
algorithms

Article

An Improved Greedy Heuristic for the Minimum Positive
Influence Dominating Set Problem in Social Networks

Salim Bouamama 1 and Christian Blum 2,*

����������
�������

Citation: Bouamama, S.; Blum, C.

An Improved Greedy Heuristic for

MPIDS Problem in Social Networks.

Algorithms 2021, 14, 79. http://

doi.org/10.3390/a14030079

Academic Editor: Frank Werner

Received: 4 February 2021

Accepted: 25 February 2021

Published: 28 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Mechatronics Laboratory (LMETR)—E1764200, Department of Computer Science,
Ferhat Abbas University Sétif 1, Sétif 19000, Algeria; salim.bouamama@univ-setif.dz

2 Artificial Intelligence Research Institute (IIIA-CSIC), Campus of the UAB, 08193 Bellaterra, Spain
* Correspondence: christian.blum@iiia.csic.es

Abstract: This paper presents a performance comparison of greedy heuristics for a recent variant
of the dominating set problem known as the minimum positive influence dominating set (MPIDS)
problem. This APX-hard combinatorial optimization problem has applications in social networks.
Its aim is to identify a small subset of key influential individuals in order to facilitate the spread
of positive influence in the whole network. In this paper, we focus on the development of a fast
and effective greedy heuristic for the MPIDS problem, because greedy heuristics are an essential
component of more sophisticated metaheuristics. Thus, the development of well-working greedy
heuristics supports the development of efficient metaheuristics. Extensive experiments conducted on
a wide range of social networks and complex networks confirm the overall superiority of our greedy
algorithm over its competitors, especially when the problem size becomes large. Moreover, we
compare our algorithm with the integer linear programming solver CPLEX. While the performance
of CPLEX is very strong for small and medium-sized networks, it reaches its limits when being
applied to the largest networks. However, even in the context of small and medium-sized networks,
our greedy algorithm is only 2.53% worse than CPLEX.

Keywords: greedy algorithm; minimum positive influence dominating; set problem; heuristic search;
social network

1. Introduction

Dominating set problems have recently attracted much attention due to their potential
application in a variety of real-life settings. Apart from the standard minimum dominating
set problem [1,2], examples include the minimum connected dominating set problem [3],
the minimum total dominating set problem [4] and the minimum vertex weight dominating
set problem [5].

1.1. Problem Background and Motivation

A problem variant that has been studied especially in the context of online social
networks is the minimum positive influence dominating set (MPIDS) problem in which
a social network is modeled by a simple, connected undirected graph where vertices
represent a group of individuals (people) and edges indicate relationships and interactions
between them. The problem was first introduced by Wang et al. [6], based on the following
motivation. With the explosive growth of online social networks, the need for social
network analysis tools in order to study the social influences and interactions between
individuals within groups and organizations has become a primary concern. As an example,
one of the most popular online social networks worldwide is Facebook. In January 2021,
Facebook had approximately 2.74 billion users [7], more than any other social network.
In addition, ideas and information propagated in social networks can have a significant
impact on society (negative or positive) and on various aspects of the life of people. Social
norms theory has shown that the behavior of individuals can be affected by perceptions
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of others’ thoughts and behaviors [8]. Thus, exploiting the relationships among people in
social networks can provide great benefits to both economy and society. The aim of the
MPIDS problem is to identify a small subset of key influential individuals to speed up the
spread of positive influence. It can be applied in viral marketing, which is an advertising
strategy that utilizes social relationships, such as friendships, professional interactions and
families to spread the awareness about a promoted product among individuals in a given
social network [9,10]. The idea is to identify a limited number of customers that can quickly
lead to the entire network being influenced to adopt the product. Other applications of the
MPIDS problem can be found in e-learning software [11], online business [12], drinking,
smoking, and drug related problems [6].

