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Abstract: Dominating sets are among the most well-studied concepts in graph theory, with many real-
world applications especially in the area of wireless sensor networks. One way to increase network
lifetime in wireless sensor networks consists of assigning sensors to disjoint dominating node sets,
which are then sequentially used by a sleep–wake cycling mechanism. This paper presents a greedy
heuristic for solving a weighted version of the maximum disjoint dominating sets problem for energy
conservation purposes in wireless sensor networks. Moreover, an integer linear programming model
is presented. Experimental results based on a large set of 640 problem instances show, first, that the
integer linear programming model is only useful for small problem instances. Moreover, they show
that our algorithm outperforms recent local search algorithms from the literature with respect to both
solution quality and computation time.

Keywords: greedy algorithm; disjoint dominating sets; lifetime maximization; wireless sensor
networks

1. Introduction

Wireless sensor networks (WSNs) have received increasing attention in the last decade
due to their potential applications in various fields such as environmental monitoring,
medical and health applications, security surveillance and emergency operations [1]. They
are generally composed of a rather large number of small devices, called sensors, with
a limited low-power supply that depletes rather quickly. The lifetime of a sensor device
(in hours) is generally calculated by dividing the battery capacity (in Watt hours) by the
average power drain (in Watts). However, as the energy consumption also depends on
other factors—such as, for example, the operating temperature—the estimation of the
lifetime of a sensor node is not trivial [2]. One of the most challenging issues in WSNs
is extending the lifetime of the network while providing sufficient sensing coverage and
communication reliability. The lifetime of a network is defined as the time (duration) in
which the network is fully functional with respect to the tasks that have to be fulfilled,
that is, the time duration in which the overall sensing coverage is maintained. Therefore,
WSN lifetime significantly depends on the energy consumption of sensors in the context
of limited energy availability. Examples of real-world applications for maximizing sensor
network lifetime can be found in [3] (human activity monitoring), [4] (smart agriculture
monitoring), [5] (road traffic monitoring), and [6] (structural health monitoring).

According to [7], power saving strategies can usually be classified under one of the
following mechanisms:

• Sleep–wake cycling (also called duty cycling): Sensors switch between active and
sleep mode.

• Power control by adjusting the transmission range of wireless nodes.
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• Energy efficient routing, and data gathering.
• Reducing the amount of transmitted data and avoiding useless activity.

This study focuses on the first possibility, in the following way. The problem of
extending (prolonging) WSN lifetime is addressed by organizing the sensors into a number
of disjoint subsets that are activated successively. We require that each of these subsets is a
dominating set of the communication graph defined by a sensor network. Note that, given
the locations of the sensors, the communication graph is obtained by joining two sensors
with an edge in case they can communicate with each other via their wireless antennas.
The requirement of a subset of sensors being a dominating set is introduced such that each
subset of nodes is able to cover the whole coverage area.

The maximization of network lifetime has been studied in the literature from different
perspectives. Most of them addressed the problem either via the set K-cover problem (also
known as the target coverage problem) or as the domatic partition problem (also known as
the maximum disjoint dominating sets problem). Slijepcevic and Potkonjak [8] were the
first ones to model the problem as a set K-cover problem and proved its NP-hardness using
a polynomial time transformation from the minimum cover problem. The set K-cover
problem is defined over a bipartite graph of two node sets (sensors and targets) with the
aim to partition the sensors into a maximum number of disjoint sets (covers) over all targets.
These sensor covers are then activated one after the other to effectively extend the WSN
lifetime. The sensors of an active cover are able to monitor the entire set of targets. Due
to the hardness of the problem, a variety of approximate algorithms have been devised,
also for different variants of the problem. Examples include a greedy heuristic [8], memetic
algorithms [9–11], cuckoo search [12] and a genetic algorithm [13].

