
Axiomatizing logics of fuzzy preferences using

graded modalities∗

Amanda Vidal1, Francesc Esteva2 and Lluis Godo2

1 Institute of Computer Science (ICS) - CAS, Prague, Czech Republic

amanda@cs.cas.cz
2 Artificial Intelligence Research Institute (IIIA) - CSIC, Barcelona, Spain

{esteva,godo}@iiia.csic.es

Abstract

The aim of this paper is to propose a many-valued modal framework
to formalize reasoning with both graded preferences and propositions, in
the style of van Benthem et al.’s classical modal logics for preferences. To
do so, we start from Bou et al.’s minimal modal logic over a finite and
linearly ordered residuated lattice and define appropriate extensions on
a multi-modal language with graded modalities, both for weak and strict
preferences. We propose an axiomatic system for this logic in an extended
language (where the preference modal operators are definable), and prove
completeness with respect to the intended graded preference semantics.

1 Introduction

Reasoning about preferences is a topic that has received a lot of attention in
Artificial Intelligence since many years, see for instance [HGY12, DHKP11,
Kac11]. Two main approaches to representing and handling preferences have
been developed: the relational and the logic-based approaches.

In the classical setting, a (weak) preference binary relation P ⊆ W ×W on
a set of alternatives W is usually modeled as a preorder, i.e. a reflexive and
transitive relation, where (a, b) ∈ P is understood as b is at least as preferred as
a. In the fuzzy or graded setting, preference relations can be attached degrees
(usually belonging to the unit interval [0, 1]) of fulfillment or strength, so they
become fuzzy relations. A weak fuzzy preference relation on a set P will be now
a fuzzy preorder P : X ×X → [0, 1], where P (a, b) is interpreted as the degree
in which b is at least as preferred as a. Given a t-norm ∗, a fuzzy relation P is
a ∗-preorder if it satisfies

∗This is a revised and properly extended version of the conference papers [VEG17a] and
[VEG18].
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• reflexivity: P (a, a) = 1 for each a ∈ X, and

• ∗-transitivity: P (a, b) ∗ P (b, c) 6 P (a, c) for each a, b, c ∈ X.

The most influential reference is the book by Fodor and Roubens [FR94], that
was followed by many other works like, for example [DBM07, DBM10, DMB04,
DBM08, DGLM08]. In this setting, many questions have been discussed, like
e.g. the definition of the strict fuzzy order associated to a fuzzy preorder (see
for example [Bod08a, Bod08b, BD08, EGV18]).

The basic assumption in logical-based approaches is that preferences have
structural properties that can be suitably described in a formalized language.
This is the main goal of the so-called preference logics, see e.g. [HGY12]. The
first logical systems to reason about preferences go back to S. Halldén [Hal57]
and to von Wright [vW63, vW72, Liu10]. Others related works are [EP06,
vBvOR05]. More recently van Benthem et al. in [vBGR09] have presented a
modal logic-based formalization of representing and reasoning with preferences.
In that paper the authors first define a basic modal logic with two unary modal
operators 3 and 3<, together with the universal and existential modalities,
A and E respectively, and axiomatize them. Using these primitive modalities,
they consider several (definable) binary modalities to capture different notions
of preference relations on classical propositions, and show completeness with
respect to the intended preference semantics. Finally they discuss their systems
in relation to von Wright axioms for ceteris paribus preferences [vW63]. On
the other hand, with the motivation of formalizing a comparative notion of
likelihood, Halpern studies in [Hal97] different ways to extend preorders on a
set X to preorders on subsets of X and their associated strict orders. He studies
their properties and relations among them, and he also provides an axiomatic
system for a logic of relative likelihood, that is proved to be complete with respect
to what he calls preferential structures, i.e. Kripke models with preorders as
accessibility relations. All these works relate to the classical (modal) logic and
crisp preference (accessibility) relations.

In the fuzzy setting, as far as the authors are aware, there are not many
formal logic-based approaches to reasoning with fuzzy preference relations, see
e.g. [BEFG01]. More recently, in the first part of [EGV18] we studied and
characterized different forms to define fuzzy relations on the set P(W) of subsets
of W , from a fuzzy preorder on W , in a similar way to the one followed in [Hal97,
vBGR09] for classical preorders, while in the second part we have semantically
defined and axiomatized several two-tiered graded modal logics to reason about
different notions of preferences on crisp propositions, see also [EGV17]. On the
other hand, in [VEG17a] we considered a modal framework over a many-valued
logic with the aim of generalizing Van Benthem et al.’s modal approach to
the case of both fuzzy preference accessibility relations and fuzzy propositions.
To do that, we first extended the many-valued modal framework of [BEGR11]
for only a necessity operator � by defining an axiomatic system with both
necessity and possibility operators � and 3 over the same class of models.
Unfortunately, in the last part of that paper, there is a mistake in the proof of
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Theorem 3 (particularly, equation (4)). This left open the question of properly
axiomatizing the logic of graded preferences defined there.

In this paper we address this problem, extending the work developed in
[VEG18]. We propose an alternative approach to provide a complete axiomatic
system for a logic of fuzzy preferences, studying first the logic with reflexive
graded preference relations (as in [VEG18]) an later, extending this system with
the corresponding strict (irreflexive) preferences. Namely, given a finite MTL-
chain A (i.e. a finite totally ordered residuated lattice) as set of truth values, and
given an A-valued preference Kripke model (W,P, e), with P a fuzzy preorder
valued on A, we consider the a-cuts Pa of the relation P for every a ∈ A, and for
each a-cut Ra, we consider the corresponding modal operators �a,3a. These
operators are easier to be axiomatized than the original �,3, since the relations
Pa are not fuzzy any longer, but a nested set of classical (crisp) relations.

The good news is that, in the our rich (multi-modal) logical framework, we
can show that the original modal operators � and 3 are definable, and vice-
versa if we expand the logic with Monteiro-Baaz’s ∆ operator. Thus, we define
and axiomatize a conservative extension of the logic where the original operators
can be defined using the new graded operators.

The paper is structured as follows. After this introduction, Section 2 deals
with basic facts on fuzzy preference relations. In Section 3 we present the many-
valued modal logics in the more general context (over arbitrary finite bounded
commutative integral residuated lattices), and the intended semantics given by
valued Kripke models. We close an open problem existing in this setting, namely,
whether the operations � and 3 are interdefinable, proving this is the case, and
providing the explicit definition of each operator in terms of the other one. This
strongly simplifies the symbolic approach to the logic, since it is only necessary
axiomatize one of the modal operators to obtain a logic referring to both. In
Section 4 we show how to adapt the previous general setting to model graded
preference relations: we restrict the evaluations to some arbitrary MTL-chain
A, introduce auxiliary crisp modalities �a and exhibit a complete axiomatiza-
tion of a conservative extension1 of the preference logic studied in [VEG17a].
In Section 5 we study the extension of the previous logic with the strict prefer-
ence modality �<, corresponding to the irreflexive restriction of the preference
relation associated to the original �. We propose a a complete axiomatiza-
tion of a conservative extension of this logic (relying again in the �a,�<a crisp
modalities). In Section 6 we observe how, by the addition to the logic of the
so-called Monteiro-Baaz ∆ operation, we can also provide an axiomatization of
the original logic of graded preference models pursued in [VEG17a], without
the necessity of additional modal operations. Lastly, in Section 7, we discuss
different possibilities to formalize notions of preferences on fuzzy propositions in
preference Kripke models. We finish with some conclusions and open problems.

1Namely, while the modal language used is larger, the restriction of the logic to the {�,
A} fragment coincides with the original one.
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2 Preliminaries on fuzzy preference relations

In the classical setting, a (weak) preference relation on a set of alternatives W
is usually modeled as preorder relation (i.e. a reflexive and transitive relation)
P ⊆ W ×W by interpreting (a, b) ∈ P as denoting b is at least as preferred as
a. From R one can define three disjoint relations:

• the strict preference P< = P ∩ P d,

• the indifference relation P≈ = P ∩ P t, and

• the incomparability relation J = P c ∩ P d.

where P d = {(a, b) : (b, a) /∈ P}, P t = {(a, b) : (b, a) ∈ P} and P c = {(a, b) :
(a, b) /∈ P}. It is clear that P< is a strict order (irreflexive, antisymmetric and
transitive), P≈ is an equivalence relation (reflexive, symmetric and transitive)
and J is irreflexive and symmetric. The triple (P<, P≈, J) is called a preference
structure, where the initial weak preference relation can be recovered as P =
P< ∪ P≈.

In the fuzzy setting, preference relations can be attached degrees (usually
belonging to the unit interval [0, 1]) of fulfillment or strength, so they become
fuzzy relations. In this paper we will assume preference degrees are the domain of
a finite and linearly ordered scale A = (A,6, 0, 1), with 0 and 1 being its bottom
and top elements respectively. Sometimes we will write also A = (A,∧,∨, 0, 1)
to emphasize the lattice operations.