1.2. Problem Description and Existing Work

In technical terms, the MPIDS problem can be described as follows. Given a simple,
connected undirected graph G = (V, E) it requires to find a dominating set of minimum
cardinality such that at least half of the neighbors of each vertex form part of the dominating
set. However, the problem was shown to be APX-hard [13]. Note that a problem is said
to be APX-hard if there is a polynomial time reduction scheme from every problem in
APX to that problem. Moreover, if a problem is APX-hard, it is also NP-hard. Therefore,
most of the past and current research efforts concerning the MPIDS problem are focused
on greedy heuristics and on some evolutionary approaches. Greedy heuristics [14] are
procedures that generate a solution step by step, making a locally optimal choice at each
stage based on a so-called greedy function. We briefly review the existing approaches in the
following. The first greedy algorithm for the MPIDS problem, referred to as Wang’s greedy
algorithm [13], is a H(∆)-approximation algorithm with O(n3) time complexity, where
n = |V|, ∆ is the maximum vertex degree, and H is the harmonic function. Another greedy
algorithm, referred to as Raei’s greedy, was published in [15]. This algorithm requires
O(n2) time. It differs from the previous one in the way in which the next vertex at each
construction step is chosen. That is, they differ with respect to the used greedy function.
An improved version of Wang’s greedy, referred to as Fei’s greedy, was proposed in [16]. It
incorporates a tie-breaking strategy based on Raei’s greedy. More recently, Pan et al. [17]
presented a fast greedy heuristic with a complexity of O(n lg n + m) that outperforms all
previous greedy approaches both in terms of solution quality and computational time.
Therefore, Pan’s greedy is considered as the currently best-performing greedy algorithm
for the MPIDS problem.

To the best of our knowledge, there are only two studies that have attempted to solve
the MPIDS problem using metaheuristic approaches. Metaheuristics are approximate
techniques for solving hard optimization problems of different types. They are among
the most popular algorithms in the context of problem instances that are too large (or too
complex) to be solved by exact techniques. Many metaheuristics are built upon subordinate
algorithmic components such as greedy heuristics and local search algorithms. Examples
of such metaheuristics include simulated annealing, tabu search, iterated local search, and
greedy randomized adaptive search procedures. However, the family of metaheuristics
also includes a whole range of bio-inspired techniques such as ant colony optimization,
genetic and evolutionary algorithms, and particle swarm optimization. Especially in
combinatorial optimization, metaheuristics have had considerable success in application
areas such as scheduling, routing, bioinformatics, medical research, passenger and freight
terminal operations, and data classification. We refer the interested reader to [18,19] for
further information. The MPIDS problem was first tackled by a memetic algorithm [20],
called ILPMA, which uses tabu search for improving solutions. The second one is a hybrid
approach, referred to as HSIA, that combines a genetic algorithm with particle swarm
optimization. Both ILPMA and HSIA share two common features: they incorporate a
greedy randomized adaptive algorithm similar to GRASP [21] to seed the initial population
with good solutions and their performances are compared with those of the greedy
algorithms.



Algorithms 2021, 14, 79 3 of 16

1.3. Motivation and Contribution

Wang’s greedy, Raei’s greedy and Fei’s greedy suffer from a common drawback that
they are time-consuming and become highly ineffective with an increasing graph size. This
is mainly due to the vertex selection strategy employed at each construction step of the
solution construction process. In particular, the choice of the next vertex to be included in
the current partial solution requires the evaluation of the corresponding greedy function
for all vertices that do not form part of the current partial solution, which requires O(n) of
time. This time complexity is reduced to O(∆) time in the case of both Pan’s greedy and
our proposal by considering only the neighbors of a particular vertex at each construction
step. We expect our algorithm to outperform the currently best greedy algorithm (Pan’s
algorithm) due to the following reasons. First, we develop a graph pruning procedure
that identifies vertices that must form part of an optimal solution. Second, the vertex
selection strategy of our algorithm benefits from the exploitation of two greedy functions
(cover-degree and need-degree), which is in contrast to Pan’s greedy which only makes use of
cover-degree. Finally, in a post-processing step we remove redundant vertices.