As mentioned before, the maximization of the lifetime of WSNs is often approached
through the domatic partition problem in which the goal is to find a partition of the nodes of
a given network—represented as a simple, undirected graph—into a maximum number of
disjoint dominating sets. Throughout this paper, we refer to the domatic partition problem
as maximum disjoint dominating sets (MDDS) problem. The MDDS problem, which
belongs to the large and important family of dominating set problems [14–16], is known to
be NP-hard for general graphs [17]. Cardei et al. [18] proved the NP-completeness of one of
its variants known as the 3-disjoint dominating sets problem that asks for deciding whether
or not a given graph contains three disjoint dominating sets. The same authors showed
that, unless P = NP, the MDDS problem has no polynomial-time approximation with a
performance guarantee of less than 1.5. They also introduced a heuristic approach based on
graph coloring. In the same year, Feige et al. [19] proved that every graph of order n with
maximum degree ∆ and minimum degree δ includes a domatic partition (a collection of
disjoint dominating sets) of size (1− o(1))(δ+ 1)/ ln ∆. Here, the term o(1) tends to zero as
n increases. Moreover, they showed that there is no approximation algorithm for the MDDS
problem with an approximation ratio of (1 + o(1)) ln n unless NP ⊆ DTIME(nO(log log n)).
The same authors also provided a centralized algorithm to find a domatic partition of
size Ω(δ/ ln ∆). Based on this later work, Moscibroda and Wattenhöfer [20] defined the
MDDS problem as the maximum cluster-lifetime problem and introduced a randomized,
distributed algorithm that has—with high probability—a performance ratio of O(log(n)).
Nguyen and Huynh [21] demonstrated that the 3-disjoint dominating sets problem remains
NP-complete even for planar unit disk graphs and studied the performance comparison of
four greedy heuristics for the MDDS problem. In [22], a greedy heuristic of time complexity
O(n3) is described. More recently, Pino et al. [23] focused on a weighted variant of the
MDDS problem which is henceforth labelled the maximum weighted disjoint Dominating
Sets (MWDDS) problem. In this problem, each node of the input graph—corresponding to
a deployed sensor device—carries a weight that corresponds to its remaining lifetime. The
lifetime of a dominating set is then defined as the minimum of the lifetimes of the nodes that
form part of the set. The optimization goal of the MWDDS is to find a domatic partition
such that the sum of the lifetimes of the corresponding dominating sets is maximized.
Pino et al. devised three local search algorithms for the MWDDS problem. Each local
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search algorithm is seeded with an initial feasible solution generated by a modified greedy
heuristic from [22] and iteratively swaps nodes between different dominating sets in the
solution, in the hope to increase the total lifetime of the network. These local search
approaches differ in the way they realize the swaps.

The main contributions of this paper can be summarized as follows:

• We introduce an integer linear programming (ILP) model for the MWDDS problem.
• We propose an efficient greedy heuristic for the MWDDS problem.
• We conduct comprehensive experiments on a set of 640 problem instances in order to

investigate the performance and the advantages of our greedy heuristic in comparison
to the application of CPLEX and to recent state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2 we provide a techni-
cal description of the MWDDS problem and recall some required notations and basic
definitions. Next, an ILP model for the MWDDS problem is presented in Section 3. In
Section 4, we introduce a new greedy algorithm. Finally, in Section 5 we present and
discuss the experimental results, while Section 6 summarizes the work and offers directions
for future work.

2. The Maximum Weighted Disjoint Dominating Sets Problem

Let G = (V, E, lifetime) be a simple, undirected, node-weighted graph, where V
(with |V| = n) is the set of nodes, E ⊆ V × V (with |E| = m) is the set of edges, and
lifetime : V → R+ is a weight function that assigns a positive weight value lifetime(v) > 0
to each node v ∈ V. Note that such a graph may represent the communication graph of
a WSN, and the node weight may represent the lifetime of the node. However, before
technically introducing the MWDDS problem, let us briefly recall some basic definitions
and notations used throughout this paper. For more details on graph theoretic aspects, the
readers may refer to [24]. We say that two nodes v 6= u ∈ V are neighbors (adjacent to each
other) if and only if there exists an edge between them, that is, (v, u) ∈ E. Given a node
v ∈ V, N(v) := {u ∈ V | (v, u) ∈ E} denotes the set of neighbors of v, known as the open
neighborhood of v in G. Furthermore, the closed neighborhood of a node v ∈ V, denoted
by N[v], contains the nodes adjacent to v plus node v itself, that is, N[v] := N(v) ∪ {v}.
The degree deg(v) of v is the number of neighbors of v, that is, deg(v) := |N(v)|. More
generally, given a subset of nodes D ⊆ V, the open neighborhood of D denoted by N(D)
is defined as

⋃
v∈D N(v) and its closed neighborhood, denoted by N[D], is defined as

N[D] := N(D) ∪ D.

Definition 1 (Dominating set). A subset D ⊆ V of the nodes of a simple, undirected graph
G = (V, E) is called a dominating set of G if and only if each node v ∈ V \ D has at least one
neighbor in D. Each node in a dominating set D is called a dominator, otherwise it is called a
dominatee. A dominator dominates (covers) itself and all its neighbors.

Note, for example, that—given a simple, undirected graph G = (V, E)—the complete
set of nodes (V) is a dominating set.

Definition 2 (Domatic partition). A set D = {D1, D2, · · · , Dk} of subsets Di ⊆ V is called
a domatic partition of a simple, undirected graph G = (V, E), if each Di (i = 1, . . . , k) is a
dominating set of G and all sets of D are pairwise disjoint, which is the case if for all 1 ≤ i < j ≤ k
it holds that Di ∩ Dj = ∅.

