
t-DeLP: a temporal extension of the defeasible logic
programming argumentative framework

Pere Pardo and Lluı́s Godo

Institut d’Investigació en Intel·ligència Artificial (IIIA - CSIC)
Campus UAB, E-08193 Bellaterra, Catalonia, Spain

Abstract. The aim of this paper is to offer an argumentation-based defeasible
logic that enables forward reasoning with time. We extend the DeLP logical
framework by associating temporal parameters to literals. A temporal logic pro-
gram is a set of temporal literals and durative rules. These temporal facts and
rules combine to into durative arguments representing temporal processes, that
permit us to reason defeasibly about future states. The corresponding notion of
logical consequence, or warrant, is defined slightly different from that of DeLP,
due to the temporal aspects. As usual, this notion takes care of inconsistencies,
and in particular we prove the consistency of any logical program whose strict
part is consistent. Finally, we define and study a sub-class of arguments that seem
appropriate to reason with natural processes, and suggest a modification to the
framework that is equivalent to restricting the logic to this class of arguments.

1 Introduction and motivation.

In this contribution, we present a temporal defeasible logic, with temporal literals (for
facts) and durative strict or defeasible rules. The main motivation is to encode reasoning
about the evolution of processes involving time.

An important feature of defeasible logics is the logical parsimony one obtains both
at the level of representing knowledge bases (like for the family of non-monotonic
logics), as well as regarding the associated logical machinery. This is in accordance with
causal reasoning, where it is a standard practice not to list all the conditions involved
in a particular process, but only those which are uncommon or specific to this process
(e.g. a spark is listed among the causes of fire, rather than the presence of oxygen in
air).

Among non-monotonic logics, those based on an argumentation process present
several advantages. First, application of rules is not conditional on any consistency
test (in contrast to e.g. default logics); instead, argumentation permits an inconsistency
elimination process based on the reasons for and against relevant propositions, only
when these relevant propositions apply. On the other hand, logical consequence re-
lations built upon arguments are based on a preference relation (between conflicting
arguments) which is more modular than the priority relation of purely rule-based ap-
proaches. Finally, another advantage of argumentation-based logics is that these mirror
the inference mechanisms of a deliberating agent (e.g. a human agent), thus producing
logical formalisms that appear more natural and conceptually transparent.

An important contribution along these lines is Garcı́a and Simari’s [5]. The authors
present an argumentation-based defeasible logic, called DeLP, and discuss several is-
sues related to application domains. For instance, the question of which criteria the
preference relation should be based upon is discussed at length. These criteria play a
central role in argumentation-based logics, since they determine which relation of logi-
cal consequence one obtains.

In our contribution, though, we show some genuinely novel features, mainly due to
the temporal asymmetry (past vs. future) in the descriptions of processes that cannot be
modeled within the framework proposed by [5]. With more detail, this asymmetry must
be taken into account in the formal criteria the relation of preference is to based upon.
As a consequence, the notion of warranted (temporal) literals is slightly different than
that studied in [5]. Finally, other phenomena like persistence (and other notions studied
in the areas of reasoning with change) are genuinely temporal and demand an explicit
treatment within our framework.

Another reason to use defeasible logic, more to the point of the present contribu-
tion, is its ability to reason with interactions between different processes or between
different aspects of a given process. Typically, a temporal or causal statement describes
a class of processes in idealized or isolated conditions, so in practice interactions or
influences may exist. Non-trivial interactions, from a logical point of view, can be seen
as consisting of different sets of premises with contradicting conclusions.

The temporal argumentation framework we present, t-DeLP logic, permits instead
to naturally address the problem posed by these contradictions in a compact way. This
system does detect and remove all the contradictions that exist according to a given
logical program. Moreover this logic can compute the positive facts resulting from these
interactions, if the logical program is supplied with sufficient knowledge.

Our proposal, then, is an extension of logic Garcı́a and Simari’s DeLP [5]. We intro-
duce discrete temporal parameters to literals, to form temporal literals denoting the time
when the corresponding fact holds. Rules (and arguments) are made of temporal literals
and thus encode the delay between each premise and the conclusion. These literals and
rules (or arguments) represent, respectively, temporal facts and durative processes.

The paper is structured as follows: after some preliminaries, we present t-DeLP
logic and study some of its logical properties. In particular we prove that any temporal
logical program outputs a consistent set of warranted literals. Finally, we focus on the
study of a particularly interesting sub-class of arguments that presumably capture nat-
ural processes. We produce a counter-example showing that if we do not restrict to this
class some unintuitive consequences may occur. Then we revise some of the definitions
to prune these counterexamples, and show that this revised notion of (unrestricted) log-
ical consequence coincides with the relation of logical consequence when restricted to
arguments in the class.

