
Journal of Artificial Intelligence Research 76 (2023) 721-759 Submitted 06/2022; published 03/2023

On the Complexity of Finding Set Repairs for Data-Graphs

Sergio Abriola sabriola@dc.uba.ar

Maria Vanina Martinez mvmartinez@dc.uba.ar

Nina Pardal npardal@dc.uba.ar

ICC CONICET, Universidad de Buenos Aires

Santiago Cifuentes scifuentes@dc.uba.ar

Edwin Pin Baque epin@dc.uba.ar

Departamento de Computación, Universidad de Buenos Aires

Abstract

In the deeply interconnected world we live in, pieces of information link domains all
around us. As graph databases embrace effectively relationships among data and allow
processing and querying these connections efficiently, they are rapidly becoming a popular
platform for storage that supports a wide range of domains and applications. As in the
relational case, it is expected that data preserves a set of integrity constraints that define
the semantic structure of the world it represents. When a database does not satisfy its
integrity constraints, a possible approach is to search for a ‘similar’ database that does
satisfy the constraints, also known as a repair. In this work, we study the problem of
computing subset and superset repairs for graph databases with data values using a notion
of consistency based on having a set of Reg-GXPath expressions as integrity constraints.
We show that for positive fragments of Reg-GXPath these problems admit a polynomial-
time algorithm, while the full expressive power of the language renders them intractable.

1. Introduction

The availability of high volumes of interconnected data allows the possibility of develop-
ing applications that go well beyond semantic indexing and search and involve advance
reasoning tasks on top of existing data. Alternative data models such as graph databases
are becoming popular as they allow to effectively represent and access this type of data.
Graph databases are specially useful for applications where the topology of the data is
as important as the data itself, such as social networks analysis (Fan, 2012), data prove-
nance (Anand et al., 2010), and the Semantic Web (Arenas & Pérez, 2011). The structure
of the database is commonly queried through navigational languages such as regular path
queries or RPQs (Barceló, 2013) that can capture pairs of nodes connected by some specific
kind of path. These query languages can be extended to add more expressiveness, while
usually adding extra complexity in the evaluation as well. For example, C2RPQs are a
natural extension of RPQs defined by adding to the language the capability of traversing
edges backwards and closing the expressions under conjunction (similar to relational CQs).

RPQs and its most common extensions, C2RPQs and NREs (Barceló et al., 2012), can
only act upon the edges of the graph, leaving behind any possible interaction with data
values in the nodes. This led to the design of query languages for the case of data-graphs

©2023 AI Access Foundation. All rights reserved.

Abriola, Martinez, Pardal, Cifuentes & Pin

(i.e. graph databases where data lies both in the paths and in the nodes themselves), such
as REMs and Reg-GXPath (Libkin et al., 2016).

Advanced computational reasoning tasks usually require the management of inconsistent
information. Reasoning with or in the presence of inconsistent knowledge bases has been the
focus of a vast amount of research in Artificial Intelligence and theory of relational databases
for over 30 years. However, in the last years, the area has flourished focusing on logical
knowledge bases and ontologies (Bienvenu et al., 2019; Lembo et al., 2010; Lukasiewicz
et al., 2022).

As in the relational case, consistency is related to the notion of integrity constraints
that express some of the semantic structure the data intends to represent. In the context
of graph databases, these constraints can be expressed through path constraints (Abiteboul
& Vianu, 1999; Buneman et al., 2000). When a database does not satisfy its integrity
constraints, a possible approach is to compute a ‘similar’ database that does satisfy the
constraints. In the literature, such a database is called a repair (Arenas et al., 1999), and
in order to define it properly one has to determine the precise meaning of ‘similar’.

Consider for example the data-graph in Figure 1: here the nodes represent people,
and the edges model different kinds of relationships between them, such as brotherhood or
parenthood. Observe that in this data-graph, every pair of nodes (x, y) connected with a
sibling of edge directed from x to y is also connected with a sibling of edge directed from
y to x. This property seems reasonable, since the brotherhood relation is symmetric. In
addition, the nodes (Mauro, Julieta) are connected through a nibling of edge directed to
Julieta, which it is also a property we would expect to find considering that Mauro’s dad,
Diego, is the brother of Julieta.

Diego

MauroMaŕıa

Julieta

child
of

ch
ild

of

n
ib
li
n
g
of

sibling of

sibling of

sibling of

sibling of

Figure 1: An example of a data-graph where the nodes represent people and the edges family
relationships.

The structure that this particular data-graph has to preserve in order to properly capture
our notions of sibling of and nibling of can be stated through path expressions that
capture those pairs of nodes that satisfy the semantic constraints. In particular, the pair
(Maŕıa, Julieta) does not satisfy the semantics of the nibling of relation, since Diego is
also Maŕıa’s parent but there is no nibling of edge from Maŕıa to Julieta. This could be
‘fixed’ by adding the nibling of edge from Maria to Julieta, or by rather deleting the edge

722

On the Complexity of Finding Set Repairs for Data-Graphs

child of directed from Maŕıa to Diego. Naturally, we want to preserve as much data as
possible from our original data-graph.

There are different notions of repairs in the literature, among others, set-based re-
pairs (Ten Cate et al., 2012), attribute-based repairs (Wijsen, 2002), and cardinality based
repairs (Lopatenko & Bertossi, 2007). In this work, we study two restrictions of the prob-
lem of finding a set-based repair G′ of a graph database G under a set of Reg-GXPath
expressions R considered as path constraints: when G′ is a subgraph of G and when G′ is
a super-graph of G. These kinds of repairs are usually called subset and superset repairs,
respectively (Barceló & Fontaine, 2017; Ten Cate et al., 2012). Since repairs may not be
unique, it is possible to impose an order over the set of repairs and look for an ‘optimum’
repair over such order (Flesca et al., 2007; Staworko et al., 2012).

Reg-GXPath is a query language developed for graph databases with data values in the
nodes (Libkin et al., 2016) largely inspired by XPath (Benedikt & Koch, 2009), a language
for traversing data trees (i.e. XML documents). Reg-GXPath’s expressiveness is quite
understood in relation to other query languages (Libkin et al., 2016), but there are still
some open problems related to it, such as query containment and query equivalence. Two
other candidates for this work were the RQMs and RDQs (Libkin & Vrgoč, 2012), and
our notion of consistency can be defined based upon those languages. RQMs are more
expressive than Reg-GXPath regarding its capabilities of interacting with data values, and
its evaluation belongs to PSpace, while RDQs are less expressive than Reg-GXPath (taking
into account both topological and data aspects), and its complexity is lower. The main
advantage of Reg-GXPath in comparison with other query languages is its great balance
between expressiveness and complexity of evaluation (being polynomial on the graph and
query size), as well as the fact that it allows to interact with the topology of the graph and,
at the same time, to reason about the data that it contains.

Regarding its topological component, Reg-GXPath is as expressive as most of the lan-
guages that can be evaluated in polynomial time, such as 2RPQs and NREs (Barceló, 2013),
allowing the description of regular and nested paths. It also allows negation, which is a pow-
erful and uncommon tool among navigational languages. As we can see from the results,
the inclusion of such feature makes reasoning problems way harder (see Table 1). Regard-
ing the interaction with data values, most query languages usually allow for some form of
data tests (as RDQ does), but Reg-GXPath also admits data comparison between nodes.
Nonetheless, features from RQMs, such as memory and variable usage and replacement in
the formula (i.e. the capability of instantiating variables in a path formula with data values
found alongside the navigation), cannot be simulated in this context.

The specific contributions of this work are the following:

• We define a model for graph databases with data values and introduce a notion of
consistency over this model, based on a set of Reg-GXPath expressions that capture
a significant group of common integrity constraints that appear in the literature.

• Given a graph database G and a set of constraints R, we study the problem of com-
puting a subset repair (respectively, a superset repair) G′ of G.

• We show that depending on the expressiveness of the restrictions (whether they
use the full power of Reg-GXPath or only the fragment without negation known as

723

Abriola, Martinez, Pardal, Cifuentes & Pin

Reg-GXPathpos), these problems admit a polynomial-time algorithm or rather turn
out to be intractable, even undecidable.

The rest of this work is organized as follows. In Section 2 we introduce the necessary
preliminaries and notation for the syntax and semantics for our data-graph model as well
as the definitions of consistency and different types of repairs. We also show, by means
of examples, that the proposed language can capture a group of integrity constraints that
are common in the database literature. In Section 3 we study the complexity of the repair
computing problem for both subset and superset repairs. Finally, in Section 4 and Section 5
we discuss related work and conclusions, respectively.

2. Definitions

Let us fix a finite set of edge labels Σe and a countable (either finite or infinite enumerable)
set of data values Σn, sometimes referred to as data labels, both of which we assume non-
empty, and such that Σe ∩Σn = ∅. A data-graph G is a tuple (V,Le, D) where V is a finite
set of nodes, Le is a mapping from V × V to P(Σe) defining the edges of the graph, and
D is a function mapping the nodes from V to data values from Σn. Given a data-graph
G = (V,Le, D), we will sometimes consider the data-graph GV ′ , with V ′ ⊆ V , defined as

GV ′ = (V ′, L|V ′×V ′ , D|′V). Intuitively, GV ′ is the subdata-graph of G induced by the set V ′.
Path expressions of Reg-GXPath are given by:

α, β = ϵ | | a | a− | [φ] | α . β | α ∪ β | α ∩ β | α∗ | α | αn,m

where a iterates over every label of Σe, n and m over all possible natural numbers and φ is
a node expression defined by the following grammar:

φ,ψ = ¬φ | φ ∧ ψ | ⟨α⟩ | c= | c̸= | ⟨α = β⟩ | ⟨α ̸= β⟩ | φ ∨ ψ

where α and β are path expressions (i.e. path and node expressions are defined by mutual
recursion) and c iterates over Σn. If we only allow the Kleene star to be applied to labels
and their inverses (the production a

−), then we obtain a subset of Reg-GXPath called
Core-GXPath. The semantics of these languages are defined in (Libkin et al., 2016) in a
similar fashion as the usual regular languages for navigating graphs (Barceló, 2013), while
adding some extra capabilities such as the complement of a path expression α and data tests.
The ⟨α⟩ operator is the usual one for nested regular expressions (NREs) used in (Barceló
et al., 2012): intuitively, for a node expression ⟨α⟩ to be satisfied in a node v of a data-graph
G there must exist in G a path α starting at v. Given a data-graph G = (V,L,D), the
semantics of Reg-GXPath expressions are:

JϵKG = {(v, v) | v ∈ V }
J KG = {(v, w) | v, w ∈ V,L(v, w) ̸= ∅}
JaKG = {(v, w) | a ∈ L(v, w)}
Ja−KG = {(w, v) | a ∈ L(v, w)}
Jα∗KG = the reflexive transitive closure of JαKG

724

On the Complexity of Finding Set Repairs for Data-Graphs

Jα.βKG = JαKGJβKG
Jα ∪ βKG = JαKG ∪ JβKG
Jα ∩ βKG = JαKG ∩ JβKG
JαKG = V × V \ JαKG
J[φ]KG = {(v, v) | v ∈ JφKG}

Jαn,mKG =
m⋃
k=n

(JαKG)
k

J⟨α⟩KG = {v | ∃w ∈ V, (v, w) ∈ JαKG}
J¬φKG = V \ JφKG
Jφ ∧ ψKG = JφKG ∩ JψKG
Jφ ∨ ψKG = JφKG ∪ JψKG
Jc=KG = {v ∈ V | D(v) = c}

Jc̸=KG = {v ∈ V | D(v) ̸= c}
J⟨α = β⟩KG = {v ∈ V | ∃v′, v′′ ∈ V , (v, v′) ∈ JαKG, (v, v

′′) ∈ JβKG, D(v′) = D(v′′)}
J⟨α ̸= β⟩KG = {v ∈ V | ∃v′, v′′ ∈ V , (v, v′) ∈ JαKG, (v, v

′′) ∈ JβKG, D(v′) ̸= D(v′′)}

Notice that we are using the standard composition of relations in the definition of Jα.βKG
and Jαn,mKG. More precisely, given two binary relations R1, R2 over VG, we define R1R2 as

{(x, z) : ∃y ∈ VG, (x, y) ∈ R1 and (y, z) ∈ R2}, and Rk as Rk ≡ Rk−1R for k > 0, where
R0 = JϵKG = {(x, x) : x ∈ VG}.

As in (Libkin et al., 2016), we denote the sizes of path expressions α and node expressions
φ by |α| and |φ|, respectively, and define them to be the number of symbols in α and φ,
respectively (equivalently, we could define them as the sizes of the parse trees of those
expressions). The size of a counter is the number of bits representing it, so |αn,m| =
|α|+ log n+ logm.

We denote by α⇛ β the path expression β∪α, and by φ⇒ ψ the node expression ψ∨¬φ.
The expression α⇛ β works in an analogous way as the logical implication operator: a pair
of nodes (v, w) satisfy α⇛ β over a data-graph G if (v, w) ∈ JβKG whenever (v, w) ∈ JαKG.
Or, equivalently, if (v, w) belongs to Jβ ∪ αKG.

We also note an expression a as ↓a in order to easily distinguish the ‘path’ fragment
of the expressions. For example, the expression child of [Maria

=] sister of, which would
capture pair of nodes (v, w) such that there exists another node z with D(z) = Maria

and edges vz and zw with labels child of and sister of respectively, will be noted as
↓child of [Maria

=] ↓sister of. Also, we will sometimes denote an expression a
− as ↓−a .

Naturally, the expression α∩β can be rewritten as α ∪ β while preserving the semantics,
and something similar happens with the operators ∧ and ∨ for the case of node expressions
using the ¬ operator. However, we still include the definitions of all these operators for
this grammar, since we will be interested in the sequel in a fragment of Reg-GXPath called
Reg-GXPathpos. This fragment shares the same grammar with the exception of the α and
¬φ expressions. Thus, we will not be able to ‘simulate’ the ∩ operator in Reg-GXPathpos

unless it is present in the original Reg-GXPath grammar.

725

Abriola, Martinez, Pardal, Cifuentes & Pin

Example 1. Using Core-GXPath, we could write an expression capturing every “transitive
friend” in a social network using α =↓+friend of. This is a common example of regular
expressions, and it does not require most of Core-GXPath capacities. We can enhance our
example by asking for an expression that captures those pairs of nodes who are “transitive
friends” and also follow some other specific node with data value x.

α = [⟨↓follows [x
=]⟩] ↓+friend of [⟨↓follows [x

=]⟩]

In this case, we are already using the data tests and the nesting operator.

Another interesting difference between most regular languages and Core-GXPath is
that we can easily obtain the complement of a path expression. Since regular languages are
closed under complement, most navigation languages can express the complement of any
expression, but this is not generally built into the grammar.