Definition 3 (Domatic number). The domatic number of a simple, undirected graph G = (V, E)
is determined as |D∗| where D∗ := argmax{|D| | D is a domatic partition of G}. In other words,
the domatic number of G is the size of the largest domatic partition of G. It is known that the
domatic number of a graph G is limited from above by δ + 1, where δ is the minimum degree of the
nodes in V.
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Given a simple, undirected graph G = (V, E), the maximum disjoint dominating sets
(MDDS) problem requires to find a domatic partition of G of maximal size. Furthermore,
given a graph G = (V, E, lifetime) as introduced above, the maximum weighted disjoint
dominating sets (MWDDS) problem is defined as follows. Any domatic partition D of G
is a valid solution. The objective function value of a valid solution D = {D1, . . . , D|D|} is

defined as f (D) := ∑
|D|
i=1 min{lifetime(v) | v ∈ Di}. In other words, the quality of a subset

Di is determined as the minimum lifetime of all its nodes. The objective is to find a valid
solution D∗ that maximizes f (). More formally, the problem can be expressed as follows:

max f (D) =
|D|

∑
i=1

min{lifetime(v) | v ∈ Di} (1)

s.t. Di ⊆ V, i = 1, · · · , k (2)

N[Di] = V, i = 1, · · · , k (3)

Di ∩ Dj = ∅, 1 ≤ i < j ≤ k (4)

Equation (3) ensures that each set Di is a dominating set and Equation (4) asks for all
subsets of D to be pairwise disjoint.

Illustrative Example

Figure 1 provides an illustrative example of the MWDDS problem. Figure 1a,b provide
a problem instance and the lifetime values of the nodes in terms of node weights, respec-
tively. Note that, for the sake of simplicity, the lifetime values are normalized between
0 and 1. Figure 1c shows a feasible solution D := {D1 = {3, 4}, D2 = {1, 5, 6}}, that is,
solution D contains the two dominating sets D1 = {3, 4} and D2 = {1, 5, 6}. The lifetimes
of nodes 3 and 4 are 0.775 and 0.424, respectively. Therefore, the lifetime of D1 is 0.424.
Moreover, the lifetimes of nodes 1, 5, and 6 are 0.804, 0.782 and 0.021, respectively. This
means that the lifetime of D2 is 0.021. As a consequence, the objective function value f (D)
of D is the sum of 0.424 and 0.021, which results in 0.445. In contrast, Figure 1d shows the
optimal solution to this problem instance, that is, D∗ := {D1 = {1, 3, 5}, D2 = {2, 4, 6}}.
According to the lifetime values of the single nodes, the lifetime of D1 is 0.775, while the
lifetime value of D2 is 0.021. Therefore, the objective function value f (D∗) of D∗ is 0.796.
Finally, note that, since this graph contains a node of degree 1, any valid solution contains
at most two disjoint dominating sets.

node label 1 2 3 4 5 6 7
node weight 0.804 0.175 0.775 0.424 0.782 0.021 0.257

(a) Table containing the node weights, that is, the lifetimes of the nodes.

1

2 3

4
6

5

7

(b) A problem instance.

1

2 3

4
6

5

7

(c) A feasible solution
D = {{3, 4}, {1, 5, 6}} with
f (D)= 0.445.

1

2 3

4
6

5

7

(d) The optimal solution
D∗ = {{1, 3, 5}, {2, 4, 6}}
with f (D∗) = 0.796.

Figure 1. An illustrative example of the MWDDS problem.
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3. An ILP Model for the MWDDS Problem

Our ILP model for the MWDDS problem requires the following sets of variables.
First, we introduce a binary variable xij for each node vi (i = 1, . . . , n) and each possible
disjoint set Dj (j = 1, . . . , δ(G) + 1). Hereby, δ(G) := min{deg(v) | v ∈ V}. (Remember
that the maximum number of disjoint dominating sets in a graph is δ(G) + 1.) When
xij = 1, node vi is assigned to the j-th dominating set. Second, a binary variable yj
(j = 1, . . . , δ(G) + 1) indicates whether or not the j-th set is opened. Finally, a real-valued
variable zj ∈ [0, M] (M ∈ R+) stores the weight of the j-th dominating set. Hereby,
M := max{lifetime(v) | v ∈ V}. Based on these variables, the MWDDS can be stated as an
ILP in the following way.

max
δ(G)+1

∑
j=1

zj (5)

s. t.
δ(G)+1

∑
j=1

xij ≤ 1 i = 1, . . . , n (6)

∑
vk∈N(vi)

xkj ≥ yj − xij j = 1, . . . , δ(G) + 1 (7)

yj ≥ xij i = 1, . . . , n and j = 1, . . . , δ(G) + 1 (8)

xij · lifetime(vi) + (1− xij) ·M ≥ zj i = 1, . . . , n and j = 1, . . . , δ(G) + 1 (9)

yj ·M ≥ zj j = 1, . . . , δ(G) + 1 (10)

yj ≥ yj+1 j = 1, . . . , δ(G) (11)

zj ≥ zj+1 j = 1, . . . , δ(G) (12)

The objective function sums over the weight values of all dominating sets. Note
that, for this objective function to be correct, the weight value of those dominating sets
that are not opened must be set to zero by respective constraints. Constraints (6) require
that each node of the graph is assigned to at most one dominating set. This assures the
disjointness of the dominating sets. Next, constraints (7) are the so-called dominating
set constraints, that is, they ensure that, if the j-th set is opened, then the set of nodes
assigned to the j-th set form a dominating set of G. Further, constraints (8) make sure that
nodes can only be assigned to opened dominating sets. Constraints (9) are responsible
for correctly determining the weights of the opened dominating sets. In other words,
the value of variable zj of the j-th dominating set (if open) is set to the minimum of the
lifetime-values of all nodes assigned to this set. Next, constraints (10) ensure that the
weight values of dominating sets that are not opened are set to zero. Finally, the last two
sets of constraints—that is, constraints (11) and (12)—are not necessary for the correctness
of the ILP. They are tie-breaking constraints that ensure that (1) if k dominating sets are
opened, they are assigned to sets 1, . . . , k and (2) the opened dominating sets are ordered
according to a non-increasing weight value.