Notation We will use the following conventions: strong negation is denoted ∼ p, for
a propositional variable p ∈ Var. Given two sets X,Y we denote the size of X as
|X|, set-theoretic difference as X r Y , the power set of X as P(X), and the Cartesian
product of X and Y as X × Y , or X2 for X ×X; X<ω is the set of finite sequences
of elements of X . If f is a function f : X → Y and X ′ ⊆ X , we define f [X ′] =
{f(a) ∈ Y | a ∈ X ′}. Given a family of sets M, its union is denoted

⋃
M. If σ an

expression, σ
(
ζ
ζ′

)
is the expression obtained by replacing in σ each occurrence of ζ by

an occurrence of ζ ′.

2 Preliminaries

2.1 Defeasible logic programming DeLP.

In [5], an argumentation-based defeasible logic was presented. Its language contains
literals and rules. Literals are expressions of the form p,∼p from a given set of variables,
p ∈ Var. Strong negation∼ cannot be nested, so we will use the following notation over
literals: if ` = p then ∼` will denote ∼p, and if ` = ∼p then ∼` will denote p. Strict
and defeasible rules are expressions δ of the form head(δ) ← body(δ) and (resp.)
head(δ) −� body(δ), where head(δ) is a literal (the conclusion of δ), and body(δ)
is a finite sequence of literals denoting a conjunction of the conditions for the rule
to apply. Strict rules preserve the truth status (be it defeasible or undefeasible) from
premises to conclusion while defeasible rules make the conclusion defeasibly true given
its premises are true. Thus in particular, the conclusions of arguments making use of
strict information only cannot be withdrawn.

DeLP’s relation of logical consequence relation, called warrant, defines a consistent
subset of the set of derivable literals (the latter being typically inconsistent for a given
knowledge base). Warrant is defined in terms of the interactions between conflicting ar-
guments, according to some preference or defeat relation between these arguments. The
authors of [5] propose formal criteria based on more direct rules1 and more premises.

The present contribution, focusing on temporal reasoning, favors a reading of de-
feasible rules based on the temporal asymmetry between causes and effects2. This re-
quires a different defeat relation between arguments, i.e. one based on different criteria;
and, more importantly, a different notion of attack and argumentation line (since fu-
ture events cannot contradict events that already took place). Thus, the corresponding
relation of logical consequence is slightly different to that presented in [5].

2.2 Knowledge Representation: temporal predicates and constraints.

The present results are stated at the propositional level, for a set of literals (with as-
sociated time). In order to reason with richer representations, though, we may rather
see these literals as expressing ground predicates, i.e. with literal expressions encoding
something of the form literal = (object property) or also literal = (object, parameter,
value); temporal literals, then, are represented as a pair: (literal, time).

Time, then, is also relevant to determine whether a pair of expressions (each denot-
ing an event) contradict each other: for this contradiction to exist, the literals expressed
must be the negation of each otherand they must be claimed to hold at the same time.
Moreover, our framework permits to express a temporal or causal statement (possibly
an instance of some general law) as a rule: a set of tuples (object, parameter, value,

1 As exemplified by the set of rules { birds fly, penguins are birds, penguins do not fly } .
2 In this sense, it contrasts with the more general, evidence-based reasoning that usually moti-

vates non-monotonic reasoning.

time) imply a tuple (object, parameter, value, time). Among arguments (combinations
of facts and rules), those with positive duration express how (an aspect of) some pro-
cess does change with time, while those with no duration may be used to model static
or structural constraints.

In both cases, when a literal represents something of the form (object, parameter,
value, time), it is convenient to represent the constraints that occur in the represented
expression, e.g., that an object cannot have different values of a given parameter at a
given time. These constraints can be represented by strict rules (if absolute) or defea-
sible rules (if contingent), induced by a set of such mutually exclusive propositions
capturing these constraints: such a setX induces rules of the form∼`← `′ or∼` −� `′,
where `, `′ are arbitrary elements of X with ` 6= `′.

For an example of absolute constraints, let O and L be the sets of objects o and
locations l; and let @(o, l) ∈ Var denote: o is at l. Then,

– the at most one location per object policy is defined by a set {o} × L for each
o ∈ O; this set induces rules of the form ∼〈@(o, l), t〉 ← 〈@(o, l′), t〉, if l 6= l′.

– the at most one object per location policy is defined by a setO×{l} for each l ∈ L;
this set induces rules 〈∼@(o, l), t〉 ← 〈@(o′, l), t〉, if o 6= o′.

3 t-DeLP: defeasible logic with (discrete) time.

We take the set of natural numbers N as our working set of discrete time points. The
logic t-DeLP is based on temporal literals 〈`, t〉, where ` is a literal and t ∈ N, denoting
` holds at t. In order to solve conflicts between arguments the preference (or defeat)
relation between arguments is based on: a preference for arguments with more premises
and for lengthier arguments over its parts (so an argument can defeat the persistence of
its subarguments’ conclusions). Arguments that make only use of strict information are
also preferred to arguments conflicting with them. A final criterion, less durative rules,
is not considered here.3

Definition 1. Given a finite set of propositional variables Var, we define Lit = Var ∪
{∼p | p ∈ Var}. The define set of temporal literals TLit = {〈`, t〉 | ` ∈ Lit, t ∈ N}.
If Γ ⊆ Lit, we say that Γ is consistent if there is no p ∈ Var such that p,∼p ∈ Γ . If
Γ ∗ ⊆ TLit, we say that Γ ∗ is consistent if each Γ ∗t := {` | 〈`, t〉 ∈ Γ ∗} is consistent.

