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Abstract. In this paper we define a framework to introduce gradedness
in Deontic logics through the use of fuzzy modalities. By way of example,
we instantiate the framework to Standard Deontic logic (SDL) formulas.
Given a deontic formula Φ ∈ SDL, our language contains formulas of the
form r → NΦ or r → PΦ, where r ∈ [0, 1], expressing that the preference
or probability degree respectively of a norm Φ is at least r. We present
sound and complete axiomatisations for these logics.
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1 Introduction

In their article [4], Tom R. Burns and Marcus Carson describe how agents adhere
to and implement rule and normative systems to varying degrees. Agents conform
to rule and normative systems to varying degrees, depending on their identity
or status, their knowledge of the rules, the interpretations they attribute to
them, the sanctions a group or organization imposes for noncompliance, the
structure of situational incentives, and the degree competing or contradictory
rules are activated in the situation, among other factors. Actually, the claim
that obligations come in degrees goes back to W. D. Ross in his system of
ethics, when dealing with the possibility of conflicting moral obligations (for a
reference see [23]).

In hierarchical normative systems not every norm may have the same im-
portance. In such a case, it seems interesting that agents can attach a level or
degree of importance to each of these norms. These importance or preference de-
grees may be in turn useful for resolving conflicts among norms that may arise
due to different reasons. Within a Multi-Agent System (MAS), normative con-
flicts may arise due to the dynamic nature of the MAS and simultaneous agents’
actions. In a normative structure, one action can be simultaneously forbidden
and obliged. Ensuring conflict freedom of normative structures at design time is
computationally intractable as shown in [9], and thus real-time conflict resolu-
tion is required. In multi-institutional contexts, different institutions could have
contradictory norms and therefore agents that participate in these institutions



should decide which norm they follow. Attaching a preference degree to norms
could help agents in order to take this kind of decisions.

Moreover, in hierarchical normative multi-agent systems, even if a set of
norms may have a same rank, there might be different expectations about their
compliance or violation by agents. In such situations, it may also be useful to
represent and reason about the probability of compliance of norms.

In this paper we would like to define a logical framework able to capture
different graded aspects of norms. Taking Standard Deontic Logic (SDL) as the
basic formalism to model normative systems as way of exemple, we present in
this paper preliminary steps towards defining Graded Deontic logics. We are
aware that SDL suffers from a number of paradoxes, mostly inherent in the
normal modal Kripke semantics of its operators. Thus, our proposal is not to
represent graded normative reasoning in MAS over the logic SDL. But we be-
lieve that begining the study in this basic logic, graded SDL, could led us to a
better understanding of the main characteristics of graded normative systems in
general.

Our fuzzy modal approach has been already used to define a number of
uncertainty logics (probability, possibility, belief functions [13, 10] or even graded
BDI agent architectures [7]). More specifically, we define fuzzy modal languages
over SDL to reason about preference (understood as necessity, in the possibilistic
sense) and probability of deontic propositions. To this end we introduce two fuzzy
modal-like operators N and P that apply over SDL , in such a way that e.g. the
truth-degree of a formula NOϕ o POϕ is respectively interpreted as the necessity
degree or probability degree of ϕ being obliged. Then we use suitable fuzzy
logics to reason about these intermediate truth-degrees, truth-degrees which are
of neither of propositions ϕ nor Oϕ (which remain two-valued) but of fuzzy
propositions NOϕ and POϕ. Namely, the language of Necessity-valued Standard
Deontic Logic NSDL will result from the union of the language of the logic
G∆(C) (Gödel Logic expanded with the ∆ operator and a finite set C ⊂ [0, 1]
of truth-constants) and the language of SDL extended with the fuzzy unary
operator N . On the other hand, the language of Probability-valued Standard
Deontic Logic PSDL will result from the union of the language of Rational
Pavelka Logic RPL ( Lukasiewicz Logic expanded with rational truth-constants)
and the language of SDL extended with a fuzzy unary operator P .

The main features of the Graded Deontic Logics we introduce in this paper
are:
1. they are conservative extensions of SDL
2. they have a finite and recursive set of axioms
3. they keep classical semantics for formulas of SDL, in particular their truth-

values remain always 0 or 1
4. they have as semantics extensions of the standard Kripke frames for SDL

with necessity and probability measures over worlds respectively.
5. they contain formulas of the form r → NΦ or r → PΦ, where r ∈ [0, 1],

expressing that the necessity or probability degree respectively of a norm Φ
is at least r, where Φ is any closed formula of SDL (not only a propositional
one).