In this paper, we will assume that a weak A-valued preference relation on a
set U will be now a fuzzy ∧-preorder P : U×U → A, where P (a, b) is interpreted
as the degree in which v is at least as preferred as u, that is, satisfying:

• reflexivity: P (u, u) = 1 for each u ∈ U

• ∧-transitivity: P (u, v) ∧ P (v, w) 6 P (u,w) for each u, v, w ∈ U

As in the classical case, from P it is easy to define two other A-valued
relations corresponding to graded counterparts of the strict and indifference
relations associated to P .

• First, we can define the indifference degree between two states, from the
preferential point of view, by P≈(u, v) := P (u, v) ∧ P (v, u), providing the
degree to which both u is preferred to v and, vice-versa, v is preferred to u.
This is a ∧-similarity relation, i.e. a reflexive, symmetric and ∧-transitive
A-valued relation.

• This allows for defining a second preference relation P< corresponding
to the strict counterpart of P by, roughly speaking, “removing” the in-
different pairs of worlds from the relation P . This amounts to consider
P< as the minimum A-valued relation R such that P = R ∨ P≈. Tak-
ing the point-wise smallest solution of this equation leads to the following
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definition:

P<(u, v) :=

{
P (u, v), if P (u, v) > P (v, u),

0, otherwise.

It can be checked that if P is ∧-transitive, then so is P< (see e.g. [EGV18]),
and thus it can be considered to be a fuzzy strict order, in the sense
that the following counterpart of anti-symmetry property holds for P<: if
P<(u, v) > 0 then P<(v, u) = 0.

In the next sections we define and axiomatize a modal preference logic where
the initial preorder P together with its corresponding indifference relation P≡

and strict preference P< can be dealt with. To do so, we need to resort the
level-cuts of the preference relations and to observe the following facts:

• Given the initial fuzzy ∧-preorder P , we can define, for each a ∈ A, its
corresponding a-cut Pa = {(u, v) : P (u, v) > a}, which is a classical
preorder.

• Analogously, from the corresponding fuzzy strict order P<, we can also de-
fine, for each a ∈ A, the corresponding a-cut (P<)a = {(u, v) : P<(u, v) >
a} = {(u, v) : P (u, v) > a, P (u, v) > P (v, u)}. In this case, the relations
(P<)a are classical orders.

• For each level-cut relation Pa we can also define the corresponding strict
order (Pa)<. By definition it is (Pa)< = {(u, v) : (u, v) ∈ Pa, (v, u) 6∈
Pa} = {(u, v) : P (u, v) > a, P (v, u) < a}.

• An equivalent expression for (Pa)< is (P<)a = {(u, v) : ∃b > a, P (u, v) >
b, P (u, v) < b}.

• Finally, one can also check that (Pa)< is always included in (P<)a, i.e.
(Pa)< ⊆ (P<)a.

In general, (Pa)< and (P<)a do not coincide, as the following example shows.

Example 2.1. Let A be the scale where A = {0, a, 1} and 0 < a < 1. Let
P be the A-valued preorder on the universe W = {x, y} defined by P (x, x) =
P (y, y) = P (y, x) = 1 and P (x, y) = a. Then it is obvious that,

• Pa = W ×W and thus (Pa)< = ∅

• P< is defined as, P (u, v) = 1 if u = y and v = x, and P (u, v) = 0
otherwise. Then (P<)a = {(y, x)}.

Thus (P<)a ( (Pa)<.

As usual, one can recover the fuzzy relations P and P< from their crisp
level-cut relations:

P (u, v) = max{a∧Pa(u, v) : a ∈ A}, P<(u, v) = max{a∧(P<)a(u, v) : a ∈ A}

Moreover, even if the relations (P<)a and (Pa)< do not generally coincide, P<

can also be recovered from the crisp relations {(Pa)< : a ∈ A}.

5



Proposition 2.2. Let P be an A-valued ∧-preorder on a universe W . Then
for all u, v ∈W ,

P<(u, v) = max{a ∧ (P<)a(u, v) : a ∈ A} = max{a ∧ (Pa)<(u, v) : a ∈ A}

Proof. Observe that:

• If P<(u, v) = 0 then it is easy to check that (P<)a(u, v) = (Pa)<(u, v) = 0
for all a ∈ A.

• If P<(u, v) 6= 0, then P<(u, v) = P (u, v) > P (v, x). Then:

– For b = P (u, v), it is obvious that (P<)b(u, v) = 1 and (P<)a(u, v) =
0 for all a > b.

– By definition, for b = P (u, v) we have Pb(u, v) = 1 and Pb(v, u) = 0.
Then (Pb)

<(u, v) = 1 and it is also obvious that (Pa)<(u, v) = 0 for
all a > b.

Thus the claim is proved.

3 Many-valued modal logics: language and se-
mantics

A suitable formalism over which we can construct a graded preference framework
is that of many-valued modal logics. In particular, we take as starting point the
modal logic introduced in [BEGR11] and further studied in [VEG17a]: finitely-
valued (propositional) fuzzy logics enriched with modal-like operations.

Let us begin by defining the formal language of our underlying many-valued
propositional setting. Let A = (A,∧,∨,�,→, 0, 1) be a finite (bounded, in-
tegral, commutative) residuated lattice [GJKO07], and consider its canonical
expansion Ac by adding a new constant a for every element a ∈ A (canonical
in the sense that the interpretation of a in Ac is a itself). A negation operation
¬ can always be defined as ¬x = x→ 0.

The logic associated with Ac will be denoted by Λ(Ac), and the set Fm
of propositional formulas of its language is defined as in the usual way from a
set of propositional variables V in the language of residuated lattices (we will
use the same symbol to denote connectives and operations), including constants
{a : a ∈ A}. The corresponding logical consequence relation |=Ac is defined as
follows: for any set Γ ∪ {ϕ} ⊆ Fm,

• Γ |=Ac φ if, and only if,

∀h ∈ Hom(Fm,Ac), if h[Γ ] ⊆ {1} then h(φ) = 1,

where Hom(Fm,Ac) denotes the set of evaluations (homomorphisms) of formu-
las on Ac.

Lifting to the modal level, we can expand the propositional language Fm by
modal operators in different ways. The most general way to do so is consider a
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pair of unary operators �,3, and build the corresponding set KFm of modal
formulas, again defined as usual from a set V of propositional variables, resid-
uated lattice operations {∧,∨,�,→}, truth constants {a : a ∈ A}, and modal
operators {�,3}.

We are now ready to introduce A-valued Kripke models, a generalization to
A of classical Kripke models.

Definition 3.1. An A-model is a triple M = 〈W,P, e〉 such that

• W is a set of worlds,

• R : W ×W → A is an A-valued binary relation between worlds, and

• e : W × V → A is a world-wise A-evaluation of variables.

The evaluation e is uniquely extended to formulas of KFm by using the
operations in A for what concerns propositional connectives, and letting

e(v,�ϕ) =
∧
w∈W
{R(v, w)→ e(w,ϕ)}

e(v,3ϕ) =
∨
w∈W
{R(v, w)� e(w,ϕ)}

We will denote by KA the class of all A-models. Given an A-model M ∈ KA

and Γ ∪{ϕ} ⊆MFm, we write Γ M ϕ whenever for any v ∈W , if e(v, γ) = 1
for all γ ∈ Γ , then e(v, ϕ) = 1 too. Analogously, for C ⊆ KA, we write Γ C ϕ
whenever Γ M ϕ for any M ∈ C.

In [BEGR11], the �- fragment of the previous logic was axiomatized, but
it was left as an open question how to axiomatize the logic with both � and
3 operations. That question was addressed in [VEG17a], where an axiomatic
system was proposed and proved complete. Nevertheless, we propose below a
new solution to the problem, that also closes an open question: namely, that
of the inter-definability of the modal operators in the above valued setting.
While it is well known that in classical modal logic both modal operators are
inter definable �ϕ = ¬3¬ϕ and 3ϕ = ¬�¬ϕ), it was not known if something
similar happened in valued cases. In particular, since the negation might fail to
be involutive (for instance, it is involutive in  Lukasiewicz logic, but not in other
well known fuzzy logics), the classical interdefinition fails.

Nevertheless, we can prove different equalities, that will serve us to work
with the axiomatic systems presented in [BEGR11] plus a simple definition of
the dual operation.

Given two formulas ϕ,ψ, we will write ϕ ≡KA
ψ if and only if for any A-

model M and any v ∈W it holds e(v, ϕ) = e(v, ψ).