Our motivation for the development of a fast and effective greedy algorithm is as
follows. The development of high-performing metaheuristics for the MPIDS problem
is still a challenge. However, the performance of metaheuristics depends largely on the
performance of their main components. Greedy heuristics are a key component of many
metaheuristics. They are used for generating initial solutions or for reconstructing partial
solutions. The contribution of this paper is to review the available literature on greedy
heuristics for the MPIDS problem and make a performance comparison among them both in
terms of solution quality and computation time. Furthermore, designing an efficient greedy
approach is still a relevant challenge despite many prior attempts. Therefore, we also
propose an improved greedy algorithm which outperforms the existing greedy approaches
both on benchmark instances that have already been considered in the literature, but also
on larger complex networks with millions of nodes. Our approach can be considered a
further improvement of the basic idea of Pan’s work [17].

1.4. Structure of the Paper

The rest of this paper is organized as follows. In Section 2 we give a technical
description of the MPIDS problem. In Section 3, we review the available literature on
greedy heuristics applied to the MPIDS problem. The proposed greedy algorithm is
described in Section 4. In Section 5, we present and discuss the experimental results.
Finally, Section 6 summarizes the work and offers directions for future work.

2. The Minimum Positive Influence Dominating Set Problem

We describe the MPIDS problem by starting with basic notions and underlying
definitions which are used throughout this paper. Let G = (V, E) be an undirected
graph that is both simple and connected. (Note that an undirected graph is called simple
if it does not contain multiple edges between pairs of vertices and loops.) Hereby, V is a
set of n vertices—representing, for example, people—and E ⊂ V ×V is a set of m edges
modeling, for example, relationships between those people. Let v and u be two distinct
vertices from G. Now, v and u are said to be adjacent (neighbors) if they are connected by an
edge. Further, the open neighborhood of v is defined as N(v) := {u ∈ V | (v, u) ∈ E}. N(v)
is often simply called the neighborhood of v in G. The closed neighborhood of v is defined
as N[v] := N(v) ∪ {v}, i.e., N[v] includes all vertices adjacent to v, including v itself. The
degree of v, denoted by deg(v), is the number of v’s neighbors, that is, deg(v) = |N(v)|. A
vertex of degree one—that is |N(v)| = 1—is called a pendant vertex.

Definition 1 (Dominating set). A dominating set (DS) of G is a subset D ⊆ V such that each
vertex v ∈ V \ D is adjacent to at least one vertex in D.
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Definition 2 (Positive influence dominating set). A positive influence dominating set (PIDS)
of G is a dominating set D ⊆ V such that each vertex v ∈ V has at least half of its open neighbors
in D, that is, at least ddeg(v)/2e vertices of N(v) must belong to D for each v ∈ V.

Figure 1b shows an example of a DS of the graph shown in Figure 1a, where black
vertices represent those that are in the DS. Figure 1c provides an example of a PIDS (black
vertices). Vertex 6, for example, has degree 3 and d3/2e = 2 of its neighbors (vertex 4 and
vertex 2) are part of the PIDS.

64 3

2 81

9 5 0

7

(a) A simple, connected
undirected graph

6

2

5

4 3

81

9 0

7

(b) A dominating set

64

2

5

3

81

9 0

7

(c) A positive influence
dominating set

Figure 1. An illustrative example of the MPIDS problem. Black vertices form part of the solutions.

Definition 3 (Minimum dominating set problem). Given an undirected simple graph G =
(V, E), the minimum dominating set (MDS) problem asks to find a DS of G of minimum cardinality.

This problem can be easily formulated in terms of an integer linear program (ILP).
For convenience, we assume that V is enumerated as v1, v2, . . . , vn. A binary variable
xi ∈ {0, 1} is associated to each vertex vi ∈ V such that xi = 1 if and only if vi is part of the
optimal solution, and xi = 0 otherwise. The ILP model can then be stated as follows.

Minimize
n

∑
i=1

xi (1)

Subject to ∑
vj∈N[vi ]

xj ≥ 1 ∀vi ∈ V (2)

xi ∈ {0, 1} (3)

Equation (2) ensures that the generated solution is a dominating set. Remember that
N[vi] is the closed neighborhood of vi.

Definition 4 (Minimum positive influence dominating set problem). Given an undirected
simple graph G = (V, E), the minimum positive influence dominating set (MPIDS) problem asks
to find a PIDS of G of minimum cardinality.

Based on the ILP model of the MDS problem from above, the MPIDS problem can also
easily be stated in terms of an ILP as follow.