Definition 2. A temporal strict (resp. defeasible rule) is an expression δ of the form
〈`, t〉 ← 〈`0, t0〉, . . . , 〈`n, tn〉 (resp. 〈`, t〉 −� 〈`0, t0〉, . . . , 〈`n, tn〉), where t ≥
max{t0, . . . tn}. We write head(δ) = 〈`, t〉, body(δ) = {〈`0, t0〉, . . . , 〈`n, tn〉} and
literals(δ) = {head(δ)} ∪ body(δ).

A rule with an empty body, e.g. 〈`, t〉 ←, also denoted 〈`, t〉, (resp. 〈`, t〉 −� for
the defeasible case) represents a basic fact that holds at time t (resp. a presumable fact
holding at t). As in DeLP, a strict rule δ ∈ Π states the conclusion head(δ) is as true

3 This is important, since rules with long duration might fail to detect conflicts, (so, e.g. balls
running into each other would magically not collide). Instead, we will assume rules are precise
enough.

as its premises are. A defeasible rule δ ∈ ∆ states a weaker claim: if the premises are
true this is in principle a reason for believing that the conclusion is also true (though
this conclusion may be withdrawn for other reasons). A special subset of rules is that of
persistence rules, of the form 〈`, t + 1〉 ← 〈`, t〉 or 〈`, t + 1〉 −�〈`, t〉, stating that ` is
preserved from t to t+1 (if true at t) and, resp., that ceteris paribus a literal p that holds
at t will persist at t + 1. The set of defeasible (strict) persistence rules will be denoted
∆p (resp. Πp).

Example 1. We saw above an example of a (strict) rule without delay: the spatial con-
straints 〈∼@(o, l′), t〉 ← 〈@(o, l), t〉. Among (strict) rules with delay, we may have
rules like 〈∼tuesday, t + 24〉 ← 〈tuesday, t〉 and 〈wednesday, t + 24〉 ← 〈tuesday, t〉,
where each time unit represents an hour.

Definition 3. A temporal DeLP program, or t-DeLP program, is a pair (Π,∆), where
Π is a set of temporal strict rules, ∆ a set of temporal defeasible rules and the set of
derivable literals from Π is consistent.

Temporal rules as above can be seen as instances of general rules of the form δ∗ =
` ← (`0, d0), . . . , (`n, dn) -and similarly for defeasible rules with −� -, where each di
expresses how much time in advance must `i hold for the rule to apply and produce
a derivation of `. Such a general rule is to be understood as a shorthand for the set of
rules {〈`, t〉 ← 〈`0, t − d0〉, . . . , 〈`n, t − dn〉 | t ∈ N, t ≥ max{d0, . . . , dn}}. For
example, the rule 〈p, 4〉 −�〈q, 3〉 would be an instance of the general rule p −�(q, 1).
Persistence rules can therefore be expressed as general rules of the form ` ← (`, 1) or
`−�(`, 1); the latter defeasible general persistence rule for ` will be denoted δ{`}. The
formal definitions do make use only of instances of general rules, i.e. temporal rules
only.

Example 2. Consider the following example. Lars, a tourist visiting the Snake Forest,
has been bitten by a venomous snake. The poison of this type of snake does kill a
person in 3 hours. But since our subject, Lars, is experienced (it has been bitten and
cured a few times before), he may resist up to 5 hours. We decide to take him to the
nearest hospital, which in normal conditions this would take 2 hours, but since today
is sunday, the traffic jam makes it impossible to reach the hospital in less than 4 hours.
The antidote takes less than an hour to become effective. This scenario is modeled by
the following temporal facts and general rules:

Π = {〈@snake.forest(Lars), 0〉, 〈snake.bitten(Lars), 0〉, 〈experienced(Lars), 0〉,
〈∼dead(Lars), 0〉, 〈sunday, 0〉},

∆ = {dead(Lars) −� (snake.bitten(Lars), 3)
∼dead(Lars) −� (snake.bitten(Lars), 3), (experienced(Lars),3)
dead(Lars) −� (snake.bitten(Lars), 5), (experienced(Lars),5)
@hospital(Lars) −� (snake.bitten(Lars), 2), (@snake.forest(Lars), 2)
∼@hospital(Lars) −� (traffic.jam, 2), (snake.bitten(Lars), 2), (@snake.forest(Lars), 2)
@hospital(Lars) −� (traffic.jam, 4), (snake.bitten(Lars), 4), (@snake.forest(Lars), 4)
traffic.jam −� (sunday, 0)
∼dead(Lars) −� @(hospital(Lars),1), (snake.bitten(Lars),1), (∼dead(Lars),1) }

We also add to ∆ all persistence rules for literals occurring in Π (these strict facts only
persist defeasibly) or any of the previous rules in ∆. With this information, it can be
proved that Lars survives this snake attack.

