).

6.2 Representation of chemical compounds

Predictive toxicology is a complex task for ML techniques. There is no ML tech-
nique providing excellent results [?], a likely explanation is that the current
representation of chemical compounds is not adequate. The usual representa-
tion of chemical compounds is using structure-activity relationship (SAR) de-
scriptors coming from commercial tools from drug design such as CODESSA
[?], TSAR (Oxford molecular products, www.accelrys.com/chem/), DRAGON
(www.disat.inimib.it/chm/Dragon.htm). By means of these descriptors a natural
way to represent a chemical compound is as a set of attribute value pairs (propo-
sitional representation). A challenge on Predictive Toxicology held in 2001 [?]
was focused on ML techniques and most contributions proposed a relational rep-
resentation based on SAR descriptors and used inductive techniques for solving
the classification task. Moreover the relational representation and the ILP tech-
niques also allow the representation and use of chemical background knowledge.
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Fig. 2. Partial view of the chemical ontology

Other approaches to represent chemical compounds have been proposed.
For instance [?,?,?] represent the compounds as labeled graphs and this al-
lows the use of graph search algorithms for detecting frequent substructures of
the molecules in the same class. Particularly interesting are SUBDUE [?] and
SMILES [?] that follow this approach. A completely different approach was in-
troduced in [?] where the compounds are organized according to their active
centers (chemically identified with weak bonds).

The representation of chemical compounds we propose is based on the chemi-
cal terminology, i.e the IUPAC (International Union of Pure and Applied Chem-
istry) nomenclature (www.chem.qmul.ac.uk/iupac/). Also we take into account
the experience of previous research (specially the works in [?,?,?]) since we rep-
resent a chemical compound as a structure with substructures. Our point is that
there is no need to describe in detail the properties of individual atom proper-
ties in a molecule (like some relational representations based on SAR do) when
the domain ontology has a characterization for the type of that molecule. For
instance, the benzene is an aromatic ring composed by six carbon atoms with
some well-known properties. While SAR models would represent a given com-
pound as having six carbon atoms related together (forming an aromatic ring),
in our approach we simply state that the compound is a benzene (abstracting
away the details and properties of individual atoms).

Figure ?? shows a partial view of the chemical ontology we used for repre-
senting the compounds in the Toxicology data set. This ontology is based on
the chemical nomenclature which, in turn, is a systematic way of describing the
molecular structure of chemical compounds. In fact, the name of a molecule using
the standard nomenclature, provides chemists with all the information needed
to graphically represent its structure. According to the chemical nomenclature
rules, the name of a compound is usually formed in the following way: radicals’
names + main group. Commonly, the main group is the part of the molecule
that is either the largest or that is located in a central position; however, there is
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Fig. 3. Representation of the 2-amino-4-nitrophenol, with feature terms.

no general rule to establish them. Radicals are groups of atoms usually smaller
than the main group. A main group can have several radicals and a radical can,
in turn, have a new set of radicals. Any group of atoms could be a main group
or a radical depending on their position or relevance on the molecule, i.e. the
benzene may be the main group in one compound and a radical in some other
compounds.

Figure ?? shows the representation of the chemical compound, 2-amino-4-
nitrophenol, using feature terms [?]. The 2-amino-4-nitrophenol has a benzene
as its main group and a set of three radicals: an alcohol in position one; an amine
in position two; and a nitro-deriv in position four. Notice that this information
directly comes from the chemical name of the compound following the nomen-
clature rules. This kind of description has the advantage of being very close to
the representation that an expert has of a molecule from the chemical name.

6.3 Assessing carcinogenic activity to chemical compounds

Inductive learning techniques applied to the Predictive Toxicology try to extract
general rules describing the cases in each class. These kinds of techniques have
some difficulties in dealing with domains, like toxicology, where entities are sub-
ject to high variability. The goal of predictive toxicology is to develop models



able to predict whether or not a chemical compound is carcinogen. The con-
struction of these models using inductive learning methods takes into account
the toxicity observed in some molecules to extract theories about the carcino-
genecity on families of molecules. Early systems focused on predictive toxicology
were DEREK [?] and CASE [?]. PROGOL [?] was the first ILP program used
to induce SAR models. PROGOL’s results were very encouraging since the final
rules were more understandable than those obtained using the other methods.