Lemma 3.2. Let A be a finite (bounded, integral, commutative) residuated
lattice. Then for any a ∈ A it holds

a =
∧
b∈A

(a→ b)→ b
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Proof. On the one hand, by residuation, a 6 (a → b) → b for each b, since
a 6 (a→ b)→ b iff a� (a→ b) 6 b, which is always true. Thus, a 6

∧
b∈A(a→

b)→ b.
On the other hand, (a→ a)→ a = a, so

∧
b∈A(a→ b)→ b 6 a

Lemma 3.3 (Interdefinability). Let A be a finite (bounded, integral, commu-
tative) residuated lattice. Then, the following equalities hold:

�ϕ ≡KA

∧
b∈A

(3(ϕ→ b)→ b)

3ϕ ≡KA

∧
b∈A

(�(ϕ→ b)→ b)

Proof. Is easy to prove that for any A,the following equalities hold:

−�(
∧
i∈I

χi ≡KA

∧
i∈I
�χi, for I being a finite set of indexes

−�(ϕ→ c) ≡KA
3ϕ→ c, for any constant c

The first one follows from the definition of the evaluation of � as a conjunction.
The second one follows from a general property of any residuated lattice (see
eg. [JipTsi02]), that states that for any set X of elements of the universe and
any other element y ∧

x∈X
(x→ y) =

∨
x∈X

x→ y.

Concerning the definition of � from 3, the previous properties imply that,
for any A,∧

b∈A

(3(ϕ→ b)→ b) ≡KA

∧
b∈A

�((ϕ→ b)→ b) ≡KA
�(

∧
b∈A

((ϕ→ b)→ b))

From the previous lemma, we also know that ϕ ≡KA

∧
b∈A((ϕ → b) → b),

so the two formulas evaluate equally in any world of any model. Thus, in
particular, for any A-model, and any v ∈W , we can conclude

e(v,
∧
b∈A

(3(ϕ→ b)→ b)) =
∧
w∈W

R(v, w)→ e(w,
∧
b∈A

((ϕ→ b)→ b))

=
∧
w∈W

R(v, w)→ e(w,ϕ)

= e(v,�ϕ).

For what concerns the definability of 3 from �, we can use Lemma 3.2 again
to get that

3ϕ ≡KA

∧
b∈A

((3ϕ→ b)→ b).
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From the second property of A-models above, we can conclude

3ϕ ≡KA

∧
b∈A

(�(ϕ→ b)→ b).

After the previous results, it turns out that an axiomatic system addressing
both � and 3 operators with their intended semantics for KA can be easily
given by adding to the logic Λ(Fr,Ac) presented in [BEGR11] the abbreviation

3ϕ :=
∧
b∈A

(�(ϕ→ b)→ b).

We will denote this axiomatic system by MA. See Appendix A for the details
on its definition.

4 Multi-modal preference logic

Our objective is that of formalizing using the previously defined modal setting
a framework for addressing graded preferences between settings. Thus, sev-
eral particularities arise in respect to the previous general case. First, not all
A-models are consistent with the notion of graded preference from Section 2,
but only those where R is ∧-transitive and reflexive (to capture the transitive
and reflexive characteristics of a preference relation). On the other hand, it
is important to be able to address global preferences (namely, preferences not
in relation to the current world of evaluation, but over the whole model), for
instance in the style of von Wright’s treatment of preferences [vW63].

While the restriction to transitive and reflexive models can be dealt with in
a systematic way, the addition operations A (and its dual through lemma 3.3,
E) that behave as global modalities makes it necessary to pass through the un-
folding the modality � in a family of cut-modalities {�a : a ∈ A}. Moreover, we
also need to restrict the kind of propositional algebras of evaluation to linearly
ordered ones. Thus, from this point on, assume A is a linearly ordered finite
(bounded, integral, commutative) residuated lattice, or equivalently, a
finite MTL-chain. These modifications are due to technical reasons in the com-
pleteness proof, resulting from the difficulties posed to axiomatize many-valued
modal logics with a crisp accessibility relation (necessary in order to get the
desired A modality) over non-linearly ordered algebras.

Thus, let us define by MFm of multi-modal formulas, again defined as
usual from a set V of propositional variables, residuated lattice operations
{∧,∨,�,→ }, truth constants {a : a ∈ A}, and modal operators {�a : a ∈ A}.

We are now ready to introduce A-valued preference Kripke models.

Definition 4.1. An A-preference model is a triple M = 〈W,P, e〉 such that

• W is a set of worlds,
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• P : W × W → A is an A-valued ∧-pre-order, i.e. a reflexive and ∧-
transitive A-valued binary relation between worlds, and

• e : W × V → A is a world-wise A-evaluation of variables.

The evaluation e is uniquely extended to formulas of MFm by using the
operations in A for what concerns propositional connectives, and letting
for each a ∈ A,

e(v,�aϕ) =
∧

w:P (v,w)>a

{e(w,ϕ)}

Sometimes we will also write v �a w for P (v, w) > a, or even for Pa(v, w).

We will denote by PA the class of A-preference models. Given an A-
preference model M ∈ PA and Γ ∪ {ϕ} ⊆ MFm, we write Γ M ϕ whenever
for any v ∈ W , if e(v, γ) = 1 for all γ ∈ Γ , then e(v, ϕ) = 1 too. Analogously,
we write Γ PA

ϕ whenever Γ M ϕ for any M ∈ PA.
We will denote by differentiated names some particular definable modal op-

erators that enjoy a special meaning in our models. Namely:

• 3aϕ :=
∧
b∈A(�a(ϕ→ b)→ b)

Simple computations show that, as expected (from Lemma 3.3),
e(v,3aϕ) =

∨
w:P (v,w)>a

{e(w,ϕ)}.

• �ϕ :=
∧
a∈A a→ �aϕ and 3ϕ :=

∨
a∈A a�3aϕ.

It is easy to check that the evaluation of these operators in a preference
model as defined here, coincides with the usual one for fuzzy Kripke mod-
els, i.e.,

e(v,�ϕ) =
∧
w∈W
{P (v, w)→ e(w,ϕ)}, e(v,3ϕ) =

∨
w∈W
{P (v, w)�e(w,ϕ)}

• Aϕ := �0ϕ and Eϕ := 30ϕ.

These operators are in fact global necessity and possibility modal operators
respectively, i.e.,

e(v,Aϕ) =
∧
w∈W
{e(w,ϕ)}, e(v,Eϕ) =

∨
w∈W
{e(w,ϕ)}.

4.1 Axiomatizing fuzzy (weak) preference models

In this section we axiomatize the logic whose semantics is given by the class PA

of A-preference models, and based on the use of the graded modalities �a (and
in some cases, also the abbreviation 3a), with a ∈ A, introduced above.

Definition 4.2. We define the fuzzy multi-modal logic mMA by the following
axioms and rules:
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• Logic CMA (Appendix A) for each �a with a ∈ A. (This is the axiomatic
system of the minimal modal logic over crisp A-models ([BEGR11], see
Appendix A for details).

• For each a, b ∈ A such that a 6 b, nestedness axioms

�aϕ→ �bϕ

• For each a, b ∈ A, reflexivity and transitivity axioms, namely

Ta : �aϕ→ ϕ, 4a,b : �a∧bϕ→ �a�bϕ

• Symmetry axiom for �0, namely B0 : ϕ→ �030ϕ;

• Modus Ponens rule and the necessitation rule for each a ∈ A,2 namely

– N�a
: from ϕ derive �aϕ.

It will be also useful later to consider the system KA+ obtained from mMA by
dropping the following axioms:

• the reflexivity axioms Ta, for a ∈ A

• any axiom involving the subindex 0

Note that , for a > 0, �a (and so 3a) are graded counterparts of S4 modal-
ities, while �0 (and so 30) is an S5 modality.

Let `mMA
be the notion of proof for the previous axiomatic system, defined

as usual. We can now show that it is indeed complete with respect to our
intended semantics given by the class of preference structures PA

.

Theorem 4.3. For any Γ, ϕ ⊆MFm,

Γ `mMA
ϕ if and only if Γ PA

ϕ.

Proof. Soundness (left to right direction) is easy to check. For what concerns
completeness (right to left direction), we can define a canonical model as in
[BEGR11], Mc = (W c, {P ca}a∈A, ec) with a set of crisp accessibility relations as
follows, where Th(mMA) = {ϕ : `mMA

ϕ} denotes the set of theorems of mMA:

• W c = {v ∈ Hom(MFm,A) : v(Th(mMA)) = {1}},

• P ca(v, w) if and only if v(�aϕ) = 1⇒ w(ϕ) = 1 for all ϕ ∈MFm,

• ec(v, p) = v(p), for any propositional variable p.

2Observe that in KA, due to the inclusion axioms, the necessitation rules for �a for a ∈ A+

are derivable from the one for �0.

11



To proceed with the completeness proof, it is necessary to prove the so-called
Truth Lemma, which states that the evaluation of modal formulas in the model
is compatible with the intended semantics. Namely, to show that ec(v,�aϕ) =
v(�aϕ) for any ϕ and any a ∈ A. This is proven in [BEGR11], see the appendix
A for details on the axiomatic system and the particular references.