Derivability in t-DeLP, as in DeLP, is defined by closure under the modus ponens
rule, and will be denoted by `. As it happens in DeLP, the set of derivable literals in
(Π,∆) will not in general be consistent.

Example 3. (Cont’d) Consider for instance, the conflict between (a) the derivation of 〈∼
@hospital(Lars), 2〉 by means of persistence rules for the literal @snake.forest(Lars) and
(b) the derivation of 〈@hospital(Lars), 4〉, which takes into account that today is sunday.
Or, the inconsistency between the latter and (c) the derivation 〈∼@hospital(Lars), 2〉,
that does not pay attention to the fact that today is sunday. The latter conflict is repre-
sented in Figure 2.

Definition 4. Given a t-DeLP (Π,∆), an argument for 〈`, t〉 is a setA ⊆ Π ∪∆, such
that

(1) A ` 〈`, t〉,
(2) the set of derivable literals from Π ∪ A is consistent,
(3) A is ⊆-minimal satisfying (1) and (2).

Observe that, although Π and ∆ may be infinite (due to the coding of general rules
as an infinite set of temporal rules), an argument for a t-DeLP program (Π,∆) will be
always a finite subset of Π ∪∆.

We also define for an argument A for 〈`, t〉:

concl(A) = 〈`, t〉 base(A) = {δ ∈ A | body(δ) = ∅}
literals(A) = (

⋃
body[A]) ∪ head[A] ‖A‖ = t− t0

where t0 = min{t′ ∈ N | 〈`′, t′〉 ∈ base(A)} and we define t(A) = t0. Note that
t = max{t′ ∈ N | 〈`′, t′〉 ∈ literals(A)}.

In contrast to DeLP, we make explicit in argumentA which is the strict information
used, to facilitate the detection of inconsistencies with an intermediate step in the strict
part of argument A. The reason is that there exist many possible ways to complete
defeasible rules in A into a derivation for concl(A). And these different ways may
be attacked by different arguments. For example, the sets {〈p, 4〉 ← 〈q, 2〉, 〈q, 2〉 ←
〈r, 1〉, 〈r′, 0〉} and {〈p, 4〉 ← 〈s, 3〉, 〈s, 3〉 ← 〈r, 1〉, 〈r′, 〉} may both complete the set
{〈p′, 5〉 −� 〈p, 4〉, 〈r, 1〉 −� 〈r′, 0〉} ⊆ ∆ into an argument (derivation) for 〈p′, 5〉, but
only the latter is attacked by an argument concluding 〈∼s, 3〉.

Now we define a sub-argument ofA. A sub-argument will be the actual target of an
attack by another argument.

Definition 5. Let (Π,∆) be a t-DeLP program and let A be an argument for 〈`, t〉
in (Π,∆). Given some 〈`0, t0〉 ∈ literals(A), a sub-argument for 〈`0, t0〉 is a subset
B ⊆ A such that B is an argument for 〈`0, t0〉.

Fig. 1. An argument A and its total duration ‖A‖.

Notice that each literal 〈`0, t0〉 in an argument A uniquely determines its corre-
sponding subargument, that we will denote by A(〈`0, t0〉). For example, in Figure 1,
A(head(δ2)) = {δ2, δ3, δ4, 〈`′, t′〉, . . .}.

Let us come back to Example 3 where we have several conflicting conclusions, not
all of them being equally preferred. Indeed (b) is to be preferred to both (a) and (c).
In the former, we prefer to use new (strict) information rather than mere (defeasible)
persistence; in the latter, we prefer to use as much information as possible. To obtain
this intuitive preference relations among derivations, we consider the following attack
and defeat relations between arguments encoding the corresponding derivations.

Definition 6. Given t-DeLP program (Π,∆), let A0 an argument for 〈`0, t0〉 and let
A1 an argument for 〈`1, t1〉. We say A1 attacks A0 if there exists a subargument B of
A0 for 〈∼`, t1〉 and ∆ ∩ B 6= ∅. In this case we say that A1 attacks A0 at B.

Notice that if A1 attacks A0 at B, B cannot only consist of strict information, in
particular of a strict fact: B 6= {〈`, t′〉}.

As in DeLP, one has a further defeat relation to decide which argument prevails
in case of an attack. This relation can be in principle specified by the user, but in this
paper we adopt the following definition in order to meet the above intuitive preferences
in Example 3.

Definition 7. Let A1 attack A0 at B, where concl(B) = 〈`, t〉. We say:

- A1 is a blocking defeater for A0 iff base(A1) * base(B) or base(A1) = base(B)
- A1 is a proper defeater for A0 iff A1 ⊆ Π , or base(A1) ! base(B), or

for some t′ < t, A0 = A1(〈`, t′〉) ∪ {〈`, t′′ + 1〉 −� 〈`, t′′〉 | t′ ≤ t′′ < t}

Blocking and proper defeat relations are denoted, resp., A1 ≺� A0, and A1 � A0.