The main objective of this article is to present the above mentioned four
variants of Graded Deontic Logics and prove soundness and completeness results.
This constitutes a purely logical study of these formalisms. Note that our purpose
is not to fuzzify Deontic Logic by providing a different interpretation to its
modalities in the sense of having fuzzy deontic modalities, see Section 6 for
a discussion. Instead we have fuzzy, many-valued modalities (of necessity and
probability) applying over classical deontic formulas.

This paper is structured as follows. In Section 2 we present some rather long
preliminaries on the G∆(C) and RPL fuzzy logics that will be needed later.
In Section 3, Necessity-valued and Probability-valued Deontic logics are defined
over Standard Deontic logic and in Section 4 we present two small examples of
application of the two graded logics. Finally Section 5 is devoted to related and
future work.

2 Preliminaries on the G∆(C) and RPL Fuzzy Logics

Probably the most studied and developed many-valued systems related to fuzzy
logic are those corresponding to logical calculi with the real interval [0, 1] as set of
truth-values and defined by a conjunction & and an implication → interpreted
respectively by a (left-continuous) t-norm ∗ and its residuum ⇒1, and where
negation is defined as ¬ϕ = ϕ → 0, with 0 being the truth-constant for fal-
sity. In the framework of these logics, called t-norm based fuzzy logics, each (left
continuous) t-norm ∗ uniquely determines a semantical (propositional) calculus
PC(∗) over formulas defined in the usual way from a countable set of proposi-
tional variables, connectives ∧, & and → and truth-constant 0 [13]. Evaluations
of propositional variables are mappings e assigning each propositional variable
p a truth-value e(p) ∈ [0, 1], which extend univocally to compound formulas as
follows:

e(0) = 0
e(ϕ ∧ ψ) = min(e(ϕ), e(ψ))
e(ϕ&ψ) = e(ϕ) ∗ e(ψ)

e(ϕ→ ψ) = e(ϕ) ⇒ e(ψ)

Note that, by definition of residuum, e(ϕ → ψ) = 1 iff e(ϕ) ≤ e(ψ), in other
words, the implication → captures the ordering. Further connectives are defined
as follows:

ϕ ∨ ψ is ((ϕ→ ψ) → ψ) ∧ ((ψ → ϕ) → ϕ),
¬ϕ is ϕ→ 0̄,

ϕ ≡ ψ is (ϕ→ ψ)&(ψ → ϕ).

Note that, from the above defintions, e(ϕ∨ψ) = max(e(ϕ), e(ψ)), ¬ϕ = e(ϕ) ⇒ 0

1 Defined as x ⇒ y = max{z ∈ [0, 1] | x ∗ z ≤ y}, which always exists provided ∗ is
left-continuous.



and e(ϕ ≡ ψ) = e(ϕ→ ψ) ∗ e(ψ → ϕ). A formula ϕ is a said to be a 1-tautology
of PC(∗) if e(ϕ) = 1 for each evaluation e, and will be denoted as |=∗ ϕ. The
associated consequence relation is defined as usual: if T is a theory (set of for-
mulas), then T |=∗ ϕ whenever e(ϕ) = 1 for all evaluations e such that e(ψ) = 1
for all ψ ∈ T . Two outstanding examples of continuous t-norm based fuzzy logic
calculi are:

Gödel logic calculus: defined by the operations

x ∗G y = min(x, y)

x⇒G y =
{

1, if x ≤ y
y, otherwise.

 Lukasiewicz logic calculus: defined by the operations

x ∗ L y = max(x+ y − 1, 0)

x⇒ L y =
{

1, if x ≤ y
1− x+ y, otherwise.

Actually, in these two calculi (and in general when ∗ is continuous) the min
operation is also definable from ∗ and ⇒ as :

min(x, y) = x ∗ (x⇒ y)

and hence the connective ∧ can be also considered as definable. These two
fuzzy logic calculi turn out to correspond to the well-known infinitely-valued
 Lukasiewicz and Gödel logics2, already studied much before fuzzy logic was born
(see e.g. [13] for references there). If we denote by ` L and `G the provability
relations in Lukasiewicz and Gödel logics respectively, the following standard
completeness hold:

` L ϕ iff |= L ϕ
`G ϕ iff |=G ϕ

where, for the sake of simpler notation, we have written |= L and |=G instead
of |=∗ L

and |=∗G
respectively. Interestingly enough, both  Lukasiewicz and Gödel

logics have been shown to be axiomatic extensions of Hájek’s Basic fuzzy logic
BL [13] which axiomatizes the set of all common tautologies to every calculus
PC(*) with ∗ being a continuous t-nom. As a matter of fact,  Lukasiewicz logic
is the extension of BL by the axiom

( L) ¬¬ϕ→ ϕ,

forcing the negation to be involutive, and Gödel logic is the extension of BL
by the axiom

2 Gödel logic is also known as Dummett logic and is the axiomatic extension of Intu-
itionistic logic with the pre-linearity axiom (ϕ→ ψ) ∨ (ψ → ϕ).



