Rapid Prototyping of Large Multi-Agent Systems
through Logic Programming

W. Vasconcelos (wvasconcelos@acm. org)
Department of Computing Secience, University of Aberdeen
Aberdeen AB24 3UE, United Kingdom

D. Robertson (dr@inf .ed.ac.uk)

Centre for Intelligent Systems and their Applications (CISA)

Division of Informatics, University of Edinburgh

Appleton Tower, Crichion Street, Edinburgh EH8 ULE, United Kingdom

C. Sierra (sierra@iiia.csic.es), M. Esteva (marc@iiia.csic.es)
and J. Sabater (jsabater@iiia.csic.es)

Artificial Intelligence Research Institute {HIA)

Consejo Superior de Investigaciones Cient{ficas (CSIC)

Campus UAB, 08193, Bellaterra, Calalonio, Spain

M. Wooldridge (mjw@csc.liv.ac.uk)
Department of Computer Science, University of Liverpool
Liverpool L69 7ZF, United Kingdom

Abstract. Prototyping Is a valuable technique to help software engineers explore
the design space while gaining insight on the dynamics of the system. In this paper,
we describe a method for rapidly building prototypes of large multi-agent systems
using logic programming. Our method advocates the use of a description of all
permitted interactions among the components of the system, that s, the pretocol,
as the starting specification. The protocol is represented in a way that allows us
to automatically check for desirable properties of the system to be built. We then
employ the same specification to synthesise agents that will correctly follow the
protocol, These synthesised agents are simple logic programs that engineers can
further customise into more sophisticated software. Our choice of agents as logic
programs allows us to provide semi-automatic support for the customisation activity.
In our method, a prototype is a protocol with a set of synthesised and customised
agents. Executing the prototype amounts to having these agents enect the protocol.
We have implemented and described a distributed platform to simulate prototypes.

1. Introduction

Rapid prototypiug offers a means to explore essential features of a
proposed system [9, 27, 35], promoting early experimentation with
alternative design choices and allowing engineers to pursue different
solutions without efficiency concerns [9). In [25} we find reports of
many successful experiments of rapid prototyping. Multi-agent systems
{MASs, for short) are harder to design than centralised systems [38] and

r;ﬁ (© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

main.tex; 17/11/2003; 8:45; p.1

2 W. Vasconcelos el al,

tools and methods to support the development of MASs are in wrgent
need {30].

In this paper we describe a method for rapidly building prototypes
of large MASs using logic programming. Our approach is based on a
global protocol depicting all interactions that take place in the MAS.
The format and order of all interactions are formally specified as a
kind of non-deterministic finite state machine. This formalism can be
used to check for desirable properties in the protocol. An advantage
we exploit is that this global protocel can be used to automatically
synthesise the agents that will comprise the system. Our approach to
prototyping MASs reflects the modelling methodology introduced in
[61] and consists of the following steps:

1. Design of a Global Protecol — in this initial step we prescribe the
design of a global protocol, that is, a precise description of the
kinds and order of méssages that the compowents of the MAS
can exchange. For this description we have used a form of non-
deterministic finite state machines, called electronic institutions
(or simply e-institutions) [18, 40]. We explain more about this in
Section 2,

2. Synthesis and Customisation_of Agents - this step addresses the
automatic synthesis of agents as logic programs complying with the
global protocol. Although simple, these synthesised agents are in
strict accordance with the protocol from which they originate: their

- behaviours conform to the specification of the global protocol. To
allow for the variability of the components of a MAS and to help
engineers explore the design space of individual agents, we offer
means to customise the synthesised agents into more sophisticated
pieces of software, using logic program transformation technigues.
We explain this step in Section 3.

3. Definition of Prototype -- a prototype consists of an e-institution
and a set of corresponding customised agents. Designers may delib-
erately leave empty slots in the customised agents where different
design possibilities may be pursued. These slots can be completed
differently giving rise to distinct prototypes. In Section 4 we de-
scribe this step.

4. Stmulation and Monitoring of the Prototype — the last step is the
simulation of the prototype and the collection of results. We offer
means for the enactment of an electronic institution: the agents
are started as self-contained and asynchronous processes that com-
municate by means of message-passing. This step is described in
Section 5.

pain.tex; 17/11/2003; 8:45; p.2

Rapid Prototyping of Large MASs through Logic Programming 3

These steps are ilustrated in Figure 1. In the diagram, we also included

Global Protecol verification

W eynthesls & >l Agent l d'm>
B

PFigure 1. Overview of Proposed Method for Rapid Pratotyping

%

a verification activity: the same specification for the global protocol can
be used to check for desirable properties {or the absence of uindesirable
properties) — we explain this step in Section 2.

We describe the steps above in Sections 2 to 5. We compare our
approach with related work in Section 6 and in Section 7 we discuss
the ideas presented, draw conclusions and give directions for future
work.

1.1. A TvyPICAL SCENARIO FOR MAS PROTOTYPING

MASs consist of many components which interact dynamically, each
with its own thread of control, and engaging in complex coordination
protocols. MASs are more complex to correctly and efficiently engineer
than stand-alone systems which use a single thread of control. They
are becoming, in these days of cheap, fast, and reliable interconnections
amongst computers, a common way of carrying out computations.

Let us consider a scenario in which we want to design a virtual
marketplace [54] where agents come to buy and sell goods. Our virtual
marketplace, much like the Kasbah system depicted in [11], will be
populated by agents started by users (humans or their software agents)
who wish to sell or buy goods. The agents that buy and sell are designed
to be personalised to the needs of the user. Parameters such as which
goods to trade, the highest price a buyer agent is prepared to pay, the
lowest price a seller agent will accept to sell the goods, thne constraints,
negotiation strategies, and so on, should be fixed by the users prior to
the agent joining the marketplace.

In order to explore the design space when building such a system,
rapid prototyping is essential. Even though individual agents may be
developed in isolation, it is frequently impossible to predict the overall
behaviour of the system e priori its behaviour can only be understood
through empirical investigation. Furthermore, to gain an insight into
how the interplay among the internal features of the individual agents
influences the overall dynamics of the system, the prototypes ought

main.tex; 17/11/2003; 8:45; p.3

4 W. Vasconcelos ef al.

to offer convenient ways to change these features and to examine any
resulting changes in the collective behaviour of the agents.

2. Global Protocols via Electronic Institutions

A defining property of a MAS is the communication among its com-
ponents: a MAS can be understood in terms of the kinds and order of
messages its agents exchange [38]. We adopt the view that the design
of MASs should thus start with the study of the exchange of messages,
that is, the protocols among the agents, as explained in {61]. Such pro-
tocols are called global because they depict every possible interaction
among all components of a MAS, The ultimate goal of our approach
is to use the protocol specification to synthesise the individual compo-
nents -of a MAS and then run them (as explained below). The kinds
and order of messages exchanged among the components of the system
are all explicitly represented, and give rise to the actual agents that
will ultimately enact the protocol.

Our global protocols are represented using electronic institutions
{e-institutions, for short) [18, 40]. E-institutions are a variation of
non-deterministic finite state machines {29] (NDFSM, for short). An
advantage of using a finite-state machine formalism to represent proto-
cols is that we can use automated techniques to check for properties (or
their absence). For instance, protocols should not have “sinks”, that is,
states (other than final states) which the system reaches and is never
able to leave; there should not be unreachable states in a protocol; and
so on. Such properties can be checked with standard graph algorithms.
If our protocols were described in a more sophisticated formalism with
a more operational semantics, e.g, in a programming language, such
checks might not be easily done. Another advantage is that we can use
the representation of our protocols to synthesise the agents that will
comprise the MAS. We exploit this advantage in our approach. This
is explained in detail in Section 3.2 below. Again, more sophisticated
notations would make this synthesis process a lot more complex, if not
impossible.

We shall present e-institutions here in a “lightweight” version in
which those features not essential to our investigation will be omitted
— for a complete description of e-institutions, readers should refer to
[18, 47]. Our lightweight e-institutions are defined as sets of scenes re-
lated by transitions. We shall assume the existence of a communication
language CL among the agents of an e-institution as well as a shaved
ontology which allow them to interact and understand each other. We
first define a scene:

main.tex; 17/11/2003; 8:45; p.4

Rapid Prototyping of Large MASs through Logic Programming b
DEFR. 1. A scene is a tuple 8 = (R, W,wq, Wy, WA, WE, 8, \) where
~ R={r1,...,rn} is a finite, non-empty set of roles;
— W = {wp,...,wn} is a finite, non-empty set of states;
~ wyg € W is the initial state;
— Wy C W is the non-empty set of final states;

— WA is a set of sets WA = {WA, C W, r € R} where each
WA,, r € R, is the set of access states for role r;

—~ WE is a set of sets WE = {WE, C W, v € R} where each
WE,, r € R, is the set of exit states for role r;

— O C W x W is a set of directed edges;

— X: 01— CL is a labelling function associating edges to més—sages
in the agreed language CL.

A scene is a protocol specified as a finite state machine where the states
represent the different stages of the conversation and the directed edges
connecting the states are labelled with messages of the communication
language. A scene has a single initial state (non-reachable from any
other state} and a set of final states representing the different possible
endings of the conversation. There should be no edges connecting a
final state to any other state. Because we aim at modelling multi-agent
conversations whose set of participants may dynamically vary, scenes
allow agents to join or leave at particular states during an ongoing con-
versation, depending on their role’. For this purpose, we differentiate
for each role the sets of access and exit states.

To illustrate this definition, in Figure 2 we provide a simple example
of a scene for an agora room in which an agent willing to acquire
goods interacts with a number of agents intending to sell such goods.
This agora scene has been simplified ~ no auctions or negotiations are
contemplated. The buyer announces the goods it wants to purchase,
collects the offers from sellers (if any) and chooses the best (cheapest)
of them. The simplicity of this scene is deliberate, in order to make
the ensuing discussion and examples more accessible. A more friendly
visual rendition of the formal definition is employed in the figure. Two
roles, buyer and seller, are defined. The initial state wq is denoted by

! Tt is worth pointing out that roles in e-institutions are more than labels: they
help us abstract from individual agents and define a pattern of behkaviour that any
agent that adopts a role ought to conform to. Moreover, all agents with a sams role
are guaranteed the same rights, duties and cpportunities [18].

main.tex; 17/11/2003; 8:456; p.b

6 W. Vasconcelos at al.

biyer " requeat {Btbuyer,;aliisellexr,buy{Iten}}
selter } o

offar{S:seller,B:buver,aell {Iten, Prica}l}

inform{B:buyer,81sellar, rejoct {Itexn, Prise})

buyer ’ seiter
baer |4 o st
inform{Bibuyer,Siaaller,accept{Itex,Price))

inform{bB:buyer,Siseller,reject{Icen, Price}) offer({Srseller,Brhuyer,sell{Iten,Frice))

Figure 2. Simple Agora Room Scene

a thicker circle (top left state of scene); the only final state, ws, is
represented by a pair of concentric circles (bottom left state). Access
states are marked with a “»” pointing towards the state with a box
" containing the roles of the agents that are allowed to enter the scene
at that point. Exit states are marked with a “»* pointing away from
the state, with a box containing the roles of the agents that may leave
the scene at that point. The edges are labelled with the messages to be
sent /received at each stage of the scene. A special label “nil” has been
used to denote edges that can be followed without any action/event.
We now provide a definition for e-institutions:

DEF. 2. An e-institution is the tuple £ = {(SC,T,8¢,8q, E, Ap) where
— SC = {84,...,8,} is a finite, non-empty set of scenes;
w T={t1,...,tm} ¢ a finite, non-empty sct of transitions;
— Sp € 8C is the root scene;
~ 8q € 5C is the outpul scene;

— E = E'UE® is a set of arcs such that BT C WES x T is a set of
edges from all exit states WES of every scene S to some transition
T, and EC C T x WAS is o set of edges connecting all transitions
to an access state WA® of some scene S;

— dpt Evspley,...,25) maps each arc to a predicate representing
the arc’s constraints.

fransitions ave special connections between scenes throngh which agents
move, possibly changing roles and synchronising with other agents. We
illustrate the definition above with an example comprising a complete
virtual agoric market. This e-institution has more components than the
above scene: before agents can take part in the agora they have to be

main.tex; 17/11/2003; 8:45; p.6

Rapid Prototyping of Large MASs through Logic Programming : 7

admitted; after the agora room scene is finished, buyers and sellers nmst
proceed to settle their debts. In Figure 3 we show a graphic rendition

[Admission ‘-&2 L

Figure 8. E-Institution for Simple Agoric Market

of an e-institution for our market. The scenes are shown in the boxes
with rounded edges. The root scene is represented as a thicker box
and the output scene as a double box. Transitions are represented as
triangles, The arcs connect exit states of scenes to transitions, and
transitions to access states. The labels of the arcs have been represented
as numbers. The same e-institution is, of course, amenable to different
visual renditions.