Thus, a strict set of rules is a proper defeater for any argument attacked by it. In
the other cases, a properly defeated argument A0 either has less premises than or is a

Fig. 2. The Snake Bites Lars scenario.

sub-argument of its defeater A1, extended with a sequence of ‖A1‖ − ‖B‖ instances
of persistence rule δ`. In the latter case we say that A1 is a lenghtier argument than
the subargument B of A0. Observe an argument A1 does not defeat its sub-argument,
only the δ`-extension of it. (See Figure 3 (top left) for an example.) Finally, note that
since Π is assumed to produce a consistent set of derivable literals and the other two
conditions for being a proper defeater are asymmetric relations, no pair of arguments
can be a proper defeater for each other.

An argument B defeating A can at its turn have its own defeaters C, . . . and so on.
These give rise to argumentation lines where each argument defeats its predecessor. In-
tuitively, the notion of defeat in an argumentation line [. . . ,A,B, C, . . .] should exclude
a blocking defeater C for B as a defeater, provided that B is already blocking defeater
forA. (The reason is that otherwise, we could have cycles [. . . ,A,B,A,B, . . .].) Other
forms of cyclic defeats are also excluded in the definition. Note condition (ii) is slightly
weaker than its DeLP counterpart in [5].

Definition 8. (Adapted from [5]) Let A1 be an argument in (Π,∆). An argumentation
line for A1 is a sequence Λ = [A1,A2, . . .] where

(i) supporting arguments, i.e. in odd positions A2i+1 ∈ Λ are jointly M-consistent,
and similarly for interfering arguments A2i ∈ Λ

(ii) a sub-argument of Ai can occur later in Λ, i.e. as Ai+2j only if ‖Ai+2j‖ < ‖Ai‖
(i.e. its duration is stricly less than that of Ai)4

(iii) Ai+1 is a proper defeater for Ai if Ai is a blocking defeater for Ai−1
4 This is a weaker condition that in DeLP, where no sub-argument at all can occur later than an

argument in Λ. In our temporal case, a sub-argument (ofA) talking about a previous time may
offer legitimate reasons to the defense of A.

The union of maximal argumentation linesΛs forA1, under the defeat relation� ∪ ≺�
constrained by Λ, arranged in the form of a tree5, is the so-called dialectical tree for
A1:

T(Π,∆)(A1) =
⋃
{Λ ∈ (Π ∪∆)<ω | Λ is a maximal arg. line for A1}

The next bottom-up marking procedure on the tree T(Π,∆)(A1) decides whetherA1

is undefeated in (Π,∆).

Definition 9. [5] Let T = T(Π,∆)(A1) be the dialectical tree for A1. Then,

(1) mark all terminal nodes of T with a U (for undefeated);
(2) mark a node B with a D (for defeated) if it has a children node marked U ;
(3) mark B with U if all its children nodes are marked D .

See Figure 3 (right) for an example of a dialectical tree with root A1. Arguments
marked U are represented white, and those marked D are represented black. (Similarly
for the arrows: an arrow between a U element responsible for its parent node being
marked D is painted white; otherwise it is black).

Definition 10. Given a t-DeLP program (Π,∆), we say 〈`, t〉 is warranted in (Π,∆)
iff there exists an argument A1 for 〈`, t〉 in (Π,∆) such that A1 is undefeated in
T(Π,∆)(A1). We will denote by warr(Π,∆) the set of warranted literals in (Π,∆).

Fig. 3. (Top Left) A proper defeater. (Bottom Left) An argumentation line. (Right) The dialectical
tree T(Π,∆)(A1).

The next results show t-DeLP ensures the consistency of a t-DeLP logical program
(Π,∆), provided that its strict part Π outputs a consistent set of derivable literals.

5 Where all paths from the root to the leaf nodes exactly correspond to all the possible maximal
argumentation lines.

Lemma 1. Given some (Π,∆), let A be an argument in (Π,∆) for 〈`, t〉. Also, let B
be an argument for 〈∼`, t〉, withA a defeater for B at B. IfA is defeated in T(Π,∆)(B),
then A is defeated in T(Π,∆)(A).

Proof. Let A a defeater for B at B. This implies the existence of some Λ =
[B,A, . . .] ⊆ T(Π,∆)(B). Assuming A is defeated in T(Π,∆)(B), we have in partic-
ular some Λ∗ = [B,A,B3, . . . ,B2m+1] witnessing the defeat of A (i.e. with B2i+1

undefeated in T(Π,∆)(B), for each 1 ≤ i ≤ m).
We show first that any arg. line [B,A,B3, . . .] in T(Π,∆)(B) contains a sequence

[A,B3, . . .] that is an arg. line in T(Π,∆)(A). Let then [B,A,B3, . . .] ⊆ T(Π,∆)(B).
Clearly Λ = [A,B3, . . .] satisfies the 3 conditions for an arg. line for A: (1) its first
element is A; (2) the set of even (odd) members is jointly consistent (since, otherwise,
the set of odd (resp. even) members of [B,A,B3, . . .] would also be inconsistent). (3)
a sub-argument of some argument Bi (with the same duration than Bi) does not occur
after argument Bi in the line (otherwise, the same would be true of [B,A,B3, . . .] in
T(Π,∆)(B)). Finally, (4) for no three consecutive elements [. . . ,Di,Di+1,Di+2, . . .] we
have Di+2 is a blocking defeater for Di+1 and Di+1 a blocking defeater for Di (since
otherwise the same would occur in arg. line [B,A,B3, . . .]).