(G) ϕ→ (ϕ&ϕ).

forcing the conjunction to be idempotent. The above mentioned completeness
for theorems extend to deductions from arbitrary theories in case of Gödel logic
and only to deductions from finite theories in case of  Lukasiewicz logic:

T ` L ϕ iff T |= L ϕ, if T is finite
T `G ϕ iff T |=G ϕ

In a sense, due to the residuation property of implications, a t-norm based
fuzzy logic L as defined above can be considered as a logic of comparative truth.
In fact, a formula ϕ → ψ is a logical consequence of a theory T , i.e. if T `L
ϕ → ψ, if the truth degree of ϕ is at most as high as the truth degree of ψ
in any interpretation which is a model of the theory T . Therefore, implications
indeed implicitly capture a notion of comparative truth. This is fine, but in some
situations one might be also interested to explicitly represent and reason with
partial degrees of truth. One convenient way to allow for an explicit treatment of
degrees of truth is by introducing truth-constants into the language. In fact, if one
introduces in the language new constant symbols α for suitable values α ∈ [0, 1]
and stipulates that e(α) = α for all truth-evalutations e, then a formula of the
kind α→ ϕ becomes 1-true under any evaluation e whenever α ≤ e(ϕ).

This approach actually goes back to Pavelka [21] who built a propositional
many-valued logical system PL which turned out to be equivalent to the expan-
sion of  Lukasiewicz Logic by adding into the language a truth-constant r for
each real r ∈ [0, 1], together with a number of additional axioms. The semantics
is the same as  Lukasiewicz logic, just expanding the evaluations e of proposi-
tional variables in [0, 1] to truth-constants by requiring e(r) = r for all r ∈ [0, 1].
Pavelka proved that his logic is complete for arbitrary theories in a non-standard
sense. Namely, he defined the truth degree of a formula ϕ in a theory T as

‖ϕ‖T = inf{e(ϕ) | e is a PL-evaluation model of T},

and the provability degree of ϕ in T as

|ϕ|T = sup{r ∈ [0, 1] | T `PL r → ϕ}

and proved that these two degrees coincide, i.e. ‖ϕ‖T = |ϕ|T . This kind of
completeness is usually known as Pavelka-style completeness, and strongly relies
on the continuity of  Lukasiewicz truth functions. Note that ‖ϕ‖T = 1 is not
equivalent to T `PL ϕ, but only to T `PL r → ϕ for all r < 1. Later, Hájek [13]
showed that Pavelka’s logic PL could be significantly simplified while keeping the
completeness results. Indeed, he showed that it is enough to extend the language
only by a countable number of truth-constants, one for each rational in [0, 1],
and by adding only to the logic the two following additional axiom schemata,
called book-keeping axioms:

r&s↔ r ∗L s
r → s↔ r ⇒L s



for all r ∈ [0, 1] ∩ Q, where ∗L and ⇒L are the  Lukasiewicz t-norm and its
residuum respectively. He called this new system Rational Pavelka Logic, RPL
for short. Moreover, he proved that RPL is strong standard complete for finite
theories.

On the other hand, Hájek also shows that Gödel logic can be expanded with
a finite set of truth constants together with a new unary connective ∆ while
preserving the strong standard completeness. Namely, let C ⊆ [0, 1] a finite
set containing 1 and 0, and introduce into the language a truth-constant r for
each r ∈ C, together with the so-called Baaz’s projection connective ∆. Truth-
evaluations of Gödel logic are extended in an analogous way to RPL as it regards
to truth constants and adding the clause

e(∆ϕ) =
{

1, if e(ϕ) = 1
0, otherwise

Note that despite ϕ is many-valued, ∆ϕ is a two-valued formula that is to be
understood as a kind of presicification of ϕ. The introduction of the ∆ is due to
technical reasons to avoid clashes with the truth-constants. Finally, the axioms
and rules of this new logic, denoted G∆(C) are those of Gödel logic G plus the
above book-keeping axioms for truth-constants from C and the following axioms
for ∆

(∆1) ∆ϕ ∨ ¬∆ϕ
(∆2) ∆(ϕ ∨ ψ) → (∆ϕ ∨∆ψ)
(∆3) ∆ϕ→ ϕ
(∆4) ∆ϕ→ ∆∆ϕ
(∆5) ∆(ϕ→ ψ) → (∆ϕ→ ∆ψ)

plus the bookeping axioms

∆r →G 0 for each r ∈ C \ {1}

and the Necessitation rule for ∆: from ϕ derive ∆ϕ. Then the following strong
completeness result holds: T `G∆(C) ϕ iff T |=G∆(C) ϕ, for any theory T and
formula ϕ.