Minimize
n

∑
i=1

xi (4)

Subject to ∑
vj∈N(vi)

xj ≥
⌈

deg(vi)

2

⌉
∀vi ∈ V (5)

xi ∈ {0, 1} (6)
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Equation (5) ensures that a feasible solution contains at least half of the neighbors of
each vertex vi ∈ V.

3. Greedy Heuristics

Greedy algorithms are very common techniques for constructing solutions to combinatorial
optimization problems from scratch, in a step-by-step manner. They are either used as
standalone algorithms, or as subordinate algorithmic components of more sophisticated
metaheuristics. Algorithm 1 shows the pseudo-code of a basic greedy algorithm for the
MPIDS problem. It takes as input a simple, connected undirected graph G = (V, E)
representing an instance of the MPIDS problem and provides as output a subset of vertices
S ⊂ V corresponding to a positive influence dominating set. This algorithm builds a
solution step by step, starting from an empty solution S = ∅. At each construction step, it
adds one feasible vertex v∗ ∈ S to S until a valid solution is obtained. S = V \ S denotes
the set of vertices of V not belonging to S. Note that this set initially contains all the vertices
of the graph.

Algorithm 1 MPIDS_Greedy()

Input: a simple, connected undirected graph G = (V, E)
Output: a positive influence dominating set S

1: S← ∅
2: while (S is not a valid PIDS solution) do
3: v∗ ←argmax{greedy_function(v) |v ∈ S}
4: S← S ∪ {v∗}
5: end while
6: return S

At each construction step, the choice of the solution component to be added to the
current partial solution is made deterministically based on a so-called greedy function which
plays an important role for the performance of the algorithm. It evaluates each solution
component by measuring the local improvement obtained by adding the corresponding
component to the incumbent partial solution. Most of the existing greedy algorithms for
the MPIDS problem are based on at least one of the two greedy functions that are known
as cover-degree and need-degree. To define them, let S ⊂ V be the incumbent partial solution
which is not yet a PIDS and hS(v) = d deg(v)

2 e − |NS(v)| where NS(v) = N(v) ∩ S denotes
the set of neighbors of v ∈ V belonging to S. Then, we say that v is covered if hS(v) ≤ 0
and not covered otherwise. Consequently, S is a valid solution (i.e., a PIDS) if and only
if all vertices of V are covered. Now, for a given v ∈ S, cover-degree and need-degree are
calculated as in Equation (7) and Equation (8), respectively.

cover-degree(v) = |{ u ∈ N(v) : hS(u) > 0}| (7)

need-degree(v) = ∑
u∈N(v)

max(hS(u), 0) (8)

The first one represents the number of uncovered neighbors of v with respect to S,
whereas the second represents the total need of the uncovered neighbors of v. Table 1
indicates which ones of these two greedy functions were used in the previous works from
the literature. In the case in which an algorithm makes use of both functions, one of them
was used as a secondary criterion for breaking ties in those cases in which the principal
criterion provides the same value for several vertices. In the following, we recall the most
recent and best-performing greedy algorithm, that is, Pan’s greedy [17]. Note that, even
though Pan’s greedy uses the same greedy function (cover-degree) as Wang’s greedy, its
time complexity is much lower. This is for the following reason. While Wang’s algorithm
considers at each construction step any so-far unselected vertex for inclusion into the
current partial solution, Pan’s algorithm—after choosing the next unselected vertex v in
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ascending order with respect to the degree—only considers so-far unselected neighbors of
v in subsequent construction steps until v is covered.

Table 1. Greedy functions used in the existing literature.

Algorithm Name Algorithm Type Greedy Function Complexity Year Ref

Wang’s algorithm Greedy cover-degree O(n3) 2011 [13]
Raei’s algorithm Greedy need-degree O(n2) 2012 [15]
Fei’s algorithm Greedy both - 2016 [16]
Pan’s algorithm Greedy cover-degree O(nlgn + m) 2019 [17]

ILPMA A hybrid metaheuristic
(GA + TS) cover-degree - 2018 [20]

HSIA A hybrid metaheuristic
(GA + PSO) cover-degree - 2019 [22]

The detailed pseudo-code for Pan’s algorithm is provided in Algorithm 2. This
pseudo-code is the same as in the original publication, but with using our notation and after
removing some unnecessary details in order to improve the readability of the algorithm.