4. Proposed Greedy Heuristic

Greedy algorithms are constructive heuristics for building feasible solutions to com-
binatorial optimization problems. They start from an empty solution and iteratively add
the most favorable component from a set of feasible extensions of the current partial so-
lution until a complete solution is reached. That is, the component to be added at each
construction step is chosen deterministically according to some greedy function, which is a
measure for the goodness of the solution components. In general, greedy heuristics do not
require overly large computation times. The main drawback of a greedy heuristic is that
the single constructed solution is most likely not optimal.

The pseudo-code of our greedy algorithm, henceforth labelled GH-MWDDS, is pre-
sented in Algorithm 1. Note that our greedy algorithm is a centralized algorithm which
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must be executed on a central unit that has the knowledge about the topology of the
network and about the lifetime values of the individual nodes. At the start of the algorithm,
the following sets are initialized. SolutionD is initialized to the empty set. Furthermore, set
Vrem, which contains all nodes that may still be added to a dominating set, is initialized to V.
Finally, set Vdone, which collects all nodes that already form part of a dominating set inD, is
initialized to the empty set. Counter k counts the number of dominating sets that are being
constructed. It is initialized to zero. At each main iteration k ≥ 1, the algorithm generates a
dominating set Dk consisting of nodes from set Vrem which, as mentioned above, contains
all nodes of G that do not form part of any of the already generated dominating sets Di,
i = 1, . . . , k− 1; see lines 5 and 21. The algorithm stops once no further dominating set can
be generated from the nodes in Vrem. This is the case if at least one node v ∈ V and all its
neighbors form part of Vdone. More formally, the algorithm stops if there is at least one
v ∈ V such that N[v] is a subset of Vdone (see line 5).

Algorithm 1 GH-MWDDS: A Greedy heuristic for the MWDDS problem

Input: a simple, node-weighted, undirected graph G = (V, E, lifetime)
Output: a family of disjoint dominating sets D = {D1, D2, · · · , Dk}

1: D ← ∅
2: k← 0
3: Vrem ← V
4: Vdone ← ∅
5: while not exists v ∈ V s.t. N[v] is a subset of Vdone do
6: k← k + 1
7: for each node v ∈ V do
8: color(v)←WHITE
9: end for

10: Dk ← ∅
11: while Dk is not a dominating set of G (that is, N[Dk] 6= V) do
12: v∗ ← argmax{score(v) | v ∈ {G(Dk) ∪W(Dk)} ∩Vrem}
13: Dk ← Dk ∪ {v∗}
14: Vrem ← Vrem \ {v∗}
15: for each node u ∈ N(v∗) do
16: if ( color(u) = WHITE ) then
17: color(v)← GRAY
18: end if
19: end for
20: color(v∗)← BLACK
21: end while
22: Reduce(Dk, Vrem, Vdone) {optional}
23: D ← D ∪ {Dk}
24: Vdone ← Vdone ∪ Dk
25: end while
26: return D = {D1, D2, · · · , Dk}.

The construction of a dominating set Dk at round k of the algorithm is done as follows.
First, Dk is initialized to the empty set. At each moment, each node of the input graph G
belongs to one of the following sets:

• Black nodes: Nodes that are part of Dk.
• Gray nodes: Nodes in G(Dk) := N(Dk) \ Dk, that is, nodes that are not contained in

Dk but that are adjacent to at least one black node.
• White nodes: Nodes in W(Dk) := V \ N[Dk], that is, nodes that are neither gray

nor black.

Remember, in this context, that N(Dk) and N[Dk] denote the open neighborhood
and the closed neighborhood of Dk, respectively. Given these definitions, Dk is iteratively
generated by adding at each construction step exactly one node from {G(Dk) ∪W(Dk)} ∩
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Vrem, that is, a nodes that is (1) either gray or white, and (2) that is not already added to
one of the dominating sets from previous rounds. In order to make this choice, all nodes
from {G(Dk) ∪W(Dk)} ∩Vrem are evaluated by means of greedy function score(), which
is defined as follows:

score(v) := lifetime(v) ∗ white_degree(v) ∀v ∈ {G(Dk) ∪W(Dk)} ∩Vrem (13)

white_degree(v) := |N[v] ∩W(Dk)| (14)

In other words, the greedy function of a node v is obtained by multiplying the lifetime
of the node with the number of white nodes from the closed neighborhood of v.