The predicates p(z1, ..., 2} labelling the arcs, shown above as num-
bers, typically represent constraints on roles that agents ought to have
to move into a transition, how the role changes as the agent moves out
of thie transition, as well as the mumber of agents that are allowed to
move through the transition and whether they should synchronise their
moving through it. In the Agoric Market above, the arc label 3 is:

p3(z, y) - id{x) A role(y) Ay € {seller, buyer} Az, y) € Ags (3)

that is, transition ¢5 is restricted to those agents o whose role y is either
seller or buyer — information on such agents is recorded in the set Ags.
The complementary ave label 3.1 leaving transition i3 is:

pai(z, 2) — {z,y) € Ags A y/z € {seller/payee, buyer [payer} (3.1)

that is, those agents {z,7) € Ags that moved into #3 may move out
of the transition provided they change their roles: seller agents in the
Agora Room scene should become payee agents in the Settlement
scene, buyer agents should become payer agents.

2.1. DESIGNING AND REPRESENTING E-INSTITUTIONS

Those wishing to design their own e-institutions can make use of a
graphical editor, Islander [16, 37]. Users can prepare their e-institutions
by drawing diagrams as Figure 2 and 3 using a selection of icons and
a repertoire of drawing operations. The graphical notation is a means

main.tex; 17/11/2003; 8:45; p.7

8 W. Vasconcelos et al.

Froject pone Element tob Hain pemw Hain toclba Grepti pane toolbor Testual doto pane

(nenouauon muoz-a[
{2gara agorat). i
Arott rest)).
. TG Siiens = |
I
Tdsadug]ees U =0R).
el {12 AND-ANO.
- . {tE AND-AND}
(] AND-ANgg,

x:msz?yﬁ;u/nrmr) R 17 AND-AN

ElG QR-0R)
LS AND-AND).
1 (14 AND-AND).
(13 AND- AND))-
% CusTemaisupatier %y RELTEAs =

ENemat

cironidnnT oA Fuply Chan DFsan o CH Aot BN
ectronbci astitution Sup ple, Chain - Norm nom I ddssn't exist
cere S¢bneDs Ao Dinfoglt Fffamework selected

Structure pone Log pone Lroph editor pare Irepect diclog

Figure 4. Islander Graphical Editor for E-Institutions

to present the formal definitions above and allow their more ergonomic
manipulation. We show in Figure 4 a sereenshot of Islander.

Graphically represented e-institutions are translated into a logical
formalism [62] implemented in Prolog [3], making our representation
computer-processable. This makes it easler to synthesise our simple
agents, as we shall see below. We show in Figure 5 our Prolog rep-
resentation for the agora room scene graphically depicted in Figure 2
above. Fach component of the formal definition has its corresponding
representation. Since many scenes may coexist within one e-institution,
the components are paratneterised by a scene name (first parameter).
The © and A components of the definition are represented together in
theta/2, where the second argument holds a list containing the directed
edge as the first and third elements of the list and the label as the second
element.

Any scene can be conveniently and economically described in this
fashion. E-institntions are collections of scenes in this format, plus
the extra components of the tuple comprising its formal definition.
In Figure § we present a Prolog representation for the agora market e-
institution. Of particular importance are the arcs connecting scenes to

main.tex; 17/11/2003; 8:45; p.8

Rapid Prototyping of Large MASs through Logic Programming g

roles(agora, [buyer,sellerl). states(agora, fw0,wi,w2,w3]).

initial state{agora,wl). tinal _states{agora, [w3l).
access.states{agora,buyer, [u0})., access.states{agora,seller, [w0,u2]}.
exit_states(agora,buyer, [w3]}. exit_states(agora,seller, [w1,w3]}.

theta{agora, [w0,request{B:buyer,all:seller,buy{I}),wli)}.
theta{agora, [ul,offer (8:selleor,Bibuyer,sel1{I,P}},v2]}.
thetalagora, fwl,nil,w2]}.

theta(agora, [w2,0ffer(8:seller,B:buyer,seil (I,P}},w2]).
theta{agora, [w2,inform{B:buyer,S:seller,accept(1,P)}),w3l).
theta{agora, [w2, inform{B:buyer,S:seller,rejoct{I,P}),ull).
theta{agora, fw2,nil,w3]).

thetalagora, [w3,inform(B:buyer,81seller,reject{I,P}},w3]}.

Figure 5. Representation of Agora Room Scene

scenes ([admission, agora,settlement ,departurs]),
trangitions([+1,t2,t3,%4,15]).

root_scene{admission}. output_scene(departure).
arc{[adnission,w3],pr ,t1). arc{ti,p:1.1, [departure,udl}).
arc(fadmission,wd] ,po ,t2). arc{td,pa 1, [agora,udl).
arc(fagora,w3],ps,13}. are{t3,pa.1, [settlenent,w0d]).
arc([agora,w3]) ,ps,t4). arc{t4,pas1, [departure,wd}).

arc([settlement,w3l,ps,t6). arc{t5,ps.1,[departure,wd])}.

Figure 6. Representation of Agoric Market E-Institution

transitions and vice-versa. In DEF. 2 arcs F are defined as the union
of two sets E = B U E9, B! comnecting (exit states of) scenes to
transitions and E? connecting transitions to (access states of) scenes.
We represent the E' arcs as arc/3 facts the first argument of which
holds {as & list) & scene and one of its exit states, the second argument
holds the predicate {constraint) p; which enables the arc, and the third
argument is the destination transition. For simplicity, we chose to rep-
resent the arcs of E? also as arc/3 facts, but with different argnments:
the first argument holds the transition, the second argument holds the
constraint that enables the arc, and the third argument holds (as a list}
a scene and one of its access states.

2.2. CHECKING PROPERTIES OF E-INSTITUTIONS

Scenes and transitions are means for breaking up complex interactions
of a MAS in a natural way. They can be seen as modules that can be
combined together, provided some conditions hold. Complex interac-
tions should be split into smaller parts with a coherent meaning: for
instance, the part relating to admission, the part relating to the actual

main.tex; 17/11/2003; 8:45; p.9

10 ‘W. Vasconcelos et al.

selling and buying, and so on. An immediate benefit in breaking up
the interactions of a complex MAS is that its design becomes more
manageable, Additionally, modules encourage reuse.

Checking properties automatically is an integral part of the formal
specification of computer systems [14, 21]. The modular description
of a complex MAS as scenes and transitions allows useful checks to
be performed with lower associated costs. The decomposition of a
complex protocol into sub-protocols helps deter the multiplication of
combinations of possible outcomes: a scene that has been checked for
some property will not be affected by the properties of any trausition
connected to it. Furthermore, once a scene is checked, it need not be
checked again when new parts are added to the specification.

Our representation renders itself to straightforward antomatic checks
for well-formedness. For instance, we can check whether all theta/2
terms are indeed defined with elements of states/3, whether all arc/3
are defined either for access_states/3 or exit_states/3, Hall access.
states/3 and exit _states/3 have their arc/3 definition, and so on.

However, the representation is also amenable for checking important
graph-related properties using standard algorithms [12]. It is useful o
check, for instance, if from the initial state/2 we can reach all other
states/2, whether there are states/2 from which it is not possible
to reach an exit_state/3 (absence of sinks), and so on. We show in
Figure 7 a portion of a Prolog program to check for properties in e-

1 connected_states(Sc,C8ts):-

2 initial_state(Sc,W0), states(Sc,Sts), final.states{Sc,WFs),

a setof (St, {member (5t,5ts) , path_atates (S¢,W0,8t, [1)), R5ts),

4 setof (RSt, (member (R8t,RSts) ,path.states (S¢,RSt,WFs, [1)),08¢s).

& connected.scenes{CScs):-

[root_scene{RSc), scenes{Sca}, output_scene(FSc},

7 setof (S¢, (member (S¢,Scs) ,path_scenes(RSc, Sc, [1)),R8cs),
8 setof{Sc, (member (S¢,RSes) , path.scenes{Sc,FS¢, [1)),C8¢s).

Figure 7. Fragment of Program to Check Properties

institutions. Predicate connected._states/2 (lines 1-4) obtains a list
CSts of connected states in scene Sc, that is, those states/2 that can
be reached from the initial state/2 of the scene and from which
a path_states/4 to one of the final_states exists. This predicate
works by finding all states/2 St to which there is a path.states/4
from initial_state/2 WO (line 3) and then it tests (line 4) among
these states, those from which a path to one of the final states/2
exists. Predicate connected scenes/1 (lines 5-8) returns a list CScs
comprising all the scenes that can be reached from the root_scene/1

main.tex; 17/11/2003;: 8:456; p.10

Rapid Prototyping of Large MASs through Logic Programming 11

and from which there is a path to the output_scene/1. Its operation
is similar to the predicate connected_states/2 just described.

Predicates connected states/2 and connected scenes/1 rely, re-
spectively, on predicates path_states/4 and path_scenes/3. The goal
path_states(Sc,St,F8t,Path) holds if Path is a list of states repre-
senting a path between St and FSt, in scene Sc¢. Likewise, predicate
path_scenes(Sc,FSc¢,Path) holds if Path is a list of scenes represent-
ing a path between scene Sc and scene FSc. Both path states/4 and
path_scenes/3 can cope with lists of final states/scenes, that is, they
may also take as a parameter a list of final (destination} states/scenes
and they hold if there is a path to one of the elements of this list.
These predicates incorporate the usual transitive formulation [7, 51]
to find a next state/scene and then recursively find a path from this
new state/scene to the destination, using the path built so far to avoid
loops.

3. Synthesis and Customisation of Agents

Our choice of a global protocol has the advantage that we can use
it to synthesise the agents that will comprise our MAS, This feature
allows designers to experiment with different variations of a specific
global protocol, knowing that the corresponding prototype will be au-
tomatically genervated. In [62] we introduced a simple way to synthesise
agents from our e-institutions. We devised a means to use the logical
representation of the e-institution in order to obtain a set of Horn
clauses which capture the behaviours for the agents participating in
the e-institution. The synthesis obtains, for the roles of cach scene, a
set of Horn clauses which represent the connections among the states
and the events, i.e., sending or receiving messages, associated with
these edges.

The basic idea in this step is to automatically extract from an e-
institution an account of the behaviours agents ought to have. This
simplified account is called a skeleton: it provides the essence of the
agents to be developed. Our skeletons are devised from the interaction
specification (at the e-institution level) being much simpler to read than
full agent descriptions, thus encouraging their use as the initial design
for sophisticated reasoning agents. Engineers willing to develop agents
to perform in e-institutions could then be offered a skeleton which
would be gradually augmented into a complete program. Depending
ont the way skeletons are represented, semi-automatic support can be
offered when augmenting them into more complex programs.

main.tex; 17/11/2003; 8:45; p.ii

12 W. Vasconcelos et al.

Skeletons should ideally exist in a computer-processable format, by
which we mean that the behaviours represented by them should be
reproducible by a computer. This way we do not have to perform further
transformations from an abstract format onto more computationally-
ortented representations — skeletons, after all, should guide designers
in the development of their agents. Our skeletons are simple logic pro-
grams: the terse syntax, the precise declarative and procedural mean-
ings and the ease with which one can write meta-programs to obtain
alternative executions are some of the advantages of our approach. We
explain more about the connection between skeletons and e-institutions
in Secfion 3.1, and in Section 3.2 we show how they cau be synthesised.