Notation: in the rest of the paper we will write connectives with subindexes G
or L, like ∧G, →G, →L, ¬L, etc., to differentiate whether they are from Gödel
or  Lukasiewicz logics.

3 Graded Standard Deontic Logics

As already mentioned, in this section we are going to define two logics to reason
about necessity and probability of Standard Deontic Logic formulas. Necessity
and probability measures are two outstanding families of plausibility measures



[14]. Given a Boolean algebra F , µ : F → [0, 1] is a plausibility measure if the
following holds:

1. µ(∅) = 0
2. µ(W ) = 1
3. If X,Y ∈ F and X ⊆ Y , then µ(X) ≤ µ(Y )

A plausibility measure µ is a necessity measure if in addition µ satisfies

µ(X1 ∩X2) = min(µ(X1), µ(X2)), for all X1, X2 ⊆ F

and µ is a (finitely additive) probability measure if it satisfies

µ(X1 ∪X2) = µ(X1) + µ(X2) when X1 ∩X2 = ∅, for all X1, X2 ⊆ F

Necessity mesures are purely qualitative in the sense that the order is what
matters, and they have been widely used to model a notion of ordinal preference
[3, 17]. We will mainly assume this last interpretation as intended semantics
although we do not exclude other possibilities.

3.1 Necessity-valued Standard Deontic logic

We define a fuzzy modal language over Standard Deontic Logic SDL to reason
about the necessity degree of deontic propositions. The language of Necessity-
valued Deontic Logic (NSDL) results from the union of the language of the logic
G∆(C) (Gödel logic extended with the ∆ operator and a finite set C ⊂ [0, 1] of
truth-constants) and the language of Standard Deontic Logic (SDL), extended
with a fuzzy unary operator N . Formulas of NSDL are of two types:

– Deontic formulas: they are the formulas of SDL, built in the usual way with
the obligation deontic modality O. > and ⊥ denote the truth-constants true
and false respectively. It is said that a formula of SDL is closed if every
propositional variable is in the scope of a modality.

– N-formulas: they are built from elementary N -formulas Nϕ, where ϕ is a
closed SDL-formula, and truth-constants r, for each rational r ∈ C ⊂ [0, 1],
using the connectives of Gödel many-valued logic:

• If ϕ ∈ SDL is closed, then Nϕ ∈ NSDL
• If r ∈ C ⊂ [0, 1] then r ∈ NSDL
• If Φ, Ψ ∈ NSDL then Φ →G Ψ ∈ NSDL and Φ ∧G Ψ ∈ NSDL (where
∧G and →G correspond to the conjunction and implication of Gödel
logic)

• If Φ ∈ NSDL then ∆Φ ∈ NSDL
Other G∆(C) logic connectives for the N -formulas can be defined from ∧G,
→G and 0 in the way described in Section 2.



Since in Gödel Logic G∆(C) the formula Φ→G Ψ is 1-true iff the truth value of
Ψ is greater or equal to that of Φ, formulas of the type r →G Nϕ (where ϕ is
a closed formula of SDL) express that the necessity degree of the norm ϕ is at
least r.

In this language we can express with the formula ¬G¬GNϕ, that the necessity
degree of the norm ϕ is positive3, and with the formula ϕ ≡G r, that is exactly
of degree r. Comparisons of degrees are done by means of formulas of the form
Nϕ→G Nψ.

NSDL Semantics The semantics of our language is given by means of Necessity-
valued Deontic Kripke models of the following form: K = (W,R, e, µ), where
(W,R, e) is an standard Kripke model of SDL, and µ is a necessity measure on
some Boolean subalgebra F ⊆ 2W such that the sets {w | e(w,ψ) = 1}, for ev-
ery closed SDL-formula ψ, are µ-measurable. Remember that in every standard
Kripke model (W,R, e) of SDL, R is a serial binary relation on W (that is, for
every w ∈W there is t ∈W such that (w, t) ∈ R).

The truth value e(w,ϕ) of a SDL formula ϕ in a world w is defined as usual
(either 0 or 1). The truth-value of atomic N -formulas Nψ in the model K is
defined as

‖Nψ‖K = µ({w | e(w,ψ) = 1})

Then the truth-value ‖Φ‖K of compound N -formulas Φ is defined by using
G∆(C) truth-functions. If Φ is a N -formula, we will write |=NSDL Φ when
‖Φ‖K = 1 for any model K, and if T is a set of N -formulas, T |=NSDL Φ
when ‖Φ‖K = 1 for all models K such that ‖Ψ‖K = 1 for Ψ ∈ T .