Algorithm 2 Pan’s greedy algorithm [17]

Input: a simple, connected undirected graph G = (V, E)
Output: a positive influence dominating set S

1: Rename the vertices from V such that {v1, v2, · · · , vn} are the vertices in ascending
order of the degree

2: S← ∅
3: S← V \ S
4: for i = 1 to n do
5: if hS(vi) > 0 : vi is an uncovered vertex then
6: ρ← hS(vi)
7: for j = 1 to ρ do
8: u∗ ←argmax{cover-degree(u) | u ∈ NS(vi)}
9: S← S ∪ {u∗}

10: S← V \ S
11: end for
12: end if
13: end for
14: return S

4. The Proposed Algorithm

In the following, we describe our improved greedy algorithm—henceforth referred to
as IGA-PIDS—which is based on Pan’s algorithm for the MPIDS problem.

4.1. The Greedy Procedure

The pseudo-code of IGA-PIDS is given in Algorithm 3. It receives as input a problem
instance that consists of a simple, connected undirected graph G = (V, E) with n vertices,
and works as follows. First, the given graph is pruned by applying procedure GraphPruning(G)
(see Algorithm 4) which returns a partial solution S. This procedure identifies vertices that
must form part of the optimal solution and adds them to S. This is done in order to speed
up the process of solution construction of the greedy algorithm. Suppose that v ∈ V is a
pendant vertex, i.e., deg(v) = 1, and let u be its unique neighbor. First, u is then added
to S, because v must be covered and can only be covered by u. Second, if the degree of u
is two—that is, deg(u) = 2, let w 6= v be the second neighbor of u. As u must covered by
exactly one vertex, and as no other vertex benefits from choosing v for covering u, we can
savely choose w for covering u. Therefore, w is added to S.
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At this point, let C be the set of all so-far uncovered vertices. Next, the algorithm picks
yet uncovered vertices from C in (increasing) order of their degrees. The chosen vertex vi is
then covered by choosing neighbors of vi from NS(vi) until vi is covered. In particular, at
each step the vertex with the largest cover-degree value of all vertices in NS(vi) is chosen.
If tie breaking is necessary, it is done with the need-degree function (see lines 8 and 9 of
Algorithm 3). Finally, the algorithm is terminated when all vertices are covered, that is,
when S corresponds to a valid PIDS solution.

Algorithm 3 IGA-PIDS: Improved greedy algorithm for the MPIDS problem

Input: a simple, connected undirected graph G = (V, E)
Output: a positive influence dominating set S

1: S← GraphPruning(G)
2: C ← set of all so-far uncovered vertices
3: Rename the vertices from C such that {v1, v2, · · · , v|C|} are the vertices in ascending

order of the degree
4: S← V \ S
5: while S is not a valid PIDS solution do
6: Let vi be an un-covered vertex with the smallest sub-index in C
7: ρ← hS(vi)
8: for j = 1 to ρ do
9: cdmax ← max{cover-degree(u) | u ∈ NS(vi)}

10: u∗ ← argmax{need-degree(u) | u ∈ NS(vi) ∧ cover-degree(u) = cdmax}
11: S← S ∪ {u∗}
12: S← V \ S
13: end for
14: C ← C \ {vi}
15: end while
16: Reduce(S)
17: return S

Algorithm 4 Function GraphPruning(G)

Input: a simple, connected undirected graph G = (V, E)
Output: a partial solution S

1: S← ∅
2: for each pendant vertex v ∈ V do
3: Let u be the unique neighbor of v
4: if u /∈ S then
5: S← S ∪ {u}
6: end if
7: if deg(u) = 2 and v /∈ S then
8: Let w 6= v be the second neighbor of u
9: if w /∈ S then