Now, assume, towards a contradiction, thatA is undefeated in T(Π,∆)(A). We show
the previous inclusion, namely that any [B,A, . . .] ⊆ T(Π,∆)(B) is such that [A, . . .] ⊆
T(Π,∆)(A), plus both assumptions (A is defeated in T(Π,∆)(B) and A is undefeated
in T(Π,∆)(A)) imply the existence of an increasing sequence of argumentation lines of
arbitrarily finite length, which is impossible.

The previous inclusion shows in particular that witness Λ∗-minus-B is an arg. line
in T(Π,∆)(A). Since A is undefeated in T(Π,∆)(A), some B3 must be defeated in
T(Π,∆)(A). Let Λ0 = [A,B3, C01 , . . . , C02n0+1] witness the defeat of B3 in T(Π,∆)(A);
i.e. C02n′

0+1 is undefeated in this tree, for any n′0 ≤ n0. By assumption on the origi-
nal witness Λ∗ in T(Π,∆)(B), if C01 occurs in T(Π,∆)(B), then C01 must be defeated in
T(Π,∆)(B). To see this C01 will effectively occur in T(Π,∆)(B) it suffices to prove C01
is not a sub-argument of B with ‖C01‖ = ‖B‖. For this, assume the contrary. Then, by
Def. of arg. line, we have ‖B‖ = ‖A‖ = ‖B3‖ = ‖C01‖. But then, C01 = B(concl(C01)),
‖C01‖ = ‖B‖ and C01 a defeater for B3 (hence inconsistent with it) jointly imply that B
and B3 are not consistent (contradiction). Moreover, this C01 satisfies in the tree for B the
restriction against two consecutive blocking defeaters, since it satisfies this restriction
in the tree for A (this preservation is automatic since C01 is not the second element in
Λ0).

Let then Λ1 = [B,A,B3, C01 , C11 , . . . , C12n1+1] be a witness to the defeat of C01 . By
the former inclusion, this latter witness Λ1-minus-B is in the tree forA. By the assump-
tion thatA is undefeated in T(Π,∆)(A), the element C11 of this witness must be defeated
in T(Π,∆)(A), since C01 is undefeated in it. Let Λ2 = [B,A,B3, C01 , C11 , C21 . . . , C22n2+1]
be a witness to the defeat of C11 .

This procedure can be continued ad infinitum with analogous reasonings from
T(Π,∆)(B) to T(Π,∆)(A) and viceversa. Thus, there exists an infinite sequence of
arg. lines (witnesses) Λn of the form [B,A,B3, C01 , C11 , . . . , Cn1 , . . .] (for n odd) or of
the form [A,B3, C01 , C11 , . . . , Cn1 , . . .] (for n even). Thus, arg. lines of arbitrarily fi-

nite length must exist, and elements of the form Cn1 form an infinite sequence Λω =
[A,B3, C01 , C11 , . . . , Cn1 , Cn+1

1 , . . .] satisfying: any initial segment of Λω is an arg. line.
We show such an infinite sequence Λω cannot exist. Since t(A)+‖A‖ is finite, and

arguments C in Λω must satisfy ‖C‖ ≤ ‖A‖, we have that rules in these arguments C are
finite sequences of literals in the finite set Lit×{0, . . . , t(A)+‖A‖}. Hence, the number
of these rules is finite. Hence, there are only finitely many different arguments which
can occur in Λω . But since Λω is infinite, we will have some repetition Cj1 = Cj+i1 .
Then, the sequence [A,B3, . . . , Cj1, . . . , C

j+i
1] will violate the corresponding condition

of Definition 8. Thus, such an infinite sequence cannot exist (contradiction). We infer
that A must also be defeated in T(Π,∆)(A), provided it is defeated in T(Π,∆)(B). 2

Theorem 1. Given a t-de.l.p. (Π,∆), the set of literals warr(Π,∆) is consistent. 6

Proof. Let 〈`, t〉 ∈ warr(Π,∆). Thus, some argument A for 〈`, t〉 in (Π,∆) exists that
is undefeated in T(Π,∆)(A). It suffices to show that 〈∼`, t〉 /∈ warr(Π,∆). The reason
is that if, instead, an attack occurred at a previous time, i.e. A was attacked at some
A(〈`0, t0〉), and defeated by some B, the same reasoning given next would apply for
A(〈`0, t0〉) and the corresponding defeater B (i.e. that 〈∼`0, t0〉 /∈ warr(Π,∆).

