
Engineering Trust Alignment: a First Approach

Andrew Koster, Jordi Sabater-Mir, and Marco Schorlemmer

IIIA, Artificial Intelligence Research Institute
CSIC, Spanish National Research Council

Bellaterra, Spain
{andrew, jsabater, marco}@iiia.csic.es

Abstract. In open multi-agent systems trust models are an important
tool for agents to achieve effective interactions. However, in these kinds
of open systems, the agents do not necessarily use the same, or even
similar, trust models, leading to semantic differences between trust eval-
uations in the different agents. Hence, to successfully use communicated
trust evaluations, the agents need to align their trust models. We ex-
plicate that currently proposed solutions, such as common ontologies or
ontology alignment methods, lead to additional problems and propose a
novel approach. We show how the trust alignment can be formed by con-
sidering the interactions agents share. We describe our implementation
of a method, which uses inductive learning algorithms, to accomplish
this alignment and test it in an example scenario.

1 Introduction

In open multi-agent systems, trust and reputation models are considered an
important feature in managing the social environment agents are immersed in.
One of the benefits offered by using trust is that agents can communicate their
trust evaluations to each other, thus warning other agents for fraudulent agents
or helping each other to select good interaction partners. This communication,
however, becomes problematic if the different agents use diverse models of trust,
as is a very real possibility in a heterogeneous environment. In this case, trust
may mean something different to both agents. These agents need to align their
definitions of trust, before the communication becomes meaningful to them.

Trust in computational systems, as in human environments, cannot be seen
as independent from the social interactions on which it is based. Each agent
computes its trust evaluations of the different target agents in the system, based
on some, possibly partial, observation of that agent’s interactions. These trust
evaluations are computed by an agent’s trust model and thus, if the agents use
different trust models, then the trust evaluations may be different, despite being
based on the same interactions. Additionally we argue that this can be the case
even if the agents use the same computational trust model. Some state of the art
trust models are based on cognitive principles [1, 2] and take an agent’s beliefs
and goals into account when computing a trust evaluation. While, in these cases,
the computational model is the same, agents with different beliefs and goals will

111

have different trust evaluations given exactly the same information. We see that
also in these cases it is therefore important to align the trust models.

The interactions trust is based on depend largely on the purpose of the multi-
agent system and the types of agents in it. They can be as diverse as air traffic
agents optimizing a landing schedule, personal agents buying a bicycle on eBay
or agents communicating trust evaluations. The developers of the system gen-
erally develop an ontology to facilitate communication about these interactions
and the domain in general. This should facilitate the communication about the
interactions, however the trust evaluations are not based on public information
alone. An agent may have its own personal observations of an interaction. In the
case of an eBay auction, the seller for instance has information about all bids
received, while the bidder only has information about his own bids. Additionally
agents may associate different subjective observations with the interaction. For
instance, the seller may not be satisfied with the transaction, because he had
to sell at a loss. This type of information is private and often just as subjective
as the trust evaluation itself. In the eBay example it is no easier to communi-
cate the meaning of satisfaction than of the trustworthiness supported by that
satisfaction. This difference in observations complicates the matter of aligning
trust models, however we postulate that there is always some amount of shared
information. At the very least, there is shared information that an interaction
took place. Our approach uses these shared interactions as building blocks for a
trust alignment.

So far, communication about trust evaluations has been tackled by defining
common ontologies for trust [3, 4], however in practice these ontologies do not
have the support of many of the different trust methodologies in development.
An ontology alignment service is presented in [5], but it requires a translation
of all specific trust model ontologies into a general ontology. In addition, even if
support were added for all systems and a common ontology emerged, a cognitive
agent will still have its own interpretation of the world on which it bases its trust
evaluations: thus trust must always be considered in the light of why agents trust
each other.

Abdul-Rahman and Hailes’ reputation model [6] approaches the problem of
alignment from another direction, by defining the trust evaluations based on
the actual communications. The interpretation of gossip is based on previous
interactions with the same sender. The problem with this, however, is that it
is incomplete: firstly it assumes all other agents in the system use the same
model, which in a heterogeneous environment cannot be assumed. Secondly, it
uses a heuristic based on prior experiences, to “bias” received messages. This
bias is an average of all previous experiences. They do not differentiate between
recommendations about different agents, which are based on different types of
interactions.