Next we show that the set {P ca : a ∈ A} is a nested set of reflexive and
transitive relations. That P ca ⊆ P cb if b 6 a directly follows from the nestedness
axioms, and that each relation P ca is reflexive and transitive follows from axioms
Ta and 4a,a.

Now, from the (crisp) relations {P ca : a ∈ A}, let us define the fuzzy relation
P c as follows:

P c(v, w) = max{a ∈ A : P ca(v, w)}.
It is clear that P c(w, v) > a if and only if P ca(v, w). Then, the Truth Lemma
for the previous Canonical Model immediately implies

ec(v,�aϕ) =
∧

w∈W c,P c(v,w)>a

w(ϕ),

It follows from axioms Ta that each P ca is reflexive, and so, P c is a reflexive
relation as well. Moreover, from axioms 4a,b, we get that P c is ∧-transitive.

The structure (W c, P c, ec) is almost an A-preference model: P c0 might be
a proper subset of W c ×W c, and not the total relation. Indeed, observe that,
thanks to axioms T0, 40,0 and B0, P c0 can be proven to be an equivalence relation,
even though it is not necessarily the case that P c0 = W c ×W c. Hence, the only
remaining step is to show that we can obtain an equivalent model (in the sense
of preserving the truth-values of formulas) in which P c0 is the total relation,
and thus to really get that �0 and 30 are global modalities). Nevertheless,
since P cb ⊆ P c0 for all b ∈ A, for any v ∈ W c we can define a restricted model
Mc
v = (W c

v , P
c
v , e

c
v) where W c

v = {u ∈W c : P c0 (v, u)}, P cv is the restriction of P c

to W c
v ×W c

v , and, for any u ∈W c
v and any formula ϕ ∈MFm,

ec(u, ϕ) = ecv(u, ϕ).

Now, this model Mc
v is indeed an A-preference model and thus it belongs to the

class PA.
To conclude the proof, observe that, if Γ 6`mMA

ϕ, then there is v ∈W c such
that v([Γ ]) ⊆ {1} and v(ϕ) < 1 (because the only modal inference rules affect
only theorems of the logic).

Then, if Γ 6`mMA
ϕ, there is v ∈ W c such that v([Γ ]) ⊆ {1} and v(ϕ) < 1.

All the previous considerations allow us to prove that, in the model Mc
v, we

have ecv(v, [Γ ]) ⊆ 1 and ecv(v, ϕ) < 1. Hence, Γ 6Mc
v
ϕ and thus Γ 6PA

ϕ as
well, and this concludes the completeness proof.

5 Adding strict preferences

As it has been mentioned before, in order to provide a framework allowing a
finer handling of preference relations, it would be desirable to have a richer
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language able to also represent strict preference relations between states.
Within the setting developed in the previous sections, this amounts to con-

sider in the language new modalities and in the models, besides A-valued (weak)
preference relations on worlds, their strict counterpart. Namely, given an A-
preference model 〈W,P, e〉, recall the relation P< : W ×W → A, the fuzzy strict
counterpart of P defined in Section 2:

P<(v, u) :=

{
P (v, u) if P (v, u) > P (u, v),

0 otherwise.

Then, a richer set of formulas, including (fuzzy) modalities for strict preferences
�<,3<, can be evaluated in a A-preference model 〈W,P, e〉 relying on the strict
preference relation P<, as it was done for �,3 formulas over A-preference
models, namely:

e(v,�<ϕ) =
∧
w∈W

P<(v, w)→ e(w,ϕ), and e(v,3<ϕ) =
∨
w∈W

P<(v, w)�e(w,ϕ)

As in Lemma 3.3, �< and 3< are inter-definable, so we will mainly work
with the � modalities, and use the abbreviation

3<ϕ :=
∧
b∈A

(�<(ϕ→ b)→ b)

In the previous section, we relied on the level-cut relations Pa, S4 modalities
�a and global modality �0 to get an indirect axiomatization (the logic mMA)
of the graded preference modality �). We follow a similar approach in this
section and consider cut strict modalities �<a for a > 0. These modalities are to
be interpreted by transitive and irreflexive relations. However, the addition to
the system mMA of these modalities in such a way that the new system keeps
being complete with respect to the intended semantics (that is, models where
the relations that evaluate the strict modalities are irreflexive counterparts of
the relations that evaluate the S4 modalities) is not immediate. Indeed, it is
well known that an irreflexive modality cannot be axiomatized by a usual axiom
or rule schemata (in the sense that an axiom or rule closed under arbitrary sub-
stitutions) [BdRV01], and some more involved techniques have been developed
[Seg71, Gab81]. We will resort here to the bulldozing construction that, in the
classical setting, transforms a reflexive and transitive model into a irreflexive
and transitive one with an equivalent logical behavior.

We will see in Section 5.3 and in Appendix B how this classical construction
keeps working in the finite-valued case. Nevertheless, the full proof of complete-
ness does not directly follow from the one in used in classical case [vBGR09])
since, although the level-cut accessibility relations are are crisp, the values of the
formulas at each world are many-valued, posing additional problems to solve.
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5.1 Language and semantics

Let PFm be the expanded set of graded preference formulas defined as usual
from a set V of propositional variables, residuated lattice operations {∧,∨,�,→
}, truth constants {a : a ∈ A}, plus modal operators {�a : a ∈ A} and {�<a : a ∈
A+}.

The interpretation of the �a modalities will be exactly the same as in Section
4, that is, given a an A-preference model M = 〈W,P, e〉, we let

e(v,�aϕ) =
∧

w:P (v,w)>a

e(w,ϕ),

Regarding the new modalities, a first decision that must be taken is choosing
the evaluation of the �<a modalities. As discussed in Section 4, there are two
possible ways to approach the definition of the strict relations starting from
the original fuzzy relation P : either with the (Pa)<’s, the strict versions of the
a-cuts of P , or with the (P<)a’s, the a-cuts of the strict version of P . As it
is shown in Prop. 2.2, the original P< can be recovered from both families,
which allows to define �<,3< using either of the two semantics for �<a ,3

<
a

(see Lemma 5.1 below). We will present in this section an axiomatization of the
logic using the family of crisp relations (Pa)< for each a ∈ A+.

Therefore, given the model M = 〈W,P, e〉, we define

e(v,�<a ϕ) =
∧

w:v≺aw

e(w,ϕ)

where, for any v, w ∈ W and a ∈ A+, v ≺a w stands for (Pa)<(v, w), that is,
P (v, w) > a and P (w, v) < a. In terms of the notation �a introduced from
Definition 4.1, this is equivalent to say that v ≺a w if and only if v �a w and
w 6�a v.

We will keep denoting by PA
the logical consequence relation over the

extended language PFm, defined exactly as done for MFm in Section 4.
As it happened in the previous section, the graded modality �<, and the

corresponding 3<
a with the intended meaning can be defined from the new set

of operations. Namely, we consider the following abbreviations in our language:

• 3<
a ϕ :=

∧
b∈A(�<a (ϕ→ b)→ b);

• �<ϕ :=
∧
a∈A a→ �<a ϕ.

It follows from Lemma 3.3 that, under the above definition, in any preference
model we get e(v,3<

a ϕ) =
∨
w:v≺aw

e(w,ϕ).
On the other hand, also the definition of �< in the above terms holds the

intended meaning stated at the beginning of this section, namely.

Lemma 5.1. For any A-preference model M and v ∈W , it holds

e(v,�<ϕ) =
∧
w∈W

P<(v, w)→ e(w,ϕ).
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Proof.
∧
w∈W P<(v, w)→ e(w,ϕ) =

∧
w∈W

∨
a∈A+

{a : P<a (v, w)} → e(w,ϕ) from

Proposition 2.2. This equals
∧
w∈W

∨
a∈A+

a · (v ≺a w)→ e(w,ϕ) understanding

≺a as a {0, 1}-valued relation. By properties of residuated lattices, the previous
coincides with

∧
w∈W

∧
a∈A+

(a → ((v ≺a w) → e(w,ϕ))). Since the infima are

independent, we can swap them and get the independent element out of the
interior one to get

∧
a∈A+

(a →
∧
w∈W ((v ≺a w) → e(w,ϕ))) which is exactly∧

a∈A+

(a→ e(v,�<a ϕ)).

5.2 Axiomatization

In this section we axiomatize PA
over PFm using the systems introduced in

Definition 4.2. Note that, as we commented above, the modalities �<0 and
3<

0 will be omitted, and that is the reason behind removing in the previous
definition all axioms concerning the value 0.