NSDL Axioms and Rules Axioms of NSDL are:

1. Axioms of SDL (for SDL-formulas)
2. Axioms of G∆(C) (for N -formulas)
3. Necessity Axioms (where ϕ and ψ are closed SDL formulas):

(a) N(ϕ→ ψ) →G (Nϕ→G Nψ)
(b) N(ϕ ∧ ψ) ≡G N(ϕ) ∧G N(ψ)
(c) ¬GN(⊥)
(d) Nψ, for every SDL-theorem

Deduction rules for NSDL are Modus Ponens (both for → of SDL and for →G

of G∆(C)) necessitation for the obligation deontic modality O (from ϕ derive
Oϕ, if ϕ ∈ SDL) and necessitation for ∆ (from Φ derive ∆Φ, for N -formulas).
Alternatively, instead of Necessity Axiom 3 (d), one may add the rule “from φ
infer Nφ” for a closed SDL-formula, in this way one can obtain a system with
finitely-many axiom schemes and rules. We have introduced a recursive Hilbert-
style axiom system since provability in SDL is decidable. We will denote by
`NSDL the usual notion of proof from the above axioms and rules
3 Notice that in Gödel Logic, (x⇒G 0) ⇒G 0 = 1 iff x > 0.



It is worth pointing out that Necessity Axiom 3 (a) ensures that N preserves
SDL logical equivalence. Observe that the formula

N(ϕ ∨ ψ) ≡G N(ϕ) ∨G N(ψ)

is neither sound nor provable from the above axioms. On the other hand the
following formulas are indeed provable:

1. N(ϕ ∧ ¬ϕ) ≡G 0
2. N(ϕ ∨ ¬ϕ) ≡G 1

Soundness and Completeness Theorems of NSDL

Definition 1 A set of formulas T is a N-theory if all the formulas in T are
N-formulas.

By definition of the NSDL axioms and rules it is easy to check that for every set
of SDL of formulas Σ and every SDL-formula φ,

Σ `NSDL φ iff Σ `SDL φ.

Therefore, NSDL is a conservative extension of SDL. Moreover, observe that
every SDL-formula provable in a N -theory is a SDL-theorem.

Following Theorem 8.4.9 of [13], a N -theory T can be represented as a theory
over the propositional logic G∆(C). For each closed SDL-formula φ we introduce
a propositional variable pφ, corresponding to the formula Nφ. We define the
following translation: (Nφ)∗ = pφ, (r)∗ = r, for each rational r ∈ C ⊂ [0, 1] and
for every N-formula φ and ϕ, (φ ∧G ϕ)∗ = φ∗∧Gϕ∗ and (φ→G ϕ)∗ = φ∗ →G ϕ∗.
Let T ∗ be the following set of G∆(C) formulas:

– Propositional variables pφ, for each closed formula φ, theorem of SDL.
– formulas of the form ϕ∗, for each Necessity Axiom ϕ.
– α∗, for each formula α ∈ T

Lemma 2 If T is a N-theory and φ a N-formula, then

T `NSDL φ iff T ∗ `G∆(C) φ
∗

Proof. Assume that T ∗ `G∆(C) φ
∗. Let α∗1, . . . , α

∗
k be a G∆(C)-proof of φ∗ in

T ∗. Then the sequence α1, . . . , αk can be converted in a NSDL-proof of φ in T
by adding for each formula of the form pψ that occurs in α∗1, . . . , α

∗
k, a proof of

ψ in SDL and then applying the rule of necessitation for N -formulas.
Conversely, assume T `NSDL φ. Then a G∆(C)-proof of φ∗ in T ∗ can be

obtained by taking the translation of the formulas of one NSDL-proof of φ in T ,
once the SDL-formulas are deleted. Use the fact that every SDL-formula provable
in a N -theory is a SDL-theorem.

From the fact that the Necessity Axioms are 1-true in every Necessity-valued
Deontic Kripke model follows the Soundness Theorem:



Lemma 3 (Soundness) For every N-theory T over NSDL and every N-formula
φ, T `NSDL φ implies T |=NSDL φ.

Theorem 4 (Completeness) For every N-theory T over NSDL and every N-
formula φ:

T |=NSDL φ implies T `NSDL φ.

Proof. By Lemma 2 and the Completeness Theorem of the Logic G∆(C) it is
enough to prove that

T |=NSDL φ implies T ∗ |=G∆(C) φ
∗.

Assume T ∗ 6|=G∆(C) φ
∗. Let E be a model of T ∗, with evaluation v of the

propositional variables pψ such that v(φ∗) < 1. We show that there is a model
K of T that is not a model of φ.