Example 2. Given a social database where we have family links, we can capture those
nodes that do not have any ancestor node with the same name. We do so by using the
following node expression:

φ = ¬⟨ϵ =↓+father of⟩

Note that this cannot be expressed by most navigational languages, since they do not have
a way of comparing data values.

Consistency Given a specific database, we may want a node or path expression to capture
all the nodes from the data-graph, since it could represent some structure we expect to find
in our data. This kind of Core-GXPath or Reg-GXPath expression would work as an
integrity constraint defining semantic relations among our data. A data-graph in which an
expression α, used as a constraint, does not capture all nodes may be called inconsistent
with respect to α. In general, we define the notion of consistency in the following way:

Definition 3 (Consistency). Let G be a data-graph and R = P ∪ N a finite set of re-
strictions, where P and N consist of path and node expressions, respectively. We say that
(G,R) is consistent, noted as G |= R, if the following conditions hold:

• ∀x ∈ VG and φ ∈ N , we have that x ∈ JφK

• ∀x, y ∈ VG and α ∈ P , we have that (x, y) ∈ JαK

Otherwise we say that G is inconsistent w.r.t. R.

In the remainder of this work we will simply say that G is (in)consistent, whenever R
is clear from the context.

Example 4. Consider a film database (see Figure 2), where some nodes represent people
from the film industry such as actors or directors, and others represent movies or docu-
mentaries. If we want to make a cut from that graph that preserves only actors who have
worked with Philip Seymour Hoffman in a film from Paul Thomas Anderson, then we want
the following formula to be satisfied:

φ = ⟨↓type [actor=]⟩ ⇒ ⟨↓acts in ⟨↓directed by [Anderson=]⟩ ↓−acts in [Hoffman=]⟩

726

On the Complexity of Finding Set Repairs for Data-Graphs

HoffmanActor

Joaquin Phoenix Julianne Moore

Magnolia

The Master

Film

Anderson

type

ty
pe

type

ac
ts
in

acts in

directed by

di
re
ct
ed
by

ac
ts
in

type

type

acts in

Figure 2: In this data-graph φ is satisfied, since both Phoenix and Moore have worked with
Hoffman in a film from Anderson (respectively through ‘The Master’ and ‘Magnolia’). Note that
the restriction also applies to Hoffman, so it is required that he participates in any film from Anderson
in order to satisfy the constraint.

Example 5. All Regular Path Constraints (RPCs) considered in (Barceló & Fontaine, 2017)
can be written as Reg-GXPath expressions, since the language is capable to express impli-
cations of the form ‘α1 ⇛ α2’ where αi is a 2RPQ for i ∈ {1, 2}. In particular, considering
that sibling of might represent either being brother of or sister of indistinctly, the con-
straints from Example 1 in (Barceló & Fontaine, 2017) can be written as Core-GXPath ex-
pressions in a straightforward way: the symmetry of the sibling of relation can be stated as
α =↓sibling of⇛ ↓

−
sibling of, and the nibling condition as β =↓child of↓sibling of⇛↓nibling of.

These are exactly the constraints we wanted to express in Figure 1. Now we can formally
state that the data-graph is inconsistent, since (Maŕıa, Julieta) /∈ JβK. Meanwhile, every
pair (x, y) belongs to JαK.

Deleting the edge (Maŕıa, child of, Diego) would make the graph consistent, since
Maŕıa would no longer be Julieta’s nibling and thus β would be satisfied. On the other
hand, deleting the edge (Diego, sibling of, Julieta) would also fix β, but it would cause α to
not be satisfied anymore, since the brotherhood relation would not be symmetric. Note that
adding the edge (Maria, nibling of, Julieta) would also make the data-graph consistent.

Example 6. We can express restrictions that are similar to foreign keys using Core-GXPath,
relating data values from different entities. Consider a database where we have information
about citizens and cities. We may like to ensure that a person’s nationality coincides with
the country of the city he was born in. This could be captured with the expression:

φ = ⟨↓type [person=]⟩ ⇒ ⟨↓bornInCity↓nation=↓nationality⟩

Example 7. NREs ⊆ Reg-GXPath (Libkin et al., 2016) can express restrictions that take
into account typing and inheritance properties common to the Resource Description Frame-
work (RDF), such as those considered in (Pérez et al., 2010).

Repairs When a graph database G is inconsistent with respect to a set of restrictions R
(i.e. there is a path expression or node expression in R that is not satisfied) we would like to
compute a new graph database G′ consistent with respect to R and that differs minimally

727

Abriola, Martinez, Pardal, Cifuentes & Pin

from G. This new database G′ is usually called a repair of G with respect to R following
some formal definition for the semantics of ‘minimal difference’.

We consider set repairs, in which the notion of minimality is based on the difference
between the sets of nodes and edges. While we could provide a notion of distance between
arbitrary data-graphs via an adequate definition of symmetric difference, it has been the
case that the complexity of finding such repairs is quite high. Thus, it is common to consider
only those set repairs in which one graph is obtained from the other by only adding or only
deleting information (Barceló & Fontaine, 2017; Lukasiewicz et al., 2013; Ten Cate et al.,
2012). This gives raise to subset and superset repairs.

We say that a data-graph G = (V,Le, D) is a subset of a data-graph G′ = (V ′, L′
e, D

′)
(noted as G ⊆ G′) if and only if V ⊆ V ′, and for every pair v, v′ ∈ V holds that Le(v, v

′) ⊆
L′
e(v, v

′) and D(v) = D′(v). In this case, we also say that G′ is a superset of G.

Definition 8 (Subset and superset repairs). Let R be a set of restrictions and G a data-
graph. We say that G′ is a subset repair (respectively, superset repair) or ⊆-repair
(respectively, ⊇-repair) of G if:

• (G′, R) is consistent (i.e. G′ |= R)

• G′ ⊆ G (respectively, G′ ⊇ G)

• There is no data-graph G′′ such that (G′′, R) is consistent and G′ ⊂ G′′ ⊆ G (respec-
tively, G′ ⊃ G′′ ⊇ G)

We denote the set of subset repairs of G with respect to R as ⊆-Rep(G,R) (respectively,
the set of superset repairs as ⊇-Rep(G,R)).

Example 9. In Figure 1, deleting the edge (Maria, child of, Diego) results in a ⊆-repair,
while adding the edge (Maria, nibling of, Julieta) results in a ⊇-repair. Deleting both
(Diego, sibling of, Julieta) and (Julieta, sibling of, Diego) also creates a ⊆-repair, since
this new graph database is consistent with respect to R and is also maximal.

3. Computing Repairs

In this section, we study the computational complexity of the repair computing problem for
a given data-graph and a set of constraints. We start by mentioning a useful fact related
to Reg-GXPath expressions that we use later in this section.

Theorem 10. (Libkin et al., 2016, Theorem 4.3) There is an algorithm such that, given a
Reg-GXPath expression α and a data-graph G, computes the set JαKG in polynomial time
in the size of G and α.

It follows from this result that, given a set of Reg-GXPath expressions R where |R| =
Σα∈R|α| and a data-graph G, it is possible to check if G is consistent with respect to R in
polynomial time.

In the sequel, we study the complexity of the subset and superset repair-computing
problems, which naturally depend on the fragment of Reg-GXPath used to express the

728

On the Complexity of Finding Set Repairs for Data-Graphs

constraints. For some results we consider R fixed, which is a common simplification of
the repair-computing problem usually called the data complexity of the problem (Vardi,
1982). We obtain bounds for both the combined and data complexity of the problems. For
most proofs, we require Σe and Σn to fulfill simple properties, such as having cardinality
bigger than a constant c. We consider these subsets fixed, unless stated otherwise.

3.1 Subset Repairs

Let us consider the empty graph defined as G = (∅, L,D), from now on denoted by ∅. Since
the empty graph satisfies every set of restrictions, we conclude that every graph G has a
subset repair given any set R of restrictions. In order to understand the complexity of
finding such repairs, we define the following decision problem:

Problem: ∃SUBSET-REPAIR
Input: A data-graph G and a set R of expressions from L.
Output: Decide if G has a subset repair G′ ̸= ∅ with respect to R.

The difficulty of this problem depends on the set of expressions L. Throughout this work,
we will assume that L is always a set of expressions included in Reg-GXPath. Observe that
this problem can be reduced to the problem of finding a subset repair of G with respect to
R and, therefore, by studying it we can derive lower bounds for the problem of computing
subset repairs.
∃SUBSET-REPAIR is in NP, since we can ask for a non-empty subset of G that

satisfies R as a positive certificate. In what follows, we prove that this problem is NP-
complete even if considering only path expressions from Reg-GXPathpos.

Theorem 11. There exists a set R of Reg-GXPathpos path expressions such that the problem
∃SUBSET-REPAIR is NP-complete.

Proof. We reduce 3-SAT to ∃SUBSET-REPAIR, considering a fixed set R of restrictions.
Given a 3CNF formula ϕ of n variables x1, . . . , xn and m clauses c1, . . . , cm we want to
construct a data-graph G = (V,L,D) such that G has a non-trivial subset repair with
respect to R if and only if ϕ is satisfiable. We give a description of R once we outline the
structure of the data-graph G, and it will not depend on ϕ.

First, let us define the nodes of the graph. We have two ‘boolean nodes’ for each variable,
representing each possible assignment. In addition, we have one node for every clause.

VG = { ⊥i | 1 ≤ i ≤ n } ∪ { ⊤i | 1 ≤ i ≤ n } ∪ { cj | 1 ≤ j ≤ m }.

In a valid subset repair, only one of the nodes ⊥i or ⊤i will remain, and that will
implicitly define a truth assignment on the variable xi of ϕ.

For convenience, we will now define the edges of the data-graph by describing its set
of edges EG, instead of defining the function LG. Nonetheless, both structures contain the
same information, since e ∈ LG(v, w) ⇐⇒ (v, e, w) ∈ EG. Also, we will need Σe to contain
at least 4 elements, so that Σe ⊇ {needs, exists,unique,valid}.

1

1. It is not necessary that Σe contains an edge label named asneeds, but we rather denote by the name
needs one of the data values in Σe (and do so analogously for the rest of the labels).

729

Abriola, Martinez, Pardal, Cifuentes & Pin

We will split the edges conceptually in 4 groups as follows:

EG = Eneeds ∪ Eexists ∪ Eunique ∪ Evalid
where

Eneeds ={(cj ,needs,⊤i) : xi is a literal of cj}
∪ {(cj ,needs,⊥i) : ¬xi is a literal of cj}

Eexists ={(cj , exists, cj+1) : 1 ≤ j ≤ m− 1}
∪ {(cm, exists,⊥1), (cm, exists,⊤1)}
∪ {((⋆1)i, exists, (⋆

2)i+1) : ⋆
1, ⋆2 ∈ {⊥,⊤}}

∪ {(⊥n, exists, c1), (⊤n, exists, c1)}
Eunique ={(v,unique,w) : (v, w) ̸= (⊤i,⊥i) for 1 ≤ i ≤ n}
Evalid ={(v,valid, w) : (v, w) ̸= (cj , ⋆i) for any 1 ≤ j ≤ m, 1 ≤ i ≤ n, ⋆ ∈ ⊥,⊤}

We will not need the data values, so we set DG(v) = 0 for all v ∈ V .
And, finally, the fixed set of path expressions is R = {β1, β2, β3} where:

β1 =↓
+
exists

β2 =↓unique
β3 =↓valid ∪ ↓needs↓valid

Now we explain the intuition behind this construction. First, we encode the information
of the formula ϕ into the needs edges of our data-graph. For every clause node cj there is
an edge to a boolean node ⊥i (respectively, ⊤i) if and only if the literal ¬xi appears in cj
(respectively without ¬). In a valid subset repair, we want every clause cj to keep at least
one of these edges, since that would imply that cj is satisfied.

A technical problem arises from this approach: it could be the case that not every
node is present in a repair, and thus this might result in the corresponding clause node cj
to be removed. To avoid this scenario, we rely on the exists edges, that form a certain
‘hamiltonian cycle’ along the nodes of the data-graph: any node v can reach any other node
w in G by using exists edges. Note, however, that if any clause node cj is removed from G,
then this property will not hold anymore, and therefore β1 will not be satisfied. Therefore,
every clause node will be present in any non trivial repair.

Also notice that, because of the particular structure of Eexists, in a non trivial repair
a node ⊥i or ⊤i can be missing, as long as the other one is present. Since we want only
one to remain, we added the unique edges and β2. Observe that all pair of nodes satisfy
β2, except for those of the form (⊤i,⊥i) for some i. Therefore, in any non trivial repair
of G either ⊤i or ⊥i will be missing (but not both, since otherwise β1 would break) for all
1 ≤ i ≤ n.

Finally, we need to ensure that the assignment defined by any non-trivial repair satisfies
ϕ. To do this, we use the edges Evalid and β3.

Every pair of nodes belongs to the valid relation, except for those of the form (cj , ⋆i),
where ⋆ ∈ {⊥,⊤}. Moreover, those pairs of nodes will satisfy β3 only if at least one of the

730

On the Complexity of Finding Set Repairs for Data-Graphs

needs edges remains for every cj . This means that in a non-trivial repair, every clause cj
must have a needs edge directed to one of its variables valuations that evaluates cj to ⊤.
Thus, the valuation implicitly defined by the ⊥i,⊤i nodes that remain in the repair will be
a satisfying one.

Intuitively, if there is a non-trivial repair of G with respect to R = {β1, β2, β3}, then
such a repair consists of a selection of boolean nodes for each i such that every clause node
keeps a needs edge. Notice that R is independent of the 3-SAT formula ϕ.

Let us prove that ϕ is satisfiable if and only if G has a non-trivial repair with respect
to R.

=⇒) If ϕ is satisfiable then there is an assignment f of its variables such that ϕ
evaluates to true. Consider the graph G, and delete from G every node ⋆i for ⋆ ∈ {⊥,⊤}
such that f(xi) ̸= ⋆i.

Since we deleted only one boolean node for each i, β1 is satisfied. β2 is satisfied, since
there is no i for which both ⊤i and ⊥i remain in the graph. Finally, since f is a valid
assignment, we know that for every clause node cj one of its needs edges remains, hence β3
is satisfied.

This implies that the subgraph satisfies R, which means that there exists a non-trivial
subset repair of G with respect to R.
⇐=) Let G′ be a non-trivial repair of G with respect to R. Since both β1 and β2

are satisfied, we know that all clause nodes cj belong to G′ and that, for every i, one of

the Boolean nodes belongs to G′. Hence, we define an assignment f on the variables xi
as f(xi) = ⊤ ⇐⇒ ⊤i ∈ VG′ . Since β3 is satisfied, at least one literal from each clause
evaluates to true.

It follows that f is an assignment that evaluates ϕ to true.