10: S← S ∪ {w}
11: end if
12: end if
13: end for
14: return S

4.2. Removing Redundant Vertices

The results produced by our greedy algorithm may contain redundant vertices. A
redundant vertex is a vertex that can be removed from a solution without making the
solution invalid. Formally, a vertex v ∈ S is redundant if each vertex u from its closed
neighborhood N(v) has strictly more than half of its neighbors in S. In other words, v ∈ S
is redundant if and only if ∀u ∈ N(v) : hS(u) < 0. That is, each vertex in S is checked in
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sequence to find whether it is redundant. If it is the case, this vertex may safely be removed
from S and all values hS(.) of its neighbors will be decreased by one. A pseudo-code of the
complete removal-function is presented in Algorithm 5. This function has a time complexity
of O(n + m). Note that our algorithm, by default, makes use of this function. However, we
will also test our algorithm without removing redundant vertices. The resulting algorithm
variant is henceforth labelled IGA-PIDS−.

Algorithm 5 Function Reduce(S)

Input: a valid solution S that may contain redundant vertices
Output: a valid solution S without redundant vertices

1: for each vertex v ∈ S do
2: if hS(u) < 0 for all u ∈ N(v) then
3: S← S \ {v}
4: for all u ∈ N(v) do
5: hS(u)← hS(u)− 1
6: end for
7: end if
8: end for
9: return S

Another way to implement this procedure, which is not considered here, would be to
adopt the same removal strategy as presented in [23] for the minimum weight dominating
set problem. For the latter, all redundant vertices are initially grouped in a unique set called
Sr. Then, a vertex from Sr is iteratively chosen to be removed according to a particular
greedy function. In the case of the MPIDS problems, we could select the vertex with the
smallest degree, for example. This iterative process stops once Sr becomes empty and all
redundant vertices are removed.

4.3. Complexity

Here, we describe the time complexity of IGA-PIDS presented in Algorithm 3. We
assume that the problem instance G = (V, E) is represented by an adjacency list and
the solution S as a list. It obliviously that function GraphPruning(·) has complexity O(n).
Line 3 is done in O(n lg n) time as |E| ≤ |V| and n = |V| is the number of vertices in
G. Since the size of S does not exceed n, all other lines, excluding lines 9 and 10, can be
done in O(n) time. The running time of lines 9 and 10 is only proportional to the sum of
degrees of all vertices in V. The hand shaking lemma [24] states that ∑

v∈V
deg(v) = 2m, where

m = |E| is the number of edges in G. Therefore, these two lines require O(m) time. In the
light of the above, we can conclude that the time complexity of IGA-PIDS takes at most
O(n lg n + m) time.

5. Experimental Evaluation

The proposed greedy algorithm (IGA-PIDS) is compared with four existing greedy
algorithms, namely Wang’s greedy [13], Raei’s greedy [15], Fei’s greedy [16] and Pan’s
greedy [17].

5.1. Computational Setting

In order to conduct a fair comparison with these greedy algorithms, all of them
were implemented in ANSI C++ using Cygwin GCC 4.4 for compiling the software and
carried out on the same computing platform. The experiments were performed on a
laptop equipped with a 64-bit 2.5-GHz Intel® Core™ i5-7200U processor and 8 GB of RAM.
Moreover, in order to get an impression about the solution quality provided by IGA-PIDS,
we applied the ILP solver ILOG CPLEX 12.10 in single-threaded mode—with a time limit
of 2 CPU hours per instance—to all problem instances. Note that the default optimality
gaps of CPLEX were used. These default values indicate CPLEX to stop when an integer
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feasible solution is reached that is within 0.01% of optimality. The experiments with CPLEX
were performed on a cluster of machines with two Intel® Xeon® Silver 4210 CPUs with
10 cores of 2.20 GHz and 92 Gbytes of RAM.

5.2. Problem Instances

We use three sets of benchmark instances for the experimental evaluation. The first
two have already been used by other studies on the MPIDS problem, while the last one
(SNAP networks) consists of large-scale complex networks that are studied for the first
time in the context of the MPIDS problem.

1. Small social networks: this class of instances contains four well-known real and
synthetic networks namely American College Football (Football) [25], Zachary’s Karate
Club (Karate) [26], the Dolphins Network (Dolphins) [27] and the Jazz Network (Jazz) [28].
Characteristics such as the number of vertices and the number of edges of these
networks are provided in Table 2. The values of the optimal solutions for each
instance (except for the last one) were taken from [20] in which the authors also made
use of CPLEX.