Let (W,R, e) be the canonical model of SDL. Observe that for every formula
φ ∈ SDL, the canonical model satisfies:

ψ is valid in (W,R, e) iff ψ is a theorem of SDL.

Consider now the following Boolean subalgebra F ⊆ 2W :

F = {{w | e(w,ψ) = 1} : ψ is a closed formula of SDL}
let us denote by Xψ the set {w | e(w,ψ) = 1}. We define a function µ on F in
the following way: µ(Xψ) = v(pψ). Then we can show:

(i) µ is a necessity measure on F .
1. µ is a well-defined function. Proof: if Xα = Xβ , for α and β, closed SDL-

formulas, then Xα≡β = W and α ≡ β is valid in the canonical model.
Consequently, α ≡ β is a theorem of SDL. Since E is a model of T ∗,
v(pα≡β) = 1. By using the translation by the *-operation of Necessity
Axiom 3 (a), N(α → β) →G (Nα →G Nβ), we have v(pα) = v(pβ).
Thus, we can conclude that µ(Xα) = µ(Xβ).

2. It is easy to check with the same kind of argument as before that µ(∅) = 0
and µ(W ) = 1.

3. For every α and β, closed SDL-formulas
µ(Xα ∩Xβ) = min(µ(Xα), µ(Xβ))

Proof: Since E is a model of T ∗, E is also a model of the *-translation
of the Necessity Axiom 3 (b), N(α∧ β) ≡G N(α)∧GN(β). Therefore E
is a model of the formula pα∧β ≡G pα ∧G pβ and thus

v(pα∧β) = min(v(pα), v(pβ))
we can conclude that

µ(Xα ∩Xβ) = µ(Xα∧β) = min(µ(Xα), µ(Xβ))
(ii) For every N -formula Φ ∈ NSDL, ‖Φ‖K = v(Φ∗).

Proof: For this, it is enough to show that for every closed formula ϕ ∈ SDL,
‖Nϕ‖K = v(pϕ). It is easy to check by induction on the complexity of the
N -formulas and by definition of µ.

Let us denote by Mv the model (W,R, e, µ). We have just proved that Mv is a
necessity-valued deontic Kripke model of T and ‖φ‖Mv = v(φ∗) < 1.



3.2 Probability-valued Deontic Logic

In a quite similar way to NSDL, we define now a fuzzy modal language over
Standard Deontic Logic to reason about the probability degree of deontic propo-
sitions. The language of Probability-valued Deontic Logic PSDL is defined as
follows. Formulas of PSDL are of two types:

– Deontic formulas: Formulas of SDL.
– P-formulas: they are built from elementary P-formulas Pϕ, where ϕ is a

closed SDL-formula, and truth-constants r, for each rational r ∈ [0, 1], using
the connectives of Rational Pavelka Logic.

The semantics of our language is given by means of Probability-valued Deontic
Kripke models of the following form: K = (W,R, e, µ), where (W,R, e) is an
standard Kripke model of SDL, and µ is a finitely additive probability on some
Boolean subalgebra F ⊆ 2W such that the sets {w | e(w,ψ) = 1}, for every
closed SDL-formula ψ, are µ-measurable.

The truth value of an atomic P -formula Pψ in a model K is defined as

‖Pψ‖K = µ({w | e(w,ψ) = 1})

and the truth-value of compound P -formulas are computed from the atomic ones
using the truth-functions of  Lukasiewicz logic. Now, given a P -theory T (a set of
P -formulas) one defines the truth-degree of a P -formula Φ over T as the value

‖ φ ‖T= inf{‖ φ ‖K | K is a PSDL-model of T}

where K is a PSDL-model of T when ‖Ψ‖K = 1 for every Ψ ∈ T . We define the
provability degree of Φ over T as

| φ |T= sup{r | T `PSDL r → φ}

We introduce now a sound and recursive axiom system for PSDL. Axioms of
PSDL are:

1. Axioms of SDL (for SDL-formulas)
2. Axioms of RPL (for P-formulas)
3. Probability Axioms (where ϕ and ψ are closed SDL-formulas):

(a) P (ϕ→ ψ) →L (Pϕ→L Pψ)
(b) P (ϕ ∨ ψ) ≡ Pϕ⊕ (Pψ 	 P (ϕ ∧ ψ))
(c) ¬LP (⊥)
(d) Pψ, for every SDL-theorem

where Φ ⊕ Ψ is a shorthand for ¬LΦ →L Ψ and Φ 	 Ψ is a shorthand for
¬L(Φ →L Ψ) 4. Deduction rules for PSDL are Modus Ponens (both for → of
SDL and for →L of RPL) and necessitation for the obligation modality O.