Semantic alignment based on interactions has been studied in [7]. This ap-
proach to semantic alignment is based on the general framework of Channel
Theory [8, 9]. We use this same mathematical theory as a framework for aligning
trust.

112

2 The Algorithm

Channel Theory is a qualitative theory modeling the flow of information in dis-
tributed systems. From our point of view we can use this to describe a channel
in which information about trust can be transferred from one agent to another.
This is described in detail in [10]. The intuition is that both agents can relate
each others’ subjective trust evaluations to the objective descriptions of inter-
actions, communicating about them using the languages LTrust and LDomain,
respectively. By doing so they are able to find the underlying meaning of the
trust evaluations. The computational model based on this approach is described
in [11] and we will summarize it here before explaining our implementation.

Fig. 1. Schematic diagram of the steps in the alignment process

In Figure 1 we give a graphical overview of the algorithm. First, at ➀ the
agents have to communicate their trust evaluations to each other in the form of
gossip messages. For each message, the receiving agent computes its own trust
evaluation, leading to a set of Specific Rules for Alignment (SRAs) at ➁, each of
the form αi[Tj]← βi[Tj], ψi, which would be the ith SRA about the target agent
Tj . The heads of the rules α are the own trust evaluations, while β in the bodies
are the other agent’s. ψ describes the set of interactions which support both
evaluations. The agent then has to learn the model underlying these SRAs. This
is done, in repeated steps of clustering ➂ and inductive learning ➃. The output
will be a set of General Rules for Alignment (GRAs), which is the generalization
of the SRAs we give as input. These can then be used to interpret future messages
➄. We describe the method used in Algorithm 1.

We use three important procedures, the clustering algorithm in line 5 and
the two generalization algorithms we use on the clusters in lines 9 and 11.
– Clustering is used to group those SRAs where the receiving agent’s trust

evaluations are “near each other”, because we want to learn generalizations
that will predict that agent’s trust evaluations, based on the gossip sent. That
means we cluster based on the heads of the SRAs and we have an additional
requirement for LTrust: there must be a distance measure defined on it. An

113

Algorithm 1: Generalize SRAs
Input: R, the set of SRAs to be generalized

Input: D(x, y), a distance measure on LT rust
Input: S, a set of increasing distances for clustering

GRAs := ∅1
Clusters := {{r}|r ∈ R}2
Covered := ∅3
foreach Stop criteria s in S do4

Clusters := agglomerative clustering(Clusters, s, D)5
if —Clusters— = 1 then6

break7
foreach C ∈ Clusters do8

H := generalize head(C, R\C)9
if H �= null then10

G := generalize body(C, R\C)11
if G �= null then12

GRAs := GRAs ∪ {�H ← G, s�}13
Covered := Covered ∪ C14

if Covered = R then15
break16

Output: GRAs17

example of such a distance measure is described in Section 3.3. The clustering
fulfills another role in the algorithm: it allows for the incremental learning
of the alignment. This allows us to stop the algorithm when a suitable align-
ment is found. To this purpose we use a list of stop criteria S. This is a
list of maximum distances for the clustering algorithm. The algorithm goes
through this list from smallest distance to greatest and continues merging
clusters until all the clusters are at a distance greater than the current stop
criterion being evaluated. The resulting set of clusters will serve as input for
the learning algorithms.

– Generalizing the SRAs is the main part of the algorithm. For each stop cri-
terion s we will have a set of clusters of SRAs and for each of these clusters
we shall attempt to generalize a set of GRAs covering it. Our first task is
to learn a generalization of the heads of the SRAs. By definition, all the
αi within a cluster are within distance s of each other and we want to find
some defining quality of these αi which we can use in our final ruleset. We
want to learn the generalization α∗ which θ-subsumes [12] all αi. Afterwards,
when we generalize the body, we are learning the conditions for which the
receiving agent should have trust evaluation α∗. For both these tasks we can
use an inductive learning algorithm, however the specific type of learning
differs. For generalizing the heads of the SRAs we use an algorithm special-
ized in the “learn from example” setting [12], whereas for generalizing the
bodies, we have richer information available and by using the “learn from
interpretation” setting [12] we can use heuristics which take advantage of
this, resulting in a faster algorithm for similar problems.