Note that this proof only applied the Kleene star operator to edge labels, so it actually
proved the hardness when considering the ‘core’ fragment of Reg-GXPathpos.

This problem is NP-hard when considering only node expressions from Reg-GXPath:

Theorem 12. There exists a set R of Reg-GXPath node expressions such that the problem
∃SUBSET-REPAIR is NP-complete.

Proof. We reduce 3-SAT to ∃SUBSET-REPAIR, considering a fixed set R of node ex-
pressions from Reg-GXPath. Given a 3CNF formula ϕ of n variables x1, . . . , xn and m
clauses c1, . . . , cm, we will construct a data-graph G = (V,L,D) such that G has a non-
trivial subset repair with respect to R if and only if ϕ is satisfiable. We give a description
of R once we outline the structure of the data-graph G. For our reduction we require
that |Σe| ≥ 4 and |Σn| ≥ 4, and in particular we will assume that we have edge labels
{assign,needs true,needs false, exists} ⊆ Σe and data values {var, clause,⊤,⊥} ⊆ Σn.
As in Theorem 11, we will describe the edges of the data-graph by defining the set E of
edges, instead of the function L.

731

Abriola, Martinez, Pardal, Cifuentes & Pin

The data-graph G is defined as

VG ={⊥,⊤} ∪ {xi : 1 ≤ i ≤ n} ∪ {cj : 1 ≤ j ≤ m}
EG =Eassign ∪ Eneeds ∪ Eexists

DG(v) =


var v = xi for some 1 ≤ i ≤ n
clause v = cj for some 1 ≤ j ≤ m
⋆ v = ⋆ for ⋆ ∈ {⊤,⊥}

where:

Eassign ={(xi,assign, ⋆) : ⋆ ∈ {⊤,⊥}}
Eneeds ={(cj ,needs true, xi) : xi is a literal of cj}

∪ {(cj ,needs false, xi) : ¬xi is a literal of cj}
Eexists ={(cm, exists,⊥), (⊥, exists,⊤), (⊤, exists, x1)}

∪ {(xi, exists, xi+1 : 1 ≤ i ≤ n− 1)}
∪ {(xn, exists, c1)}
∪ {(cj , exists, cj+1) : 1 ≤ j ≤ m− 1)}.

The set of node expressions R = {ψ1, ψ2, ψ3} is defined as:

ψ1 =⟨↓exists⟩
ψ2 =[var ̸= ∨ ¬⟨↓assign ̸=↓assign⟩]
ψ3 =[clause̸= ∨ ⟨↓needs true↓assign [⊤]⟩ ∨ ⟨↓needs false↓assign [⊥]⟩]

The data-graph G is a representation of the input formula ϕ, where each variable is
assigned to both boolean values ⊥ and ⊤. A subset repair of G with respect to R will
represent a proper assignment, where each variable node xi has a unique outgoing edge of
label assign. This condition is imposed by ψ2, since it forbids the case in which a node
with data value var has two outgoing edges to nodes having different data value.

Observe that ψ3 implies that in a valid repair every clause will either contain a literal
that is a negation of a variable that is assigned to ⊥, or a non-negated variable assigned to
⊤. Finally, ψ1 forces the repair to either preserve all nodes or none of them: if a proper
subset of the nodes is deleted then at least one node will not have an outgoing edge of label
exists, and therefore R will not be satisfied.

Now, we prove that ϕ is satisfiable if and only if G has a non-trivial subset repair with
respect to R.

=⇒) Let f : {xi}1≤i≤n → {⊤,⊥} be an assignment that satisfies ϕ. Hence, we can
define a sub data-graph G′ of G by removing the edges (xi,assign,¬f(xi)). Since every
node is present and every var node has an unique outgoing edge of label assign, ψ1 and
ψ2 are satisfied in this data-graph. Moreover, ψ3 is also satisfied: given a clause node cj ,

there is a literal xi or ¬xi in cj that is satisfied through f , and the data-graph G′ contains
the edges of the form (xi,assign, f(xi)). Therefore, from every clause node there will be a

732

On the Complexity of Finding Set Repairs for Data-Graphs

path with the proper edge labels to either ⊥ or ⊤. Since G′ satisfies R and G′ ⊂ G, there
must be a non-trivial subset repair G′′ ⊇ G′ of G with respect to R.
⇐=) Given a non-trivial subset repair G′ of G with respect to R, we build a satisfying

assignment of ϕ. Since ψ1 is satisfied by G′, every node from G is present in G′. We define
the following assignment f : {xi}1≤i≤n → {⊤,⊥} such that f(xi) = ⊤ ⇐⇒ assign ∈
LG′(xi,⊤). We claim that this assignment satisfies ϕ.

Given a clause cj from ϕ, the node cj in G′ satisfies ψ3. This means that, there is
either a path ↓needs true↓assign [⊤] or a path ↓needs false↓assign [⊥] starting at the node cj .
Assume without loss of generality that the path is of the form ↓needs false↓assign [⊥] (the
other case follows analogously), and that the intermediate node is xi. By construction, we
know that ¬xi is a literal in cj . Due to constraint ψ2, the node xi has at most one outgoing
edge of label assign, and therefore assign ∈ L(xi,⊥) implies that assign /∈ L(xi,⊤), which
by definition of f also implies that f(xi) = ⊥. We conclude that cj is satisfied.

Computing a repair seems unfeasible when using path constraints from Reg-GXPathpos

or node constraints from Reg-GXPath, so we now study the ∃SUBSET-REPAIR problem
when L contains only node expressions from Reg-GXPathpos.

First, we prove that the positive fragment of Reg-GXPathpos satisfies a certain property
of monotony:

Lemma 13 (Monotony of Reg-GXPathpos). Let G be a data-graph, α be a Reg-GXPathpos

path expression, φ be a Reg-GXPathpos node expression, and G′ be a data-graph such that
G ⊆ G′. Then:

• JαKG ⊆ JαKG′

• JφKG ⊆ JφKG′

Proof. Intuitively, if a pair of nodes satisfies (v, w) ∈ JαKG where α is a positive expression,
then there is a certain subgraph H of G that is a witness of that fact. For example, if
(v, w) ∈ J↓l [c

=] ↓lKG then there is a node z such that D(z) = c and a path vzw made by
edges with label l. The subgraph composed by these three nodes and two edges is enough
for the pair (v, w) to satisfy the positive path expression α, and therefore in every superset
G′ of G it will be the case that (v, w) ∈ JαKG. See Appendix A for the proper proof.

This fact allows us to define an efficient procedure for finding a subset repair, based on
the following observation: if a node v in G does not satisfy a positive node expression φ,
then there is no subset repair G′ such that v is a node from G′. We will say that a node
v violates a node expression φ from R iff v /∈ JφKG. More generally, we have the following
result.

Theorem 14. Let G be a data-graph, R a set of Reg-GXPathpos restrictions, and v a node
in G that violates a node expression from R. Then,

⊆ -Rep(G,R) =⊆ -Rep(GVG\{v}, R)

733

Abriola, Martinez, Pardal, Cifuentes & Pin

Proof. For the ⊆ direction: let H ∈ Rep(G,R) be a subset repair of G with respect to R.
Due to Lemma 13 and the fact that there is a node expression φ ∈ R such that v /∈ JφKG
we conclude that v is not a node from H. This implies that H ⊆ GVG\{v}, and since H is
a maximal consistent subset of G with respect to R, it also is a maximal consistent subset
from GVG\{v}.

For the other direction: let H ∈ Rep(GVG\{v}, R). Since H is consistent with respect
to R and H ⊆ G we only need to prove that it is maximal with respect to G. Toward a
contradiction, suppose there exists a data-graph H ′ such that H ⊂ H ′ ⊆ G and H ′ satisfies
R. Since v is not a node from H ′, it follows that H ′ ⊆ GVG\{v}, which then implies that H
is not a repair of GVG\{v}. This results in a contradiction, and hence we proved that H is
a subset repair of G with respect to R.

Furthermore, given two data-graphs G1 and G2 satisfying a Reg-GXPathpos node ex-
pression φ it can be shown that G1 ∪G2 satisfies φ as well (this follows from Lemma 13).
Then, if R only contains Reg-GXPathpos node expressions we can conclude that there is a
unique subset repair of G with respect to R.

Given all these facts, we define an algorithm that computes the unique subset repair of
a data-graph given a set of Reg-GXPathpos node expressions:

Algorithm 1 SubsetRepair(G,R)

Require: G is a data-graph and R a set of Reg-GXPathpos node expressions.
1: while (G,R) is inconsistent do
2: V⊥ ← { v | v ∈ VG and ∃ φ ∈ R such that v /∈ JφKG}
3: G← GVG\V⊥
4: end while
5: return G

This method is correct since Theorem 14 implies that Rep(G,R) = Rep(GVG\V⊥ , R). It
also terminates, since (∅, R) is consistent. The set V⊥ can be computed in polynomial time,
and since there are at most |VG| iterations we conclude the following:

Theorem 15. There is an algorithm such that, given a data-graph G and a set of Reg-GXPathpos

node expressions R, the algorithm computes the unique subset repair of G with respect to R
in polynomial time.

Note that Theorem 11 readily implies that the problem ∃SUBSET-REPAIR isNP-hard
for L = Reg-GXPathpos if we allow both node and path expressions, even when considering
the data complexity of the problem.

We conclude this section by noticing that even though the problem of finding subset
repairs turns out to be NP-complete for a fragment of quite simple path expressions
(Theorem 11), the case for positive node expressions is more tractable (Theorem 15), even
though they can be substantially expressive in some cases. More precisely, while some of our
previous examples such as Examples 4 and 6, actually make use of node expression negation
for building the ‘implications’, they can be rewritten to avoid the use of node expression
negation under some assumptions over the database.

734

On the Complexity of Finding Set Repairs for Data-Graphs

Indeed, the aforementioned examples use node expression negation to make ‘typed re-
strictions’ over the data-graph. These are a natural kind of restriction for databases in which
each node has properties associated to a single value, in a manner codified via edges of the
form ↓type (either with a single generic label ↓type or with many, such as having ↓nationality
and ↓profession). In these cases, we can use a node expression type(c) := ⟨↓type [c=]⟩ to
indicate that a node is of type c with respect to the property type, and we can ask that all
such nodes satisfy a particular restriction via the node expression type(c)⇒ restriction. In
the cases where Σn is finite and where each node has exactly 1 outgoing edge ↓type, then in-
stead of writing type(c) =⇒ restriction we can write the Reg-GXPathpos node expression
(
∨

d ̸=c type(d)) ∨ restriction, which will retain the original semantics of the implication.
Also, since the set of node labels Σn is fixed, this translation into the positive fragment will
at most increment the expression length by a constant factor (given by the quotient of the
lengths of (

∨
d ̸=c type(d))∨ restriction and type(c)⇒ restriction, which is independent of

the particular c or type).
Finally, we remark that the algorithm for Reg-GXPathpos node expressions will work

as long as the expressions satisfy monotony. This means that we could add more mono-
tone tools to the language and the procedure would still be correct and run in polynomial
type, assuming of course that the expressions from the new language can be evaluated in
polynomial time given the length of the expressions and the data-graph.

3.2 Superset Repairs

We start this section with the following remark, contrasting with the subset repair problem:

Remark 16. There exists a data-graph G and a set R of Reg-GXPathpos expressions such
that there is no superset repair of G with respect to R.

For example, consider G = ({v}, L,D) where D(v) = c, L(v, v) = ∅ and the set R with

only one node expression ϕ = [c̸=]. Every superset G′ of G contains v with data value c,
which implies that v /∈ JϕKG′ , and thus G′ is not consistent with respect to R.

In order to study the complexity of finding superset repairs, we define the following
decision problem:

Problem: ∃SUPERSET-REPAIR
Input: A data-graph G and a set R of L expressions.
Output: Decide if G has a superset repair G′ with respect to R.

When fixing R the problem remains intractable in general.

Theorem 17. There exists a set R of path expressions from Reg-GXPath and a set of edge
labels Σe such that the problem ∃SUPERSET-REPAIR is undecidable.

Proof. To prove undecidability, we reduce the superset-CQA problem (Barceló & Fontaine,
2017, Theorem 4) to our problem. Since the problem is undecidable, so will be ours.

In (Barceló & Fontaine, 2017, Theorem 4), the following CQA problem is proven to
be undecidable for a particular choice of Σ, q,Γ: given a finite alphabet Σ, a non-recursive
RPQ query q, a set of word constraints Γ, a graph G, and a tuple (x, y) of nodes of G,

735

Abriola, Martinez, Pardal, Cifuentes & Pin

decide whether (x, y) ∈ JqKG′ for every G′ ∈⊇-Rep(G,Γ) (i.e., there is a q-labeled path from
x to y in all supersets of G satisfying the constraints Γ).

For ease of reference, we now provide the required definitions. Given an alphabet Σ,
regular path queries over Σ, noted RPQ, are defined by the following grammar:

η = ϵ | a | η.η | η ∪ η | η∗ (1)

We say that an RPQ is non-recursive if it does not mention the Kleene-star.
The semantics for RPQ formulas over a graph G with edges labeled in Σ is as follows:

JϵKG = {(v, v) | v ∈ V }
JaKG = {(v, w) | v, w ∈ V,a ∈ L(v, w)}
Jη.η′KG = {(v, x) | ∃w ∈ G s.t. (v, w) ∈ JηKG and (w, x) ∈ Jη′KG}
Jη ∪ η′KG = JηKG ∪ Jη′KG
Jη∗KG = {(v, w) | (v, w) belongs to the reflexive-transitive closure of JηKG}

A word constraint is defined as a formula α1 ⊆ α2 where αi is a word formula for
i ∈ {1, 2}; that is, a finite conjunction of labels. A graph G satisfies a word constraint
α1 ⊆ α2 if Jα1KG ⊆ Jα2KG.

We note that a word constraint α = a1 . . .am ⊆ a
′
1 . . .a

′
n is equivalent to a Reg-GXPath

formula αT =↓a1
. . . ↓am

⇛↓a′
1
. . . ↓a′

n
(that is, ↓a′

1
. . . ↓a′

n
∪↓a1

. . . ↓am
). For a non-

recursive RPQ q there is also a straightforward translation to an equivalent Reg-GXPath
formula qT that preserves its semantics, since a non-recursive RPQ is a finite union of word
formulas.