We can prove in an analogous way we did with the logic NSDL that PSDL
is a conservative extension of SDL. Although a completeness theorem analogous
to the one for NSDL does not hold for PSDL, similar techniques allows us to
prove that the Pavelka-style completeness of RPL extends to PSDL.
4 Note that in  Lukasiewicz Logic (x ⇒L 0) ⇒L y = min(1, x + y) and (x ⇒L y) ⇒L

0 = max(0, x− y).



Theorem 5 [Pavelka Completeness] Let T a P -theory and Φ a P -formula. Then
it holds that ‖Φ‖T = |Φ|T .

4 Examples

Norm preferences. Necessity-valued graded deontic logics allow to attach pref-
erence degrees to norms and this may be used to deal with conflicts among norms,
in a kind of defeasible logic approach. Consider the following example adapted
from [6]. Suppose Company A has the following norms: premium costumers of
Company A are entitled to get a discount, but costumers which place special
orders are not allowed to get such a discount. Such a policy can be described by
the theory

Γ = { PremiumCostumer(x) → ODiscount(x),
SpecialOrder(x) → O¬Discount(x) }

John is a premium costumer but has placed a special order. In this case, assuming
both norms to have the same priority level, the above policy clashes: clearly,
Γ ∪ {PremiumCostumer(John), SpecialOrder(John)} `SDL ⊥.

Let us further assume that the norm regarding special orders has a higher pri-
ority than the norm regarding premium costumers. In this case, we can describe
the company policy by the following NSDL theory

Γ ∗ = { r1 → N(PremiumCostumer(x) → ODiscount(x)),
r2 → N(SpecialOrder(x) → O¬Discount(x)) }

where r1 < r2. Now we have

Γ ∗∪{NPremiumCostumer(John), NSpecialOrder(John)} `NSDL r1 → N(⊥).

But in terms of the non-monotonic consequence relation associated to a necessity-
valued logic5 [3], this leads to

Γ ∪ {PremiumCostumer(John), SpecialOrder(John)}|∼ O¬Discount(John),

this is to say, the norm about special orders prevails.

Norm Compliance. We illustrate the use of Probability-valued Deontic Logics
by means of an example in which an agent i evaluates the probability of achieving
a certain goal g. Let agent i represent a person with disabilities. Agent i wants to
buy a certain product and he can choose between two supermarkets, A and B, for
buying the desired product. In order to take this decision, on the one hand, agent
i calculates, for each supermarket, the probability of the norm compliance by
other clients of the provision of parking places for people with disabilities. On the
other hand, he calculates the probability of norm compliance by supermarkets A
and B, of the Disability Discrimination Act (1995, extended in 2005), regarding
buildings accessibility. We could formalise in SDL sentences expressing these
norms, in a simplified way:
5 Let Γ ∗ be a theory over NSDL and let α = sup{r | Γ ∗ `SDL r → ⊥}. Then define
Γ |∼ ϕ when Γ ∗ `NSDL r → ϕ with r > α



– It is obligatory for supermarket A (B) to have at least one accessible entrance
route OAccA, (OAccB , respectively).

– It is prohibited to park in a place reserved for people with disabilities in
supermarket A (B) O¬ParkA (O¬ParkB , respectively)

A graded deontic language will allow us to reason about probabilities in this
context of uncertainty. Consider the following sentences of SDL:

1. OAccA ∧O¬ParkA,
2. OAccB ∧O¬ParkB

1. is equivalent to O(AccA∧¬ParkA) and 2. is equivalent to O(AccB∧¬ParkB).
Let T be a set of premises of the graded logic PSDL representing the information
we have about norm compliance in this two supermarkets. Then, if the following
holds:

T `PSDL PO(AccA ∧ ¬ParkA) →L PO(AccB ∧ ¬ParkB)

then agent i would take the decision of going to buy to supermarket B. Observe
that the formula of PSDL

PO(AccA ∧ ¬ParkA) →L PO(AccB ∧ ¬ParkB)

is 1-true in a model iff the probability degree of the norm compliance of O(AccB∧
¬ParkB) is greater or equal than the degree of norm compliance of O(AccA ∧
¬ParkA).

5 Related and Future Work

The paper [6] provides a logical analysis of conflicts between informational, moti-
vational and deliberative attitutes. The resolution of conflicts is based on Thoma-
son’s idea of prioritization, which is considered in the BOID logic [5] as the order
of derivations from different types of attitudes. Thomason’s BDP logic (see [24])
is based on Reiter’s default logic and extended in the BOID logic with conditional
obligations and intentions.