Thus, assume -towards a contradiction- that 〈∼`, t〉 ∈ warr(Π,∆). Then some ar-
gument B for 〈∼`, t〉 exists in (Π,∆), undefeated in T(Π,∆)(B). Observe first that if
A ⊆ Π , then either each such argument B contains some rule in ∆, in which case A
will attack and defeat any such B (contradicting that 〈∼`0, t0〉 ∈ warr(Π,∆)); or, also
some such B for 〈∼`0, t0〉 is a subset of Π , contradicting the assumption that the set of
derivable literals from Π alone is consistent. Thus, we may assume that A ∩ ∆ 6= ∅.
Now, consider again the possibility that some such argument B for 〈∼`0, t0〉 is a subset
of Π . Then, A is defeated by an (unattacked, hence) undefeated argument, contradict-
ing the initial assumption 〈`, t〉 ∈ warr(Π,∆). Thus, we may assume that both A and
B contain some defeasible rule.

This implies that A attacks B at B, and B attacks A at A. Consider next the fol-
lowing cases. (Case) A is not a defeater for B. Then, since the only possibilities are
base(A) * base(B) and base(A) 6= base(B) we conclude that base(B)) base(A),
so B is a (proper) defeater for A. Thus, [A,B, . . .] is in T(Π,∆)(A). From this and the
assumption that B is undefeated in T(Π,∆)(B), we can apply Lemma 1 to show that B
is undefeated in T(Π,∆)(A). Hence, A is defeated in T(Π,∆)(A) (contradiction). (Case)
If A is a defeater for B, then [B,A, . . .] is in T(Π,∆)(B), so by assumption on B, A is
defeated in T(Π,∆)(B). Then, by Lemma 1, we obtain that A is defeated in T(Π,∆)(A)
(contradiction). Hence 〈∼`, t〉 /∈ warr(Π,∆). Since ` and t were arbitrary, warr(Π,∆)
is consistent. 2

4 Nature does not wait: eager arguments.

We study in this section a sub-class of t-DeLP arguments, called eager, for reasoning
with natural processes. In law-governed processes as soon as all conditions hold, the

6 Recall that, according to Defintion 1, warr(Π,∆) is consistent iff there is no p such that both
p and ∼p belong to warr(Π,∆). This differs from stronger notions of consistency requiring
that warr(Π,∆) ∪Π does not derive any pair of contradictory literals.

process can do nothing else than start. This would exclude from the class of arguments
that model some natural process those constructible arguments that unnecessarily post-
pone the (start of an) application of a rule after its body holds (i.e. arguments that in-
troduce some unnecessary delay after the rule becomes applicable). No natural process
corresponds to these t-DeLP arguments, so they should be excluded from reasoning
about natural processes.

Interestingly, any argument A can be transformed into an eager argument A∗ by
following an iterative procedure. The idea is that A∗ orders non-persistence (resp. per-
sistence) rules in A to occur as early (resp. late) as possible while keeping the same
base. To obtain A∗, let initially A′ = A, and apply iteratively the following transfor-
mation on A′ until it cannot be applied any longer:

1. Select a rule δ∗ ∈ A′ such that the next condition holds: for each 〈`i, ti〉 ∈
body(δ∗), there exists (at least) an instance of the persistence rule δ`i supporting
this 〈`i, ti〉. If there is no such a rule let A∗ = A′ and STOP, otherwise follow to
the next step

2. For each 〈`i, ti〉 ∈ body(δ∗), let {〈`i, ti〉−�〈`i, ti−1〉, . . . , 〈`i, ti−ki+1〉−�〈`i, ti−
ki〉} ⊆ An be the set of persistence rules for `i in A′ such that 〈`i, ti − ki〉 ∈
literals(An) is supported by some non-persistence rule. Let kj be such that the
difference tj − kj is minimal among those related to body(δ∗).

3. Define a new rule, denoted δ∗ − kj , as the rule where the temporal parameter of
each literal 〈`, t〉 ∈ literals(δ∗) is subtracted kj . Then, to obtain An+1, we:

4. In A′ replace δ∗ by δ∗ − kj
5. For each 〈`i, ·〉 ∈ body(δ∗), delete from A′ the tj − kj instances of persistence

rules δ`i of the form:

〈`i, tj〉 −� 〈`i, tj − 1〉, . . . , 〈`i, tj − kj + 1〉 −� 〈`i, tj − kj〉

6. If head(δ∗) = 〈`, t〉, add to A′ the tj − kj instances of persistence rule δ` of the
form: 〈`, t〉 −�〈`, t− 1〉, . . . 〈`, t− (tj − kj) + 1〉 −� 〈`, t− (tj − kj)〉.

7. Let A′ be the new argument resulting after the above steps. Start the procedure
again.

The ouput of the above procedure,A∗, is an argument sharing many properties withA:
base(A∗) = base(A), concl(A∗) = concl(A), hence ‖A∗‖ = ‖A‖ and t(A∗) = t(A).
See Figure 4 for an instance of this transformation, where the leftmost argument is
an eager transformation of the argument at the center. It can be observed that these
transformations define an equivalence relation ≡p on the set of arguments in (Π,∆):
B, C are equivalent iff B∗ = C∗.