To further improve the quality of solutions, the dominating set Dk might be reduced
by removing redudant nodes before adding Dk to solution D. This is done in the optional
function Reduce(Dk, Vrem, Vdone); see line 22 of the pseudo-code. Formally, a node v ∈ Dk
is redundant if each node from its closed neighborhood N[v] is dominated by at least two
nodes from Dk, that is, N[v] ⊂ ⋃

u∈Dk\{v} N[u] [25]. Redundant nodes are identified and
removed in an iterative way. Moreover, sets Vrem and Vdone are updated accordingly.

Time Complexity of GH-MWDDS

In this section, we analyze the complexity of our greedy algorithm, without the
optional reduction mechanism from line 22. The main while loop (line 5) of the algorithm is
iterated k times (rounds), where k refers to the number of disjoint dominating sets returned
by the algorithm. Since the maximum number of dominating sets in a domatic partition
of a graph G = (V, E) is less or equal to δ + 1 [19], where δ is the minimum degree of
any node of G, it holds that k ≤ δ + 1. As a result, checking the condition in line 5 and
executing lines 7-9 is both done in O(δ · n) time. Further, n is clearly an upper bound for the
number of times that the inner while loop (lines 11-21) is iterated. To determine the time
complexity of line 12, we proceed as follows. Remember that for any node v the calculation
of its white_degree(v) value requires deg(v) operations. Moreover, for choosing the first
node v∗1 of a dominating set, line 12 requires a time of deg(v1) + deg(v2) + · · ·+ deg(vn).
The well-known Handshaking Lemma states that ∑

v∈V
deg(v) = 2m, where m = |E|. For

choosing the second node v∗2 , line 12 requires m− deg(v∗1) time, etc. Therefore, the total time
complexity of line 12 is O(n m). In summary, we can conclude that our greedy algorithm
has a worst-case time complexity of O(δ n) + O(n m) = O(max(δ n, n m)) = O(n m).

5. Experimental Evaluation

The proposed greedy algorithm (GH-MWDDS) was implemented in ANSI C++ using
GCC 7.4.0 for compiling the software. Its performance was compared with three recent
local search approaches available from the related literature [23]: Local Search (LS), Fixed
Depth (FD), and Variable Depth (VD). In order to conduct a fair comparison to the three
local search algorithms (LS, FD and VD) we used the original source code provided by the
authors of [23]. GH-MWDDS and the three local search algorithms were experimentally
evaluated on a laptop equipped with a 64-bit 2.5-GHz Intel® Core™ i5-7200U processor and
8 GB of RAM. We applied GH-MWDDS to a set of 640 problem instances that are described
below. Moreover, in order to test the usefulness of our ILP model, we applied the ILP
solver ILOG CPLEX 20.01 in single-threaded mode to all problem instances. The time limit
for each application of CPLEX was set to 2 CPU hours. Moreover, the experiments with
CPLEX were performed on a cluster of machines with two Intel® Xeon® Silver 4210 CPUs
with 10 cores of 2.20 GHz and 92 Gbytes of RAM.

5.1. Problem Instances

We used the source code provided in [23] for generating 640 diverse problem instances.
Each problem instance was generated according to two control parameters: The size of
the network n (number of nodes) and its average degree d, where d = 2m/n and m is the
number of edges. More specifically, we considered five different network sizes: 50, 100,
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150, 200 and 250 nodes. For each network size, we considered between 5 to 8 different
average degrees in a way such that networks over a range from sparse to dense networks
are generated. In addition, each node (sensor) of the network was given a random real
value between 0 and 1 as node weight (lifetime). Then, for each combination of n and d,
20 different networks were randomly generated resulting in a total of 640 problem instances
for the experimental evaluation.

5.2. Results and Discussion

Table 1 reports on the performance comparison of GH-MWDDS (without the optional
reduction procedure) and LS, FD, VD, and CPLEX. The first two columns indicate the
problem instance type. More specifically, the number of nodes (n) is provided in the first
column, whereas the average degree (d) is shown in the second column. Obviously, the
higher d, the more dense is the network. Remember that for each combination of n and
d—that is, for each table row—there are 20 randomly generated problem instances. The
values shown in the tables represent the average results obtained for these 20 instances per
table row. Table columns 3 and 4 contain the results of CPLEX. While the first one of these
columns indicates the average solution quality obtained, the second column provides the
average gap (in percent) between the found results and the upper bounds. The results of the
other algorithms are provided in two columns for each algorithm. These columns report on
the average solution quality (Value) and the average computation time (Time(s)) in seconds.
Moreover, the 11-th column of the table indicates the average size of solutions (|DP|) in
terms of the average number of disjoint dominating sets. Since the three algorithms LS, FD
and VD start with the same greedy solution as initial solution, and the number of disjoint
dominating sets does not change during local search, the column with heading |DP| holds
for all three algorithms. Finally, in the last column of the table, the average size of the
solutions of GH-MWDDS is given.