If we can find a generalization for the body it means we have a GRA which
covers all of the targeted rules in the cluster. We stop the algorithm when all
SRAs are covered, or when the remaining clusters are further apart than the
largest stop criterion. When the algorithm ends we have a list of GRAs. This
list can be used to translate messages from the other agent. Because each GRA
is stored with the stop criteria which allowed it to be generated, we have an
internal distance of the cluster it covers. We use this as the measure of accuracy
of the alignment. We can use this, together with the actual aligned message, in
the trust model.

114

3 Implementation and results

Now that we have described the problem and given an explanation of the sys-
tem, we will give a brief description of the tools used to implement it. The
implementation must:
– define a language for LTrust and LDomain.
– implement the incremental clustering algorithm.
– use a “learn from example” ILP algorithm on the heads of SRAs.
– use a “learn from interpretation” ILP algorithm on the bodies of SRAs.

The implementation is predominantly in Java, which allows for flexibility in
the tools used. For logical reasoning we use SWI-Prolog, which provides a JNI
interface, so it can be accessed from Java.

3.1 LT rust and LDomain in OWL

To be able to gossip, the agents need two separate languages. One for the trust
evaluations and one domain dependent language to talk about interactions. Of-
ten agents will be developed for domains where there already is a fairly exten-
sive domain language available, so it makes sense to adopt this language as our
LDomain. If there is no such global language, then agents will need to align their
domain languages first. This is a separate problem and its solution is outside
the scope of this paper. We assume there is a shared LDomain language and
we follow the W3C recommendation for its specification: we use the Web On-
tology Language (OWL) [13]. Statements in LTrust and LDomain are expressed
in a subset of OWL-DL in which we will not allow quantification at this point,
because our learning algorithms are unable to deal with quantified variables in
the examples. This is not a very big restriction, because we are always gossiping
about one specific target agent, based on certain specific interactions and we can
give the specific instance, without using quantification.

A remark about the semantics of LTrust: while we use OWL-DL to specify
the language, we only fix the semantics of the connectives. The meaning of the
predicates themselves is precisely what we want to align.

3.2 Clustering and Learning

As described in Section 2, agglomerative clustering methods best fit our needs.
In this family, complete-link clustering [14] creates balanced clusters without
requiring the computation of some form of centroid or medioid of the cluster.
The calculation of such a centroid in our example is computationally intensive,
as it is equivalent to generalizing the head of the SRAs. We will still need to
compute this generalization, but not when using it as a distance measure, but
only once the cluster is finalized. A drawback of complete-link clustering is that
it deals badly with outliers. However, we are clustering on the agent’s own trust
evaluations. If there are outliers, they will not be in these evaluations, but rather
the SRA itself will be an outlier. We will need to deal with the outliers in the
learning of the body, but we should not encounter them when clustering. Our im-
plementation is based on the algorithm described in [15], sufficiently optimized,

115

in Java. The distance measure on the clusters depends on the distance measure
on the elements, which are the statements in LTrust. Our implementation runs
in O(n2) time, where n is the number of SRAs formed from communication.

Aleph and Tilde For the generalization of the heads of all SRAs in the cluster
we use Aleph [16], because it functions well at the “learn from example” set-
ting. For learning the generalization of the bodies we use Tilde [17], which was
designed for “learning from interpretation”. Because the clusters aren’t known
beforehand and both these algorithms run with a specific format of input files,
we generate the files for each cluster at runtime. Then we call the algorithm on
the newly created files. The output is then read and reformatted so the head and
body together form a complete Prolog clause. If both steps succeed, they result
in a GRA, which covers the SRAs in the cluster. The algorithm terminates when
all SRAs are covered in this manner.

3.3 Example environment

So far we have explained the implementation of the algorithm. To test it we
designed an experimentation environment with a specific trust and domain lan-
guage, a way of generating interactions and agents with different trust models.
We base this environment on the following example scenario: Alice is looking
for a keynote speaker for a conference and wants advice from Bob on who is
trustworthy. This forms the basis of our example, with Bob and Alice trust-
ing different agents based on different criteria. We form a random graph of
interactions, which may range from an extremely sparse to a complete network,
depending on the chance agents interact. The number of interactions between
agents is customizable in a configuration file by varying the number of agents
in the system and the chance agents interact. So far we haven’t added support
for varying the topology of the network, because testing the alignment depends
mainly on the quantity of interactions, rather than the shape of the network.
The ontology for LDomain is defined in Figure 2. It is kept deliberatively small
and describes only objective properties of the interactions.