Definition 5.2. We define the fuzzy preference logic PA by the following axioms
and rules:

• System mMA from Definition 4.2 for the modalities �a, with a ∈ A;

• System KA+ from Definition 4.2 for the modalities �<a with a ∈ A+ =
Ar {0};

• For each a ∈ A+, Inclusion axioms �aϕ→ �<a ϕ;

• For each a, b ∈ A+ such that b 6 a, Interaction 1 and 2 axioms:

(I1) �<b ϕ→ �a�
<
b ϕ

(I2) �<b ϕ→ �
<
b �aϕ

• For each a ∈ A+ and c ∈ A, Interaction 3 axiom:

(I3) �<a ϕ ∧ (ψ → c)→ �a(ϕ ∨ (�aψ → c))

Soundness of PA with respect to the intended semantics PA
is not hard to

check. The inclusion axioms follow immediately from the fact that ≺a ⊆ �a.
Let us show soundness of the other axioms.

Lemma 5.3. Interaction 1 and 2 axioms are valid in PA
.

Proof. Assume b 6 a ∈ A+, and consider any A-preference model M, and any
v, w, u ∈W . Assume v �a w and w �b u. From ∧-transitivity of � we get that
v �a∧b u, and since b 6 a, v �b u

If moreover it holds that w ≺b u, by definition it means that P (u,w) < b 6 a.
Using reflexivity and ∧−transitivity of P it follows that P (u, v) ∧ P (v, w) 6
P (u,w) < b. Since P (v, w) > a > b, necessarily P (u, v) < b, so by defini-
tion, v ≺b u. This proves the Interaction 1 cases. The proof of soundness of
Interaction 2 is analogous.
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Lemma 5.4. Interaction 3 axiom is valid in PA
.

Proof. Consider a preference model M, and any v ∈ W . By definition,
e(v,�a(ϕ ∨ (�aψ → c))) =

∧
w:v�aw

e(w, (ϕ ∨ (�aψ → c))) This infimum can be

naturally divided in
∧

w:v≺aw
e(w, (ϕ∨(�aψ → c)))∧

∧
w:v�aw,w�av

e(w, (ϕ∨(�aψ →

c)))
Concerning the first expression, by monotonicity it is greater or equal than∧

w:v≺aw
e(w,ϕ) = e(v,�<a ϕ).

Similarly, the second expression is greater or equal than∧
w:v�aw,w�av

e(w,�aψ → c). By using the definition and applying some

lattice basic results, we get the following chain of (in)equalities:∧
w:v�aw,w�av

e(w,�aψ → c) =
∧

w:v�aw,w�av

((
∧

u:w�au

e(u, ψ))→ c)

=
∧

w:v�aw,w�av

(
∨

u:w�au

e(u, ψ)→ c)

>
∧

w:v�aw,w�av

e(v, ψ)→ c

= e(v, ψ → c).

Then, e(v,�a(ϕ ∨ (�aψ → c))) > e(v,�<a ϕ) ∧ e(v, ψ → c), proving the lemma.

5.3 Completeness

To prove completeness of PA with respect to PA
, we define the canonical model

putting together the two sets of modalities in a similar way as it was done for
only �a,3a in Section 4.1. That is to say, we let Mc = (W c, {Pa : a ∈ A}, {P<a :
a ∈ A+}, e) be the model3 defined by:

• W c := {h ∈ Hom(PFm,A) : h(Th(PA))},

• P ca(v, w) iff v(�aϕ) = 1⇒ w(ϕ) = 1, for each a ∈ A,

• P c<a (v, w) iff v(�<a ϕ) = 1⇒ w(ϕ) = 1, for each a ∈ A+,

• ec(v, p) = v(p) for all propositional variable p.

Recall that it can be easily proven that P ca(v, w) if and only if v(�aϕ) 6 w(ϕ)
and v(36a ϕ) > w(ϕ), and the analogous holds for P c<a (v, w).

It is our objective to prove both, the Truth Lemma (i.e., that ec(v, ϕ) = v(ϕ)
for any formula ϕ in PFm), and to see that the evaluation on the previous model

3In order to lighten the notation we omit the subscript c in the elements of the canonical
model.
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coincides with that over the corresponding cut A-preference model (i.e., only
with Pa).

The same proof developed in the previous section for the completeness of
mMA (Theorem 4.3) shows the Truth Lemma (for both sets of modalities �a
and �<a ).

Inclusion and nestedness axioms imply that P c<a (v, w) ⊆ P ca(v, w) ⊆ P c0 for
each a. Then, as it was done in mMA, we can restrict Mc in such a way that
P c0 is the total relation, and so get that �0 (and 30) are global modalities.

Then, to prove completeness, for a given v ∈ Mc, we need to provide an
A-preference model equivalent to Mc at v. This amounts to transform the
canonical model to an equivalent one, in which the following conditions are
equivalent:

C1 P c<a (v, w)

C2 a) P ca(v, w),
b) not P ca(w, v).

It is easy to see that in the original canonical model, C1 implies C2-a thanks
to the inclusion axiom. Let us further see how C2 implies C1. While in the
classical approach this can be done by directly relying on Sahlqvist theory (see
[vBGR09, Fact 4.]), for the many-valued case such theory has still to be devel-
oped and we need to do some calculations.

Lemma 5.5. In the canonical model, C2 implies C1 for any v, w ∈W .

Proof. Assume P ca(v, w) and not P ca(w, v). Condition C2 implies, by definition,
that there is some formula ψ such that w(�aψ) = 1 and v(ψ) = α < 1. Consider
now any formula ϕ such that v(�<a ϕ) = 1, and it is our goal to see that w(ϕ) = 1
too.

Observe that in the previous situation, v(�<a ϕ ∧ (ψ → α)) = 1. Then, by
Interaction 3 axiom, we get that v(�a(ϕ ∨ (�aψ → α))) = 1 too. Since we
assumed that Pa(v, w), this implies that w(ϕ ∨ (�aψ → α)) = 1. But we know
that w(�aψ) = 1, so w(�aψ → α) = α < 1. Since A is linearly ordered, this
implies that necessarily w(ϕ) = 1.

To proceed, we need to check that C1 implies C2-b, that is a certain ir-
reflexivity condition. To do so, we will use the bulldozing method to transform
the canonical model to an irreflexive one while maintaining its behavior in all
other aspects relevant to the proof. The proof is similar to the classical one, but
taking into account several accessibility relations at once and the order between
them (namely, P ca ⊆ P cb for all b 6 a).

It is worth to point out that in order to be able to proceed with the bulldozing
construction, the ∧-transitivity of P in the preference models plays a crucial role,
since it is then the case that in our intended models, not only Pa are transitive,
but also P<a . The soundness of this property is necessary in order to successfully
unravel the canonical model to an irreflexive one, as we will see below.
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It is not only the case that the P c<a ’s are ∧-transitive, but also some other
properties for them can be proven before proceeding. Namely, observe that after
applying the necessitation rule, axiom K and Interaction 2 axiom, we get that
the formula �a�<a ϕ→ �a�<a �aϕ is a theorem of in PA. Then, by Interaction
1, we get that

�<a ϕ→ �a�<a �aϕ (1)

is a theorem of PA as well.
For each element a ∈ A+, we can see the restriction of the canonical model

to P ca as a set of P ca -clusters, namely maximal sets Ca of elements from W c

with respect to P ca ∪ (P ca)−1, i.e., such that for any v, w ∈ Ca, both P ca(v, w)
and P ca(w, v). Any failure of condition C1 implying C2-a (i.e, elements in the
canonical model for which both P c<a (v, w) and P ca(w, v)) implies, by Inclusion
axioms, that this happens inside some P ca -cluster. The following shows that
this failure happens in fact inside P<a -clusters. The latter, analogously to P ca -
clusters, are maximal sets of elements from W c with respect to P c<a ∪ (P c<a )−1.

Lemma 5.6. (c.f. [vBGR09, Lemma 1]) Let Ca be a P ca -cluster in Mc. If
P c<a (v, w) for some worlds v, w ∈ Ca, then P c<a (s, t) as well for all s, t ∈ Ca.

Proof. Take any s ∈ Ca, and any formula ϕ such that s(�<a ϕ) = 1. Then,
since the above formula (1) is a theorem in PA, we have s(�a�<a �aϕ) = 1 as
well. Now, since s, v ∈ Ca we know P ca(s, v), so v(�<a �aϕ) = 1 by definition
of Pa. By assumption, P c<a (v, w), so w(�aϕ) = 1, again by definition of P c<a .
Finally, given that P ca(w, t) (since both worlds belong to the cluster Ca), we get
t(ϕ) = 1, proving P c<a (s, t).

In order to avoid these situations, i.e. loops of the form
[P c<a (w, u1), P c<a (u1, u2), . . . , P c<a (un, w)], the bulldozing construction cre-
ates Z copies of each world in a P c<a -cluster, and then orders them strictly,
mimicking the original behavior of the cluster but effectively removing any
reflexivity over P c<a .