2. Large-scale social networks: this class of instances contains 13 real social networks
which were provided by the authors of [20] and some of them were originally
downloaded from the Network Data Repository [29]. Their characteristics, together
with a brief description, are given in Table 3.

3. SNAP social networks: this class of instances contains 22 real complex networks with
sizes ranging from 104 vertices to 3× 107. It was download from the Stanford Large
Network Dataset Collection [30]. All these instances were originally directed graphs
and they are transformed to undirected graphs by neglecting arc orientations and
considering parallel edges as one edge. Table 4 gives a brief description of the SNAP
networks used in our experiments after preprocessing.

Table 2. Small real social networks used in experiments.

Network n m Opt [20] Description

Karate 34 78 15 Social network of
friendships in a Karate club

Dolphins 62 159 30 Dolphin social network

Football 115 613 63 Network of American
college football teams

Jazz 198 2742 - Collaboration network
between Jazz Musicians

Table 3. Large-scale real social networks used in experiments.

Network n m Description

CA-GrQc 5241 14,484 Collaboration network of Arxiv General Relativity
CA-HepTh 9875 25,973 Collaboration network of Arxiv High Energy Physics Theory
CA-HepPh 12,006 118,489 Collaboration network of Arxiv High Energy Physics

CA-AstroPh 18,771 198,050 Collaboration network of Arxiv Astro Physics
CA-CondMat 23,133 93,439 Collaboration network of Arxiv Condensed Matter
Email-Enron 36,692 183,831 Email communication network from Enron

ncsrrlwg2 6396 15,872 Collaboration network between by scientists
actors-data 10,042 145,682 Collaboration network between by actors

ego-facebook 4039 88,234 Social circles from Facebook
socfb-nips-ego 2888 2981 Social friendship network extracted from Facebook
socfb-Mich67 3748 81,903 Social friendship network extracted from Facebook

socfb-Brandeis99 3898 137,567 Social friendship network extracted from Facebook
soc-gplus 23,628 39,194 Social network extracted from Google+
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Table 4. SNAP networks used in experiments.

Network n m Description

amazon0302 262,111 899,792 Amazon product co-purchasing
network from 2 March 2003

amazon0312 400,727 2,349,869 Amazon product co-purchasing
network from 12 March 2003

amazon0505 410,236 2,439,437 Amazon product co-purchasing
network from 5 May 2003

amazon0601 403,394 2,443,408 Amazon product co-purchasing
network from 1 June 2003

cit-HepPh 34,546 420,877 Arxiv High Energy Physics paper
citation network

cit-HepTh 2777 352,285 Arxiv High Energy Physics
paper citation

email-EuAll 265,214 364,481 Email network from a EU
research institution

p2p-Gnutella04 10,876 39,994 Gnutella peer to peer network from
4 August 2002

p2p-Gnutella24 26,518 65,369 Gnutella peer to peer network from
24 August 2002

p2p-Gnutella25 22,687 54,705 Gnutella peer to peer network from
25 August 2002

p2p-Gnutella30 36,682 88,328 Gnutella peer to peer network from
30 August 2002

p2p-Gnutella31 62,586 147,892 Gnutella peer to peer network from
31 August 2002

soc-Slashdot0811 7736 469,180 Slashdot social network from
November 2008

soc-Slashdot0922 82,168 504,230 Slashdot social network from
February 2009

soc-Epinions1 75,879 405,740 Who-trusts-whom network of
Epinions.com

wiki-Vote 7115 100,762 Wikipedia who-votes-on-whom
network

web-NotreDame 325,729 1,090,108 Web graph of Notre Dame
web-Stanford 281,903 1,992,636 Web graph of Stanford.edu

wiki-Talk 2,394,385 4,659,565 Wikipedia talk
(communication) network

web-BerkStan 685,230 6,649,470 Web graph of Berkeley and Stanford
web-Google 875,713 4,322,051 Web graph from Google
cit-Patents 3,774,768 16,518,947 Citation network among US Patents

In general, note that the benchmark instances are assumed to be simple connected
graphs without isolated vertices. For this purpose, we employed a preprocessing step for
removing isolated vertices, self-loops and parallel edges.