Based on these interactions, the agents compute trust evaluations, which is
communicated using LTrust. In this example LTrust only has one predicate: im-
age(Target, Value)1, with V alue ∈ [1, 10]. The distance between two elements
image(T1, V1) and image(T2, V2) is defined as |V1−V2|

10 . This is the normalized
distance between the two values. We purposefully disregard which agent is evalu-
ated, because we want the clusters to generalize over all similar trust evaluations,
ignoring which agent is being evaluated.

Trust Models We specify the trust models in our environment using Pro-
log programs. The relevant parts of the two models we use in our example are
outlined in pseudocode in Table 1. The interactions are described in LDomain,
which allows for 3 types of interactions: writing an article, a lecture and a per-
sonal interaction. These are observed and the participants in the interactions
1 image is the trust evaluation of the target that the agent believes in

116

Fig. 2. The ontology for LDomain, in a UML-like representation

are evaluated in the trust models. We see that there are correspondences be-
tween the trust models, such as an interaction resulting in a high impact article,
supports a high value image in both models. However we also see that Alice’s
model is less general than Bob’s in this aspect: any article with an impact factor
higher than 6 results in Alice evaluating the authors thereof with an image with
value 10 (line A1). Bob’s model splits this into articles with an impact factor
higher than 8 (B1) and an impact factor between 6 and 8 (B4). Vice versa, Bob’s
trust model is quite general regarding lecture interactions where the target to be
evaluated is the lecturer (B9). Any such interaction supports a trust evaluation
with an image of 5. Alice’s trust model considers such interactions in a more
fine-grained manner, using various different rules (A2, A3, etc.). Finally we see
a large difference between the trust models in that Bob’s trust model has quite
a few trust evaluations supported by lecture interactions where the target is a
student (B2, B3, etc.). These simply do not correspond to any trust evaluation in
Alice’s model. These characteristics make these trust models useful for analyz-
ing the running of the algorithm, because they cause the problems we typically
expect to encounter when aligning.

Alice and Bob’s knowledge bases contain the shared interactions between
them. Each agent can therefore, based on these interactions, compute all possible
trust evaluations for all agents in the system. In our experiments we consider
Alice aligning with Bob, so we have Bob compute his trust evaluations and
generate all the messages he can. These are sent to Alice, who uses them as
input for the alignment algorithm. The reverse problem of Bob aligning with
Alice is analogous.

3.4 Experiments and analysis

We run the above environment with stop criteria 0, 0.1, 0.5, 0.8 and 0.9. These
give the increasing internal distance of the clusters we will attempt to learn
generalizations for. The interactions are a randomly generated set, based on

117

Alice’s trust model

A1 image(T, 10) ← article(I), author(I, T) impact_factor(I, Imp), Imp > 6.
A2 image(T, 8) ← lectured(I), lecturer(I, T), student_eval(I, excellent).
A3 image(T, 8) ← lectured(I), lecturer(I, T), grade(I, G), G > 6.
A4 image(T, 7) ← personal(I), participant(I, T), activity_type(I, recreational).
A5 image(T, 7) ← lectured(I), lecturer(I, T), student_eval(I, good).
A6 image(T, 7) ← article(I), authors(I, T), impact_factor(I, Imp), Imp > 4, Imp < 7.
A7 image(T, 6) ← lectured(I), lecturer(I, T), student_eval(I medium).
A8 image(T, 6) ← article(I), author(I, T), evaluated(I, accepted).
A9 image(T, 5) ← article(I), author(I, T), evaluated(I, rejected).
A10 image(T, 4) ← personal(I), participant(I, T), activity_class(I, competitive).
A11 image(T, 3) ← lectured(I), lecturer(I, T), student_eval(I, bad).
A12 image(T, 1) ← lectured(I), lecturer(I, T), student_eval(I, awful), !.