Lazy learning techniques, on the other hand, are based on the retrieval of a set
of solved problems similar to a specific problem. Several authors use the concept
of similarity between chemical compounds: HazardExpert [?] is an expert system
that evaluates the similarity of two molecules based on the number of common
substructures; Sello [?] also uses the concept of similarity but the representation
of the compounds is based on the energy of the molecules.

We conducted a series of experiments focused on the use of lazy learning
techniques for classifying chemical compounds. In [?] we report the results of
using the k-nearest neighbor (k-NN ) algorithm with Shaud as similarity measure.
Results of these experiments show that our approach is comparable to results
produced by inductive methods in terms of both accuracy and ROC analysis. We
want to remark that our approach only handles information about the molecular
structure of the chemical compounds whereas the other approaches use more
information (SAR descriptors).

Clearly, in Predictive Toxicology the classification of a particular chemical
compound its important, nevertheless, experts are also interested in finding a
general model of carcinogenesis. In this sense, we think the use of C-LID can
satisfy these expert’s interests. On one hand it can classify a chemical com-
pound and also justify this classification; on the other hand, it can produce
general knowledge about carcinogenesis thanks to the similitude term. Thus, we
conducted some experiments with a main goal: to build a (partial) model of car-
cinogenesis using C-LID. These experiments are composed of two steps: 1) using
LID with the leave-one-out in order to generate similitude terms for classifying
the cases; and 2) select a subset of these similitude terms to build a partial car-
cinogenesis model. We consider that the model is partial because given a class,
we can only assure that the similitude term generated by LID is satisfied by a
subset of compounds of that class. The idea behind these experiments comes
from the observation of the similitude terms given by LID to justify the classifi-
cation of a chemical compound (step 1). By analyzing these similitude terms we
note that some of them are given several times and that they are good descrip-
tions of carcinogen (or non-carcinogen) compound. This means that there are
some features (those included in the similitude terms) that are good descriptors
of a class since they are often used to classify compounds as belonging to that
class. consequently, they can be used by C-LID as general domain knowledge for
assessing the carcinogenic activity of new chemical compounds (step 2).

In [?] we report some domain knowledge contained in the carcinogenesis
model built thanks to the similitude terms of LID and that have been success-
fully used by C-LID for predecting the carcinogenesis of unseen chemical com-



pounds. Some of the patterns detecting positive toxicity are also reported in the
literature. For instance, LID founds that compounds with a radical chlorine are
carcinogenic and Brautbar (www.expertnetwork.com/med2.htm) describes some
experiments confirming the toxicity of chlorinated hydrocarbons. Nevertheless,
there are other patterns whose positive carcinogenic activity is not clearly re-
ported in the literature. An example of this are the chemical compounds with the
polycycle anthracene. An analysis of the chemical compounds with anthracene
included in the data set of the NTP shows that they are positive in rats, nev-
ertheless there are no laboratory experiments confirming this result, even there
are reports explaining that anthracene is a molecule with a high tendency to
make associations with other molecules and these associations could easily be
carcinogenic. Other patterns included in the partial domain knowledge built by
C-LID concern the carcinogenecity of chemical compounds containing epoxydes,
bromine and long carbon chains. Some of these patterns are confirmed by the
experimental knowledge, therefore they could be directly included as rules of
a model. Nevertheless, because C-LID is lazy it can include in the model some
knowledge that is not general enough to be induced but that is true for a known
subset of compounds (like the case of the long chains of carbons).

6.4 The explanation scheme

A common situation in toxicology is that chemical compounds with similar
molecular structure have different carcinogenic activity. Therefore, the use of
lazy learning methods, based on the similarity among structures of the com-
pounds, can produce non univocal classifications. That is to say, a chemical
compound can share some structural aspects with carcinogen compounds but
it can also also share other aspects with no carcinogen compounds. Let C be
the set of chemical compounds that have been considered by a lazy learning
method (say k-NN) as the most similar to a compound c. Let C+ ⊆ C be the
subset of positive (carcinogen) compounds and C− ⊆ C the subset of negative
(non-carcinogenic) compounds (C = C+ ∪ C−). In such situation the final pre-
diction about the carcinogenic activity of c is taken using the majority rule, i.e.
the compound is classified as belonging to the same class as the majority of the
compounds in C. The application of the majority rule seems appropriate when
there is a ”clear” majority of compounds belonging to one of the classes. Never-
theless this is not always the case, consequently the result has to be explained
to the user. In fact, more important than the classification should be to show
the user the similitude that the compound has with compounds of both classes.
In other words, if the user can analyze by themself the reasons that explain the
classification of the compound in each one of the classes, then s/he could decide
the final classification of the compound.