We define R′ = ΓT ∪ {↓x⇛ qT }, where ΓT = {αT : α ∈ Γ} and x is a fresh edge label.
We consider the set of edge labels Σe = Σ ∪ {x}. Given (G, (x, y)), let Ĝ be the graph G
augmented with an edge of label x such that x is connected with y via ↓x. Thus, it follows
that:

(G, (x, y)) /∈⊇ -CQA(q,Γ)

⇐⇒ ∃G′ ∈⊇ -Rep(Ĝ,ΓT) : (x, y) ̸∈ JqT KG′

⇐⇒ ∃G′ ∈⊇ -Rep(Ĝ, R′)

⇐⇒ ∃SUPERSET-REPAIR(Ĝ, R′) = true

Notice that the argument of the previous proof only requires a limited fragment of
Reg-GXPath, and therefore the following observation holds:

Observation 18. The problem is undecidable even when only considering restrictions from
the fragment of Reg-GXPath that has no node expressions and whose path expressions are
of the form:

α, β = ϵ | a | α.β | α ∪ β | α

736

On the Complexity of Finding Set Repairs for Data-Graphs

As for the particular case of ∃SUPERSET-REPAIR that considers restriction sets
only consisting of node-expressions, we have the following result:

Theorem 19. There is a set of labels Σe such that ∃SUPERSET-REPAIR is undecidable,
even when R is a set of node expressions (but it is not fixed).

Proof. We reduce the problem Finite 2RPQ Entailment from ALCOIF KBs (Rudolph,
2016) to our problem. First, we give some background and the required definitions.

LetNC , NR andNI be countably infinite disjoint sets representing concept names (unary
relations), role names (binary relations) and individual names (constants), respectively. An
assertion is an expression of the form C(a) or r(a, b), where a, b are individual names, C is
a concept name, and r is a role name. A concept is any of the following expressions:

A,B = ⊤ | C | ¬A | A ⊓B | A ⊔B | ∀r.A | ∃r.A | {a} (2)

where C ∈ NC , r ∈ NR and a ∈ NI . A concept of the form {a} is called a nominal. The set
of all the nominals given by ΣI is denoted by nom, which we assume disjoint from NC , NR.

An ALCOIF axiom is a concept inclusion A ⊑ B or a functionality restriction Fun(r)
where r is a role name (see semantics below). A knowledge base (KB from now on) is a pair
K = (T ,A) where T (the TBox) is a finite set of ALCOIF axioms and A (the ABox) is a
finite set of assertions. We denote CN(K) to the set of concept names in K, ind(K) to the
set of individuals in K and nom(K) to the set of nominals in K.

An interpretation is a pair I = (∆I , ·I) where ∆I is a non-empty set called the domain
of I, and ·I is a mapping called the interpretation function, that assigns as follows:

• CI ⊆ ∆I for every concept name C

• rI ⊆ ∆I ×∆I for every role name r

• aI ∈ ∆I for every individual name a

We say that I is a finite interpretation if ∆I is finite. For convenience, we assume
∆I ∩ NI = ∅ for every I. The semantics for the remaining concepts can be extended as
follows:

⊤I = ∆I

(¬A)I = ∆I \AI

(A ⊓B)I = AI ∩BI

(A ⊔B)I = AI ∪BI

(∀r.A)I = {u ∈ ∆I : ∀v.(u, v) ∈ rI → v ∈ AI}

(∃r.A)I = {u ∈ ∆I : ∃v.(u, v) ∈ rI ∧ v ∈ AI}

{a}I = {aI}

An interpretation I is a model of K = (T ,A) if all of the following assertions hold:

• AI ⊆ BI for every concept inclusion A ⊑ B in T

737

Abriola, Martinez, Pardal, Cifuentes & Pin

• for every Fun(r) in T is true that (u, v), (u,w) ∈ rI implies v = w, for all u, v, w ∈ ∆I

• aI ∈ CI for every assertion C(a) in A

• (aI , bI) ∈ rI for every assertion r(a, b) in A

The signature of any KB structure can be extended with new unary symbols to obtain
a normal form for the concept inclusions (Gogacz et al., 2018), hence we assume without
loss of generality that the TBox only contains concept inclusions of the form

l

i

Ai ⊑
⊔
j

Bj , A ⊑ ∀r.B, A ⊑ ∃r.B, A ≡ {a},

where Ai, Bj , A,B are concept names and {a} is a nominal.
A 2RPQ is defined analogously as in (1), with the difference that we also allow to

traverse edges backwards, i.e., we add r− to the syntax.
The problem Finite 2RPQ Entailment from ALCOIF KBs asks, given a KB K

and a 2RPQ q, whether I |= ∃x.q(x, x) is true for every finite model I of K, or not. Notice
that this problem is quite similar to superset-CQA, with the exception that the underlying
structure given by the ABox is not just a graph database, but is a graph that allows multiple
labels on edges and nodes, and the set of restrictions is now given by the TBox. In other
words, we ask if the query is valid on any model that “repairs” the KB, seen as a partial
representation of a graph-like model. Finite 2RPQ Entailment from ALCOIF KBs
is undecidable (Rudolph, 2016), even for a finite set Σ of role names, which is the particular
case of the problem we consider from now on.

For every KB K and 2RPQ q we will construct a data-graph G(K) and a set of node
constraints R(K, q) such that G(K) has a superset-repair with respect to R(K, q) if and only
if there is a finite counter-model for K and ∃x.q(x, x), that is, a finite model of K that does
not satisfy the query.

We fix the set of edge labels to be Σe = {↓r: r ∈ Σ} ∪ {↓total}, and the set of data
values to be the disjoint union Σn = {PI : I ⊂ NC ∪ nom is finite} ⊔ {TI : I ⊂ NC ∪
nom is finite}.2 Intuitively, we will use the data values PI as a preliminary description of the
concepts used in the ABox of K, and the data values TI as a total description of the concepts
used in a model of K. We call partial node a node having data value PI , and total node
a node having data value TI . For a particular K, the pair (G(K), R(K, q)) will be defined
over the set of data values {PI : I ⊆ CN(K) ∪ nom(K)} ⊔ {TI : I ⊆ CN(K) ∪ nom(K)}.
In general, we assume that the indices I, J vary in the set of subsets of CN(K) ∪ nom(K).
We say that a node contains a concept name A if A lies in the set I that corresponds to
the index of its data value. For K = (T ,A) let us consider G(K) = (V,L,D) where:

• V = ind(K)

• L(a, b) = {↓r: r(a, b) ∈ A}

• D(a) = PI , where I = {C ∈ CN(K) : C(a) ∈ A}∪ {{a}}, if {a} ∈ nom(K), or simply
I = {C ∈ CN(K) : C(a) ∈ A} otherwise

2. Notice that Σn is countable since it is the union of two countable sets, each of them indexed over the
set of finite subsets of NC ∪ nom, and the set of all finite subsets of any countable set is also countable.

738

On the Complexity of Finding Set Repairs for Data-Graphs

We now present the formulas in R(K, q), denoted by ψi, along with a short description
of the property we want to model in each case:

(i) Formula ψ1 as the conjunction of the following formulas:∧
I

(P =
I ⇒ ⟨↓total

[∨
I⊆J

T =
J

]
⟩),

meaning that every partial node must be connected to a total node through the
relation ↓total, while preserving the original data values;

¬⟨↓−total↓total ∩ ϵ⟩,

implying that every partial node is connected to precisely one total node through
↓total; and

⟨↓total⟩ ⇒
∨
J

P =
J ,

meaning that every total edge in the data-graph must be an outgoing edge from a
partial node. In toto, ψ1 means ↓total can be seen as an assignation of the individuals
of K. A total node connected to a partial node through the relation ↓total is called
the total counterpart of that partial node. For convenience, we say that an outgoing
edge ↓r of a partial node is also an outgoing edge of its total counterpart.

(ii) For every
d
iAi ⊑

⊔
j Bj in T consider:

ψ2 = ¬
∨

∀i. Ai∈I
∀j. Bj ̸∈I

T =
I ,

which states that every node containing all the concepts Ai (that is, every node with
data value TI such that Ai ∈ I for all i), must contain some Bj as well.

(iii) For every A ⊑ ∀r.B in T consider:

ψ3 = ¬⟨
[∨
A∈I

T =
I

]
(ϵ∪ ↓−total) ↓r (ϵ∪ ↓total)

[∨
B ̸∈J

T =
J

]
⟩,

which states that a total node containing the concept nameA cannot reach a total node
that does not contain the concept B through a path in (ϵ∪ ↓−total) ↓r (ϵ∪ ↓total).
This path overlaps all the possible cases for which ↓r is an outgoing edge of the
aforementioned total node, as established in item (i).

(iv) For every A ⊑ ∃r.B in T consider:

ψ4 =
∨
A∈I

T =
I ⇒ ⟨(ϵ∪ ↓

−
total) ↓r (ϵ∪ ↓total)

[∨
B∈J

T =
J

]
⟩,

which states that every total node containing the concept name A must have an
outgoing edge ↓r joining it with another total node containing concept B.

739

Abriola, Martinez, Pardal, Cifuentes & Pin

(v) For every A ≡ {a} in T , we consider the conjunction of the following formulas:

ψ5 =
∨

{a}∈I

P =
I ⇒ ⟨↓total

[∨
A∈J

T =
J

]
⟩

ψ6 =
∨
A∈J

T =
J ⇒ ⟨↓

−
total

[∨
{a}∈I

P =
I

]
⟩

which states that a total node contains concept A if and only if such node is the total
counterpart of a partial node containing the nominal {a}.

(vi) For every Fun(r) in T , we consider the conjunction of the following formulas:

ψ7 = ¬⟨
[∨
I

T =
I

]
↓−r ↓r

[∨
I

T =
I

]
∩ ϵ⟩

ψ8 = ¬⟨
[∨
I

T =
I

]
↓−r ↓

−
total↓r (ϵ∪ ↓total)

[∨
I

T =
I

]
∩ ϵ⟩

ψ9 = ¬⟨
[∨
I

T =
I

]
↓−total↓

−
r ↓r (ϵ∪ ↓total)

[∨
I

T =
I

]
∩ ϵ⟩

Notice that these three formulas could be unified into a single one. However, for
simplicity we write them separately to help us clarify which patterns (and how) we
wish to avoid in a valid repair, as depicted in Figure 3.

(a) (b) (c) (d) (e)

r

r

r

r

r

r

r

r

r

r

r
r

r

r

r

r
r

r

r

Figure 3: In the upper boxes, the patterns we do not wish to appear in a repair as specified by the
constraints. In the lower boxes, how to fix each problem by merging the problematic □ node with
a ■ node. The nodes are represented as follows: □ undesired total nodes, ■ total nodes, # partial
nodes, any kind of nodes. The unlabeled edges represent total edges, thus the □ or ■ node is the
total counterpart of the incident # node. The case (a) is handled by ψ7, cases (b) and (c) by ψ8,
and cases (d) and (e) by ψ9.

(vii) Finally, we should add a restriction that ensures the non-satisfiability of the query.
But first, we show how to translate a 2RPQ α to obtain the path expression αS that
we need. The translation is as follows:

ϵ 7→ ϵ∪ ↓total ∪ ↓
−
total, denoted by ϵS

740

On the Complexity of Finding Set Repairs for Data-Graphs

r 7→ ϵS ↓r ϵ
S

r− 7→ ϵS ↓−r ϵ
S

α∗ 7→ (αS)∗

α · β 7→ αS · βS

α ∪ β 7→ αS ∪ βS

We add the formula ψ10 = ⟨ϵ∩q
S⟩ toR(K, q). Notice that if we delete every appearance

of the symbol ↓total in a word ω from αS we obtain a word from αT , where αT is the
translation of α as defined in the proof of Theorem 17.

We now proceed to prove that there is a finite counter-model for K and ∃x.q(x, x) if and
only if there is a superset-repair for G(K) and R(K, q).

=⇒) Let I = (∆I , ·I) be a counter-model for K and ∃x.q(x, x). We define the data-graph
G′ = (V ′, L′, D′), where V ′ = ind(K) ∪∆I = V ∪∆I , D′|V = D, L′|V×V = L, for u ∈ ∆I ,

D′(u) = TI with I = {A ∈ CN(K) : u ∈ AI} ∪ {{a} ∈ nom(K) : aI = u}, and

L′(a, aI) = {↓total}, for every a ∈ V
L′(u, v) = {↓r: (u, v) ∈ r

I}, for every u, v ∈ ∆I

and L′(u, v) is empty for any other remaining case

To differenciate an element u of I from a node of G′ we underline it: u expresses “u ∈ ∆I

as a node of G′”.
Notice that if r(a, b) is an assertion, then ↓r∈ L

′(a, b)∩L′(aI , bI), and if {a} is a nominal
in K, then J

∨
{a}∈I P

=
I KG′ = {a}. This is relevant to simplify the proof below.

We show that the graph G′ satisfies each of the formulas in R(K, q). It follows by
definition that formula ψ1 in item (i) is satisfied.

For item (ii), suppose that
d
iAi ⊑

⊔
j Bj is in T and let x ∈ V ′. If x is a partial

node, then x ∈ Jψ2KG′ . If x = u and does not contain some concept Ai, then x ∈ Jψ2KG′ .
If otherwise, x = u contains all the concepts Ai, to prove that x ∈ Jψ2KG′ we only need
to ensure that x also contains some concept Bj . Let TI be the data value of x, that is,

D′(x) = TI with Ai ∈ I for all i. By definition of G′, u ∈ ∆I and u ∈ AI
i for every i. Since

I |= T , we have that u ∈ BI
k for some k, hence Bk ∈ I.

For item (iii), suppose that A ⊑ ∀r.B is in T and let x ∈ V ′. If x is a partial node,
or a total node not containing the concept A, then x ∈ Jψ3KG′ . If x = u contains the
concept A but ↓r is not an outgoing edge of x (see item (i) for the meaning of outgoing
edge), then x ∈ Jψ3KG′ . The only remaining case is when x = u contains the concept
A and ↓r is an outgoing edge of x. Then, x reaches a node y = v through the path
(ϵ∪ ↓−total) ↓r (ϵ∪ ↓total). To prove that x ∈ Jψ3KG′ we only need to ensure that y

contains the concept B. By definition of G′, there are only two cases to consider: x reaches
y through the path ↓r; or through the path ↓−total↓r↓total when both x and y are total
counterparts of partial nodes. The first case occurs only if (u, v) ∈ rI and since u ∈ AI

and I |= T , then v ∈ BI , as we wanted. For the second case, notice that it occurs only if
u = aI , v = bI and r(a, b) is an assertion, so ↓r∈ L

′(x, y), and we are in the first case.
For item (iv), suppose that A ⊑ ∃r.B is in T and let x ∈ V ′. If x is a partial node,

or a total node not containing the concept A, then x ∈ Jψ4KG′ . If x = u contains the

741

Abriola, Martinez, Pardal, Cifuentes & Pin

concept A, to prove that x ∈ Jψ4KG′ we only need to ensure that x reaches through the path

(ϵ∪ ↓−total) ↓r (ϵ∪ ↓total) a node y that contains the concept B. Indeed, by definition of
G′, u ∈ AI and since I |= T , then there is v ∈ ∆I such that (u, v) ∈ rI and v ∈ BI . Taking
y = v we obtain the result.