Bob’s trust model

B1 image(T, 10) ← article(I), author(I, T), impact_factor(I, Imp), Imp > 8.
B2 image(T, 10) ← lectured(I), studied(I, T), student_eval(I, excellent).
B3 image(T, 10) ← lectured(I), studied(I, T), grade(I, G), G > 8.
B4 image(T, 8) ← article(I), author(I, T), impact_factor(I, Imp), Imp > 6.
B5 image(T, 8) ← personal(I), participant(I, T), activity_type(I, recreational),

activity_class(I, cooperative).
B6 image(T, 7) ← lectured(I), studied(I, T), student_eval(I, good).
B7 image(T, 7) ← personal(I), participant(I, T), activity_class(I, cooperative).
B8 image(T, 7) ← personal(I), participant(I, T), activity_type(I, recreational).
B9 image(T, 5) ← lectured(I), lecturer(I, T).
B10 image(T, 5) ← article(I), author(I, T), evaluated(I, accepted).
B11 image(T, 4) ← lectured(I), studied(I, T), grade(I, G), G < 6.
B12 image(T, 4) ← lectured(I), studied(I, T), student_eval(I, medium).
B13 image(T, 4) ← lectured(I), studied(I, T), student_eval(I, bad).
B14 image(T, 2) ← personal(I), participant(I, T), activity_type(I, professional),

activity_class(I, competitive).
B15 image(T, 2) ← lectured(I), studied(I, T), student_eval(I, awful).
B16 image(T, 1) ← article(I), author(I, T), evaluated(I, rejected).

Table 1. Two sample trust models in Prolog-like syntax

different configuration settings. We use 60% of these interactions as our training
set and 40% as the control set. We run thirty trials at each configuration and
Table 2 shows a summary of the results, where each row is the average over
the trials run. The first two columns describe the configuration and the third
the number of interactions the configuration results in. The other columns we
describe below.

Num. agents Interact chance Interact number Coverage training Coverage control Accuracy

10 10% 14 75% 45% 0.99

10 30% 40 89% 70% 0.97

10 70% 95 99% 95% 0.92

25 1% 7 69% 41% 0.96

25 5% 44 78% 66% 0.95

25 10% 96 96% 93% 0.95

25 30% 275 94% 94% 0.92

25 50% 451 98% 98% 0.87

50 2% 74 76% 65% 0.96

50 10% 373 97% 97% 0.94

50 30% 1096 100% 100% 0.99

Table 2. Summary of results

Coverage of the Alignment Our algorithm always results in a “catch all”
GRA at the highest stop criterion of 0.9. All SRAs are covered by this rule,
however it adds no information. We discuss this further in Section 3.4. The
coverage in Table 2 is calculated as the percentage of SRAs that are covered by
any GRA other than this “catch all” GRA.

We see that even in a fairly small shared network, such as the one with
10 agents and a 30% interaction chance the alignment achieves a fairly high
coverage of 70%. This was based on an average of 40 interactions which led to
an average of 48 SRAs for aligning. The networks smaller than that do not allow
for good alignment. With 10 agents and 10% chance of interacting the coverage
drops below 50% with quite a few instances of runs with 0% coverage of the

118

training set. This is based, on average, on 14 interactions. The trials with 25
agents and 1% chance of interaction suffer even more under the network size:
with only around 7 interactions to base the alignment on, 5 of the 30 trials did
not complete. Of course, by using all interactions, and not just 60%, an agent
can improve its learning capacity in small networks, but in this example around
20 interactions is the minimum for a reasonable alignment. This improves fairly
rapidly if agents have more shared interactions, because, as is to be expected, the
quality of the alignment is mainly dependent on the number of interactions. We
see for instance that the trials with 25 agents and a 5% chance of any two agents
interacting on average finds an alignment that covers 66%, a vast improvement
over the network with 1% interaction chance. Number of interactions is not the
only factor influencing the coverage of the alignment. Sometimes the training
set does not allow for a good alignment and the training set has bad coverage.
Luckily, there is a correlation between the coverage of the training set and the
control set: the Pearson’s correlation coefficient is 0.512 and if we do not take
the data from the two smallest sets into account, which do not result in decent
alignments, the correlation is stronger, with a coefficient of 0.723. In Figure 3(a)
we have graphed the coverage of the training and control set for trials with a small
sized network: with 50 agents and a 2% chance of interacting, displaying this
correlation. This correlation is useful, because an agent can know the coverage
of its training set and thus if the training set has low coverage it can expect bad
results when applying the alignment.