In addition to evaluating GH-MWDDS, we also tested the following two additional
versions. Henceforth we refer to the version of GH-MWDDS that removes redundant
nodes in line 22 as GH-MWDDS+. In addition, the algorithm can be easily adapted in order
to solve the maximum disjoint dominating sets (MDDS) problem, instead of the MWDDS.
The resulting greedy algorithm, which is called GH-MDDS, is obtained by replacing the
score(·) function in line 12 of Algorithm 1 by the white_degree(·) function of Equation (14).
The experiential results obtained with GH-MDDS and GH-MWDDS+ are provided in
Table 2, whose structure is very similar to the one of Table 1.

From the results displayed in Tables 1 and 2, the following observations can me made:

• First of all, the ILP model (solved by CPLEX) is only useful in the context of the
smallest problem instances. In fact, CPLEX obtains the best results for all networks
with 50 nodes. As an additional information we can say that CPLEX was able to
solve 8 out of 20 problem instances with 50 nodes and an average degree of 15 to
optimality. Figure 2 exemplary shows the optimal solution obtained by CPLEX for
network number 14 of those networks with 50 nodes and an average node degree
of 15. Note that the nodes are divided into six dominating sets (as indicated by the
colors of the nodes). The nodes which are colored in green are not assigned to any
dominating set.

• CPLEX already starts to fail for the instances with 100 nodes, for which the results are
already inferior to those of GH-MWDDS. In fact, for most of the problem instances
(starting from 150 nodes and an average degree of 60) CPLEX is unable to find anything
but the trivial solution that contains no dominating set.

• Concerning GH-MWDDS, we can observe that it dominates the three competitors
from the literature for all problem instances in terms of solution quality as well as
computational time. It is significantly better than the best of the other three approaches,
while requiring a computation time that is approximately five orders of magnitude
smaller than the time needed by the other methods. The improvement ratio of our
algorithm with respect to VD (the best approach from the literature) is about 5.37.
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• As expected, most solutions suffer from the existence of redundant nodes. As a
result, GH-MWDDS+ is able to produce solutions whose size (in terms of the number
of disjoint dominating sets) is increased with respect to the solutions produced by
GH-MWDDS. This is achieved without compromising the quality of the generated
solutions. On the contrary, the quality of the obtained solutions is slightly improved,
at the cost of a negligible amount of computation time.

• In addition, from Table 2 we can observe that GH-MDDS and GH-MWDDS+ achieve
an overall average solution quality (see that last row of Table 2) of 3.667 and 9.515, re-
spectively, and an average solution size (in terms of the number of disjoint dominating
sets) of 24.089 and 21.541, respectively. It is worthwhile to note that GH-MDDS always
produces solutions with the maximum possible size (equal to δ(G) + 1). However, the
quality of these solutions (as measured by the objective function of the MWDDS prob-
lem) is, of course, lower than the quality of the solutions produced by GH-MWDDS.
This is because GH-MDDS is primarily focused on finding solutions of large size,
without taking into consideration the problem-specific knowledge of the lifetime
values of the nodes. Therefore, a solution to the MWDDS problem with the maximum
size does not necessarily correspond to the best MWDDS-solution. For example, in
the case where n = 250 and d = 140, for which GA-MDDS finds a solution with an
average value 9.584 and an average size 53.6, GH-MWDDS+ finds solutions with an
average value 22.514 and average size 47.7.

• From above observations we can say that the poor performance of the three local
search algorithms proposed by Pino et al. [23] is mainly due to greedy heuristic used
for producing the initial solutions for their local search approaches. Since this greedy
heuristic was developed for the MDDS problem, and the local search approaches
try to improve these solutions by making swaps among nodes of different disjoint
dominating sets, they are limited to the size of the solutions found by the initial
greedy heuristic, which cannot be changed later. As can be seen by our results, this
way of proceeding limits too much the possibility of the local search algorithms to
find improvements.

In summary we can say that our GH-MWDDS approach is clearly a new state-of-the-
art method for the MWDDS problem. In order to study the scalability of our approach, we
finally generated two large-scale random geometric graphs with 10,000 nodes. Both graphs
were generated by scattering 10,000 nodes randomly in the unit square, and connecting
each pair of nodes whose geometric distance is below r = 0.02 (first graph), respectively
r = 0.03 (second graph). The first graph has 61,646 edges, while the second one has
137,317 edges. The computation time of GH-MWDDS was 1.829 seconds for the first graph
and 5.054 seconds for the second graph. This difference in computation time between the
first and the second graph is due to the different density, which leads to a solution with
two dominating sets in the case of the first graph and a solution with six dominating sets in
the case of the second graph. The important point, however, is that the computation time
of our algorithm is still very low, even in the context of large-scale graphs. The solutions of
GH-MWDDS are graphically shown in Figure 3. Note that, in the case of the first graph,
red and green nodes form dominating sets, while all but the pink-colored nodes in the case
of the second graph are assigned to six different dominating sets.
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Table 1. Numerical results of comparison between LS, FD, VD and GH-MWDDS.