For item (v), suppose A ≡ {a} is in T and let x ∈ V ′. Since J
∨

{a}∈I P
=
I KG′ = {a}, if

x ̸= a then x ∈ Jψ5KG′ . If x = a, we just need to prove that aI (the total counterpart of

a) contains the concept A. But this is clear from the fact that I |= T and so aI ∈ AI .
Now, by a similar argument, if x ∈ V ′ is a partial node or a total node not containing the
concept A, then x ∈ Jψ6KG′ . If x contains the concept A, we just need to prove that x is

the total counterpart of a. By definition of G′, x = u for some u ∈ ∆I , and since u ∈ AI ,
then u = aI , as we wanted.

For item (vi), suppose Fun(r) is in T . We will only show that Jψ9KG′ = V ′, since a
similar argument holds for the remaining formulas of the conjunction. If x ∈ ind(K) or
u ̸= bI for every b ∈ ind(K), then it is straightforward that x ∈ Jψ9KG′ . If instead u = bI

for b ∈ ind(K), and r(a, b), r(a, c) are assertions in K, then we assert that bI = cI since
I |= K. This implies x ∈ Jψ9KG′ .

For item (vii) we will prove that, if Jψ10KG′ ̸= V ′, then I satisfies the query, i.e. there is
a cycle in I reading a word from the language q. First, notice that for every 2RPQ α, a ∈ V
and u ∈ V ′, the pair (a, u) ∈ JαSK if and only if (aI , u) ∈ JαSK, and the pair (u, a) ∈ JαSK if
and only if (u, aI) ∈ JαSK. Since ↓r∈ L

′(a, b)∩L′(aI , bI) for every assertion r(a, b) in K, we
conclude that, if u, v ∈ ∆I and (u, v) ∈ JαSK, then (u, v) ∈ JαT K. In other words, if u and
v are connected by a path with label in αS , then u and v are also connected by a path that
has no edge ↓total. This statement can be easily proved by induction on the structure of
α. Suppose now that Jψ10KG′ ̸= V ′, and let u ∈ V ′ be a node for which the constraint ψ10

is not valid. By definition, this occurs when (u, u) ∈ JqSKG′ . We may assume that u ∈ ∆I ,

thus (u, u) ∈ JqT KG′ , which implies that I has a cycle reading a word from q that contains
the node u.

Therefore, G′ is a finite data-graph that contains G(K) and satisfies R(K, q), hence it
contains a superset-repair of G(K).

⇐=) Let G′ = (V ′, L′, D′) be a superset-repair of G(K) with respect to R(K, q). We
will obtain a counter-model for K and ∃x.q(x, x) by applying an equivalence relation on V ′.
Let ∼ be the relation on V ′ defined as: u ∼ v if and only if (u, v) ∈ J(↓total ∪ ↓

−
total)

∗KG′ .
We use the Kleene star to guarantee that the relation is transitive and reflexive, and the
symmetry is a direct consequence of the definition. In essence, we are collapsing every node
having data value PI with its total counterpart, which we know exists since (i) is satisfied.
For every u ∈ V ′, we denote by [u] its equivalence class. Let us consider I = (∆I , ·I), where
I = V ′/ ∼ and ·I is defined over the signature of K as follows:

• CI = {[u] : ∃I, ∃u′ ∼ u.D′(u′) = TI and C ∈ I} for every concept name C,

• rI = {([u], [v]) : ∃u′ ∼ u, v′ ∼ v. ↓r∈ L
′(u′, v′)} for every role name r,

• aI = [a] for every individual name a.

742

On the Complexity of Finding Set Repairs for Data-Graphs

Notice that every class [u] contains exactly one total node, and it may contain several
(or no) elements from ind(K) and other partial nodes. We denote by [u]T the total node of
the class [u].

We will now show that I is a counter-model for K = (T ,A) and ∃x.q(x, x). It follows
from the definition that aI ∈ CI for every assertion C(a) in A, and (aI , bI) ∈ rI for every
assertion r(a, b) in A.

Suppose that
d
iAi ⊑

⊔
j Bj is in T , and let [u] ∈ ∆I such that [u] ∈ AI

i for every i.

For the element u′ = [u]T , we know that D′(u′) = TI with Ai ∈ I for every i. Since G′

satisfies the constraint ψ2 from item (ii), it follows that Bk ∈ I for some k, which implies
that [u] ∈ BI

k .
Suppose that A ⊑ ∀r.B is in T , and let [u], [v] ∈ ∆I such that [u] ∈ AI and ([u], [v]) ∈ rI .

Thus, D′([u]T) = TI where A ∈ I, and there are nodes u′ and v′, such that u′ ∼ u, v′ ∼ v,
and ↓r∈ L

′(u′, v′). Since G′ satisfies ψ3 from item (iii), if D′(v′) = TJ for some J then B
must be in J . If instead D′(v′) = PJ , then ([u]T , [v]T) ∈ J(ϵ∪ ↓−total) ↓r↓totalKG′ and thus

D′([v]T) = TJ ′ for B ∈ J ′. Whichever the case may be, we obtain [v] ∈ BI .

Suppose that A ⊑ ∃r.B is in T , and let [u] ∈ ∆I such that [u] ∈ AI . Thus D′([u]T) = TI
where A ∈ I, and since G′ satisfies ψ4 from item (iv), there is a node v such that D′(v) = TJ
with B ∈ J and ([u]T , v) ∈ J(ϵ∪ ↓−total) ↓r (ϵ∪ ↓total)KG′ . This implies that ([u], [v]) ∈ rI

and [v] ∈ BI .
Suppose that A ≡ {a} is in T , and let [u] ∈ ∆I such that [u] ∈ AI . Hence, D′([u]T) = TI

where A ∈ I, and since G′ satisfies ψ5 and ψ6 from item (v), it follows that [u] = aI .
Suppose that Fun(r) is in T and ([u], [v]), ([u], [w]) ∈ rI . We need to prove that [v] = [w]

or, equivalently, that [v]T = [w]T . By hypothesis, there exist u′ ∼ u, u′′ ∼ u, v′ ∼ [v]T and
w′ ∼ [w]T such that ↓r∈ L

′(u′, v′) and ↓r∈ L
′(u′′, w′). There are several cases to analyse. If

u′ = u′′, v′ = [v]T and w′ = [w]T , it follows that v
′ = w′ from the satisfaction of formula ψ7

from item (vi). For the remaining cases, consider that every node that is different from its
total counterpart is connected to it by a total edge. As a consequence of this fact and the
satisfaction of formulas ψ8 and ψ9, we obtain that the statement holds for the remaining
cases.

Finally, we have to check that I does not satisfy the query. Toward a contradiction,
let [u] ∈ ∆I such that, for a cycle in I containing [u], the label of the path starting and
finishing in [u] reads a word on the language q. We will prove that there is a cycle in G′

reading a word from the language qS . Moreover, this cycle contains [u]T and the word read
starts and finishes in this node. Suppose the cycle in I is

([u0], r1, [u1]), ([u1], r2, [u2]), . . . , ([un−1], rn, [un]),

where [u0] = [un] = [u] and ω = r1r2 · · · rn ∈ q. The triplet (v, α, w) means (v, w) ∈ JαK.
Then,

([u0]T , r
S
1 , [u1]T), ([u1]T , r

S
2 , [u2]T), . . . , ([un−1]T , r

S
n , [un]T)

is a cycle in G′. Since any word in rS1 r
S
2 · · · r

S
n is also a word in qS we obtain that G′ cannot

satisfy ψ10 since ([u]T , [u]T) ∈ JqSKG′ .

743

Abriola, Martinez, Pardal, Cifuentes & Pin

As pointed out in Remark 16, simple data tests may prevent the existence of superset
repairs. Observe that in the absence of them, any data-graph G has a superset repair if we
consider only the positive fragment of Reg-GXPath: add every possible edge label l ∈ Σe
to every pair of nodes v, v′ ∈ VG and the resulting graph will satisfy any expression. The
proof of this fact follows quite straightforward by induction in the expression’s structure.

Before proceeding, we define some concepts related to data values:

Definition 20. Let η be a Reg-GXPath expression. We define the set of data values present
in η as the set of all those c ∈ Σn such that the subexpression [c=] or [c̸=] is used in η. We
denote it as Ση

n.
Analogously, we define the set of data values used by a set of Reg-GXPath expressions

R as ΣR
n =

⋃
η∈R

Σηn.

We also denote the set of data values used in a graph G as ΣG
n = {DG(v) : v ∈ VG}.

Even though Σn may be infinite, when considering only Reg-GXPathpos expressions we
obtain the following lemma:

Lemma 21. Let G be a data-graph and R a set of Reg-GXPathpos expressions. If there is
a superset repair G′ of G with respect to the constraints R, then there is another superset
repair H that only uses data values from ΣRn ∪ ΣGn plus at most two extra data values not
mentioned in R.

Proof. Intuitively, values that are not mentioned in R are not necessary to satisfy R, and
therefore, if there exists a repair, there must be one with only data values from R and
the original data values from G. Nonetheless, it could be the case that every data value
mentioned in R is in an expression of the form [c̸=], and in that case we might need an extra

data value (for example, consider the expression φ = ⟨γ⟩ where γ =↓x [
∨
c∈D

c̸=] for D a set

of data values). Actually, we might need two fresh data values to satisfy some expression
of the form ⟨α ̸= β⟩ (replace α = β = γ). See Appendix A for the detailed proof.

The following observation is a consequence of the previous lemma:

Observation 22. If there is a superset repair G with respect to R, then there exists a
superset repair with a number of different data values that linearly depends on |G|+ |R|.

Notice that this observation does not imply that there must be a superset repair with
linear size on |G| + |R|: it could be the case that there is an exponential number of nodes
having the same data value. However, we could somehow ‘merge’ all those nodes with the
same data value while preserving some edges, such that the resulting graph will still satisfy
all those Reg-GXPathpos expressions that were satisfied in the original graph:

744

On the Complexity of Finding Set Repairs for Data-Graphs

Lemma 23. Let G be a data-graph that satisfies a Reg-GXPathpos restriction η. Let Vd be
a set of nodes from G having the same data value d. If we define a new data-graph H where

VH = (VG \ Vd) ∪ {vd}
LH(v, w) = LG(v, w)∀v, w ∈ VG \ Vd
LH(v, vd) = {e ∈ Σn | ∃w ∈ Vd such that e ∈ LG(v, w)},∀v ∈ VG \ Vd
LH(vd, v) = {e ∈ Σn | ∃w ∈ Vd such that e ∈ LG(w, v)},∀v ∈ VG \ Vd
LH(vd, vd) = {e ∈ Σn | ∃w1, w2 ∈ Vd such that e ∈ L(w1, w2)}

DH(v) = DG(v),∀v ∈ VG \ Vd
DH(vd) = d

Then, H satisfies η.

Proof. Expressions from Reg-GXPathpos can only interact with data values and edge labels,
ignoring the actual identity of the nodes3. Then, observe that in the data-graph just defined
the neighbourhoods of all nodes are the same as in data-graph G, except that we might
have collapsed some set of nodes. But for those nodes collapsed, we created a new one with
the same data value and the same (or even bigger) neighbourhood. Finally, the positive
expression of Reg-GXPathpos cannot really distinguish this new node from the previous
ones. See Appendix A for the actual proof.

As it was mentioned previously, when we define the graph H the set of nodes Vd is
collapsed into a unique node vd while preserving all the edges that were incident to the set
Vd. This operation is usually called vertex contraction. Using Lemmas 21 and 23, we prove
the following very useful fact:

Theorem 24. Let G be a data-graph and R a set of Reg-GXPathpos expressions. If there
is a superset repair of G with respect to R, then there is a superset repair of G with respect
to R of polynomial size depending on |G|+ |R|.

Proof. We define a data-graph H such that G ⊆ H, H |= R, and the size of H polynomially
depends on |G|+ |R|. This suffices to prove the theorem.

Let G′ be a superset repair of G with respect to R that uses at most |G|+ |R|+ 2 data
values. Such a superset repair exists as a consequence of Lemma 21 and the hypothesis.

Thus, for every data value c ∈ ΣG
′

n \Σ
G
n , we contract all the nodes having data value c to a

unique node. Let H ′ be the graph obtained once those nodes were contracted. Notice that
H ′ satisfies R due to Lemma 23.

We contract every other node v ∈ VG′ \ VG in H ′ that has a data value from ΣGn with
a node from G having the same data value. The resulting graph is indeed the H we are

looking for, since once again due to Lemma 23, H satisfies R and |VH | = |VG|+ |Σ
G

′

n \Σ
G
n | ≤

|VG|+ |R|+ 2. Therefore, |H| ≤ (|VG|+ |R|+ 2)2, which is polynomial on G and R.

3. This is not entirely true, since the path expression ϵ can be used to relate a node with only itself.

745

Abriola, Martinez, Pardal, Cifuentes & Pin

This last theorem shows that the problem ∃SUPERSET-REPAIR lies in NP for
Reg-GXPathpos expressions, since we can use the repair itself as a witness for a posi-
tive instance. Moreover, given a data-graph G, we can use the same proof to define a
polynomial-time algorithm w.r.t. the size of G that computes a superset repair, if there
exists one. More precisely, if there exists a superset repair of G with respect to R, then there
is a ‘small’ graph H such that H |= R and H has a very precise structure: the only nodes
that are added to G in order to obtain H have a one-to-one correspondence with those new
data values that were not present in G. From now on we will refer to this structure as the
standard form of a superset repair. Hence, we may find a minimal –with respect to node
inclusion– data-graph H ′ that satisfies H ′ |= R and G ⊆ H ′ as follows: Iterate over every
possible subset S of (ΣRn ∪{c, d}) \Σ

G
n , where c and d are the ‘fresh’ data values mentioned

in Lemma 21. Then, add one node to G for each data value in S and every possible edge
between any pair of nodes. Finally, check if the resulting data-graph satisfies R.

If none of these data-graphs satisfies R, then it follows from Theorem 24 that there is no
superset repair. Otherwise, after computing the minimal –with respect to node inclusion–
data-graph H ′, we may find a repair by deleting edges from H ′: if once we delete an edge
e from H ′ we notice that R is not satisfied anymore, then it follows from Lemma 13 that
there is no subset H ′′ of H ′ that does not contain the edge e such that H ′′ satisfies R and
such that H ′′ is a data-graph that still contains G. This allows us to assert that e will
belong to the final repair.