The knowledge about the training set is useful. If the training set is small or
has low coverage the agent knows that its alignment probably has a low coverage
for any future messages from the other agent too. Furthermore, it can attempt
to improve the alignment by obtaining information about more interactions and
the other agent’s trust evaluations based on them. We show the improvement
an agent can achieve by ignoring badly covered training sets. In Table 3 we
give the average coverage of the control sets if we leave out all alignments that
cover less than 70% of the training set, showing a marked improvement in the
trials run in smaller networks. In medium networks with over 100 interactions
we can achieve a similar improvement by leaving out all alignments with less
than 100% coverage of the training set. In the largest networks, with over 500
interactions the coverage of both sets is so near perfect that there is no significant
improvement.

Experiment 10, 10% 10, 30% 10, 70% 25, 1% 25, 5%
Coverage 59% 75% 96% 49% 77%
Number ignored 9 5 2 9 12

Experiment 25, 10% 25, 30% 25, 50% 50, 2% 50, 10%
Coverage 97% 98% 100% 81% 100%
Number ignored 3 2 6 12 5

Table 3. Corrected coverage of control set, by removing the trials with bad coverage
of the training set
2 With 95% confidence we know the correlation coefficient is between 0.44 and 0.59
3 With 95% confidence we know the correlation coefficient is between 0.66 and 0.77

119

(a) Coverage of training and control sets (b) Coverage vs. accuracy

Fig. 3. Graphs showing various aspects of the coverage

Accuracy of the Alignment As mentioned in Section 2, the accuracy of a
GRA is directly proportional to the maximum distance of the SRAs it covers, in
fact, the accuracy is 1− s, with s the stop criterion used to generate the cluster of
SRAs. We define the accuracy of the alignment as the average of the accuracy of
the GRAs used to translate each message in the control set. Thus any uncovered
message is not taken into account in the accuracy calculation. In most cases
we find an extremely accurate alignment. Often, the highest accuracy is when
coverage is low, while the alignments with higher coverage have a lower overall
accuracy. This can be explained by looking at the way the learning algorithm
works: when we decrease accuracy by moving to a large clustering distance,
any GRAs learned will have a higher coverage. Most alignments in the small
and medium networks with a high coverage have one or two GRAs with lower
accuracy. We have plotted the relation between accuracy and coverage for a few
trials in Figure 3(b), where we see that lower accuracy occurs more often at high
coverage.

Additionally, for our example, we can look at the trust models to see that
an accuracy of 100% is a theoretical impossibility. In some situations, especially
those concerning lecture interactions, Alice’s trust model is far preciser than
Bob’s, leading to messages from Bob necessarily being aligned with a lower
accuracy. We expect this to be a general feature of two different trust models.

If we take coverage into consideration, the average accuracy drops to around
40% for the smallest data sets. Larger networks aren’t influenced as much by
this correction, because coverage tends to be higher and accuracy already lower.
The large networks have similar accuracy before and after the correction: around
90%.

Unaligned messages As described in Section 2, there is another measure of the
coverage of the alignment, which we have so far ignored: the messages Bob sends

120

which are based on interactions which support no corresponding trust evaluation
for Alice, for instance in our example Alice cannot use any trust evaluation Bob
bases on lecture interactions in which the student is evaluated. These cases are
not taken into account in the data displayed above, because there are two ways of
considering them. One possibility is to consider any such message as successfully
aligned: the agent knows these messages do not result in a corresponding trust
evaluation. We could therefore use the learner to find a generalization of these
messages in the same manner as we learn the body of messages that do result in
an alignment. In this example these messages can easily be generalized: they are
either the lecture interactions described above, or personal interactions with
a cooperative and professional activity. Learning this generalization results in a
100% coverage for both training and control groups and thus Alice can know
in the future when a message does not correspond to an own trust evaluation.
The other possibility is for an agent to consider such messages unaligned. This
results in an overall lower coverage of both the training and control sets. In this
example 21% of the messages Bob sends do not result in a trust evaluation for
Alice.

We prefer the first way of considering these messages, because knowing in
which situations a trust evaluation of the other agent does not correspond to
any trust evaluation in the own agent is valuable information in and of itself
and can even be considered as a successful alignment: knowing when there is no
information is also information!

4 Conclusion

The problem we address in this paper is that of aligning trust models. We de-
scribe the implementation of an alignment algorithm and have performed a pre-
liminary set of experiments with it. The experiments show that even at low
numbers of interactions the coverage and accuracy of the alignment is quite
high, although for a reliable 100% alignment it requires large amounts of in-
teractions. Luckily, just by analyzing the coverage of the training set, we can
estimate whether the alignment will be effective. This gives the agent an extra
tool in the application of the alignment. Furthermore we see that the average
accuracy is high for aligned messages.