n d
CPLEX LS FD VD

|DP|
GH-MWDDS

Value Gap(%) Value Time(s) Value Time(s) Value Time(s) Value Time(s) |DP|

50 15 2.779 32.839 0.395 0.003 0.477 0.019 0.555 1.984 2.55 2.155 0.000 5.75
20 3.922 121.088 0.649 0.004 0.825 0.055 1.014 7.651 3.55 3.353 0.001 8.05
25 5.098 158.038 1.011 0.006 1.245 0.055 1.490 4.885 4.05 4.595 0.001 10.05
30 6.432 200.567 1.664 0.007 2.460 0.124 2.780 13.117 6.30 5.926 0.001 12.90
35 7.929 197.434 2.200 0.012 2.914 0.204 3.166 25.048 6.85 7.376 0.000 15.30

100 20 2.467 405.669 0.283 0.023 0.333 0.188 0.423 30.458 2.45 2.784 0.001 7.00
30 3.202 >1000.0 0.431 0.017 0.535 0.165 0.576 31.796 2.95 4.501 0.003 10.90
40 3.338 >1000.0 0.859 0.021 1.259 0.394 1.341 183.921 4.75 6.679 0.002 14.80
50 3.857 >1000.0 1.361 0.038 2.018 0.796 2.407 225.704 6.00 8.500 0.001 18.65
60 5.804 823.022 2.019 0.027 2.884 0.830 3.226 362.775 7.15 11.131 0.001 23.40

150 30 0.055 >1000.0 0.287 0.053 0.326 0.316 0.326 106.602 2.85 4.098 0.002 10.65
40 0.028 >1000.0 0.557 0.050 0.670 0.595 0.745 156.994 3.80 5.816 0.003 14.05
50 0.011 >1000.0 0.615 0.077 0.927 1.139 1.009 182.630 3.95 7.479 0.003 17.50
60 0 >1000.0 0.848 0.046 1.506 2.576 1.521 646.268 4.90 9.281 0.002 21.00
70 0 >1000.0 1.373 0.066 2.293 4.219 2.464 1028.650 6.65 11.388 0.004 24.45
80 0 >1000.0 1.689 0.065 2.729 2.599 3.036 549.900 7.20 13.508 0.005 28.90
90 0 >1000.0 2.209 0.055 3.817 3.793 4.193 906.030 9.05 15.485 0.006 32.95

200 40 0 >1000.0 0.256 0.049 0.317 0.648 0.370 81.750 2.65 5.424 0.004 13.65
50 0 >1000.0 0.374 0.099 0.475 1.252 0.483 186.900 3.45 6.784 0.005 16.60
60 0 >1000.0 0.678 0.112 0.897 2.083 0.917 313.850 3.75 8.656 0.005 20.35
70 0 >1000.0 1.004 0.170 1.652 6.463 1.680 3112.950 5.95 10.351 0.006 23.65
80 0 >1000.0 0.840 0.076 1.624 5.874 1.795 1629.400 5.35 12.447 0.008 27.15
90 0 >1000.0 1.153 0.109 1.924 5.260 2.045 1364.400 5.65 13.978 0.012 30.55

100 0 >1000.0 1.503 0.091 2.836 9.396 3.098 3024.830 7.65 15.868 0.009 34.30

250 50 0 >1000.0 0.266 0.136 0.314 0.867 0.329 557.676 2.95 6.681 0.016 16.85
60 0 >1000.0 0.526 0.221 0.892 7.638 0.945 1400.788 4.55 8.244 0.012 19.70
70 0 >1000.0 0.689 0.264 1.050 6.906 1.326 2380.366 5.10 9.636 0.013 22.95
80 0 >1000.0 0.652 0.241 1.163 9.801 1.445 647.763 5.40 11.520 0.013 26.15
90 0 >1000.0 0.841 0.324 1.448 18.394 1.591 1242.663 5.80 12.938 0.013 29.55

100 0 >1000.0 1.117 0.228 1.981 20.789 2.443 2210.880 6.45 14.733 0.016 32.70
120 0 >1000.0 1.259 0.146 2.577 10.442 2.781 2249.350 7.20 18.348 0.016 39.70
140 0 >1000.0 2.135 0.121 4.275 16.885 4.713 6624.596 10.50 22.478 0.020 47.25

Avg 1.404 0.992 0.092 1.583 4.399 1.757 984.143 5.231 9.442 0.006 21.169

Table 2. Numerical results of comparison between GH-MDDS, GH-MWDDS and GH-MWDDS+

n d
GH-MDDS GH-MWDDS GH-MWDDS+

Value Time(s) |DP| Value Time(s) |DP| Value Time(s) |DP|

50 15 1.111 0.001 6.75 2.155 0.000 5.75 2.191 0.002 6.150
20 1.548 0.001 9.05 3.353 0.001 8.05 3.450 0.000 8.350
25 2.630 0.001 11.85 4.595 0.001 10.05 4.672 0.000 10.550
30 3.510 0.001 14.60 5.926 0.001 12.90 6.042 0.000 13.350
35 4.772 0.001 17.25 7.376 0.000 15.30 7.546 0.000 15.900