Considering all the previous discussions, we design Algorithm 2. It relies on an auxil-
iary procedure buildGraph(G, S) that given a data-graph G = (V,L,D) and a set of data
values S not in G builds the “candidate” repair for that set of data values, defined as
buildGraph(G,S) = (V ′, L′, D′) where V ′ = V ∪ {vs : s ∈ S}, L

′(v, w) = Σe for v, w ∈ V ′

and D′(v) = D(v) if v ∈ V whereas D(vs) = s. Clearly, buildGraph(G,S) can be computed
in O((|V |+ |S|)2)

The first for will be executed at most 2Σ
R
n+2 times. If Σn is finite, then this number of

executions is constant. Otherwise, it can depend exponentially on |R|. Everything inside
the loop can be computed in polynomial time thanks to Theorem 10. The second loop will
run at most (|VG| + ΣRn)

2 times, which is quadratic in respect to the input size. Since the
procedure is correct, we obtain the final result:

Corollary 25. There is an algorithm such that, given a data-graph G and a set R of
Reg-GXPathpos expressions, if Σn is finite, then the algorithm computes a superset repair
of G with respect to R in polynomial time, if such a repair exists.

If Σn is infinite, then we can still compute a superset repair in polynomial time if R is
fixed.

Note that if R only contains positive node expressions then we can use a similar proce-
dure as in Algorithm 1: we start by building the data-graph H = buildGraph(G,S) where
S = ΣRn ∪ {c, d} \Σ

G
n and then we iteratively remove vertices that do not satisfy some node

expression ϕ ∈ R. By Theorem 24 we know that if there exists a superset repair, then there
must exist some superset repair G′ such that G ⊆ G′ ⊆ H. Also, if v /∈ JϕKH for some v
then v /∈ G′. Therefore, in at most |VH \ VG| ≤ |R|+ 2 iterations we will find a data-graph
that contains the same set of nodes as some superset repair of G with respect to R (if such

746

On the Complexity of Finding Set Repairs for Data-Graphs

Algorithm 2 SupersetRepair(G,R)

Require: G is a data-graph and R a set of Reg-GXPathpos expressions.
1: for S ∈ P(ΣRn ∪ {c, d} \ Σ

G
n) do

2: H ← buildGraph(G,S)
3: if H |= R and H ⊆ H ′ then
4: H ′ ← H
5: end if
6: end for
7: if H ′ is not initialized then
8: return ‘There is no superset repair’
9: end if

10: for e ∈ EH′ \ EG do
11: if (VH′ , EH′ \ {e}, DH

′) |= R then

12: H ′ ← (VH′ , EH′ \ {e}, DH
′)

13: end if
14: end for
15: return H ′

repair exists). Then, we only need to remove the edges to reach the minimality condition.
This yields the following result:

Corollary 26. The ∃SUPERSET-REPAIR problem can be solved in polynomial-time in
combined complexity if R only contains node expressions from Reg-GXPathpos.

If we do not impose any of these restrictions the problem is once again intractable in
general:

Theorem 27. If the set of Reg-GXPathpos expressions R is not fixed and Σn is infinite,
then the problem ∃SUPERSET-REPAIR is NP-complete.

Proof. We reduce 3-SAT to an instance of ∃SUPERSET-REPAIR, where |R| depends on
the input formula of 3-SAT and we rely on Σn being infinite. We take Σe ⊇ {down} and
Σn ⊇ {xi | i ∈ N} ∪ {¬xi | i ∈ N} ∪ {null}.

Given the 3-CNF formula ϕ with n variables x1, . . . , xn and m clauses c1, . . . , cm we
define the data-graph G = (V,L,D) where:

VG = {v}
L(v, v) = ∅
D(v) = null

We would like that every superset repair of G represents a valuation (or at least a
partial valuation) on the variables xi. Intuitively, given a superset repair G′, a variable xi
will evaluate to ⊤ if there is a node in G′ with data value xi, and will evaluate to ⊥ if there
is a node in G′ with data value ¬xi.

In order to obtain valid valuations, we need to avoid the scenario where both data values
xi and ¬xi are present in a repair. To do this, we define the following constraints:

αi = ([x=i] ↓
∗
down [¬x ̸=i]) ∪ ([x ̸=i] ↓

∗
down [¬x=i]) ∪ ([x ̸=i] ↓

∗
down [¬x ̸=i])

747

Abriola, Martinez, Pardal, Cifuentes & Pin

where i iterates over 1 ≤ i ≤ n. αi cannot be satisfied by any graph that has nodes with
data values xi and ¬xi. This follows from the fact that, for any of the three subexpressions,
the path cannot begin and end in nodes having data values xi and ¬xi respectively.

Then, we add the following constraint to ensure that, for every repair, the defined
valuation evaluates the clauses to true:

βj = (↓∗down [(cj1)
=] ↓∗down) ∪ (↓∗down [(cj2)

=] ↓∗down) ∪ (↓∗down [(cj3)
=] ↓∗down)

where j iterates over 1 ≤ j ≤ m and cjk denotes the kth literal appearing in cj , either xi or
¬xi, for some i. Any repair of G will satisfy all βj , which implies that in any repair there
must be, for every clause, one node whose data value represents a variable assignation that
satisfies the clause.

In summary, we defined R = {αi | 1 ≤ i ≤ n} ∪ {βj | 1 ≤ j ≤ m}. Now we show that ϕ
is satisfiable if and only if G has a superset repair with respect to R.

=⇒) Let f be a valuation of the variables of ϕ that evaluates ϕ to true. We define the
data-graph H = (VH , LH , DH) as:

VH = {v} ∪ {x | 1 ≤ i ≤ n and f(xi) = ⊤} ∪ {¬xi | 1 ≤ i ≤ n and f(xi) = ⊥}
L(a, b) = Σe, for every pair a, b ∈ VH
D(v) = null

D(xi) = xi, for every node xi ∈ VH
D(¬xi) = ¬xi, for every node ¬xi ∈ VH

Every expression αi is satisfied, since there are no pairs of nodes with ‘opposite’ data
values and the graph is fully connected. The expressions βj are also satisfied given that for
every clause cj , at least one of the variables that evaluates the clause to true is present in

H. Since G ⊆ H and H |= R there exists a superset repair G′ of G with respect to R.
⇐=) Let G′ be a superset repair of G with respect to R. We define a valuation on the

variables of ϕ by considering the data values present in G′. If the data value xi is present
then f(xi) = ⊤, and we define f(xi) = ⊥ otherwise. Observe that since αi is satisfied for
every i this is a valid valuation. Moreover, notice that since βj is satisfied for every j, this
valuation makes every clause evaluate to true. Let us consider an arbitrary clause cj . Since

βj is satisfied in G′, one of the literals xjk for k ∈ {1, 2, 3} has to appear as data value in

G′. If one of those literals that appear is positive (i.e. without negation) then it evaluates
to true by f , and thus cj is satisfied. Otherwise, there is a literal with negation from cj as

data value in G′, and it evaluates to true through f , and thus cj evaluates to true. This
shows that ϕ is satisfiable.

4. Related Work

Models for graph databases and knowledge graphs have been developed intensively since the
1990s, along with query languages and integrity constraints for them (Angles & Gutierrez,
2008; Barceló, 2013). During the last years they have earned significant attention from

748

On the Complexity of Finding Set Repairs for Data-Graphs

industry and academy due to their efficiency when modeling diverse, dynamic and large-
scale collections of data (Hogan et al., 2021). There are open source knowledge graphs such
as YAGO (Rebele et al., 2016) or DBPEDIA (Lehmann et al., 2015) that implement many
features studied by the research community.

Reg-GXPath is a query language developed for graph databases with data values in
the nodes (Libkin et al., 2016) largely inspired by XPath (Benedikt & Koch, 2009), a
language for traversing data trees (i.e. XML documents). The main results concerning the
expressiveness of this language and its relation to other query languages can be found at
(Libkin et al., 2016), as well as a detailed analysis on several subfragments of it. As we
already mentioned, our notion of consistency and the problems we defined can be understood
under any other navigational language, such as those studied at (Angles et al., 2018; Barceló,
2013; Francis et al., 2018; van Rest et al., 2016). For an analysis of the different features
relevant for a modern graph query language you may see (Angles et al., 2017).

Different types of integrity and path constraints have been defined and studied in this
context (Abiteboul & Vianu, 1999; Barceló & Fontaine, 2017; Buneman et al., 2000). There
is still no standard definition of consistency for a graph database over some constraints, and
therefore we developed our own based on a set of typical examples found in the literature.
Other type of graph database constraints can be expressed through graph patterns and
graph dependencies (Fan, 2019).

Our definition of consistency allows to globally restrict the structure of the data-graph,
since we require the Reg-GXPath expressions to be satisfied in every node and pair of nodes.
Therefore, we can express stronger requirements than those allowed for constraints based
on an origin (which was the original proposal of Abiteboul and Vianu, see (Calvanese et al.,
2016) or (Barceló & Fontaine, 2017) for recent work around these semantics). Also, since
negation is included into the grammar of Reg-GXPath it is possible to build constraints
similar to “path implications” such as those considered in (Abiteboul & Vianu, 1999) or
(Barceló & Fontaine, 2017) without having to define the notion of implication from outside
the language.

The notion of database repair and the repair computing problem, as well as the Con-
sistent Query Answering (CQA) problem, were first introduced in the relational context
(Arenas et al., 1999). Since then, CQA has received much attention from the research com-
munity in data management, developing techniques and efficient algorithms under different
notions of repairs and considering all kinds of combinations of classes of integrity constraints
and queries (Bertossi, 2011, 2019). These concepts were successfully extended to diverse
data models such as XML or description logics (Arenas & Libkin, 2008; Gheerbrant et al.,
2012; Lembo et al., 2015; Lukasiewicz et al., 2015). In the case of graph databases there
has been some work concerning CQA over graphs without data values (Barceló & Fontaine,
2017), however, to the best of our knowledge, no previous work studies the problem of
computing repairs neither the case when the graphs have data values in their nodes.

When studying CQA and repair problems in contexts such as description logics, it
seems more natural to focus on subset repairs, since DL semantics is open world by nature.
This means that the (explicit or implicit) non-presence of a fact in the database is not
enough to derive the negation of the fact. In the case of graph databases, some applications
can respond either to closed or open world semantics, and therefore both types of set-based
repairs could turn out to be meaningful. In this work, we considered both types of set-based

749

Abriola, Martinez, Pardal, Cifuentes & Pin

repairs, however we note that we left for future work the study of symmetric difference-based
repairs –which were actually studied in (Barceló & Fontaine, 2017). Usually, reasoning on
symmetric difference repairs is much harder, and, in the case of data-graphs, the definition
of symmetric difference is not as straightforward to formalize as it is in the models defined
in (Barceló & Fontaine, 2017).

5. Conclusions

In this work, we presented a graph database model along with a notion of consistency
based upon path constraints defined by the Reg-GXPath language. We proved many results
concerning the complexity of computing subset and superset repairs of data-graphs given
a set of restrictions (which can be summarized in Table 1). We proved that, depending on
the semantics of the repair and the syntactic conditions imposed on the set of constraints,
the problem ranges from polynomial-time solvable to undecidable.

When restricting the language to the positive fragment of Reg-GXPath, which we denote
Reg-GXPathpos, we obtained polynomial-time algorithms (on data complexity) for superset-
repair computing, and when considering only node expressions from Reg-GXPathpos we
found a polynomial-time algorithm for computing the unique subset repair. We note that
the algorithm for subset repairs runs in polynomial time on both the size of the graph G
and the size of the restriction set R (in other words, we consider combined complexity of the
problem). Furthermore, for every intractable case studied, we also obtained tight bounds
on the combined and data complexity of the problem.

Some questions regarding repair computing in this context remain open. For example,
if the ∃SUPERSET-REPAIR problem remains undecidable when considering only a fixed
set of node expressions from Reg-GXPath. It does not seem direct to extend the same
proofs and techniques used for the case of path expressions or node expressions (under
unfixed constraints).

Another direction of future research we are interested in is the development of preference
criteria over repairs. In the problems we studied, we were concerned in finding any repair
of a data-graph given a set of constraints. This assumes no prior information about the
domain semantics. However, in many contexts we might have a preference criterion that
may yield an ordering over all possible repairs.

The complexity of CQA under this context has not been studied yet. Taking into account
the results from (Ten Cate et al., 2015) and (Barceló & Fontaine, 2017) it is plausible
that reasoning over superset repairs will turn out to be harder than in subset repairs, but
meanwhile the complexity of the problem remains unknown. Nevertheless, we note that the
CQA problem turns out to be trivial in some cases based on the facts developed through this
work concerning Reg-GXPath and Reg-GXPathpos; for example, when considering subset
repairs and Reg-GXPathpos there is a unique repair which is computable in polynomial
time, and therefore the CQA problem is easy to solve.

750

On the Complexity of Finding Set Repairs for Data-Graphs

Subset Superset

Reg-GXPath
NP-complete, even for a fixed set
of node constraints (Th. 12)

Undecidable for fixed set of
path expressions (Th. 17) and
for an unfixed set of node
expressions (Th. 19)

Reg-GXPathpos
PTime for node constraints. (Th. 15)
NP-complete in data complexity for
path constraints (Th. 11)

PTime for any fixed constraints
(Th. 25) or for an unfixed set of
node expressions (Th. 26).
NP-complete otherwise (Th. 27)

Table 1: Summary of the results obtained for the subset and superset repair problems.

Acknowledgments

This work was funded in part by Secretaŕıa de Investigación Cient́ıfica y Tecnológica
FCEN–UBA (RESCS-2020-345-E-UBA-REC), CONICET under the PIP (grant 11220200101408CO),
Agencia Nacional de Promoción Cient́ıfica y Tecnológica, Argentina under grants PICT-
2018-0475 (PRH-2014-0007) and PICT-2020-SERIEA-01481. We thank Dr. Ricardo O.
Rodriguez (Department of Computer Science, Universidad de Buenos Aires) for his helpful
comments and suggestions during the development of this work.

Appendix A.

Proof of Lemma 13. We will prove it by induction over the structure of the expressions.
Let us note G = (VG, Le, D) and G′ = (VG′ , Le′ , D

′).

In the base case of a path expression α, it must be of the form ϵ, , a or a−. In all of these
cases the property holds: since G ⊆ G′, we have that {(x, x) | x ∈ VG} ⊆ {(x, x) | x ∈ VG′},
that {(x, y) | x, y ∈ VG ∧ Le(x, y) ̸= ∅} ⊆ {(x, y) | x, y ∈ VG′ ∧ Le′(x, y) ̸= ∅}, etc.

For the base case of a node expression φ, it can only be of the form c
= or c̸

=, and it is
easy to see that the property also holds.

For the inductive step, we consider all possible cases:

◦ If α = [ψ] then JψKG ⊆ JψKG′ (which holds by inductive hypothesis) implies J[ψ]KG ⊆
J[ψ]KG′ .