The trust models we used are simple and in the future we will test the
algorithm with actual trust models, used in the community. We will also test it
in a scenario with real data, rather than randomly generated interactions. This
approach will necessitate more robust accuracy checks and outlier detection,
because in these experiments we did not deal with noise or inaccurate trust
evaluations. The ILP algorithms used can be configured to deal with noisy data,
however we did not do this in these experiments: we only use results from Tilde
with a 100% coverage of the examples, by allowing results with less coverage, we
would need to combine the accuracy results from Tilde with our own accuracy
calculations. Because there are various ways of doing this and it was unnecessary
for the example scenario we have not considered this.

121

References

1. Sabater-Mir, J., Paolucci, M., Conte, R.: Repage: REPutation and imAGE among
limited autonomous partners. JASSS - Journal of Artificial Societies and Social
Simulation 9(2) (2006)

2. Hübner, J.F., Lorini, E., Herzig, A., Vercouter, L.: From cognitive trust theories to
computational trust. In: Proc. of the Twelfth Workshop ”Trust in Agent Societies”
at AAMAS ’09, Budapest, Hungary (2009) 55–67

3. Pinyol, I., Sabater-Mir, J.: Arguing about reputation. the lrep language. In Artikis,
A., O’Hare, G., Stathis, K., Vouros, G., eds.: Engineering Societies in the Agents
World VIII: 8th International Workshop, ESAW 2007. Volume 4995 of LNAI.,
Springer Verlag (2007) 284–299

4. Casare, S., Sichman, J.: Towards a functional ontology of reputation. In: AAMAS
’05: Proc. of the fourth international joint conference on Autonomous Agents and
Multiagent Systems, Utrecht, The Netherlands, ACM (2005) 505–511

5. Nardin, L.G., Brandão, A.A.F., Muller, G., Sichman, J.S.: Effects of expressiveness
and heterogeneity of reputation models in the art-testbed: Some preliminar exper-
iments using the soari architecture. In: Proc. of the Twelfth Workshop ”Trust in
Agent Societies” at AAMAS ’09, Budapest, Hungary (2009)

6. Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities. Pro-
ceedings of the 33rd Hawaii International Conference on System Sciences 6 (2000)
4–7

7. Atencia, M., Schorlemmer, M.: I-SSA: Interaction-Situated Semantic Alignment.
In: OTM 2008, Part I. Volume 5331 of LNCS., Springer (2008) 445–455

8. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems.
Cambridge University Press (1997)

9. Schorlemmer, M., Kalfoglou, Y., Atencia, M.: A formal foundation for ontology-
alignment interaction models. International Journal on Semantic Web and Infor-
mation Systems 3(2) (2007) 50–68

10. Koster, A., Sabater-Mir, J., Schorlemmer, M.: A formalization of trust alignment.
In Sandri, S., Sànchez-Marré, M., Cortes, U., eds.: AI Research and Development.
Proc. of the Twelfth International Congress of the Catalan Association of Artificial
Intelligence (CCIA 2009). Volume 202 of Frontiers in Aritficial Intelligence and
Applications., Cardona, Spain, IOS Press (2009) 169–178

11. Koster, A., Sabater-Mir, J., Schorlemmer, M.: Inductively generated trust align-
ments based on shared interactions (extended abstract). In: Ninth International
Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS
2010), Toronto, Canada, IFAAMAS (In Press)

12. De Raedt, L.: Logical and Relational Learning. Springer Verlag (2008)
13. McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview.

http://www.w3.org/TR/owl-features/, retrieved July 27, 2009
14. Defays, D.: An efficient algorithm for a complete link method. The Computer

Journal 20(4) (1977) 364–366
15. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3) (September

1967) 241–254
16. Srinivasan, A.: The aleph manual. http://web.comlab.ox.ac.uk/oucl/research/areas/

machlearn/Aleph/, retrieved 9/2/2009 (June 2004)
17. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele,

H.: Improving the efficiency of inductive logic programming through the use of
query packs. Journal of Artificial Intelligence Research 16 (2002) 135–166

122