A skeleton should define all the hasic behaviours agents should pos-
sess to successfully perform in the e-institution they are designed for.
Our skeletons are simple logic programs with very limited functionality:
they store the current state of the computation, and are able to move
on to a next state, given certain conditions. However, e-institutions are
non-deterministic and there might be states of the computation from
which more than one next state is possible. When a rational agent
follows an e-institution, any non-determinism should be resolved by
formal reasoning and decision-making procedures. The augmenting pro-
cess which skeletons undergo is aimed at “filling in” such capabilities,
Reasoning and/or decision-making procedures have to be appropriately
added to the initial skeleton, yielding more sophisticated agents that
conform to the e-institution from which they were extracted. Further-
more, any variation to be performed by the components (such as the
customisaiion of messages) is not specified in the e-institution. If, for
instance, a message offering an item is to be sent, the actual item which
is offered is to be defined by whichever agent actually participates in
the e-institution. This variabilify is another capability that ought to be
added to the initial skeleton.

Our choice of logic prograuns to represent skeletons is also supported
by the wealth of research and results on automatic support and environ-
ments for logic programming development [5, 15, 23, 59]. Of particular
importance to our proposal is the work on the systematic approach to
logie program development using skeletons and programming techniques
I5, 33; 46, 50]. With this approach, an initial simple program which
defines the flow of execution {(a skeleton) is augmented with more fea-
tures (the programming fechniques}. These are extra computations to
be performed as the flow of execution, defined by the initial skeleton, is
followed. Since e-institutions prescribe the high-level flow of execution
of a MAS there is a natural affinity between e-institutions and skeletons.

The activity of customisation of the skeleton is thus given support:
programming techniques are added at the designer’s will, conferring on

main.tex; i7/11/2003; 8:45; p.12

Rapid Prototyping of Large NASs through Logic Programming 13

the program additional capabilities. Prograin editing environments can
be offered for this purpose, by which designers shift the focus of their
attention: rather than seeing programs as sequences of characters (and
adding or deleting them), programs are seen as “chunks” of constructs
and operations over them. The addition of a parameter to a predi-
cate, for instance, rather than requiring the appropriate editing of lines
and characters to inchide the new parameter (with the likely risk of
missing oui on recursive calls or predicates with multiple definitions),
becomes one single command which adequately alters all relevant parts
of the program. We explain in more detail the customisation activity
in Section 3.3.

3.1. SKELETONS AS LoGIC PROGRAMS

Given an e-institution, we want to automatically extract essential in-
formation determining the behaviour of individual agents that will join
in and interact with each other for some specific purpose(s). We shalt
call the representation for this essential information a skelefon of an
agent.

The information obfained is to be used to restrict or define the
possible behaviours of agents joining an e-institution. The same e-
institution can he employed for this purpose, but we want simpler and
more specialised versions aimed at the individuals that will populate
the enactment of the e-institution. The simplification and/or speciali-
sation of an e-institution, however, is in the sense of obtaining parts of
the original NDFSM that are relevant for specific agents, This process
hopefully yields a smaller NDFSM.

The information of a NDFSM can be efficiently represented with any
of the classic data structures employed with graphs [12]. However, we
need to add the dynamics of a flow of execution to the static informatgion
of states and transitions. This flow of execution captures the informal
mechanism we use when we try to follow a NDFSM, NDFSMs are ab-
stract models that can be given different computational interpretations
[29]: the same automaton can be understood as a generator of correct
output strings or as a device that accepts or rejects input strings.
We also want to add to our representation some forin of operational
“meaning” of what happens when an edge is followed or triggered.

We propose logic programming for this purpose. The Horn clauses
of logic programs are a compact formalism with precise declarative and
procedural meanings. It provides a simple and natural means to repre-
sent our NDFSM as well as the fiow of execution of such devices. Our
proposal is exemplified in Figure 8: a non-deterministic state transition
diagram is shown with its associated clauses. The meaning assoctated

main.tex; 17/11/2003; 8:45; p.13

14 W. Vasconcelos et of.

. state(so)} <~ trans{l) A state(s:)

/ \ state(so) — trans{la) A state(ss}
@ @ state(s1) — trans{is) A staie(s2)

Figure 8. State Transitions and Horn Clauses

to NDFSMs is the following: if s L tisan edge, then when the flow
of the execution is in s, it should make { happen and move to state
t; alternatively, the flow of execution should waif until I happens and
then it should move to state ¢. Both these possibilities can be captured
with our Horn clause proposal: the appropriate definition of predicate
trans that checks if a transition is enabled can give rise to the different
meanings.

A more intuitive way to represent an edge s 1 #is via the clanse
state(t) — trans(l) A state(s). This representation, however, fails to
capture the temporal ordering between s and £, that is, the fact that the
flow of execution can move from state s to state ¢ if it can prove that
trans(l) holds. Clause state(s) + trans(l) A state(t), on the other hand,
capture this important relationship: if we use it to prove « state(s)
applying SLDNF resolution [55], as implemented in Prolog [3], then
the execution proceeds by i) matching «— state{s) with the head goal
of the clause (i.e., flow of execution enters state s);) an attempt to
prove trans(l} is made; 4#i) if trans{l) is successfully proved, then the
flow of execution tries to prove state(t) — this step amounts to moving
to state t. It is possible, though, to write a meta-interpreter [28, 51}
to use the more intuitive (and logically sound) representation and still
capture the temporal ordering, but this would add complexity to our
proposal,

Other forms of representation for NDFSMs such as adjacency ma-
trices and adjacency (linked) lists [12] address separately the static
information, i.e., the states and transitions, and the dynamic aspects
of the model, i.¢., how the static information is employed during com-
putations with the NDFSM. Although such representations may be
equivalent in terms of expressiveness or even more efficient in terms of
storage space and retrieval speed, they are not so appropriate for our
needs, that is, a minimal representation for a NDFSM which should be
used as an initial design for a program.

There are other advantages in using clauses as a representation.
The simplicity of this notation is complemented by the procedural
meaning given by sound and complete proof procedures such as SLDNF
resolution [55], efficiently implemented in different logic programming

main.tex; 17/11/2003; 8:45; p.i4

Rapid Prototyping of Large MASs through Logic Programming 15

systems. If we assume this procedural interpretation, then it is enough
to show the clauses that comprise our NDFSM. Our representation is
thus an actual, albeit simple, logic program with a precise semantics.
Given a NDFSM M = (5,%,4, 50,T), where 8 = {sg,...,8,} is the set
of states (or vertices}, ¥ = {l4,...,1, } is the set of labels of transitions
{we have nsed the more generic term “label of transitions” instead of an
alphabet, as is the case in automata [29]), § : § x £ 5 is a (partial)
transition function, sy € 5 is a special state, the initial stateand T'C S
is the set of terminal {or acceptance} states, then we can provide an au-
tomatic translation to our clanse representation. For any s,t € S,l € I,
such that §(s,{) = ¢, then we have state(s) «— trans{l) A state(t) in our
clause representation. Additionally, we can include clauses to record
the initial and final states, completely defining a NDFSM.

3.2. SYNTHESIS OF SKELETONS FROM E-INSTITUTIONS

In {62] we introduced a simple way to synthesise agents from our e-
institutions, We devised a means to use the logic representation of
the e-institution in order to obtain a simple set of Horn clauses which
capture the behaviours for the agents partaking the e-institution. The
synthesis obtains, for the roles of each scene, a set of Horn clauses which
represent the connection among the states and the events, i.¢., sending
or recetving messages, associated with these connections (edges). We
show in Figure 9 part of a Prolog program to synthesise agents from an
e-institution represented in the above logical form. Predicate cl_arc/3

ct arc(R,arc{{8¢c,8t},P,T},Clause) : -
satisfy(R,P),
Clause = (s([S¢,8t,R1):-holds{P),s(iT,.R]1))}.
ci_arc(R,arc(T,P, (8¢,5t1),Clause):-
satistfy(R,P},
Clause = (=([T,R])}:-holds{P},s{{S¢,8:,R]1)}.

¢l _theta(R,theta{Sc, [St,L,NSt]),Clause) s~

L =.. L,.iRyu-d,

Clause = (s{[Sc,5t,R}):-send(L),s({8¢,N5¢,R]})).
cl.theta(R,theta(Sc, [S5t,L,NS5t]),Clanse) : -

L=.. [,-,-:R,},

Clanse = (s([Sc,5t,R1}:~rec{L),s([5¢,H5t,R1)).
¢1_thetalR,theta(Sc, [St,_,NSt]),Clause):—

Clause = (s([Sc,5t,R1):-s([S¢,KS6,RI)).

Figure 9. Fraginent of Program to Synthesise Agents

uses the role (first argument) and an arc (second argument) to assemble
an agent clause (third argnment) of the form s(LInfe;) : ~holds (Pred),

main.tex; 17/11/2003; 8:45; p.15

16 W. Vasconcelos et ol.

s{LInfoy). Depending on which kind of are ¢1l.arc/3 uses (cf. Figure 6
and its discussion), that is, whether it uses an B’ arc {connecting a
scene to a transition) or EC (connecting a transition to a scene) then
an appropriate clause is synthesised. The first clause of ¢1 _arc /3 defines
the format of clauses for B! arcs; the second clause defines the format
of clauses the E?, The satisfy/2 predicate ensures that agents with
that role are aliowed to follow the arc — this depends on the predicate
labelling the edge to/from a transition between scenes.

‘We have adopted the general format s (LInfo;) :— Cond, s(LInfoy)
for the clauses of our synthesised agents. In LInfe; we keep a list
with information on the agent’s current state of affairs: we aim at
the minimum required information to uniquely define it. In Cond we
represent the condition to be fulfilled in order for the agent to move
from s(LInfo1} to s(LInfoz). We also aim at simplicity, so we do
not devise different clauses for distinct situations the agent is {(within
scenes, leaving a scene and moving into a transition, or leaving a tran-
sition and entering a scene). We could have devised different clauses
for each state of affairs, but this would require different means to cope
with them during their execution.

We store in LInfo; a means to represent an agent’s state of affairs
in an e-institution. Within a scene, the triple {S,w,+} where § is the
scene, w is a state within .5 and » is the role the agent has adopted,
is sufficient to uniquely identify an agent’s state of affairs — we encode
this as the list [Sc,St,R}. Likewise, within a transition, the pair {t,r),
where ¢ is the transition and # is the role of the agent in the transition
uniguely depicts when an agent is at a transition — we encode this as
the list [T,R]. By using lists we can accommeodate both cases using the
samne representation for a clause.

Predicate cl_theta/3, similarly, uses the role (fivst argument) and
an intra-scene © edge (second argument} to obtain an agent clause
(third avgument) of the form s{LInfo):~P(Label) ,s(LInfos}, P be-
ing either send/1 or rec/l1. These clauses are obtained depending on
whether the sender is of the same role as the first argument {first clause
of ¢cl_theta/3 — predicate send/1 is employed in this case} or whether
the receiver is of the same role (second clause of ¢l theta/3 — predicate
rec/l is used instead). If the role is not the sender nor the receiver
{clause 3 of c1_theta/3 — the exception of clause 1 and clause 2} then
the assembled clause is of the form s(LInfoy) 1-s(LInfes). Auxiliary
predicates ave required to exhaustively combine the roles of every scene
with all appropriate edges and arcs to obtain the complete agent.

We show in Figure 10 some of the clauses synthesised from the
e-institution of Figure 3, represented as in Figs. 5 and 6. The top
clauses depict the agora scene. The bottom clauses are the transitions

main.tex; 17/11/2008; 8:45; p.16

Rapid Prototyping of Large MASs through Logic Programming 17

s{[agora, w0, buyer]) :-
send{request(B:buyer,all:se}ler,buy{item))}),
s{[agora,wl,buyer]}.

s([agora,wd,seller]):-
rec(raquest{B:buyer,all:seller,buy{Item})}),
a{fagora,ul,selleri).

s({agora,w3,seller}):-
rec{inform(B:buyer,S:seller,reject{lten,Price))),
s{fagora,ul,seiler]).

s({admission,w3,sellerl}:~ holds(p:),s{[t1,seller]).

s([tB,buyer]):~ holds(ps.1),5{[departure,ud,buyer]}.

Figure 10, Synthesised Agent from E-Institution

among scenes. Additional predicate definitions are required for message
exchange and these are inserted at a later stage. An agent whose pred-
icates are all defined is a completely operational and executable Prolog
program which captures the behaviours within an e-institution.