Let us illustrate the complete explanation scheme with an example. The right
hand side of Fig. ?? shows a chemical compound, namely C-356, for which we
want to assess its carcinogenicity for male rats. The set C of retrieved cases
(retrieval set), formed by five chemical compounds considered the most similar
to C-356 is also shown on the right hand side of Fig. ??. The set C is divided
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Fig. 4. AU∗ is the chemical structure common to all the compounds in Fig. ??. AU− is
the chemical structure common to C-356 and the negative compounds (i.e. C-424 and
C-171 ). AU+ is the chemical structure common to C-356 and the positive compounds
(i.e. C-084, C-127 and C-142 ).

in C− = {C-424, C-171} and C+ = {C-084, C-127, C-142} according to the
carcinogenic activity of the compounds.

Following our approach, the explanation scheme (left hand side of Fig. ??)
for chemical compound C-356 is as follows:

– The description AU∗ shows that C-356 and the compounds in C have in
common that they are all benzenes with at least three radicals: one of these
radicals is a functional group derived from the oxygen (i.e. an alcohol, an
ether or an acid) called O-compound in the figure; another radical (called
rad1 in the figure) is in the position next to the functional group (chemically
this means that both radicals are in disposition ortho). Finally, there is a
third radical (called rad2 in the figure) that is in no specific position.

– The description AU− shows that C-356 and the chemical compounds in
C− have in common that they are benzenes with three radicals: one radical
derived from an oxygen (O-compound), a radical rad1 with another radical
(rad3 in the figure) in position ortho with the O-compound, and finally a
third radical (rad2 ) with no specific position.

– The description AU+ shows that C-356 and the chemical compounds in C+

have in common that they are benzenes with three radicals: one of the rad-



icals is derived from an oxygen (O-compound), another radical is an amine
(NH2) in position ortho with the O-compound, and a third radical (rad1 ) is
at distance 3 of the O-compound (chemically this means that both radicals
are in disposition para).

Using the majority rule, the compound C-356 will be classified as positive.
The explanation scheme explicitly shows the user the similarities among the
compound and the retrieved compounds (with known activity). Nevertheless,
the user can also easily compare all the descriptions and analyze the differences
between them. Thus, from AU− and AU+ the user is able to observe that the
presence of the amine (NH2) may hypothetically be a key factor in the classifi-
cation of a compound as positive for carcinogenesis. Once the symbolic similarity
description gives a key factor (such as the amine in our example), the user can
proceed to search the available literature for any empirical confirmation of this
hypothesis. In this particular example, a cursory search in the Internet has shown
that there is empirical evidence supporting the hypothesis of amine presence in
aromatic groups (i.e. benzene) being correlated with carcinogenicity [?], [?].

Notice that a similar explanation scheme could be proposed when using LID
instead of the k-NN algorithm for solving the classification task. In such case the
similitude term takes the role of the description AU∗, i.e. the anti-unification
of the k cases similar to a problem p. The difference among both AU∗ and the
similitude term is that the former contains all that is shared by the k cases
whereas the later contains only the relevant features used for classifying p. A
detailed description of the use of the similitude term as explanation can be
found in [?].

7 Conclusions

Lazy learning methods can build local approximations of concepts. In this paper
we analyzed how these approximations can be used in a CBR method. In par-
ticular, we analyzed the usages as 1) symbolic similitude among a set of cases;
2) partial model of the domain, when they are stored to be used for solving new
problems; and 3) as explanations, since they can be interpreted as the justifica-
tion of the classification given by the system.

We show an example of these usages of generalization for solving the Predic-
tive Toxicology task. Moreover, the generalization can also be used in the same
terms in the context of multi-agent systems as is proposed by Ontañón and Plaza
in [?]. In fact, these authors propose to use the generalizations build by a CBR
method as a means for the communication of knowledge among the agents.
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