◦ If α = β1.β2 then (v, w) ∈ JαKG ⇐⇒ ∃z such that (v, z) ∈ Jβ1KG and (z, w) ∈ Jβ2KG.
Since JβiKG ⊆ JβiKG′ for i ∈ {1, 2}, then (v, z) ∈ Jβ1KG′ and (z, w) ∈ Jβ2KG′ , which
implies (v, w) ∈ JαKG′ .

◦ If α = β1 ∪ β2 then JβiKG ⊆ JβiKG′ for i ∈ {1, 2} readily implies JαKG ⊆ JαKG′ .

◦ If α = β∗ then (v, w) ∈ Jβ∗KG ⇐⇒ ∃z1, z2, ..., zm such that z1 = v, zm = w and
(zi, zi+1) ∈ JβKG for 1 ≤ i < m. Since JβKG ⊆ JβKG′ then (zi, zi+1) ∈ JβKG′ for
1 ≤ i < m, which implies (v, w) ∈ Jβ∗KG′ .

751

Abriola, Martinez, Pardal, Cifuentes & Pin

◦ If α = βn,m then (v, w) ∈ Jβn,mKG ⇐⇒ ∃z1, ..., zk, n + 1 ≤ k ≤ m + 1 such that
z1 = v, zk = w and (zi, zi+1) ∈ JβKG for 1 ≤ i ≤ k − 1. By the inductive hypothesis
then (zi, zi+1) ∈ JβKG′ , which implies (z, w) ∈ Jαn,mKG′ .

◦ If α = β1 ∩β2 then JβiKG ⊆ JβiKG′ for i ∈ {1, 2} implies Jβ1 ∩ β2KG = Jβ1KG ∩ Jβ2KG ⊆
Jβ1KG′ ∩ Jβ2KG′ = Jβ1 ∩ β2KG′ .

◦ If φ = ψ1 ∧ ψ2 then JψiKG ⊆ JψiKG′ for i ∈ {1, 2} readily implies Jψ1 ∧ ψ2KG =
Jψ1K ∩ Jψ2K ⊆ Jψ1KG′ ∩ Jψ2KG′ = Jψ1 ∧ ψ2KG′

◦ The case φ = ψ1 ∨ ψ2 can be treated in the same way.

◦ If φ = ⟨β⟩ then JβKG ⊆ JβKG′ implies J⟨β⟩KG ⊆ J⟨β⟩KG′

◦ If φ = ⟨β1 ⋆β2⟩, with ⋆ ∈ {=, ̸=}, then v ∈ JφKG ⇐⇒ ∃z1, z2 ∈ VG such that (v, zi) ∈
JβiKG for i ∈ {1, 2} and D(z1) ⋆ D(z2). Since JβiKG ⊆ JβiKG′ , then (v, zi) ∈ JβiKG′ .

And since we also have that D(zi) = D′(zi) (since the zi are in VG), we obtain that
v ∈ J⟨β1 ⋆ β2⟩KG′ , as we wanted.

Proof of Lemma 21. In order to prove this Lemma we need to first prove another property
of Reg-GXPathpos expressions:

Lemma 28. Let α be a Reg-GXPathpos path expression, φ a Reg-GXPathpos node expres-
sion, E ⊆ Σe a set of edge labels and K a data-graph where for every pair of nodes v, w ∈ VK
it is the case that L(v, w) = E. Then it holds that:

1. If (v, w) ∈ JαKK , v ̸= w, and DK(w) /∈ Σαn, then we have that (v, z) ∈ JαKK for every
node z ∈ VK such that DK(z) /∈ Σαn.

2. If (w, v) ∈ JαKK , v ̸= w, and DK(w) /∈ Σαn, then we have that (z, v) ∈ JαKK for every
node z ∈ VK such that DK(z) /∈ Σαn.

3. If (v, v) ∈ JαKK and DK(v) /∈ Σαn then (z, z) ∈ JαKK for every node z ∈ VK such that
DK(z) /∈ Σαn.

4. If v ∈ JφKK for some v ∈ VK such that DK(v) /∈ Σφn then z ∈ JφKK for every node
z ∈ VK that satisfies DK(z) /∈ Σφn.

Proof of Lemma 28. We present a proof of the four properties simultaneously by structural
induction. For the base cases:

◦ α = : if E ̸= ∅ then every pair v, z ∈ VK is in J KK , and this case follows trivially.
Otherwise there are no edges in the graph, and there isn’t any hypothesis that can be
satisfied.

◦ α = a and α = a
−: if there is a pair of nodes v, w ∈ VK such that (v, w) ∈ JaKK then

a ∈ E, and every pair of nodes x, y ∈ VK satisfies (x, y) ∈ JaKK . The same reasoning
holds for a

−.

752

On the Complexity of Finding Set Repairs for Data-Graphs

◦ α = ϵ: this case follows trivially, since the hypothesis of the statements 1 and 2 cannot
be satisfied, and the consequent of statement 3 is always satisfied.

◦ φ = e
=: the hypothesis of statement 4 cannot be satisfied in this case, and then this

follows trivially.

◦ φ = e̸
=: every node v ∈ VK such that DK(v) /∈ Σe ̸=

n = {e} satisfies v ∈ Je ̸=KK .

We now proceed with the inductive cases:

◦ α = [ψ]: the hypothesis of statements 1 and 2 cannot be satisfied in this case, and
therefore we only consider statement 3. Suppose there is a node v ∈ VK such that

DK(v) /∈ Σ[ψ]
n and (v, v) ∈ J[ψ]KK . By hypothesis, every other node z ∈ VK such that

DK(z) /∈ Σψn satisfies z ∈ JψKK , which then implies that (z, z) ∈ J[ψ]KK .

◦ α = β1.β2: for the statement 1, let v, w ∈ VK satisfy its hypothesis ((v, w) ∈ JαKK ,
v ̸= w, D(w) /∈ Σαn), and let x be a node such that (v, x) ∈ Jβ1KK and (x,w) ∈ Jβ2KK .
Then if x ̸= w we know by the inductive hypothesis that (x, z) ∈ Jβ2KK for every

z ∈ VK with DK(z) /∈ Σβ2n (which is a superset of those nodes y such that DK(y) /∈
Σβ1.β2n), and then we can conclude that (v, z) ∈ Jβ1.β2KK . If w = x the result follows
by considering that (v, z) ∈ Jβ1KK and then (z, z) ∈ Jβ2KK by the statement 3. The
statement 2 can be proved the same way.

Now for statement 3 let v be a node from K that satisfies its hypothesis ((v, v) ∈ JαKK
and DK(z) /∈ Σαn) and let x be the ‘intermediate’ node. Let z be a node such that

DK(z) /∈ Σβ1.β2n . If x = v it follows by using statement 3 as inductive hypothesis that
(z, z) ∈ Jβ1.β2KK . Otherwise (i.e. x ̸= v) by using statement 1 and 2 as inductive
hypothesis we can obtain the same result.

◦ α = β1∪β2: this follows by inductive hypothesis considering, without loss of generality,
that (v, w) ∈ Jβ1KK (and respectively (w, v) and (v, v) for statements 2 and 3).

◦ The case α = β1 ∩ β2 can be treated in a similar way.

◦ α = β∗: if (v, w) ∈ Jβ∗KK then either (v, w) ∈ JϵKK or (v, w) ∈ JβnKK for some n > 0.
The first scenario has already been proved, while the second one follows from what
we have seen in the concatenation case.

◦ If α = βn,m: the result follows with the same argument used in the β∗ case since
(v, w) ∈ Jβn,mK ⇐⇒ (v, w) ∈ JβkK for some n ≤ k ≤ m.

◦ φ = ψ1∧ψ2: let v ∈ VK be a node such that v ∈ JφKK and DK(v) /∈ Σφn. By inductive
hypothesis, every other z ∈ VK with DK(z) /∈ φ satisfies z ∈ JψiKK for i ∈ {1, 2},
which implies that z ∈ JφKK .

◦ φ = ψ1 ∨ ψ2: let v ∈ VK satisfy the hypothesis of statement 4, and without loss of
generality assume v ∈ Jψ1KK . By inductive hypothesis every other node z ∈ VK such
that DK(z) /∈ Σφn satisfies z ∈ Jψ1KK , which implies that z ∈ Jψ1 ∨ ψ2KK .

753

Abriola, Martinez, Pardal, Cifuentes & Pin

◦ φ = ⟨β⟩: let v ∈ VK satisfy the hypothesis of statement 4. Then (v, x) ∈ JβKK for
some x. Thanks to statement 2 we can deduce that if x ̸= v then (z, x) ∈ JβKK for

every z such that DK(z) /∈ Σ⟨β⟩
n . If x = v we use statement 3.

◦ φ = ⟨β1 = β2⟩: let v ∈ VK satisfy the hypothesis of statement 4, x1 and x2 be nodes
such that (v, xi) ∈ JβiKK for i ∈ {1, 2} and DK(x1) = DK(x2), and z ∈ VK other node
such that DK(z) /∈ Σφn. If both xi are different from v then (z, xi) ∈ JβiKK thanks to
statement 2. Otherwise, suppose x1 = v without loss of generality, which then implies
that (z, z) ∈ Jβ1KK due to statement 3. Since DK(x2) = DK(x1) = DK(v) /∈ Σφn we
can guarantee that (z, z) ∈ Jβ2KK : if x2 = v then this follows due to statement 3,
and if x2 ̸= v then due to statement 2 we know that (x2, x2) ∈ Jβ2KK and then that
(z, z) ∈ Jβ2KK through statement 3.

◦ φ = ⟨β1 ̸= β2⟩: let v ∈ VK satisfy the hypothesis of statement 4, x1 and x2 be nodes
such that (v, xi) ∈ JβiKK for i ∈ {1, 2} and DK(x1) ̸= DK(x2), and z ∈ VK other
node such that DK(z) /∈ Σφn. If v ̸= xi for i ∈ {1, 2} then the result follows by
statement 2. Otherwise, consider that x1 = v, which then implies that (z, z) ∈ Jβ1KK
by statement 3. If x2 ̸= v then by statement 2 we can conclude that (z, x2) ∈ Jβ2KK .
If DK(x2) ̸= DK(z) we have finished, and if not, knowing that DK(x2) /∈ Σφn (this
follows from DK(x2) = DK(z)), we can consider that (z, v) ∈ Jβ2KK by statement 1
and that DK(x2) ̸= DK(x1) = DK(v). The case x2 = v cannot happen, since we are
assuming that x1 = v and DK(x1) ̸= DK(x2).

Now we continue with the Lemma 21.
Let G′ be a superset repair of G with respect to R. If ΣG

′

n ⊆ ΣGn ∪ΣRn ∪ {c, d} for some
c, d ∈ Σn \ Σ

R
n , c ̸= d, then G′ is already the witness we want for this lemma. Otherwise,

take c, d ∈ ΣG
′

n \ (Σ
G
n ∪ ΣRn), c ̸= d. We define the graph H = (VH , LH , DH) where:

VH = VG′

LH(v, w) = ΣG
′

e ∀v, w ∈ VH

DH(v) =

{
DG

′(v) if DG
′(v) ∈ ΣG

n ∪ ΣR
n ∪ {c, d}

c otherwise

where ΣG
′

e is the set of all edge labels mentioned in G′ (i.e. ΣG
′

e = {l ∈ Σe | ∃v, w ∈ VG′

such that l ∈ LG′(v, w)}).
Intuitively, we have changed all data values that were not in ΣGn ∪Σ

R
n ∪{c, d} into c, and

we also added every possible edge considering those labels already present in G′. Note that
ΣHn ⊆ ΣGn ∪Σ

R
n ∪{c, d}, so showing that H |= R is enough to prove the lemma. We will show

by induction in the expressions’ structure that if a pair v, w ∈ VG′ satisfies (v, w) ∈ JαKG′

754

On the Complexity of Finding Set Repairs for Data-Graphs

then (v, w) ∈ JαKH , and that if v ∈ JφKG′ then v ∈ JφKH (where the expressions considered

only use data values from ΣRn).
For the base cases:

◦ α = : if some pair (v, w) is in J KG′ then ΣG
′

e ̸= ∅, and (v, w) ∈ J KG′ .

◦ α = a and α = a
−: if (v, w) ∈ JaKG′ then clearly a ∈ ΣG

′

e and a ∈ LH(v, w).

◦ α = ϵ: this case follows trivially.

◦ φ = e
=: if v ∈ Je=KG′ then DG

′(v) = e. Since e ∈ ΣRn the data value was preserved in
H (DH(v) = e) and thus v ∈ Je=KH .

◦ φ = e̸
=: let v ∈ Je̸=KG′ . If DG

′(v) ∈ ΣGn ∪ ΣRn ∪ {c, d} then the data value of v

was preserved, and v ∈ Je̸=KH . Otherwise DH(v) = c, and since c /∈ ΣRn we know

v ∈ Je ̸=KH .

Now, for the inductive cases:

◦ α = [ψ]: let (v, v) ∈ J[ψ]KG′ , which implies that v ∈ JψKG′ . By inductive hypothesis
we have that v ∈ JψKH , and then (v, v) ∈ J[ψ]KH .

◦ α = β1.β2: if (v, w) ∈ Jβ1.β2KG′ then there exists z ∈ VG′ such that (v, z) ∈ Jβ1KG′ and
(z, w) ∈ Jβ2KG′ . By inductive hypothesis (v, z) ∈ Jβ1KH and (z, w) ∈ Jβ2KH , which
implies that (v, w) ∈ Jβ1.β2KH .

◦ α = β1 ∪ β2: let (v, w) ∈ Jβ1 ∪ β2KG′ . Without loss of generality, we can assume that
(v, w) ∈ Jβ1KG′ . By inductive hypothesis (v, w) ∈ Jβ1KH , and then (v, w) ∈ Jβ1 ∪ β2KH .

◦ α = β1∩β2: since (v, w) ∈ Jβ1 ∩ β2KG ⇐⇒ (v, w) ∈ Jβ1KG∩ Jβ2KG then the inductive
hypothesis implies (v, w) ∈ Jβ1KH ∩ Jβ2KH = Jβ1 ∩ β2KH .

◦ α = β∗: (v, w) ∈ Jβ∗KG′ if there exists z1, ...zm ∈ VG′ such that z1 = v, zm = w and
(zi, zi+1) ∈ JβKG′ for 1 ≤ i ≤ m − 1. By inductive hypothesis (zi, zi+1) ∈ JβKH for
1 ≤ i ≤ m− 1, and then (v, w) ∈ Jβ∗KH .

◦ The case α = βn,m follows with the same argument used in the .∗ case.

◦ φ = ψ1∧ψ2: let v ∈ Jψ1 ∧ ψ2KG′ . Since v ∈ JψiKG′ for i ∈ {1, 2} we know by hypothesis
that v ∈ JψiKH for i ∈ {1, 2}, which implies that v ∈ Jψ1 ∧ ψ2KH .