Example 4. For an intuitive counterexample to the defeat relation in Definition 7, con-
sider the arguments represented in Figure 4. The rightmost argumentA is lengthier than
B∗, hence a proper defeater for the latter. The argument at the center, B, is more suspi-
cious than B∗ since it assumes that the latter holds even if when applying persistence
to its base. Note that B∗ is eager and equivalent to B. The problem with the definition
of proper defeater, is that A is not lengthier than B, hence it can only be a blocking
defeater for B. But intuitively, A should be a proper defeater for B as well.

Fig. 4. The argument A should be a proper defeater for B, as it is for B∗

.

Counterexamples like those of Figure 4 can be pruned either by

(a) restricting to the set of eager arguments, i.e. to the set of arguments obtaining the
previous procedure applied to all the arguments of a given t-de.l.p. Args(Π,∆) 7→
Args∗(Π,∆), or

(b) by redefining the notion of lengthier argument so that A is a lengthier argument
than B iff A is lengthier than B∗ (in the old sense of Definition 7), where B∗ is the
eager argument in [B]≡p .

In the following we prove the two options are equivalent. From now on, all the
definitions (from proper defeater to warr(·, ·)) are assumed as including the modification
on the definition for lengthier argument given by (b).

Proposition 1. Let (Π,∆) be a t-de.l.p. and let A0 be an eager argument in (Π,∆).
Then, for any other arguments A ∈ [A0]≡p and B in (Π,∆) we have:

(1) if B is a proper (blocking) defeater for A0 then so is B for A.
(2) if A is a proper (blocking) defeater for B, so is A0.

Claim (1) shows eager arguments are the safest among their ≡p equivalence class
in (Π,∆). Define T ∗(Π,∆) and warr∗(Π,∆) as the dialectical tree and warranted set
in the restriction to the class of eager arguments Args∗(Π,∆). e.g. ` ∈ warr∗(Π,∆)
iff there exists an eager argument A0 in (Π,∆) undefeated in T ∗(Π,∆)(A0). (These
two definitions T ∗(·,·)(·) and warr∗(·, ·) are the original ones, without the modification
suggested in point (b) above.)

Corollary 1. Fix a t-de.l.p. (Π,∆). Let A0 be an eager argument. Then A0 is
undefeated in T(Π,∆)(A0) iff it is undefeated in T ∗(Π,∆)(A0). As a consequence,
warr(Π,∆) = warr∗(Π,∆).

Conclusions and Future Work

We have presented t-DeLP a temporal extension of DeLP with temporal literals and
rules with duration. Indeed one can think of the DeLP framework to correspond to t-
DeLP (with strict rules made explicit in arguments and with only one time-point, e.g.
when all temporal literals are of form 〈`, 0〉). Other rule-based defeasible logics[2], [8]
exist as well and have a considerable literature, but they differ from our approach in the
modularity and conceptual transparency of the logical machinery. The same goes for
defeasible logics extended with temporal parameters associated to literals [6]. On the
other hand, argumentation-based logical approaches (inspired by the work of [4]) do not
in general take the particularities involved in temporal reasoning into account. Among
works that do consider argumentation and time, we find some proposals associating
time intervals to arguments [1], [3] and [7]. Our approach differs from these works in
that the interval where an event or argument holds, rather than being a primitive notion,
derives from the argumentation process. Thus, our time-point based approach accom-
modates features from [6], [1] (expiring literals, persistence), though in the present
paper these features are subject to argumentation processes, rather than having them
fixed from start.

For future work, we would like to expand temporal reasoning with evidence-based
reasoning from future to the past, among many other improvements on the generality
of our language or the results we obtained.

References

1. J. Augusto and G. Simari Temporal Defeasible Reasoning Knowledge and Information Sys-
tems, 3: 287-3 (2001)

2. D. Billington Defeasible logic is stable Journal of Logic and Computation, 3, pp. 379–400
(1993)

3. L. Cobo, D. Martı́nez and G. Simari On Admissibility in Timed Abstract Argumentation
Frameworks, Proc. of European Conf. on Artificial Intelligence ECAI 2010 (2010)

4. P. Dung On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games* 1, Artificial intelligence, 77(2):321–357
(1995)

5. A. Garcı́a and G. Simari Defeasible logic programming: An argumentative approach, Theory
and Practice of Logic Programming, 4(1+2): 95–138 (2004)

6. G. Governatori and P. Terenziani Temporal Extensions to Defeasible Logic Proc. of Aus-
tralian Joint Conf. on AI, AI 2007, pp 1–10 (2007)

7. N. Mann and A. Hunter Argumentation Using Temporal KnowledgeProc. of Computer Mod-
els of Argumentation (COMMA’08) pp. 204–215 IOS Press (2008)

8. D. Nute Defeasible Logic Handbook of Logic in Artificial Intelligence and Logic Program-
ming, vol 3 pp. 353–395, Oxford Univ. Press (1994)