The construction of the bulldozed model is done in a similar way to
[vBGR09]. The only relevant difference is, when ordering the new created
worlds, to choose an ordering that takes into account the possible interactions
of strict clusters for different level-cuts. This can be achieved thanks to the
∧-transitivity of the P c<a ’s. We include in Appendix B the technical details of
the construction and the correctness of the bulldozed model.

All the previous considerations allow us to state the desired completeness of
A-valued preference logic PA with respect to the intended semantics.

Theorem 5.7 (Completeness of PA). For any set of formulas Γ ∪{ϕ} ⊆ PFm,

Γ `PA
ϕ if and only if Γ PA

ϕ.

Proof. Soundness was proven in Lemmas 5.3 and 5.4. As for completeness, if
Γ 6`PA

ϕ, we know (see details in Appendix B) we can transform the canonical
model Mc = (W c, {P ca : a ∈ A}, {P c<a : a ∈ A+}, ec) into a new model B =
〈B, {Sa}a∈A, {S<a }a∈A+ , f〉 such that
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• 〈B, {Sa}a∈A, f〉 is a preference model,

• For each a ∈ A+ and v, w ∈ B it holds S<a (v, w) if and only if Sa(v, w)
and not Sa(w, v).

• There is v ∈ B such that f(v, Γ ) ⊆ {1} and f(v, ϕ) < 1.

This proves the theorem.

6 Back to fuzzy modalities

In the previous section, we have provided a complete axiomatic system PA for
the graded preference modalities �a’s, �<a ’s (and the definable 3a’s and 3<

a ’s).
Before, in Section 4 we have seen that the original fuzzy modalities � and
�< can be expressed from them. Thus, the system PA can be considered as
an axiomatization of the modalities �, �< and A (defining also 3,3<) in an
extended language.

In this section, we will explore a way of getting the same logic for the graded
modalities �,�<, A modalities, without relying on the cut modalities. �a,�<a .
This can be achieved by extending the original language with only one additional
operation (instead of |A| modal operations), which is particularly relevant in
possible future works studying cases with infinite algebra of evaluation A (be-
cause in such a way, the language would still be kept finite, in contrast with the
language arising from the cut modalities).

In order to obtain an axiomatization of the modal logic without the ad-
dition of cut modalities, it is possible to generalize an approach introduced in
[BEGR09] that allows us to remove them as primitive operators in the language.

Indeed, if we enrich our language with the well-known Monteiro-Baaz ∆
connective (see e.g. [Háj98]), the graded modalities �a and �<a turn to be
expressible in terms of the original modal operators � and �<. In fact, the
most natural definition is based on the corresponding 3-operations, themselves
definable from their respective �-ones (Lemma 3.3).

Recall that the Monteiro-Baaz ∆ operation over a linearly ordered MTL-
chain A is the operation defined as

∆(a) =

{
1 if a = 1

0 otherwise

for all a ∈ A. In the following, we denote by ϕ ≈ b the formula ∆(ϕ↔ b).

Lemma 6.1. For any formula ψ, the following equalities hold:

�aϕ ≡PA

∧
b∈A

(∆(a→ 3(ϕ ≈ b))→ b)

�<a ϕ ≡PA

∧
b∈A

(∆(a→ 3<(ϕ ≈ b))→ b)
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Proof. Let M be a A-preference model. We will do the details for the first case,
the proof for the strict modalities is analogous using P<.

As in [BEGR09] is easy to see that e(v,3(ϕ ≈ b)) =
∨

w:e(w,ϕ)=b

P (v, w).

Then

e(v,∆(a→ 3(ϕ ≈ b))) =

1, if a 6
∨

w:e(w,ϕ)=b

P (v, w)

0, otherwise

Let us denote δb(ϕ) := ∆(a → 3(ϕ ≈ b)), and S = {b ∈ A : a 6∨
w:e(w,ϕ)=b

P (v, w)}. Then the previous equality implies

e(v, δb(ϕ))→ b) =

{
b, if b ∈ S
1, otherwise

It is a simple calculation to see that S = {e(w,ϕ) : a 6 P (v, w)}. Then, we
conclude the proof, since

e(v,
∧
b∈A

δb(ϕ)→ b)) =
∧
S =

∧
a6P (v,w)

e(w,ϕ) = e(v,�aϕ)

The previous lemma shows how to provide an axiomatization for the frag-
ment with only �,�< and A (and the corresponding definable dual 3-like op-
erations) of the logic PA

plus ∆. In this way, we will be able to avoid using
the graded modalities �a and �<a . In order to do so, it is first easy to provide
an axiomatic system for the whole logic PA

plus ∆ by adding to mMA an ax-
iomatization for ∆ on A (see eg. [Háj98], [VEG17b]) and the interaction �−∆
axioms

∆�aϕ→ �a∆ϕ for a ∈ A, and ∆�<a ϕ→ �<a∆ϕ for all a ∈ A+

These latter axioms are only necessary to prove the meta-rule Γ ` ϕ⇒ �aΓ `
�aϕ, and the corresponding one for �<a . Having that, the completeness proof
is coincides with the ones done for the logics without ∆, simply defining the
worlds of the canonical model as homomorphisms into the algebra A extended
with ∆. From here, it is clear that we can use the interdefinability of �a,3a

from 3 proven above, and obtain in that way an axiomatic system complete
with respect to the intended semantics, over the language with only the original
modal operators and the new ∆.

Nevertheless, this axiomatization is still complete with respect to a conser-
vative expansion of the intended graded preferences logic, since the language
has been expanded with ∆. Being conservative, any deduction in the restricted
language holds in the logic if and only if it holds in the intended preference logic,
but removing ∆ would still be an interesting problem to face, even though it is
not clear if it can be solved (namely, if the logic with �,�<, A has has a finite
axiomatization).
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7 Modeling fuzzy preferences on propositions

The preference models introduced above are a very natural setting to formally
address and reason over graded or fuzzy preferences over non-classical contexts.
They are similar to the (classical) preference models studied by van Benthem et.
al in [vBGR09], but offering a lattice of values (and so, a many-valued frame-
work) where to evaluate both the truth degrees of formulas and the accessibility
(preference) relation. The latter can be naturally interpreted as a graded pref-
erence relation between possible worlds or states (assignments of truth-values
to variables). The question is then how to lift a (fuzzy) preference relation 6
on worlds to (fuzzy) preference relations among formulas.

In the classical case, for instance in [vBGR09, EGV18] the following six
extensions are considered, where [ϕ] and [ψ] denote the set of models of propo-
sitions ϕ and ψ respectively:

• ϕ 6∃∃ ψ iff ∃u ∈ [ϕ],∃v ∈ [ψ] such that P (u, v)

• ϕ 6∃∀ ψ iff ∃u ∈ [ϕ], such that ∀v ∈ [ψ], P (u, v)

• ϕ 6∀∃ ψ iff ∀u ∈ [ϕ], ∃v ∈ [ψ] such that P (u, v)

• ϕ 6∀∀ ψ iff ∀u ∈ [ϕ] and ∀v ∈ [ψ], P (u, v)

• ϕ 6∃∀2 ψ iff ∃v ∈ [ψ], such that ∀u ∈ [ϕ], P (u, v)

• ϕ 6∀∃2 ψ iff ∀v ∈ [ψ], ∃u ∈ [ϕ] such that P (u, v)

Analogous expressions could be obtained by replacing P by its strict counterpart
P<. However, not all these extensions can be expressed in our framework, even
if we restrict ourselves to classical propositions and classical preference relations.
For instance, we can indeed express the orderings 6∃∃ and 6∀∃ (and their strict
counterparts) as follows:

• ϕ 6∃∃ ψ := E(ϕ ∧3ψ) ϕ <∃∃ ψ := E(ϕ ∧3<ψ)

• ϕ 6∀∃ ψ := A(ϕ→ 3ψ) ϕ <∀∃ ψ := A(ϕ→ 3<ψ)

but some others would need to consider the inverse preorder P−1 of P in the
models or to assume the preorder P be total, and some other are not just
expressible (see [vBGR09]). On the other hand, not all the extensions of the
weak orderings above are also equally reasonable, for instance some of them
are not even preorders. This is not the case of 6∀∃ and 6∀∃2, that are indeed
preorders.

In [EGV18] the authors have generalized the above classical definitions by
allowing preference relations P to be graded or many-valued (with values in a
scale A), while keeping the propositions Boolean. Then, the extensions of the
above orderings become graded as well, by replacing ∀’s and ∃’s by

∧
’s and

∨
’s

respectively, for instance:

21



• [ϕ 6∃∃ ψ] =
∨
u∈[ϕ]

∨
v∈[ψ] P (u, v)

• [ϕ 6∀∃ ψ] =
∧
u∈[ϕ]

∨
v∈[ψ] P (u, v)

It is worth pointing out that these expressions formally coincide with the way
the modal formulas E(ϕ∧3ψ) and A(ϕ→ 3ψ) respectively are evaluated in a
A-preference model when the propositions ϕ and ψ are Boolean.