◦ φ = ψ1 ∨ ψ2: we can assume without loss of generality that if v ∈ Jψ1 ∨ ψ2KG then
v ∈ Jψ1KG, and we can readily conclude by inductive hypothesis that v ∈ Jψ1KH ⊆
Jψ1 ∨ ψ2KH .

◦ φ = ⟨β⟩: if v ∈ J⟨β⟩KG′ then there exists z ∈ VG′ such that (v, z) ∈ JβKG′ . Then by
hypothesis (v, z) ∈ JβKH and v ∈ J⟨β⟩KH .

755

Abriola, Martinez, Pardal, Cifuentes & Pin

◦ φ = ⟨β1 = β2⟩: if v ∈ J⟨β1 = β2⟩KG′ then there exists z1, z2 ∈ VG′ such that
(v, z1) ∈ Jβ1KG′ , (v, z2) ∈ Jβ2KG′ and DG

′(z1) = DG
′(z2). By construction DH(z1) =

DH(z2), and by hypothesis (v, z1) ∈ Jβ1KH and (v, z2) ∈ Jβ2KH , which implies that
v ∈ J⟨β1 = β2⟩KH .

◦ φ = ⟨β1 ̸= β2⟩: this is the most interesting case. Note that the paths used in
G to satisfy the expression could now lead to nodes with the same data value. If
v ∈ J⟨β1 ̸= β2⟩KG′ then there exist nodes z1, z2 ∈ VG′ such that (v, z1) ∈ Jβ1KG′ ,
(v, z2) ∈ Jβ2KG′ and DG

′(z1) ̸= DG
′(z2). If DH(z1) ̸= DH(z2) then we can conclude

using the inductive hypothesis that v ∈ J⟨β1 ̸= β2⟩KH . If this is not the case, then
both nodes had in G′ as data value either c or one of those we changed (i.e. one

from ΣG
′

n \ (Σ
G
n ∪ ΣRn ∪ {c, d}). Note that since DG

′(z1) ̸= DG
′(z2), it must hold that

either z1 ̸= v or z2 ̸= v; without loss of generality we can assume that z1 ̸= v. Let
vd be a node from H that has data value d (by construction there must be at least
one such node). Since (v, z1) ∈ Jβ1KH , v ̸= z1, DH(z1) /∈ ΣRn and H is a ‘complete

graph’ under edge labels form ΣG
′

e we can deduce using statement 1 of Lemma 28 that
(v, vd) ∈ Jβ1KH . Then we can conclude that v ∈ J⟨β1 ̸= β2⟩KH taking into account that
(v, z2) ∈ Jβ2KH due to the inductive hypothesis.

We can then conclude, since G′ |= R, that H |= R holds.

Proof of Lemma 23. Let f : VG → VH be a mapping between the nodes of G and H such
that f(v) = v if v ∈ VG \ Vd, and f(v) = vd otherwise. Now we show, by induction over
the formula’s structure, that if a pair of nodes v, w ∈ VG satisfies (v, w) ∈ JαKG, then
(f(v), f(w)) ∈ JαKH , and that if v ∈ JφKG then f(v) ∈ JφKH . This is enough to prove the
lemma.

For the base cases:

◦ α = : if both v and w were not in Vd then their edges were preserved. If w ∈ Vd
and v /∈ Vd then by construction LG(v, w) ⊆ LH(v, vd). The case when v ∈ Vd is
analogous. If both v and w are in Vd we use the fact that LG(v, w) ⊆ LH(vd, vd).

◦ α = a or α = a
−: idem the previous case.

◦ α = ϵ: this one follows trivially.

◦ φ = c
=: v and f(v) have the same data value, which means that this case holds.

◦ φ = c̸
=: idem the previous case.

Now, the inductive ones:

◦ α = [ψ]: If (v, v) ∈ J[ψ]KG then v ∈ JψKG, which implies by inductive hypothesis that
f(v) ∈ JψKH and then (f(v), f(v)) ∈ J[ψ]KH .

◦ α = β1.β2: if (v, w) ∈ Jβ1.β2KG then there exists z ∈ VG such that (v, z) ∈ Jβ1KG and
(z, w) ∈ Jβ2KG. Then by inductive hypothesis (f(v), f(z)) ∈ Jβ1KH and (f(z), f(w)) ∈
Jβ2KH , which implies that (f(v), f(w)) ∈ Jβ1.β2KH .

756

On the Complexity of Finding Set Repairs for Data-Graphs

◦ α = β1∪β2: suppose without loss of generality that (v, w) ∈ Jβ1KG. Then by induction
(f(v), f(w)) ∈ Jβ1 ∪ β2KH .

◦ α = β1 ∩ β2: if (v, w) ∈ Jβ1 ∩ β2KG then (v, w) ∈ Jβ1KG ∩ Jβ2KG, and by the inductive
hypothesis we can deduce that (f(v), f(w)) ∈ Jβ1KH ∩ Jβ2KH = Jβ1 ∩ β2KH .

◦ α = β∗: (v, w) ∈ Jβ∗KG if there exists z1, ..., zm ∈ VG such that z1 = v, zm = w and
(zi, zi+1) ∈ JβKG for 1 ≤ i ≤ m − 1. By hypothesis it follows that (f(zi), f(zi+1)) ∈
JβKH , which implies that (f(v), f(w)) ∈ Jβ∗KH .

◦ α = βn,m: this case follows using the same argument used in the .∗ case.

◦ φ = ψ1 ∧ ψ2: v ∈ Jψ1 ∧ ψ2KG if v ∈ Jψ1KG and v ∈ Jψ2KG. By using the hypothesis we
conclude that f(v) ∈ Jψ1KH and f(v) ∈ Jψ2KH , which implies that f(v) ∈ Jψ1 ∧ ψ2KH .

◦ φ = ψ1∨ψ2: if v ∈ Jψ1 ∨ ψ2KG then without loss of generality we can assume v ∈ Jψ1KG.
Then by inductive hypothesis f(v) ∈ Jψ1KH ⊆ Jψ1 ∨ ψ2KH .

◦ φ = ⟨β⟩: v ∈ J⟨β⟩KG if (v, z) ∈ JβKG for some z. By hypothesis (f(v), f(z)) ∈ JβKH ,
and then f(v) ∈ J⟨β⟩KH .

◦ φ = ⟨β1 ⋆ β2⟩, with ⋆ ∈ {=, ̸=}: v ∈ J⟨β1 ⋆ β2⟩K if there exists z1, z2 ∈ VG such that
(v, z1) ∈ Jβ1KG, (v, z2) ∈ Jβ2KG and DG(z1) ⋆ DG(z2). In H both z1 and z2 preserve
their data values (i.e. DG(zi) = DH(f(zi)) for i ∈ {1, 2}), and by inductive hypothesis
(f(v), f(zi)) ∈ JβiKH for i ∈ {1, 2}. Then f(v) ∈ J⟨β1 ⋆ β2⟩KH .

References

Abiteboul, S., & Vianu, V. (1999). Regular path queries with constraints. Journal of Computer and
System Sciences, 58 (3), 428–452.

Anand, M. K., Bowers, S., & Ludäscher, B. (2010). Techniques for efficiently querying scientific
workflow provenance graphs. In Proc. of International Conference on Extending Database
Technology (EDBT 2010), 287–298.

Angles, R., Arenas, M., Barceló, P., Boncz, P., Fletcher, G., Gutierrez, C., Lindaaker, T., Paradies,
M., Plantikow, S., Sequeda, J., et al. (2018). G-core: A core for future graph query languages.
Proceedings of the 2018 International Conference on Management of Data, 1421–1432.

Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., & Vrgoč, D. (2017). Foundations of
modern query languages for graph databases. ACM Computing Surveys (CSUR), 50 (5),
1–40.

Angles, R., & Gutierrez, C. (2008). Survey of graph database models. ACM Computing Surveys
(CSUR), 40 (1), 1–39.

Arenas, M., Bertossi, L., & Chomicki, J. (1999). Consistent query answers in inconsistent databases.
Proc. of ACM Symposium on Principles of Database Systems (PODS 1999), 99, 68–79.

Arenas, M., & Libkin, L. (2008). XML data exchange: Consistency and query answering. Journal of
the ACM (JACM), 55 (2), 1–72.

Arenas, M., & Pérez, J. (2011). Querying semantic web data with SPARQL. In Proc. of ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, 305–316.

757

Abriola, Martinez, Pardal, Cifuentes & Pin

Barceló, P. (2013). Querying graph databases. Proc. of ACM SIGMOD-SIGACT-SIGAI symposium
on Principles of database systems, 175–188.

Barceló, P., & Fontaine, G. (2017). On the data complexity of consistent query answering over graph
databases. Journal of Computer and System Sciences, 88, 164–194.

Barceló, P., Pérez, J., & Reutter, J. L. (2012). Relative expressiveness of nested regular expressions.
Alberto Mendelzon International Workshop on Foundations of Data Management, 12, 180–
195.

Benedikt, M., & Koch, C. (2009). XPath leashed. ACM Computing Surveys (CSUR), 41 (1), 1–54.
Bertossi, L. (2011). Database repairing and consistent query answering. Synthesis Lectures on Data

Management, 3 (5), 1–121.
Bertossi, L. (2019). Database repairs and consistent query answering: Origins and further devel-

opments. Proc. of ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, 48–58.

Bienvenu, M., Bourgaux, C., & Goasdoué, F. (2019). Computing and explaining query answers over
inconsistent DL-Lite knowledge bases. Journal of Artificial Intelligent Research, 64 (1), 563–
644.

Buneman, P., Fan, W., &Weinstein, S. (2000). Path constraints in semistructured databases. Journal
of Computer and System Sciences, 61 (2), 146–193.

Calvanese, D., Ortiz, M., & Šimkus, M. (2016). Verification of evolving graph-structured data un-
der expressive path constraints. 19th International Conference on Database Theory (ICDT
2016).

Fan, W. (2012). Graph pattern matching revised for social network analysis. Proc. of International
Conference on Database Theory (ICDT 2012), 8–21.

Fan, W. (2019). Dependencies for graphs: Challenges and opportunities. Journal of Data and Infor-
mation Quality (JDIQ), 11 (2), 1–12.

Flesca, S., Furfaro, F., & Parisi, F. (2007). Preferred database repairs under aggregate constraints.
Proc. of International Conference on Scalable Uncertainty Management (SUM 2007), 215–
229.

Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V., Plantikow, S., Ryd-
berg, M., Selmer, P., & Taylor, A. (2018). Cypher: An evolving query language for property
graphs. Proceedings of the 2018 International Conference on Management of Data, 1433–
1445.

Gheerbrant, A., Libkin, L., & Tan, T. (2012). On the complexity of query answering over incomplete
XML documents. Proc. of International Conference on Database Theory (ICDT 2012), 169–
181.

Gogacz, T., Ibáñez-Garcıéa, Y. A., & Murlak, F. (2018). Finite query answering in expressive descrip-
tion logics with transitive roles. CoRR, abs/1808.03130. http://arxiv.org/abs/1808.03130

Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. d., Gutierrez, C., Kirrane, S., Gayo,
J. E. L., Navigli, R., Neumaier, S., et al. (2021). Knowledge graphs. Synthesis Lectures on
Data, Semantics, and Knowledge, 12 (2), 1–257.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hellmann, S.,
Morsey, M., Van Kleef, P., Auer, S., et al. (2015). Dbpedia–a large-scale, multilingual knowl-
edge base extracted from Wikipedia. Semantic web, 6 (2), 167–195.

Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., & Savo, D. F. (2010). Inconsistency-tolerant seman-
tics for description logics. Proc. of International Conference on Web Reasoning and Rule
Systems (RR 2010), 103–117.

Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., & Savo, D. F. (2015). Inconsistency-tolerant query
answering in ontology-based data access. Journal of Web Semantics, 33, 3–29.

Libkin, L., Martens, W., & Vrgoč, D. (2016). Querying graphs with data. Journal of the ACM
(JACM), 63 (2), 1–53.

758

On the Complexity of Finding Set Repairs for Data-Graphs

Libkin, L., & Vrgoč, D. (2012). Regular path queries on graphs with data. Proc. of International
Conference on Database Theory (ICDT 2012), 74–85.

Lopatenko, A., & Bertossi, L. (2007). Complexity of consistent query answering in databases under
cardinality-based and incremental repair semantics. Proc. of International Conference of
Database Theory (ICDT 2007), 179–193.

Lukasiewicz, T., Malizia, E., Martinez, M. V., Molinaro, C., Pieris, A., & Simari, G. I. (2022).
Inconsistency-tolerant query answering for existential rules.Artificial Intelligence, 307, 103685.

Lukasiewicz, T., Martinez, M. V., Pieris, A., & Simari, G. I. (2015). From classical to consistent
query answering under existential rules. Proc. of AAAI Conference on Artificial Intelligence
(AAAI 2015).

Lukasiewicz, T., Martinez, M. V., & Simari, G. I. (2013). Complexity of inconsistency-tolerant
query answering in Datalog+/–. Proc. of OTM Confederated International Conferences On
the Move to Meaningful Internet Systems, 488–500.

Pérez, J., Arenas, M., & Gutierrez, C. (2010). nSPARQL: A navigational language for RDF. Journal
of Web Semantics, 8 (4), 255–270.

Rebele, T., Suchanek, F., Hoffart, J., Biega, J., Kuzey, E., & Weikum, G. (2016). YAGO: A mul-
tilingual knowledge base from Wikipedia, WordNet, and GeoNames. Proc. of International
semantic web conference (ISWC 2016), 177–185.

Rudolph, S. (2016). Undecidability results for database-inspired reasoning problems in very expres-
sive description logics. Proc. of International Conference on the Principles of Knowledge
Representation and Reasoning (KR 2016).

Staworko, S., Chomicki, J., & Marcinkowski, J. (2012). Prioritized repairing and consistent query
answering in relational databases. Annals of Mathematics and Artificial Intelligence, 64 (2),
209–246.

Ten Cate, B., Fontaine, G., & Kolaitis, P. G. (2012). On the data complexity of consistent query
answering. Proc. of International Conference on Database Theory (ICDT 2012), 22–33.

Ten Cate, B., Fontaine, G., & Kolaitis, P. G. (2015). On the data complexity of consistent query
answering. Theory of Computing Systems, 57 (4), 843–891.

van Rest, O., Hong, S., Kim, J., Meng, X., & Chafi, H. (2016). Pgql: A property graph query
language. Proceedings of the Fourth International Workshop on Graph Data Management
Experiences and Systems, 1–6.

Vardi, M. Y. (1982). The complexity of relational query languages. Proc. of ACM symposium on
Theory of computing, 137–146.

Wijsen, J. (2002). Condensed representation of database repairs for consistent query answering.
Proceedings of the 9th International Conference on Database Theory, 378–393.

759