The clauses define predicate s/1 which uses a list to represent the
current state of affairs of an agent. As explained above, this list can
either be of the form [Sc,St,R] or [T,R] where Sc is the name of the
scene, St is the identification of a state within Sc, R is a role and T
is a transition. Depending on the role of the agent, a suitable action
send/1 or rec/1, to send and receive a message, respectively, is chosen
for the clause within a scene. By using the clauses with the standard
SLDNF resolution mechanism [3] we get all possible behaviours of the
agents in the e-institution.

3.3. CUSTOMISING SYNTHESISED AGENTS

The clauses syuthesised from the e-institution describe all possible
behaviours an agent may have. Because it is an exhaustive process,
all scenes, edges, transitions and roles are considered. However, if we
were to use the same clauses to define agents which would enact an
e-institution, they would all have precisely the same behaviours. Al-
though this might be desirable at times, we also want to offer means
for designers to add variability to the agents synthesised and use them
in our prototypes.

3.3.1. Programming with Skeletons and Technigques
Automatic progranuning [4] has been a long-term goal of computer
science in general [31] and, in particular, software engineering: programs

main,tex; 17/11/2003; 8:45; p.17

18 ‘W. Vasconcelos et al.

being obtained via the rigorous manipulation (i.e., by a computer) of
intermediate formalisms. Programming is an activity that can be given
different degrees of support: we can see a spectrum of possibilities, rang-
ing from completely automatic programming environments through to
the completely manuval and unsupported text-editing scenarvio. Some-
where in between these two extremes lie the programming assistants.
These are tools that support human programmers developing, reusing,
documenting and maintaining their code [24, 45].

Logic programming, with its terse syntax, concise semantics and
formal underpinnings, is particularly suitable for such support tools.
One particular approach incorporates the classic methodology proposed
by Wirth [65] by means of which au initial simple program is gradually
refined and customised to the user’s needs. The initial program is a
skeleton and the refinements are fechniques added to it [5l. Logic pro-
gram development can thus be seen as a transformation activity [59] in
which legal operations on a program {adding techniques) must preserve
desirable properties (e.g. termination) [44].

To illustrate the skeletons and techniques approach, using a partic-
ular form of logic programiming, viz. Prolog [3], we present an example
in Figure 11. We show, on the leftmost box a skeleton /1, to traverse

s(f1). (1. pl13, {13,
a({[XIXsl):~

t(IXI¥s]):-

p{{XiXs], [X]¥s)):-

test(A), test (X}, test (X},
s{Xs). t(Ys}. p{Xs,Ya).

s (L 1Xs]): t(¥s):n pll_1%s},¥s) i~
s{Xs}. t(¥a). plXs,¥Ys).

Figure 11, Skeleton e Technique = Program

a list and test for specific components — skeletons define the flow of
execution to be followed [5, 33} by the programs that incorporate it.
The skeleton of the Figure is shown being augmented with a technigue
t/1 (middle box) which collects those components that satisfy a test.
A technigue augments the functionalities of a skeleton (or program):
additional computations are performed as the flow of execution is fol-
lowed. In our case, the resulting program p/2 {right box) builds a list
(second argument} with selected elements from the traversed list (fivst
argument). The “e” operator appropriately joins the two fragments,
making sure that the base-case (non-recursive) clauses appear together,
and that the recursive clauses get “blended” correctly.

In order to match the respective recursive clauses together, the X
variable appearing in both skeleton and technigue ought to be the
same — although a variable X appears both in the skeleton and in the

main.tex; 17/11/2003; 8:45; p.18

Rapid Prototyping of Large MASs through Logic Programming 19

technigue, the scope of a variable in Horn clauses is the clause in which
it appears [3]. The resulting program p/2 joins the functionalities of
skeleton (a list is traversed and its items are tested for some property)
and the technique (those items that fulfil the test for some property are
assembled together as a list). The flow of control, that is, the program’s
execution, is defined by the skeleton, whereas the computations to be
performed as the execution proceeds are added by the technique.

The above “o” operator stands for the low-level aoperations on the
programming constructs that take place for a complete program to
be built. Although substantial support can be offered [5, 59] human
intervention is still needed at points. For instance, in the example above
it is required that the test/1 predicate be defined in order to have a
complete program. Even though a tool could offer a library of likely
tests, users may stil! want to develop their own routines. Again, help
coild be offered when auxiliary predicates are being developed, and so
on, until the program is complete. The programming activity is thus
redefined: an initial skeleton is chosen from an existing collection and
techniques are applied to gradually obtain a program with the desired
flow of execution and that performs the expected computations.

3.3.2. An Extensible Techniques-Based Programming FEnuvironment

It is possible to develop a programming enviromment incorporating the
skeletons and techniques approach. In the case of Prolog, a high-level
symbolic language that allows programs to be conveniently manip-
ulated by a program written in the same language, this has been
suceessfully done [5, 59].

Techniques are represented in a declarative way, free of implemen-
tational detail or particular usage in mind. The process of applying a
technique is independently defined. An immediate benefit of this ap-
proach is that techniques have a clean and concise presentation format
that would enable both engineers of the tool and its future users to
quickly recognise and understand them. An environment that makes
such a distinction is defined in {59] — we have adapted that proposal
for our purposes here. Techniques are represented as simple program
transformation schemata [58, 60]. These are rewrite rules with pro-
gram “femplates”, that is, abstract constructs that stand for classes
of programs. We show in Figure 12 an example of a technique rep-
resented as a transformation. The A; constructs stand for vectors of
arguments, that is, a possibly empty sequence of terms. P and € are
meta-variables that abstract the actual predicate names. Construct ¢
stands for a generic constant name and f{z,y) for a generic functor
with two arguments, the second one of which is recursively defined.
A program transformation is defined: if a program matches the left-

main.tex; 17/11/2003; 8:45; p.19

20 W. Vasconcelos et al.

P(A1, e, A2). P(A1,e, 11, A2).

P{As, flz,y), A}~ P(A3, f(z,), {z1¥s], As):-
Q@) o] e
P(/"-s-y,AG) P(AS:yv YSvAG)

P(z7sf(1ag),£3):' P(A‘%f(xs y):YS,A‘S):"

P(Es.y,Am) P(A.Q:yi YsaﬁlD)

Figure 12. Programming Technique Represented as a Rewrite Rule

hand side schema, then it can be rewritten as the right-hand side.
On the right-hand side schema, arguments are appropriately added to
the program, with the same effect of the programming techinique of
Figure 11 above. The application of transformations such as the one

-above is precisely defined by a semi-unification algorithm [60]. ‘Actual

programming constructs are matched against the schematic constructs.
This match will yield the new program with the prescribed added parts.
Additional constraints on the schematic constructs can be defined, so
as to narrow the possible matches.

We have developed an extensible programming environment using
the above proposal. The environment is given an e-institution from
which an initial skeleton is synthesised. This initial skeleton is then
customised in different ways by the user. We are able to represent a
comprehensive repertoire of program manipulation operations organ-
ised in the following three categories (in increasing order of complexity
of captured programming expertise):

— Program editing — operations such as insert/delete an argnment in
a predicate, insert/delete goal in a clause, insert/delete clause in
a program, and so on.

— F-institution editing — operations to restrict the clauses to specific
scenes, states of a scene, transitions and roles. Such operations
take into account the inter-dependence of concepts within the e-
institution; for instance, if an agent has access to scene 8; then
it may also need to have access to scene So; if the user tried to
restrict the clauses to scene S, a message would be issued.

- Program technigues — insertion of extra functionalities with a co--
herent meaning/purpose, such as pairs of accumulators to carry
values around, building recursive data structures, and so on [51].

These operations require user intervention in order to be properly ap-
plied. Users must determine where an argument is to be inserted, which

main.tex; 17/11/2003; 8:45; p.20

Rapid Prototyping of Large MASs through Logic Programming 21

transition, scene, or role is to be removed from the program being built,
and so on. Our environments also offer the means to perform manual
editing: the users are presented with the code for the program in a text
editor and they can alter the program in whichever way wanted; when
the users are finished, they select to save the changes and the program
is stored with all the performed manual changes.

Our environment allows new program manipulation operations to be
added as needed. Different presentations of programs and operations
can be offered to the users, such as a brief explanation in English or
a visual representation. Program building is supplemented with means
to run the devised code, debug and/or explain them, and have their
efficiency analysed and improved {59].

We show in Figure 13 the first two clauses of the synthesised agent
with an example of the kinds of customisation via augmenting we al-
low users to perform within our environment. In order to save space,
we focus only on the two first clauses. Starting with the synthesised

s{fagora,w0,buyer},Stock,Msgs) :~
chooselten{Stock, Item),
send(request(B:buyer,all:seller,buy(Item})),
update¥sgs{send,¥sgs,buy{Ften) ,NowMsgs) ,
s{[agora,wt,buyerl,Stock, Newdsgs).

s{{agora,ul, seller] ,Stock,Megs):—
rac(request{B:buyer,all:seller,buy (1))},
updateMsgs(rec,Msgs, buy(Item),NeuMsgs),
s(fagora,wl,seller] ,8tock,NewMsgs}.

Figure 15. Augmented Agent

clauses of Figure 10 the user gradually adds features to the agent’s ca-
pabilities. We show the added parts underlined. The first modification
inserts a programming technique which carries a Stock data structure
around as program execution proceeds; this data structure is employed
to obtain, via predicate chooseItem/2, the value of Item in the first
clause. The definition for chooseltem/2 must be supplied. The second
modification concerns the addition of another technique to assemble a
data structure Msgs. This data structure stores the messages sent and
received, and is updated by means of calls to predicate update/3 (which
should also be supplied). The environment ensures that arguments are
consistently inserted, and the user must provide suitable definitions for
any auxiliary predicates. The original set of behaviours of the synthe-
sised agent js preserved in our extended program above. Ideally this

main.tex; 17/11/2003; 8:45; p.21

22 W. Vasconcelos et al.

should always happen, ensuring that agents will perform correctly and
efficiently /intelligently. '

3.3.3. Eugploring and Organising the Design Space

Given an e-institution £ represented in the Prolog format explained
in Subsection 2.1 above, we can synthesise an initial skeleton I, a
fully operational, albeit simple, Prolog program. Our program editing
environment offers an extensible repertoire of program manipulation
operations (represented generically as “=”), mapping a program to
another program. The environment records the sequence of operations
performed; this comprises the history of the preparation of a program,
Users may backtrack to previous points in order to change their design
decisions. We show in Figure 14 a diagrammatic representation of this

synthesis

£

I Iy Hpuy Ipapy=--

Hipp == Hppp) == Tl 0) === - -

Figure 14. BExploring and Organising a Design Space

process: an e-institution £ yields an initial skeleton IT which is operated
upon via the @ program manipulation operations, yielding programs
1I;. The design space is infinite: the program manipulating operations
are means to explore this design space for the agents that will perform in
the e-institution. The histories of different agents are means to organise
the explored design space.

3.3.4. Coping with Non-Determinism using Meta-Interpreters
Besides the customisation described above, another manner of adding
variability to the synthesised agents concerns changing the policy of
non-deterministic choices. The clauses, when used with the standard
way of implementing SLDNF resolution [3], offer a default behaviour
that will be followed by the agent. Any non-determinism involving two
or more clauses depicting the edges leaving one same state would be
deterministically solved. In such a scenario the clauses are assumed to
comprise an ordered sequence and the first clause obtained in this se-
quence which is successfully proven will be the one chosen. This feature,
however, may not always be desired.

Logic programming has long been praised as a useful tool for meta-
programming [28, 52] ~ a meta-program is a program whose data
denotes another {object) program, both of which are in the same lan-
guage. We provide designers with a library of meta-interpreters which

main.tex; 17/11/2003; 8:45; p.22

Rapid Prototyping of Large MASs through Logic Programming 23

allow the meta-reasening about non-deterministic choices. We show in
Figure 15 a simple meta-interpreter for our needs. Its two initial clauses

mota{{G,Ga)):~
metaiG), meta(Gs).

metalG) -
system(G), call(G).

metal(G) -
setof (Body,clause((G:-Body)),Bodies),
chooseBody(Bodies,ChosenBody), .
meta(ChosenBody) .