100 20 0.841 0.001 8.50 2.784 0.001 7.00 2.842 0.001 7.400
30 1.714 0.004 12.70 4.501 0.003 10.90 4.580 0.001 11.150
40 2.900 0.002 17.15 6.679 0.002 14.80 6.794 0.002 15.200
50 3.908 0.002 21.40 8.500 0.001 18.65 8.525 0.002 19.100
60 6.111 0.004 26.30 11.131 0.001 23.40 11.174 0.002 23.600
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Table 2. Cont.

n d
GH-MDDS GH-MWDDS GH-MWDDS+

Value Time(s) |DP| Value Time(s) |DP| Value Time(s) |DP|

150 30 1.036 0.003 12.00 4.098 0.002 10.65 4.141 0.002 10.900
40 1.769 0.002 16.20 5.816 0.003 14.05 5.872 0.002 14.350
50 2.553 0.003 20.00 7.479 0.003 17.50 7.570 0.002 17.850
60 3.647 0.004 24.10 9.281 0.002 21.00 9.371 0.005 21.450
70 4.789 0.002 28.10 11.388 0.004 24.45 11.446 0.005 25.050
80 6.468 0.005 33.00 13.508 0.005 28.90 13.611 0.003 29.150
90 7.143 0.006 36.55 15.485 0.006 32.95 15.589 0.005 33.550

200 40 1.350 0.006 15.50 5.424 0.004 13.65 5.486 0.005 13.950
50 1.719 0.006 18.95 6.784 0.005 16.60 6.848 0.006 17.050
60 2.551 0.007 23.35 8.656 0.005 20.35 8.710 0.008 20.550
70 3.566 0.008 26.80 10.351 0.006 23.65 10.395 0.008 24.100
80 4.466 0.015 30.70 12.447 0.008 27.15 12.529 0.003 27.400
90 5.368 0.009 34.80 13.978 0.012 30.55 14.046 0.009 31.000

100 6.425 0.011 38.50 15.868 0.009 34.30 15.993 0.009 34.650

250 50 1.643 0.013 19.05 6.681 0.016 16.85 6.783 0.008 16.950
60 2.062 0.010 22.70 8.244 0.012 19.70 8.285 0.010 19.950
70 2.613 0.012 26.15 9.636 0.013 22.95 9.699 0.013 23.150
80 3.348 0.013 29.55 11.520 0.013 26.15 11.571 0.013 26.500
90 4.030 0.016 33.50 12.938 0.013 29.55 12.978 0.016 29.900

100 5.024 0.016 37.15 14.733 0.016 32.70 14.800 0.016 33.150
120 7.134 0.017 45.05 18.348 0.016 39.70 18.418 0.018 40.250
140 9.584 0.020 53.60 22.478 0.020 47.25 22.514 0.020 47.700

Avg 3.667 0.007 24.089 9.442 0.006 21.169 9.515 0.006 21.541
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Figure 2. An optimal solution for network number 14 with 50 nodes and an average node degree of
15. The solution was produced by CPLEX. The color of the nodes indicates to which of six dominating
sets they belong: Blue, dark blue, dark green, red, purple, and brown. The nodes colored in green do
not belong to any dominating set.
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(a) Random geometric graph (r = 0.02).

(b) Random geometric graph (r = 0.03).

Figure 3. Results of GH-MWDDS for two random geometric graphs of different densities.

6. Conclusions

This paper deals with the network lifetime maximization problem using the approach
of computing disjoint dominating sets in a given network in which sensors are characterized
by different lifetime values. In other words, we considered a version of the weighted
disjoint dominating sets problem. In this context, we have proposed a greedy heuristic
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that benefits from the use of problem-specific knowledge. To assess the performance of
our algorithm, 640 problem instances of different sizes (both sparse and dense graphs)
were evaluated and the obtained results were compared with those of three recently
published local search algorithms. Computational results show the superiority of our
greedy algorithm over recent approaches available from the literature. In addition, we
stated the considered problem as an integer linear programming model. However, the
results of applying CPLEX to solve the model have shown that this approach is only useful
for the smallest ones of the considered networks.

Finally, note that our approach can directly be applied to disconnected graphs, that is,
our implementation considers the possible existence of disconnected sub-graphs. More-
over, the approach can easily be adapted to directed graphs. The only aspect that has to
change for the application to directed graphs is the definition of a dominating set (see, for
example, [26]) and the way in which such dominating sets are generated at each main loop
of the greedy heuristic.

In the future we plan to develop well-working metaheuristics on the basis of the
developed greedy heuristic in order to further improve the obtained results. Options
include ant colony optimization or iterated greedy algorithms, which are both based
on the step-by-step construction of solutions. Another line of research will focus on
hybrid techniques such as construct, merge, solve and adapt (CMSA) [27], which make it
possible to take profit from ILP solvers such as CPLEX even in the context of instances of
large problem.
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