In the full many-valued case of the logic PA, where both propositions and
preference relations are valued on a (same) scale A, the formulas

E(ϕ ∧3ψ), E(ϕ ∧3<ψ)
A(ϕ→ 3ψ), A(ϕ→ 3<ψ)

make full sense as graded generalizations of the 6∃∃, <∃∃ and 6∀∃, <∀∃ prefer-
ence orderings respectively. In particular, it can be shown that these generali-
sations of 6∀∃ and <∀∃ satisfy the following properties.4

Lemma 7.1. The following properties hold:

(i) 6∀∃ is a reflexive and �-transitive relation on formulas, i.e. we have the
following validities in PA:

PA
ϕ 6∀∃ ϕ,

PA
(ϕ 6∀∃ ψ)→ ((ψ 6∀∃ χ)→ (ϕ 6∀∃ χ))

(ii) <∀∃ is �-transitive:

PA
(ϕ <∀∃ ψ)→ ((ψ <∀∃ χ)→ (ϕ <∀∃ χ))

Proof. (i) Reflexivity of 6∀∃: A(ϕ→ 3ϕ) is valid in PA, since ϕ→ 3ϕ (i.e.
axiom (43)) is valid in PA.

�-Transitivity of 6∀∃: one can show that

A(ϕ→ 3ψ)� A(ψ → 3χ)→ A(ϕ→ 3χ) (2)

is also a valid formula in PA. Namely, this follows by first showing that
the following formula expressing a form of monotonicity for 3 holds true
in PA:

A(ϕ→ ψ)→ A(3ϕ→ 3ψ).

This in turn leads to the valid formula A(ψ → 3χ) → A(3ψ → 33χ),
but since 33χ→ 3χ holds true in PA (Axiom 4), we get

A(ϕ→ 3ψ)� A(ψ → 3χ)→ A(ϕ→ 3ψ)� A(3ψ → 3χ),

and by axiom K for A, it follows the validity of

A(ϕ→ 3ψ)� A(3ψ → 3χ)→ A(ϕ→ 3χ),

that directly allows us to show the validity of (2).

4We keep using the same notation ϕ 6∀∃ ψ and ϕ <∀∃ ψ to refer to the PA-formulas
A(ϕ→ 3ψ) and A(ϕ→ 3<ψ) respectively.
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(ii) The proof is completely is analogous to the case of 6∀∃.

From the above, in the frame of the PA logic, one can suitably encode (weak
and strict) preferences of a fuzzy proposition ψ over another ϕ by the formulas
ϕ 6∀∃ ψ and ϕ <∀∃ ψ respectively. These preferences between propositions
actually enjoy the properties of a fuzzy �-preorder in the case of 6∀∃ while <∀∃
is only �-transitive.Therefore, our many-valued modal logical framework is ex-
pressive enough to capture many notions of (fuzzy) preferences among formulas.
For instance, once could express a sort of conditional fuzzy preferences of these
kinds, assuming they are all measurable in a finite scale:

• “The hotter the temperature is, the more I (weakly) prefer a light meal
to a heavy meal”:

hot temperature→ (heavy meal 6∀∃ light meal)

• “The hungrier I am, the more I prefer a heavy meal to a light meal”

hungry → (light meal <∀∃ heavy meal)

8 Conclusions and Future work

The aim of this work is to provide a formal framework generalizing the treatment
of preferences in the style of eg. [vBGR09] to a fuzzy context. We have first
presented an axiomatic system encompassing reflexive and transitive modalities
plus global operators, that is shown to be the syntactical counterpart of many-
valued Kripke models with (reflexive and transitive) graded (weak) preference
relations between possible worlds or states. It is based on considering the cuts
of the relations over the elements of the algebra of evaluation, solving in this
way some problems arising from [VEG17a]. We further consider the extension
of the previous logical system to cases when strict preferences (associated to the
previous weak preferences) are taken into account. We propose an axiomatic
system complete with respect to this intended semantic. We also show how to
automatize the previous both systems without relying in cutting the relations
over the elements of the algebra, but instead expanding the language with only
one new operation, the projection connective ∆. This logical framework stands
towards the use of modal many-valued logics in the representation and man-
agement of graded preferences, in the analogous fashion that (classical) modal
logic has served in the analogous Boolean preference setting.

In solving the previous questions, we close in a positive way an open prob-
lem from [BEGR11] concerning the inter-definability of modal operators on the
minimal modal logic over a finite residuated lattice.

It is still fairly unexplored the use of this framework to model graded prefer-
ences, developed partially in Section 7 but still posing many challenges and open
questions. Further, we consider it could be interesting to observe the previous
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formal systems under the light of, instead modeling preference relations, serving
as a framework of cost/pay-off related systems, relating in some sense the cost
of certain executions in a given configuration (i.e., evaluation of some formula
in some world of a model) and the cost of changing to a different configuration
(i.e., the weight of the accessibility relation). Interestingly enough, the strict
modalities also enjoy a natural counterpart, forcing a change of configuration
at each moment of the execution.

From a more theoretical point of view, the study of the previous systems
over other classes of algebras of truth-values (e.g. including infinite algebras like
those defined on the real unit interval [0, 1] underlying  Lukasiewicz, Product or
Gödel fuzzy logics) seems also of great interest, both from a theoretical point of
view and towards the modelization of situations needing of continuous sets of
values.
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A Appendix: Minimal modal logics of a finite
residuated lattice

For the sake of being self-contained, in this appendix we recall from [BEGR11]
the main components of the minimal modal logic over a finite residuated lat-
tice A, and of the modal logic considering only models with crisp accessibility
relation. The logics axiomatized by Bou et. al in the previous paper is the
�-fragment, but as we proved in Lemma 3.3, in the language with constants
(which is the case in this work, and also in [BEGR11]) 3 can be defined from
�. Thus, the logics MA and CMA detailed below also axiomatize the logic with
both modalities.

We recall from Section 4 the basic propositional setting. We assume
A = (A,∧,∨,�,→, 0, 1) is a finite (bounded, integral, commutative) residu-
ated lattice, and we also consider its canonical expansion Ac by adding a new
constant a for every element a ∈ A (canonical in the sense that the interpreta-
tion of a in Ac is a itself.) The logic associated with Ac is denoted by Λ(Ac),
and its logical consequence relation |=Ac is defined in the usual way and specified
in Section 4.

The language of the minimum modal logic over Ac is defined as usual from
a set of propositional variables V, truth constants {a : a ∈ A}, propositional
connectives {∧,∨,�,→} and modal operator �. Some additional operations
can be obtained as abbreviations of the original language, namely

• ¬ϕ := ϕ→ 0,

• ϕ↔ ψ := (ϕ→ ψ)� (ψ → ϕ),

• 3ϕ :=
∧
a∈A(�(ϕ→ a)→ a)
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Kripke-style semantics for the modal logic is defined as follows. An A-Kripke
model is a triple M = 〈W,R, e〉 where W is a set of worlds, R : W ×W → A,
is an A-valued accessibility relation between worlds, and e : W × V → A is the
evaluation of the model, and it is uniquely extended to formulas as usual for
the propositional connectives and for the modal operator by letting:

e(w,�ϕ) :=
∧
w∈W
{R(v, w)→ e(w,ϕ)}

From Lemma 3.3, we know that e(v,3ϕ) =
∨

w∈W
{R(v, w)� e(w,ϕ)}

We let MA denote the class of all A-Kripke models, and the corresponding
notion of (local) consequence relation will be denoted by MA

.
The axiomatic system MA presented below is the logic denoted by Λ(Fr,Ac)

in [BEGR11, Def. 4.6], defined by:

1. an axiomatic basis for Λ(Ac) (see Appendix A from [BEGR11])

2. modal axioms for �:
�1,

(MD) (�ϕ ∧�ψ)→ �(ϕ ∧ ψ),
(Axa) �(a→ ϕ)↔ (a→ �ϕ)

3. The rules of the basis for Λ(Ac) and the Monotonicity rule:

(Mon) : from ϕ→ ψ derive �ϕ→ �ψ.

The corresponding notion of proof is denoted by `MA
.

Theorem A.1 ((Th. 4.11, [BEGR11]) Completeness of MA). For any subset
of formulas Γ ∪ {ϕ}, Γ `MA

ϕ iff Γ MA
ϕ.