Figure 15. Meta-Interpreter for Agents in Prolog

are the usual meta-interpreter definitions for conjuncts (first clause)
and system built-ins (second clause) [3]. The third clause generalises
the usual meta-intérpreter definition to handle user-created predicates:
those clauses (G:-Body) the head of which unifies with goal G are
all collected and one of their bodies Bodies is chosen via predicate
chooseBody /2 as the ChosenBody that will be forther used in the meta-
interpretation. Predicate chooseBody/2 must be defined by the agent’s
designer, and should reflect the policies and attitudes of the agent
regarding non-deterministic choices.

Interestingly, the use of meta-interpreters to control the execution
of agents may provide us with another way to approach agent devel-
opment. In this approach, it is the meta-interpreter that is gradually
angmented: the synthesised skeleton is left unchanged and techniques
are instead applied to the meta-interpreter, augmenting its capabilities.
One advantage of applying technigues to meta-interpreters is that these
are normally compact pieces of code and hence are easier to alter and
maintain. Another advantage lies in their potential for reuse: the same
(augmented} meta-interpreter can be used with distinet skeletons from
disparate e-institutions {62].

3.4. WORKING EXAMPLE: AGENTS FOR THE AGORIC MARKET

We now further develop our Agoric Market example to illustrate our
approach and introduce other features of our environment. Let us as-
sume, for the sake of simplicity, that the Admission, Settlement and
Departure scenes are completely deterministic, that is, they do not
have more than one edge leaving a state. This feature will influence
the parts of the synthesised agents responsible for their enactment
of those scenes: those parts will also be deterministic and hence will
not require customisation. The only customisation in these scenes con-
cerns the value of variables in sent messages: the synthesised skeleton

main.tex; 17/11/2003; 8:45; p.23

24 W, Vasconcelos et al.

may contain variables whose values await definition. The possible val-
nes for variables in messages can be determined using the underlying
assumed ontology, but programmers must ultimately define how par-
ticular values will be assighed to such variables, via suitable predicate
calls.

During the customisation stage users experiment with different de-
signs, applying standard program editing commands to the synthesised
agents, possibly with further manual editing. Users may choose to leave
parts {e.g., the value of a constant, the format of an arvithmetic expres-
sion or a predicate} of the customised agent undefined, thus ending up
with a kind of epen program [19]. In our environment, the undefined
parts are annotated with their possible values, as we explain below,
and are used to prompt engineers to consider their definition before
the agent can be run. Through this approach, engineers can fully define
an agent {open) program by combining it with compenents previously
definéd or with freshly devised parts. Engineers can provide alterna-
tive definitions/values for the missing parts: these are associated with
alternatives with descriptive labels which will be used as an interface
to define a prototype.

We notice that the Agora Room scene has non-determinism which
hias to be explicitly dealt with by the agents performing in it. We shall
assune there is a finite set of items with their corresponding suggested
retail prices. Buyer agents will try to buy all these items from the seller
agents. Seller agents, as specified in the Agora Room scene, must
determine the price at which they desire to sell each item (label 2 of
Figure 3). This feature allows for the study of design choices of the seller
agents: these can be either greedy, when their pricing policy maximises
profit, or considerate, when their pricing is low. The greedy /considerate
design choice is, in fact, a contimium, but we have chosen to make it
discrete in order to simplify our analysis.

We have employed the augmented clauses shown in Figure 13 to
prepare two kinds of agents, the seller and the buyer, by restricting
their roles in the Agora Room scene — these are the entries Seller
and Buyer, respectively, shown in Pigure 18. The alterations performed
in both cases are very similar and are explained in detail below. Two ar-
guments Msgs and Stock, storing, respectively, the messages exchanged
and the stock of item, were consistently inserted in the clauses with
predicate calls to manage them; these calls were further customised
and provided with definitions.

3.4.1. A Generic Seller Agent
Whei we customise our seller agents to deal with their pricing policy,
we define the functions which implement the respective policies and

main.tex; 17/11/2003; 8:45; p.24

Rapid Prototyping of Large MASs through Logic Programming 25

leave a slot with the possible choices greedy or considerate. Depending
on the choice taken, the distinct policies are incorperated. We can
also pursue the continnum alternative and have a slot for the profit
margin which will be a numeric value between 0 and 100 to be used
by the seller agents when assigning prices to ifems. We can be very
specific and independently carry out the alterations which will define
the greedy and considerate policies, but we have noticed that these
are very similar, the only distinction being the percentage of profit to
be added to the price. Rather than designing the two kinds of seller
agents independently, we postpone the particular choices to a later
stage. We show in Figure 16 the clause of the GenericSeller agent,
where the pricing is established as well as the definition of one of the

s(fagora,vi,seller],Stock,Msgs):~
member{request :buy (Item) ,Msgs),
pricing(Item,Price),
send{offer(S:seller,B:buyer,seil (Item,Price))},
updateMsgs (send,Msgs, offer:sell{Item,Price),NoewMsgs),
s{[agora,w2,seller],Stock,Newlsgs) .

pricing(Item,Price}:-
retailPrice(Xtem,RPrica),
$greed (Profit),
Price is RPrice + (RPrice * Profit).

designOption(predicate:greed/1, [greedy:greed{40), considerate:greed{10)1},

Figure 16. Fragment of GenericSeller Agent

auxiliary predicates and design options. The s/3 definition shows the
edge wy — w2 when the seller agent responds to a buyer request:
the actual request request :buy{Item) is retrieved from the messages
received Msgs, the price of Item is established via predicate pricing/2,
the offer is sent to the buyer agent, the messages sent/received are
updated via updateMsgs/4 and finally the seller agent moves to state
wy. Predicate retailPrice/2 maps each Item {first argument) to its
suggested retail price RPrice {second argument).

Predicate pricing/2 calculates the Price of Item but it requires the
definition of predicate greed/1 (marked with a “$” explained below)
which obtains the profit margin the agent is to adopt. The distinction
between a greedy and a considerate seller agent lies in the definition
of greed/1. Both the continuum and the discrete possibilities can be
exploited with suitable definitions of greed/1.

The designOption/2 predicate highlights that greed/l is yet to
be defined. When the user marks a programming construct with “$”

pain.tex; i7/11/2003; 8:45; p.26

26 W. Vasconcelos et al.

our programming tool prompts her to specify what the construct is
expected to be and what values it may have, This is then represented
in the program itself via predicate designOption/2: its first argument
states that a predicate greed/1 awaits definition and its possible defi-
nitions are represented as a list {second argument of designOption/2)
of pairs Label:Definition, A more informative label, such as greedy
and considerate, can thus be associated to a definition. The labels are
used to automatically synthesise an interface to the parameter-tuning
of our prototypes, as explained below.

3.4.2. A Generic Buyer Agent

We have noticed that the Agora Room scene also allows for the
customisation of buyer agents. By examining the scene definition of
- Figure 2; we can see that a buyver agent has a non-deterministic choice:
when it is in state wg it can either remain in ws, move to wy via
edge 3, move to ws via edge 4 or move to w3 via edge nil, This part
of the scene allows us to customise different kinds of buyer agents,
depending on how we want them to behave. It might be useful to use a
metaphor to introduce the different behaviours: when the seller agents
send out their offers, buyer agents may react in an impetuous fashion
and accept the first offer they get, that is, they follow edge 2 only
once (i.e., they receive only one offer) and then move to ws via edge 3.
Alternatively, the buyer agents may react in a more cautious way and
wait for a minimal number of offers (i.e., loops in wa via edge 2) before
choosing {via edge 3} the cheapest of them. Again, these extremes
define a spectrum of possibilities: if we denote by n the number of
offers a buyer agent must get before it decides on one of them, then
we have one associated with the impetuous end of the spectrum and
any nuinber greater than 1 with the cautious end. We can customise
our buyer agents to incorporate these possible design choices and leave
a slot which allows them to be selected easily in order to assemble a
complete prototype.

We now proceed to custoriiise the augmented clauses of Figure 13,
but this time the clanses defining the behaviour of the agent in the agora
scene are restricted to the buyer role. In Figure 17 we show a fragment
of the buyer agent, viz., the clauses where the offers are collected (sec-
ond clause of s/3} and one of them is accepted (first clause of s/3). We
have engineered these clauses from those of Figure 10, customised to
meet our needs: two argiments, Stock and Msgs have been inserted {as
in the example of Figure 13} and predicates to manipulate them have
been added; the remaining clauses simply pass these arguments down
recursively. '

main.tex; i7/11/2003; 8:45; p.26

Rapid Prototyping of Large MASs through Logic Programming 27

s([agora,w2,buyer], Stock, Msgs) :~
minimelOffers($minMsgs,Hsgs),
choosalifer(Msgs,S, Item,Price},
send{(inform{B:buyer,S:seller,accept (Item,Pricel}}),
updateMsgs (send,Msgs,inform:aell{Iter,Price) ,Newlsgs),
s({agora,w3,buyerd, Stock, NewMsgs) .

s({agora,w2,buyer], Stock, Msgs) : -
rec(offer(S:seller,B:buyer,sell (Item,Pricel))),
updateMsgs (rec,Msgs,offer:sell{Iten,Price),NewMsgs),
s([agora,w2, buyer] ,Stock,NewMsgs) .

designOption{¢onstant :minMsgs, [integer: (1,20)3).

Figure 17. Fragment of GenericBuyer Agent

Messages are recetved in the second clause until minimalOffers/2
is satisfied - this predicate ensures that the agent has received the
minimal number minMsgs offers. The programmer has, however, tagged
minMsgs with a “$” to inform that the actual value for this constant is
a parameter, Predicate minimalOffers/2 counts the number of offers
received and checks that it is above minMsgs. The programmer, having
flagged minMsgs with “$” is prompted for its possible values. In the
case above, the values have been specified as an integer between 1
and 20, stored in predicate designOption/2. Qur environment uses
predicate designOption/2 to create a suitable interface to help users
define the minimum number of messages a buyer agent must receive
before deciding to buy.

4. Building MASs Prototypes

A prototype of a MAS consists of an e-institution and agents to enact
it. These agents have been synthesised from the e-institution {or from
parts of it) and the designer has customised them by restriction, by
augmenting, by meta-programming or by a combination of these. This
customisation is a means to explore the design space of individual
agents and by extension of the MAS as a whole. The designer selects
some of these agents to make up the prototype.

Our prototypes are defined as collections of populations of agents.
Designers select from among the programs II; obtained during the
customisation stage those that will enact the e-institution and how
many of each should make up the prototype. More formally,

main.tex; 17/11/2003; 8:45; p.27

28 W. Vasconcelos ¢t al,

DEF. 3. A population Pop is the pair Pop = (II,n) where II is a
progrem and n € N is the number of individual copies of II that will
comprise the population,

This definition also caters for the case when a combination of a meta-
interpreter II and a synthesised/customised agent TI' is employed. In
this case, we simply consider the union ITI U I’ of the clauses of the
meta-interprefer and the clauses that make up the agent to be run. We
now define a prototype for a MAS:

DEF. 4. A prototype P is a pair P = (£, {Pop;,...,Pop,}) where £
is an e-institution and Pop;,1 < i < n, comprise o set of populations
of agents.

In a prototype, the agents of the populations must all stem from the
same-e-institution £ We explain below how this restriction s enforced
when a prototype is assembled,

‘We have embedded the above concepts into an integrated environ-
ment for defining prototypes of MASs. We lave developed different
versions [63, 64] of this environment which uses a simple HTML [39]
interface to guide its users in the activity of bmilding and running
prototypes. Our environment receives as input e-institutions in the
format of Figure 6. The e-institutions have a unique identification which
our environment uses to index the users’ activities. The environment
provides support for checking properties, for the synthesis and cus-
tomisation of agents and the definition and execution of prototypes, as
explained below. All these activities are dependent on an input e-insti-
tution. A mamber of distinct e-institutions can be input and exploited
simultaneously without any risk of mixing them up or their agents and
prototypes.