In [11] the authors follow the BOID architecture to describe agents and agent
types in Defeasible Logic. Reasoning about agents can be embedded in frame-
works based on non-monotonic logics, as one the most interesting problems con-
cerns the cases where the agent’s mental attitudes are in conflict or when they
are incompatible with obligations and other deontic provisions.

BOID specifies logical criteria (i) to retract agent’s attitudes with the chang-
ing environment, and so (ii) to settle conflicts by stating different general policies
corresponding to the agent type considered. Intentions and beliefs are viewed as
constituting the internal constraints of an agent while obligations are its external
constraints.

More recently, in [20], M. Nickles proposes a logic-based approach based on
the notion of behavioral expectation. In his paper he presents a quantification of
the norm adherence of an agent using the measurement of norm deviance. Nor-
mative expectations are defined via the degree of resistance to social dynamics in



the course of time. Our approach differs from previous ones because our purpose
is not to fuzzify deontic logic giving a different interpretation to its modalities.
We want to provide a reasoning model for an agent in order to represent how he
attaches necessity or probability degrees to norms of a given institution.

Up to now we have applied our framework to SDL. However, our purpose is
to provide a general way to define a necessity-valued or probability fuzzy logic
over any given deontic logic, allowing to attach a grade to the norms described
in the deontic language. Future work will include working with other logics such
as Dynamic Logic (see [22] and [15]) Dyadic Deontic Logic (see [29] or [26]),
the KARO formalism [27], B-DOING Logic [8], the Logic of “Count-as” [12],
Normative ATL [25] or Temporal Logic of Normative Systems [1]. Since different
definitions of norm adherence or of probability of norm compliance would give
rise to a variety of formal systems, changing or adding new axioms to the basic
axiomatization we have introduced here, future work will be devoted to the study
of these notions in a multi-institutional setting.
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13. Hájek, P., Metamatematics of Fuzzy Logic, Trends in Logic, 4, Kluwer Academic
Publishers (1998).

14. Halpern J.Y. Reasoning about Uncertainty. The MIT Press, Cambridge Mas-
sachusetts (2003)

15. Harel, D., Dynamic logic, in Gabbay, D. and Guenthner, F. (eds.), Handbook of
Philosophical Logic vol. II (1984) 497–604.

16. Knijnenburg, P. M. W. and Leeuwen, J. van, On Models for Propositional Dynamic
Logic, Theor. Comput. Sci., 91(2) (1991) 181–203.

17. Liau, C. J., On the possibility theory-based semantics for logics of preference,
International Journal of Approximate Reasoning, 20 (1999) 173–190.

18. Meyer, J-J. Ch., and Veltman, F., Intelligent Agents and Common-Sense Reason-
ing, in (Blackburn, P. et al., eds.) Handbook of Modal Logic 3, Studies in Logic and
Practical Reasoning (2006) 991–1030.

19. Meyer, J-J. Ch., A Different Approach to Deontic Logic: Deontic Logic viewed
as a variant of Dynamic Logic, Notre Dame Journal of Formal Logic, 29(1)(1998)
109–136.

20. Nickles, M., Towards a Logic of Graded Normativity and Norm Ad-
herence, in Boella, G., van der Torre, L. and Verhagen H. eds. Nor-
mative Multi-agent Systems, Dagstuhl Seminar Proceedings, 07122,
http://drops.dagstuhl.de/opus/volltexte/2007/926 (2007).

21. Pavelka, J. On fuzzy logic I, II, III. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 25, (1979) 45–52, 119–134, 447–464.

22. Pratt, V.R., Semantical considerations on Floyd-Hoare logic, Proceedings of the
17th IEEE Symposium on the Foundations of Computer Science (1976) 109–121.

23. Ross, W. D., Foundations of Ethics, Oxford University Press, London (1939).
24. Thomason, R.H., Desires and Defaults: A Framework for Planning with Inferred

Goals, Proceedings of the KR’2000, Morgan Kaufmann (2000) 702–713.
25. van der Hoek, W. and Wooldridge, M., On obligations and normative ability:

towards a logical analysis of the social contract, Journal of Applied Logic, 3 (2005)
396–420.

26. van der Torre, L. and Tan, Y-H., Contrary-to-duty reasoning with preference-based
dyadic obligations, Annals of Mathematics and Artificial Intelligence, 27 (1999) 49–
78.

27. van Linder, B., Modal Logics for Rational Agents, PhD. Thesis, Utrecht University
(1996).

28. Wright, von G.H., Deontic Logic, Mind, 60 (1951) 1–15.
29. Wright, von G.H., A New System of Deontic Logic, Danish Yearbook of Philosophy,

1 (1964).