In the case A is a finite MTL-chain, consider the subclass CMA ⊆ MA

consisting of models 〈W,R, e〉 with R being a crisp accessibility relation (namely,
R ⊆ W × W ). Then, the corresponding logic is given by the system CMA

obtained by extending MA with the following two additional axiom:

• Axiom C : �(k ∨ ϕ)→ k ∨�ϕ, where k is the co-atom of A;

This axiomatic is the one denoted by Λ(CFr,Ac) in [Def. 4.16][BEGR11].
Further, it is easy to see it is equivalent to the one obtained by adding the

K axiom
K : �(ϕ→ ψ)→ (�ϕ→ �ψ),

and changing the (Mon) rule to the Necessitation rule:

N� : from ϕ derive �ϕ

The completeness proof for CMA is analogous to the one for the logic

Theorem A.2 ((Th. 4.22, [BEGR11]) Completeness of CMA). Let A be a
finite MTL-chain. Then, for any subset of formulas Γ ∪ {ϕ}, Γ `CMA

ϕ iff
Γ CMA

ϕ.
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B Appendix: Construction and correctness of
the Bulldozed Model

We will see how the canonical model Mc from Section 5.3 can be deformed so
no P<a cycles are present. The following lemma shows how several strict clusters
(i.e., maximal sets with respect to P<a ∩ (P<a )−1) interacting have a very well
behaved structure.

Lemma B.1. Let a 6 b ∈ A and Ca, Cb be respectively a P<a and a P<b cluster
in W such that Ca ∩ Cb 6= ∅. Then Cb ⊆ Ca.

Moreover, if a < b, then for any a < c < b there is a P<c cluster Cc such
that Cb ⊆ Cc ⊆ Ca.

Proof. The first part follows by the ∧-transitivity of P<. The second is due to
the fact that, for b 6 c, any P<b cluster is inside a P<c cluster.

Before defining the Bulldozed model, allow us to introduce some sets of
worlds from the canonical model and built from them.

1. Consider for each a ∈ A, each P<a cluster, and index them by {Cai }i∈Ia
for suitable families of indexes Ia;

2. Use the following recursive procedure to obtain a strict order <ai for each
one of the previous clusters Cai :

Ordering(Cxj ):

• If there is no b > x and Cbs such that Cbs ⊆ Cxj , let <xj be
any arbitrary strict ordering of Cxj (any order is compatible
with P<x in it, from Lemma 5.6).

• Otherwise, let y be the immediate successor of x in A, and
let Cyj1 , . . . C

y
jk

all the (disjoint) different P<y clusters inside
Cxj . Call Ordering(Cyjn) for each of them, obtaining strict
orderings <yj1 , . . . <

y
jk

of each of the previous sub-clusters.
Let then <xj be any ordering of the full Cxj compatible with
each <yjn . This ordering exists because the subclusters are
all disjoint by definition, and fully contained in Cxj due to
Lemma B.1. Further, it is compatible with P<x in Cxj , since
any strict order is so from Lemma 5.6.

3. For each cluster Cai let Bai := {〈v, n〉 : v ∈ Cai , n ∈ Z};It is possible that
Bai ∩ Bbj 6= ∅, for a 6= b (if there are nested clusters), but Cai ∩ Caj = ∅
whenever i 6= j.

The bulldozed model is B = 〈B, {Sa}a∈A, {S<a }a∈A+ , f〉 where:

• Let W− be the worlds of the canonical model that do not belong to any
cluster, and then let B = W− ∪

⋃
a∈A+

⋃
i∈Ia B

a
i ;

• f(v, p) = e(v, p) for any v ∈ W−, and f(〈v, n〉a, p) = f(v, a) for any other
world in B;
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• For each a ∈ A+, we will first define the strict accessibility relations S<a ,
by considering the different cases:

– If either v or w belong to W \
⋃
i∈Ia C

a
i (i.e., outside any P<a -cluster),

the the relation P<a held condition (1 implies 2a): it is simple to see
that indeed, either P<a (v, w) = 0 or P<a (w, v) = 0, since otherwise
both elements would belong to some P<a cluster. Thus, we simply let

S<a (v, w) if and only if


P<a (v, w) v, w ∈W−

P<a (v, u) v ∈W−, w = 〈u, n〉
P<a (u,w) w ∈W−, v = 〈u, n〉

– If v ∈ Cai and w ∈ Caj for i 6= j (i.e., to different P<a clusters),
they are also well-behaved in the sense that either P<a (v, w) = 0 or
P<a (w, v) = 0 (otherwise, they would belong to the same cluster).
Then, again, for any m,n ∈ Z, let

S<a (〈v, n〉, 〈w,m〉) if and only if P<a (v, w).

– If v, w ∈ Cai , then define

S<a (〈v, n〉, 〈w,m〉) if and only if

{
n < m, or

n = m and v <ai w

(<ai being the strict order within the cluster from point 2. above)

• We let S0 = B2, and we let Sa to be the reflexive closure of S<a , i.e.,

Sa(y, z) if and only if S<a (y, z) or y = z (in B).

We need to check that the bulldozed model is indeed behaving as the canon-
ical one, and also, that in it, the conditions relating Sa and S<a hold. The fact
that the resulting fuzzy relation S(v, w) = maxa∈ASa(v, w) holds the conditions
of an A-preference model follow from the fact that Sa is reflexive (by its own
definition) and ∧-transitive (because S< are).

In order to prove the equivalence of both models, let us introduce a mapping
β : W → P(B) pairing each world from Mc with all the ones it generates in B
in the obvious way, namely:

β(w) :=

{
{w} if w ∈W−

{〈w, n〉 : n ∈ Z} otherwise.

It will be useful the following simple result, slightly stronger than the basic
(classical) bisimilarity of Mc and B.

Lemma B.2. Let v ∈W . Then

1. For any w ∈ W such that Pa(v, w) (resp. P<a (v, w)) and any u ∈ β(w)
there is z ∈ β(w) with Sa(u, z) (resp. S<a (u, z)).
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2. For any u ∈ β(v) and any z ∈ B such that Sa(u, z) (resp. S<a (u, z)) there
is w ∈W such that z ∈ β(w) and Pa(v, w) (resp. P<a (v, w).

Proof. 1. If either one of v or w is outside all P<a clusters, or if they belong
to different ones, any z ∈ β(w) serves, since the relations were preserved
from the canonical model. Otherwise, we know u = 〈v, n〉 for some n ∈
Z. Then, for any n < m it holds that S<a (〈v, n〉, 〈w,m〉) (and thus, also
Sa(〈v, n〉, 〈w,m〉)).

2. By definition of B, z ∈ β(w) for some w ∈W . Now, if one of v, w did not
belong to any P<a cluster, or if they belonged to different ones, we know
again by definition that Sa(u, z) if and only if Pa(v, w) (and the same for
what concerns S<a and P<a ), proving the claim.

Otherwise it means that both v, w belonged to the same P<a cluster, so
trivially P<a (v, w) and Pa(v, w).

Corollary B.3. For any v ∈W and any ϕ ∈ PFm,

{e(w,ϕ) : Pa(v, w)} = {f(z, ϕ) : Sa(u, z)}, for any u ∈ β(v)

Proof. It follows by induction on the complexity of ϕ, being the initial step due
to the previous lemma and the definition of f for propositional variables.

From the previous, it trivially follows that the bulldozed model behaves like
the original one, namely:

Lemma B.4. For any formula ϕ ∈ PFm and any world v ∈ W , e(v, ϕ) =
f(u, ϕ) for any u ∈ β(v).

We only need to check that indeed the new model is a preference model.
Reflexivity and transitivity of Sa follow by definition and by transitivity of S<a
(which holds by definition in the additional sets of worlds, and because P<a was
transitive itself).

Lemma B.5. For any v, w ∈ B and any a ∈ A+ the following are equivalent:

1. S<a (v, w)

2. a) Sa(v, w) and b) not Sa(w, v).

Proof. Assume v ∈ β(x), w ∈ β(y) (with possibly x = y).
To show 1 implies 2, assume that S<a (v, w). By definition of S<a , necessarily

v 6= w. If either x or y did not belong to any P<a cluster, or if they belong to
different clusters, we know by definition that Pa(x, y) = 1, and also Pa(y, x) = 0
(otherwise, from Lemma 5.6, they would belong to the same P<a cluster). Since
in this case we defined Sa(v, w) = Pa(x, y) and Sa(w, v) = Pa(y, x), this proves
the implication. Suppose on the contrary that both x, y belong to the same
P<a cluster. Then, in the way we defined S<a for the elements of the unraveled
cluster, there were no cycles, so S<a (w, v) = 0. Since Sa in these worlds is the
reflexive closure of S<a , we get that Sa(v, w) and not Sa(w, v).
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To check that 2 implies 1, assume Sa(v, w) and not Sa(w, v). As before, if
either x or y did not belong to any P<a cluster, or if they belong to different
clusters, we know that then Pa(x, y) and not Pa(y, x). Then, from Lemma 5.5,
we know that P<a (x, y), and thus S<a (v, w) (again because x, y belong to different
P<a -cluster, so S<a equals P<a ).

On the other hand, suppose both x, y belong to the same P<a cluster. In
that case, Sa is defined as the reflexive closure of S<a , so the assumptions imply
that necessarily S<a (v, w).
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