Users select one of the input e-institutions which is shown in a simple
textual form with colours to differentiate 1t components. Users then
proceed to check the e-institution for desirable properties: within our
environment users may check e-institutions for their well-formedness,
absence of unreachable scenes, unreachable states and sinks within
secenes and unreachable transitions. The environment issues a report
listing the problems detected to help designers fixing the offending parts
of the e-institution.

When an error-free e-institution is obtained, users may proceed to
the synthesis and customisation stage of the enviroimment. The environ-
ment uses the representation of the e-institution to synthesise an initial
skeleton for the agents which will enact the protocol, as explained in
Section 3.2. The skeleton is synthesised only once and stored with the e
institution, and is displayed in a simple text form with distinet colours

main.tex; 17/11/2003; 8:45; p.28

Rapid Prototyping of Large MASs through Logic Programming 29

to differentiate the information on the names of the e-institution, scene
or transition, state and roles.

This initial skeleton is input to the customisation services, which aid
users explore the design space, as explained in Section 3.3. The kinds
and order of operations applied to the skeleton and its ensuing ver-
sions are recorded to provide information on the history of the agent’s
construction. We present the explored design space in a simple textual
form, showing a hierarchy of more specialised programs. Because the
design space may grow considerably, we need to offer ways to hide
details until they are needed: the history information is hidden until the
user clicks on it. We show a screen shot of our environment in Figure 18
below. The screen shot shows the Agoric Market e-institution with

‘Skelaton

% .

i Seflerigent) festiction fhide]
i Agoric Markst icSaf Lechinique, lechnioue, techrique [hidel
i BurerAgent bistory
i GenericSuyar pistory

Figure 18. Screen Shot of Environment showing a Design Space

the currently explored design space for its agents. We use hyperlinks
[39] to hide details — if users click on these, they are expanded and a
“fhidel}” option is offered to “tuck away” the information, We can see
a hierarchy of agents rooted in Skeleton, the skeleton synthesised from
the e-institution. Users give names to the partially developed programs:
SellerAgent, GenericSeller, BuyerAgent and GenericBuyer. The
development history of the programs is shown as a history hyperlink:
upon clicking on it, users are presented with a sequence of names
describing the operations applied to obtain the program on the left.
These operation names, upon clicked, are further expanded. In the
picture above, the SellerAgent has been obtained from Skeleton via
a restriction operation. This operation allows parts of the original
skeleton to be appropriately removed. In this case, we have restricted
the skeleton to incorporate only the role of a seller in the Agora Room
scene.

wain.tex; 17/11/2003; 8:45; p.29

30) ‘W. Vasconcelos et al.

4,1, PROTOTYPING AGORIC MARKETS

We show in Figure 19 a screen shot of our environment presenting
the design space for a prototype definition, The options represented

Agonc Markst %‘_9@89_“9{

GoparicBiyel

12
constant 134}

Current Populations: none

Figure 19, Console for Agoric Market Prototypes

as designOption/2 predicates further refine the presentation of the :
agents. Designers assemble a prototype by defining and adding popula-
tions of agents: the field of column Qty represents how many individuals
of that kind of agent should be in the population. Any extra parameters
which require user customisation are offered in the Parameters column.
The add buttons insert the respective population into the prototype
definition. The Parameters columm displays any parameters that must
be set and their options. In our example, we have the greedy and
considerate sefler agent and the levels (1-20) of caution that a buyer
agent can have.

We can exploit scenarios where there are more items than buyers,
the exact amount or fewer items than buyers, and compare the overail
dynamics of the MAS in the runs of the e-institution. All messages
exchanged are recorded during the simmlation, and stored in files where
they can be manipulated and shown in alternative graphical formats.
By experimenting with the number of each type of agent and monitor-
ing the results obtained, engineers can explore the overall dynamics of
the MAS. A whole family of prototypes can be quickly built by setting
the parameters (i.e., providing values for the slots). In our example,
there is a trade-off between being an impetuous or a cautious agent:
the latter may be able to make better-informed decision by collecting

main.tex; 17/11/2003; 8:45; p.30

Rapid Prototyping of Large MASs through Logic Programming 31

offers, but they may be beaten by the quicker former agents. Similarly,
the greedy and considerate seller agents have a trade-ofl: considerate
sellers have a lower profit margin but they sell more items than greedy
sellers. ‘

5. Simulation of Prototypes

Qur environment provides a means to rapidly build a MAS consisting of
hundreds of agents. These agents can offer controlled levels of variability
which allows the systematic exploration of the dynamics of the system.,
Prototypes can be reused: once it is defined, a prototype is stored and
can be later retrieved and altered and put to use again. After a proto-
type is defined {or altered), we can simulate it, recording information
about all messages exchanged among its agents. Agents may also leave
“traces™ of their execution behind, recording information on the tuple
space. This information comprises the result of the simulation and can
be displayed in different formats.

After a simulation, the parameters may then be changed and an-
other simulation takes place, its results being recorded and adeqguately
shown to the users. As designers get a better understanding of the
MAS, they can find the adequate “tuning” for the features of the MAS,
that is, the choice of parameters that yield desired behaviours. These
can then be incorporated to the design of the final implementation
of the MAS. Alternatively, depending on the possible values of the
parameters to be explored, we can apply automatic means to explore
the parameter setting. The work in [49] investigates the coupling of
our method/environment with genetic programiming to explore the
parameters of a prototype.

5.1, ENACTING E-INSTITUTIONS

We have incorporated the concepts above into a distributed simulation
platform for e-institutions. This proof-of-concept platform, developed
in SICStus Prolog [48], simulates an e-institution using a number of ad-
ministrative agents, implemented as independent processes, to oversee
the simulation. These administrative agents look after the agents taking
part in the enactment which interact via a blackboard architecture,
using the SICStus Linda tuple space [10, 48].

In order to develop the simulation platform, a suitable operational
meaning for e-institutions, which is not part of the original proposal
[18, 401, had to be defined. The meaning of a scene is captured by those
messages that are sent at each edge, as the agents participating in the

main.tex; 17/11/2003; 8:45; p.31

32 W. Vasconcelos et al.

scene move between states. A certain degree of synchronisation among
those agents participating in the e-institution must be ensured.

An administrative agent admScene aversees the enactment of a scene,
ensuring that the participating agents synchronise their states. This
synchronisation is achieved via a semaphore in the tuple space which is
updated by the admScene agent. We show in Figure 20 a diagrammatic
representation of edge (w1, w2) in the Agora Room scene previously

a3 iseller Tuple Space

aziseller
semaphore(wait).
m{S:seller,B:buyer,2e11(I,P)) t(m(}a’l :seller,b) tbuyer,sell{_, }),_,.}.
t(m(a; :seller,b; :buyer,ser1{_,.}),.,.}.
b; fbuyer t(m{ag:seller,b; sbuyer,sedd{.,.}),.,.}.
b2 rhuyer t(m{az :seller,bz:buyer,sekl(_, }),_,.).

Figure 20. Enactment of Agora Room Scene {wait Stage)

shown in Figure 2, its label and the participating agents a, ag (sellers)
and by, by (buyers) which have previously joined the scene — these agents
are shown in state wy. OQur diagrammatic representation is purely for
explanation purposes: when we write and show that an agent is in a
state s it means that its internal representation for the current state is
set to s.

On the right-hand side of the diagram above, we also show a frag-
ment of the tuple space, managed by the admScene agent. The tuple
space consists on the semaphore in the wait stage, and terms of the
form t(MsgTemplate,SendStatus,RecStatus), which the admScene
agent has recorded. These terms represent the messages MsgTemplate
that can be sent by the agents. SendStatus and RecStatus arc flags
which indicate, respectively, when a message has been successfully sent
and received; in such cases, the flag is set to “+”. To ensure that an
agent does not try to receive a message that has not yet been marked as
sent but that may still be sent by some agent, the admScene agent syn-
chronises the agents in the scene: it first lets the sending agents change
state by moving along the corresponding edge, marking thehr messages
as sent. When all sending agents have moved, then the admSeene agent
lets the receiving agents receive their messages and move to the next
state of the scene.

The synchronisation among the agents of a scene is achieved via the
semaphore termn in the tuple space. The participating agents trying to
send a message must wait until this semaphore has been set to “send”
by the admScene agent. A participating agent sends a message by first
checking if there is a matching MsgTemplate in the tuple space. The
message is sent by assigning a value to any uninstantiated variables of
the term: in the tuple space (represented above as anonymous “_ vari-

main.tex; 17/11/2003; 8:46; p.32

Rapid Prototyping of Large MASs through Logic Programming 33

ables) and assigning a “#” to the SendStatus. We show in Figure 21 the

a:seller Tuple 8pace
aziseller
senaphore{send).
=(5:seller,B:buyer,sell{I,P)) t(m{ay :aeller,by :buyer,sell(e),3}3,%,.).
t{m{a; :seller,la:buyer,sell{cs,4)).%,.).
) tbuyer t{m(az :seller,by :buyer,selllc) ,2}),%,.}.
by rbuyer t{m(az :seller, by ibuyer,sell{,)}, ,.}.

Figure 21, Enactment of Agora Room Scene {send Stage)

same portion of the Agora Room Scene after the semaphore has been
set to “send”: the seller agents a; and ag have sent their messages and
thus moved fo state ws; the messages consist of goods ¢1 and ¢y offered
to the buyer agents at different prices; the SendStatus was adequately
set to “«”. Agent admScene creates templates for all messages that can
be sent, but not all of them may in fact be sent: in our example, the
ast tuple was not used.. '

Finally, the participating agents may receive messages, as the adm-
Scene agent sets the semaphore value to “receive”. The participating
agents receive a message by checking for a term in the tuple space that
has been marked as sent and whose MsgTemplate matches the agents’
message format. We show in Figure 22 the Agora Room after agents by

aiiseiler
aziseller

@m(s :zeller,B:buyer,sell{I,P}}

by sbuyer
b2 thuyer

Tuple Space

semaphore{receiva).

t(m{a; :seller,b :buyer,sell(e ,3)),%,%).
t{m(a) :seller, by ibuyer,sell{cz,4)),%,*).
tlm{as :aeller,by ;buyer,selllc: ,2)),%,+).
t{m{ag:seiler,by :buyer,sell{ ,)),_, ..

Figure 22. Enactment of Agora Room Scene {receive Stage)

and by have received their messages and have moved to state wy. The
tuples have been marked as received, with RecStatus being set to “+”.

The participating agents are the agents previously synthesised and
customised. They are implemented as independent processes with their
own thread of control. They access the tuple space in a distributed
fashion, assigning values to variables {(that is, sending messages) and
retrieving values (that is, recelving messages), making use of predi-
cates defined via SICStus Prolog Linda built-ins [48]. The participating
agents inform the admScene agent, also via the tuple space, of the state
of the scene they are currently at. With this information the admScene
agent is able to “herd” agents from one state to another, as it creates
messages templates, lets the sending agents mark theimn as sent and then
lets the receiving agents mark them as received (also retrieving their
contents). Those agents that do not send nor receive can move between

nain.tex; 17/11/2003; 8:45; p.33

34 W. Vasconcelos et al,

states without having to wait for the semaphore. All agents though
synchronise at every state of the scene, that is, there is a moment in
the enactment when all agents are at state wy, then after sending and
receiving {or just moving) they are all at state w1,

An enactment of an e-institution begins with the enactment of the
root scene and terminates when all agents leave the output scene. En-
gineers may specify whether a scene can have many instances enacted
simultaneously, depending on the number and order of agents willing
to enter it. We did not include this feature in our formal presentation
because instances of a scene can be understood as diffevent scenes: they
are enacted independently from each other, although they all conform
to the same specification. When a scene terminates, there is a record
in the tuple space of all messages that were exchanged as a result of
the scene’s enactment. This is useful for following the dynamics of the
. e-institution.. .

Transitions are enacted in a similar fashion, The platform assigns
an agent admTrans to look after each transition. However, transitions
differ from scenes in two ways. Firstly, we do not allow instances of
transitions. This is just a methodological restriction, rather than a
technical cne: we want transitions to work as “meeting points” for
agents moving between scenes and instances of transitions could pre-
vent this. Secondly, transitions are permanent, that is, their enactment
never terminates. Scenes (or their instances), once enacted (4.e., all the
agents have left it at an exit state}, cease to exist, that is, the admScene
agent looking after it stops.

6., Related Work

Our approach has parallels with [36], where logic programming is also
exploited to specify and simulate MASs. The approach of [36] is a more
complex framework where a mumber of design features are incorporated
into the MASs and their agent components: they use an object-oriented
description for the overall architecture of the MAS as well as a linear
logic language for describing individual agents. Although these might
be appropriate choices, they may not meet the needs or the preferences
of particular users. The work in [13] extends that of [36], allowing the
design of heterogencous and open MASs by incorporating a mediator
system and a generic agent execution platform.

Computational logic has been widely advocated as a means to spec-
ity software, offering distinct ways to analyse the specification and,
when needed and appropriate, to execute it [21]. Such features, ex-
ploited in the days of stand-alone, centralised systems, have also proved

main.tex; 17/11/2003; 8:45; p.34

Rapid Prototyping of Large MASs through Logic Programming 35

to be applicable to MASs [2, 6, 34). A common problem with those
advocating logic progranuning for MASs is that they also tend to
propose their own architectures and logies which, albeit generic and
expressive, may not be adequate or appeal to everyone. In contrast, our
work uses as building blocks very simple and standard logic program-
ming constructs in their nsual syntax and semantics. Any higher-level
architectural restrictions on MASs can, however, be specified via e-
institutions. Furthermore, any logic program (implementing arbitrary
deductive logics) can be used to guide the synthesised agents as they
make any non-deterministic choices.

Logics have been used as a unifying formalism to represent, reason
about, model and implement protocols in MAS. For instauce, the work
in {56, 57) propose an alternative notation to specify many-to-many
interactions among agents — the labels of edges of a variation of e-
institutions are formulae of a special-purpose first-order logics; they
are used to-create models that can be checked for properties and also
used in simulations. Another related work is [1] where protocols are
represented as social integrity constraints, a restricted class of first-
order logics. Special social integrity constraints which refer to events in
the past (backward expectations) give rise to interaction protocols.

Our work has strong connections with agent-oriented software en-
gineering [30] as we cater for prototyping, an inportant stage in the
design of complex systems. There are similarities between ours and
the work of [66] in that both try to bridge the gap between formal
models and implementations of multi-agent systems. Moreover, both
underlying formal models are finite state machines: the work in [66]
uses G-nets, a type of high-level Petri net [42].

6.1. PROTOTYPING CONCURRENT APPLICATIONS

MASs can be regarded as a special kind of concurrent system, one in
which the processes are agents with the generally agreed properties of
proactiveness, persistence, reactiveness, awareness of the environment,
autonomy and interactivity with other agents {20, 53]. An important
distinction between MASs and ordinary concurrent applications con-
cerns the nature of the interactions among the components. In MASs,
the interactions are at a higher level of soplistication, as in an elec-
tronic auction, a negotiation or an argumentation [41]. Furthermore,
the components of MASs arve endowed with reasoning capabilities which
use the interactions and any information on the environment to guide
and adjust their behaviour,

We find in [27] a survey of programming languages and systems
for prototyping concurrent applications. The languages and systems

main.tex; 17/11/2003; 8:45; p.35

36 ‘W. Vasconcelos et al.

surveyed are not directly applicable to MASs because of the nature
of interactions among components: these are too simple and mostly
exchange information rather than more complex knowledge represen-
tations, normally associated with MASs. One can also notice an alto-
gether lower leve] of abstraction for the intended systems with concerns
on underlying protocols and message-passing services. Notwithstand-
ing, our approach resembles that of [8], in which simple skeletons of
programs are generated from special kinds of Petri Nets. However, in
that work only simple interactions are addressed, whereby information
is passed around distributed algorithms.

7. Conclusions and Future Work

In this paper we have described an approach for rapidly prototyping
large multi-agent systems. We have incorporated this approach into
an environment to support engineers building their prototypes. The
approach follows four steps, wviz.:

1. Design of a global protocol, formalised as an electronic institution.

2. Synthesis of agents from the global protocol and their customisa-
tion.

3. Definition of a prototype consisting of populations of the previously
synthesised/customised agents to enact a global protocol.

4. Simulation and monitoring of the prototype.

After analysing the results from the simulation, users may go back to
any of the previous steps. This process gives rise to a virtuous lifecycle,
as reported in [62]: the further away from the simulation the step to
be re-done is, the more dramatic the changes are to the design of the
MAS prototype. Our approach also offers a means to check for global
properties of the MASs to be built. -

Our environment offers a means to carry oub simulations of our
prototypes. Each agent becomes a self-contained asynchronous process
whiech comnumicates via a tuple space. The environment incorporates a
platforin to enact electronic institutions [56] with administrative agents
which ensure the kinds and order of messages sent are those specified.

Being able to rapidly build prototypes of complex MASs allows
engineers to experiment with alternative design choices and to get a
“feel” for the important features of the components’ design and how
these features affect the overall hehaviour of the system. When design
features are sufficiently understood, and can be related to the system

main.tex; 17/11/2003; 8:45; p.36

Rapid Prototyping of Large MASs through Logic Programming 3T

dynamics, engineers can proceed towards more complete, stable and
efficient versions of the MAS. Ideally, a rapid prototyping environment
should offer a means to automatically transform a prototype into an effi-
cient implementation [35, 27}. Although in our environment we have not
made any provisions for such transformation, it is technically possible to
synthesise from the e-institution, for instance, a C or Java program for
the agents. However, the customisation stage is more difficult to achieve
using the syntax of C or Java, as it involves the manipulation and
alteration of a program. Ideally, the transformation should be delayed
to the very last moment, but the Horn clauses of the customised agents
may be too complex for a straightforward translation onto another
programiming language.

We might choose to view a prototype as an idealised (correct) version
of the MAS to be built. Following this idea, any foreign agent willing to
join in the MAS does not do so directly: they ave assigned a gynthesised
“proxy” agent which is guaranteed to follow our e-institution. Any
choice points and other customisation possibilities of the proxy agent
are presented to the foreign agent which can adjust them to its needs.
In this case, the prototype becomes the inner kernel of the actual MAS
and the foreign agents are an outer layer. We are currently investigating
how the synthesised agents could be presented to foreign agents and
customised as their proxy.

We are currently investigating alternative formalisms for global pro-
tocols, combining NDFSMs with logics. There are a number of likely
candidates both for the NDFSM and logics o label edges with, For the
NDFSM, we are currently investigating Petri nets [42} and conceptual
graphs [43], as well as a specially engineered electronic institutions.
Likewise, for the logics we will investigate typed first-order logics and
special-purpose logics with explicit sets [56]. The aim is a combination
which is expressive and natural and with a clear and coucise seman-
tics that also allows properties to be proved as well as the synthesis
{and customisation) of components and the enactment of the system
described, We also want to bring into our initial specification and proto-
types more features of e-institutions left out of this current work, such
as normative rules and more general dialogic frameworks [17, 18, 40].

We have used our method to create prototypes for auction reoms
[40, 22] and negotiations [32, 41}, exploiting different organisational
schemes such as supply networks [26]. We have built experiments with
up to 250 individually customised agents each of which executed as a
stand-alone Prolog process communicating via the shared tuple space.
Our customisation process and support tool scales up naturally: the
hierarchical relationships among agents will help designers concentrate
on “families” or “species” of agents with similar behaviours and their

main.tex; 17/11/2003; 8:45; p.37

38 W. Vasconcelos et al.

differences. The number of individual agents that will define an instance
of the MAS is a simple parameter that can be changed at will.

Once designers define a MAS, they can simulate its execution using
our platform. During this simulation engineers abstract away individual
agents and observe their collective behaviour. Engineers are encouraged
to experiment with the parameters of their prototypes and how they
affect the overall behaviour of the MAS. At the point of simulation, a
MAS is a collection of independent Prolog programs that run in parallel
— engineers need not and should not be looking at the actual programs
comprising the individual components of the MAS.

Our method has also been put to use in an altogether different con-
text than the one originally thought of: to create agent-based models for
real-life scenarios. One of the models we developed simmlates a breast
cancer referral procedure: patients, general practitioners, specialists
and scanning units are individual agents that interact with each other
to exchange information. With this model, we are able to exploit differ-
ent arrangements for patient referral, i.e., under what conditions should
patients be referred to specialists, alternative protocols and procedures
with the different components of the system, and alternative policies
for handling waiting lists (queues, priority lists, and so on).

Acknowledgements

This work was partially sponsored by the European Union, under con-
tract I8T-1999-10208, research grant Sustainable Lifecycles in In-
formation Ecosystems (SLIE), and by the Spanish CICYT project
¢INSTITUTOR (TIC2000-1414). Thanks are due to Chris Walton for
proofreading earlier versions of this document and also for useful sug-
gestions, We would also like to thank the anonymous referees: their
comments greatly helped to improve this paper. Any remaining impre-
cisions and/or mistakes are the authors’® fault only.

References

b Alberti, M., M. Gavanelli, E. Lamma, P. Mello, and P. Torrani; 2003, ‘Mod-
eling Interactions using Social Integrity Constraints: a Resource Sharing Case
Study’. In: Declaralive Agents Languages and Technologies (DALT), Lect.
Notes in Comp. Science. Springer-Verlag.

2. Alferes, J. J., P. DellAcqua, E. Lamma, J. A. Leite, L. M. Pereira, and
F. Riguzzi: 2001, ‘A Logic Based Approach to Multi-Agent Systems’, ALP
Newsleiter 14(3).

main.tex; 17/11/2003; 8:45; p.38

10.

il

12

13.

14.

15,

16,

17.

18.

19.

20,

21,

Rapid Prototyping of Large MASs through Logic Programming 39

Apt, K. R.: 1997, From Legic Programming to Prolog. U.X.: Prentice-Hall,
Biermann, A, W. 1992, ‘Automatic Programming’. Im: Encyclopedia of
Artificial Intelligence, Vol. 1. John Wiley & Sons.

Bowles, A. W., D. Robertson, W. W, Vasconcelos, M. Vargas-Vera, and 1). Ben-
tal: 1904, ‘Applying Prolog Programming Techniques’. Mternational Journal
of Human-Computer Studies 41(3), 329-350,

Bozzano, M., G. Delzanno, M. Martelli, V. Mascardi, and F. Zini: 1999, ‘Logic
Programming & Multi-Agent Systems: a Synergic Combination for Appli-
cations and Semantics’. In: The Logic Programming Paradign: a 25-Year
Perspective, Springer Verlag, pp. 5-32.

Bratko, 1.: 2000, Prolog Programming for Artificiel Intelligence. Longman
Highier Education, 3rd edition.

Buecci, G. and E. Vicario: 1994, ‘Rapid Prototyping through Communicating
Petri Nets’. In: M. Kanopoulos (ed.}: Procs. 3rd Int’l Workshop on Rapid
Sysiem Prototyping. Los Alamitos, CA, USA, pp. 58-75.

Budde, R. and Kuhlenkamp, K. and Mathiassen, L. and Ziillighoven, H. {ed.}:
1984, Approaches to Protelyping. New York, NY, USA: Springer-Verlag.
Carriero, N. and D. Gelemter: 1988, ‘Linda in Context’. Comm. of the ACM
32(4), 444-458. o
Chavez, A. and P. Maes: 1996, ‘Kasbah: An Agent Marketplace for Buying
and Selling Goods'. In: Procs. 1st Int’l Conf. on the Practical Applic. of Intell,
Agenis & Multi-Agent Technology (PAAM6). Blackpool, UK.

Cormen, T. H., C. E. Leiserson, and R. L. Rivest: 1990, Infreduction o
Algorithms. MIT Press, TUSA.

Dart, P, E. Kazmierczak, L. Sterling, M. Martelli, V. Mascardi, F. Zini, and
V. Subrahmanian: 1999, ‘Combining Logical Agents with Rapid Prototyping
for Engineering Distributed Applications'. In: Procs. 9th Software Tech. &
Enginecring Practice (STEP’99). Pittsburgh, PA, USA.

d'Inverno, M. and M. Luck: 2001, Understanding Agent Systems. Berlin,
Germany: Springer-Verlag,

Ducassé, M. and J. Noyé: 1994, ‘Logic Programming Environments: Dynamic
Programm Analysis and Debugging’. Journal of Legic Programming 19, 20,
3561-384.

Esteva, M., D. de La Cruz, and C. Sierra: 2002, ‘ISLANDER: an Electronic
Institution Editor’. In: Proc. Ist Int’l Jeint Conf. on Autonomous Agents &
Multi-Agent Systems (AAMAS 2002). Bologna, Haly.

Esteva, M., J. Padget, and €. Sierra: 2001a, ‘Formalizing a Language for
Institutions and Norms’. Vol. 2333 of LNAIL Springer-Verlag.

Esteva, M., J.-A. Rodriguez-Aguilar, C. Sierra, P. Garcia, and J. L. Arcos:
2001b, ‘On the Formal Specification of Electronic Institutions’. In: F. Dignum
and C. Sierra (eds.): Agent Mediated E-Commerce, Vol. 1991 of LNAL
Flener, P., K.-K. Lau, M. Ornaghi, and J. Richardson: 2000, ‘An Abstract
Formalisation of Correct Schemas for Program Synthesis’. Journal of Symbolic
Computation 30(1), 93-127. Special Issue on Schentas.

Franklin, A. and A. Graesser: 1997, ‘Is it an Agent, or just a Program?. Tn:
J. P. Mueller, M. J. Wooldridge, and N. R. Jennings (eds.): Intelligent Agents
11 Berlin: Springer-Verlag, pp. 21-36.

Fuchs, N. E.: 1992, ‘Specifications are {Preferably) Executable’. Soffware
Engineering Journal pp. 323-334.

main.tex; 17/11/2003; 8:45; p.39

40

22.

23.

24,

25.

26.

27.

28,

29.

30.

3L

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

W. Vasconcelos et al.

Garcia, P., E. Gimenez, L. Godo, and J. A. Rodriguez-Aguilar: 1999, ‘Bidding
Strategies for Trading Agents in Auction-Based Tournaments'. Leclure Notes
in Computer Seience 1571, 151-165.

Gegg-Harrison, T. 5.: 1991, ‘Learning Prolog in a Schema-Based Environment'.
Instructional Science 20, 173-192.

Goldberg, A. T.: 1986, ‘Knowledge-Based Programming: A Survey of Program
Design and Construction Techniques’. IBEEE Trans. on Soft. Eng. SE-12{7),
752-768. :
Gordon, V. 8. and J. M. Bieman: 1995, ‘Rapid Prototyping: Lessons Learned’.
IEEE Software 12(1), 85-95.

Harland, C. M.: 1896, ‘Supply Chain Management: Relationships, Chains and
Networks’. British Journel of Management 7, 63-80.

Hasselbring, W.: 2000, ‘Programming Languages and Systems for Frototyping
Concurrent Applications’. ACAM Computing Surveys 82(1}, 43-79.

Hill, P. M. and J. Gallagher: 1988, ‘Meta-Programming in Logic Progamming’.
In: Hendbook of Logic in Artificial Intelligence and Logic Programming, Vol. b.
pp. 421-498.

Hoperoft, J. E. and J. D. Ullman: 1979, Introduction to Aulomate Theory,
Languages and Computotion. U.S.A: Addison-Wesley.

Jennings, N. R. and M. Wooldridge: 2000, ‘Agent-Oriented Software Engineer-
ing’. In: Handbook of Agent Technology.

Kautz, W. H., E. A, Voorhees, and T. A. Jeeves: 1958, ‘Automatic Program-
ming Systems’. Comm. of the ACM 1(8}, 6-8.

Kersten, G. E. and 8. Szpakowicz: 1994, ‘Negotiation in Distributed Artificial
Tntelligence: Drawing from Human Experience’. In: J. F. Nunamaker and R. H,
Sprague (eds.}: Procs. 27th Annuel Hawaii Int'l Conf. on System Sciences. Los
Alamitos, CA, USA, pp. 268-270.

Kirschenbaum, M., S. Michaylov, and L. Sterling: 1996, ‘Skeletons and Tech-
niques as a Normative View of Developing Logic Programs’. Australion
Computer Seience Communications 18(1), 163-178.

Kowalski, R. A, and F. Sadri: 1999, ‘From Logie Programining Towards Multi-
agent Systems’. Annals of Mathematics and Articial Intelligence 25(3-4}, 391—
419.

Lugi: 1992, ‘Computer Aided System Prototyping’. Im: Procs. fst il
Workshop on Rapid System Profolyping. Los Alamitos, CA, USA, pp. 50-57.
Martelli, M., V. Mascardi, and F. Zini: 1999, ‘Specification and Sinmulation
of Multi-Agent Systems in CaselP’. Im: Proc. of APPIA-GULP-PRODE.
L’Aquila, Italy,

E-Institutor Project: 2002, 'Islander Graphical Editor’. Artificial Intelligence
Research Institute (I11A), Bellaterra, Catalonia, Spain, http://e~institutor.
ijiia.csic.es/e~institutor/software/islander.html.

Michael Wooldridge: 2002, An Introduction to Mulliagent Systems. Chichester,
UK: John Wiley & Sons.

Musciano, C. and B. Kennedy: 2000, HTML & XHTML: The Definitive Guide.
USA: O'Reilly, 4th edition.

Noriega, P.: 1997, ‘Agent-Mediated Auctions: The Fishmarket Metaphor’,
Ph.D. thesis, Institut d’Investigacid en Intelligbneia Artificial (FITA), Con-
sejo Superior de Investigaciones Cientfficas {CS5IC), Campus UAB, Bellaterra,
Spain.

Parsons, S., C. Sierra, and N. R. Jennings: 1998, ‘Agents that Reason and
Negotiate by Arguing’. Journal of Logic and Computation 8(3), 261-202.

main.bex; 17/11/2003; 8:45; p.40

42.
43.

44,

45.

446.

47.

48.

49,

50.

sl

52.

53.

o4.

55.

56.

57.

58.

59,

Rapid Prototyping of Large MASs through Logic Programming 41

Peterson, J. L.: 1977, ‘Petri Nets’. Computing Surveys 9{3}, 223-252.
Poloving, 5. and J. Heaton: 1992, ‘An Introduction to Conceptual Graphs’. Af
FExpert pp. 3643.

Proietti, M. and A. Pettorossi: 1994, ‘Transformations of Logic Programs:
Foundations and Techuiques’. Journal of Logic Programming 19, 20, 261-320.
Rich, C. and Y. A. Feldman: 1992, ‘Seven Layers of Xnowledge Representation
atid Reasoning in Support of Software Development’. IEEE Trans. on Soft.
Eng. 18(6), 451-469.

Robertson, D.: 1991, ‘A Simple Prolog Techniques Editor for Novice Users’.
In: 3rd Annual Conference on Logic Programming. Edinburgh, Scotland,
Rodriguez, J. A.: 2001, ‘On the Design and Construction of Agent-mediated
Flectronic Institutions’. Ph.D. thesis, Institut d’Investigacié en Intel.lighncia
Artificial (ITTA), Consejo Superior de Investigaciones Cientfficas (CSIC), Spatn.
SICS: 2000, ‘SICStus Prolog User’s Manual’. Swedish Institute of Computer
Science, available at http://wuw.sics.se/sicstus.

Sierra, C., J. Sabater, J. Agustf, and P. Garcia: 2002, ‘Evolutionary Compu-
tation -and Multiagent Systems Design’. In: Proc. Ist Int’l Joint Conf. on
Autonomous Agenis 8 Multi-Agent Systemns (AAMAS 2002). Bologna, Italy.
Sterling, L. and M. Kirschenbaum: 1993, ‘Applving Techniques to Skeletons’.
In: Constructing Logic Programs. London, England: John Wiley & Sons Ltd,
Sterling, L. and E. Shapiro: 1994, The Art of Prolog: Advenced Programming
Techniques. MIT Press, 2nd edition.

Sterling, L. S. and R. D. Beer: 1989, ‘Meta-Interpreters for Expert System
Construction’. Journal of Logic Programming 6(1-2), 163-178.
Subrahimanian, V. 5., P. Bonatti, J. Dix, T. Eiter, 8. Kraus, F. Ozcan, and R.
Ross: 2000, Heterogeneous Agent Systems. Cambridge, MA: MIT Press/AAAI
Press.

Tsvetovatyy, M. and M. Gini: 1996, ‘Towards a Virtual Marketplace: Archi-
tecture and Strategies'. Tn: Procs. 1st Intl Conf. on the Proctical Applic. of
Intell. Agents & Multi-Agent Technology (PAAM’96). Blackpool, UK.

Van Emden, M. H. and R. A. Kowalski: 1976, ‘The Semantics of Predicate
Logic as a Progranuning Language’. Journal of AGM 23({4), 733-742.
Vasconcelos, W, W.: 2003a, ‘Expressive Global Protocols via Logic-Based Elee-
tronic Institutions’. In: Proc. 2nd Int'l Joint Conf. on Aulonomous Agenis &
Multi-Agent Systems (AAMAS 2003). Melbourne, Australia. A longer version
appears as Tech. Report AUCS/TR0301, Dept. of Computing Science, Univ.
of Aberdeen, UK.

Vasconcelos, W. W.: 2003b, ‘Logic-Based FElectronie Institutions’. In: Procs.
Declarative Agent Languages and Technologies (DALT'03), Melbourne, Aus-
tralia, Lecture Notes in Artificial Inteigence. Springer-Verlag. to appear.
Vasconcelos, W, W. and N. E. Fuchs: 1996a, ‘An Opportunistic Approach
for Logic Program Analysis and Optimisation using Enhanced Schema-Based
Transformations’. Vol. 1048 of Lecture Noles in Compuler Science. Springer-
Verlag.

Vasconcelos, W. W. and N. E. Fuchs: 1996b, ‘Prolog Program Development
via Enhanced Schema-Based Transformations’. Technical report, Department
of Artificial Intelligence, University of Edinburgh. Presented at the 7th Work-
shop on Logic Programming Environments, held in conjunction with ILPS’95,
Seattle, U.S.A.

main.tex; 17/11/2003; 8:45; p.41

42

60.

61.

62,

63.

64.

6.

66.

‘W. Vasconcelos et al.

Vasconcelos, W. W, and E. X. Meneses: 2000, ‘A Practica! Approach for Logic
Program Analysis and Transformation’. Vol. 1793 of Lecture Notes in Computer
Science. Springer-Verlag.

Vasconcelos, W. W., D. Robertson, J. Agusti, C. Sierra, M. Wooldridge, S.
Parsons, G, Walton, and J, Sabater; 2002a, ‘A Lifecycle for Models of Large
Multi-Agent Systems’. In: Proe. 2nd Int’} Workshop on Ageni-Oriented Soft.
Eng. (AOSE-2001), Vel. 2222 of LNCS. Springer-Verlag,

‘Vasconcelos, W. W., J. Sabater, C. Sierra, and J. Querol: 2002b, ‘Skeleton-
based Agent Development for Electronic Institutions’. Im: Prec, 1st Int?
Joint Conf. on Aulonomous Agents & Multi-Agent Systems (AAMAS 2002).
Bologna, Italy.

Vasconcelos, W. W., C. Sierra, and M. Esteva: 2002¢, ‘An Approach to Rapid
Prototyping of Large Multi-Agent Systems’. In: Proc. 17th IEEE int’l Conf.
on Automated Software Engineering (ASE 2002). Edinburgh, UK.
Vasconcelos, W. W., C. Sierra, and M. Esteva: 2002d, ‘An Environment for
Rapid Prototyping of Large Multi-Agent Systermns’. Technical report. Available
at http://vww.dai.ed.ac.uk/groups/ssp/slie, Presented at AAMAS 2002
Demonstration Session, Bologna, Italy. :
Wirth, N.; 1971, *Program Development by Stepwise Refinement’. Comm. of
the ACM 14(4}, 221-227,

Xu, H. and S. M. Shatz: 2003, ‘ADK: An Agent Development Kit Based
ont a Formal Design Model for Multi-Agent Systems’. Automated Software
Engineering 10, 337-365.

Address for Offprints: Dr. Wamberto Vasconcelos, Department of Computing Sei-
ence, University of Aberdeen, Aberdeen AB24 3UE, UK

main.tex; 17/11/2003; 8:45; p.42