5.3. Results and Discussion

The numerical results for the first two benchmark sets—-that is, for social networks
—are presented in Table 5 which has the following structure. The first column indicates the
name of the social network. For each of the fives greedy algorithms the table contains two
columns. The first one, labeled Val, provides the objective function values of the solutions
found for the corresponding problem instances. The other one, labeled Time(s), shows the
corresponding running times in seconds. In this context, note that a computation time of
0.0 means that the time was below 0.01 s. The best result per table row is highlighted in
bold font. Moreover, note that provenly optimal results—see Table 6 for the full CPLEX
results—are underlined.
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Table 5. Numerical results for the small and large-scale real social networks.
.

Network
Wang’s Greedy Raei’s Greedy Fei’s Greedy Pan’s Greedy IGA-PIDS

Val Time (s) Val Time (s) Val Time (s) Val Time (s) Val Time (s)

CA-GrQc 2626 0.28 2623 0.30 2622 0.36 2612 0.0 2607 0.0
CA-HepTh 4598 0.95 4602 0.94 4582 1.17 4565 0.0 4544 0.0
CA-HepPh 4887 2.91 4886 2.91 4876 3.27 4857 0.015 4817 0.015

CA-AstroPh 7081 7.92 7085 7.91 7062 8.59 7030 0.031 6953 0.031
CA-CondMat 9869 7.58 9853 7.64 9837 8.11 9816 0.0 9748 0.015
Email-Enron 12,015 13.52 12,184 15.75 11,958 15.23 11,952 0.047 11,843 0.031

ncstrlwg2 3034 0.39 3025 0.39 3023 0.44 3026 0.0 3010 0.015
actors-data 3199 2.33 3205 2.41 3187 2.44 3215 0.015 3174 0.016

ego-facebook 1976 0.75 1975 0.84 1975 0.84 1978 0.062 1975 0.078
socfb-nips-ego 1398 0.02 1398 0.05 1398 0.05 1398 0.0 1398 0.016
socfb-Mich67 1481 0.56 1478 0.63 1473 0.55 1458 0.016 1427 0.015

socfb-Brandeis99 1535 0.97 1539 1.64 1529 0.98 1522 0.031 1502 0.032
soc-gplus 8341 1.97 8247 2.22 8267 2.56 8351 0.031 8289 0.031

Karate 31 0.0 31 0.0 30 0.0 32 0.0 31 0.0
Dolphins 15 0.0 15 0.0 15 0.0 15 0.0 15 0.0
Football 68 0.015 68 0.0 69 0.0 69 0.0 68 0.0

Jazz 81 0.015 82 0.0 81 0.0 83 0.0 81 0.0

Avg 3660.88 2.363 3664.47 2.565 3646.12 2.623 3645.82 0.015 3616.59 0.017

Table 6. Results before and after removing redundant vertices, and the comparison to CPLEX.

Network
Before After CPLEX

Val Time (s) Val Time (s) Val Gap (%)

CA-GrQc 2610 0.0 2607 0.0 2587 * 0.77
CA-HepTh 4559 0.0 4544 0.0 4471 * 1.63
CA-HepPh 4855 0.0 4817 0.015 4718 2.1

CA-AstroPh 7034 0.031 6953 0.031 6740 3.16
CA-CondMat 9804 0.015 9748 0.015 9584 1.71
Email-Enron 11,914 0.047 11,843 0.031 11,682 * 1.38

ncstrlwg2 3014 0.0 3010 0.015 2994 * 0.53
actors-data 3214 0.015 3174 0.016 3092 2.65

ego-facebook 1977 0.062 1975 0.078 1973 * 0.1
socfb-nips-ego 1398 0.015 1398 0.016 1398 * 0
socfb-Mich67 1452 0.0 1427 0.015 1329 7.37

socfb-Brandeis99 1517 0.016 1502 0.032 1400 7.29
soc-gplus 8294 0.031 8289 0.031 8244 * 0.55

Karate 31 0.0 31 0.0 30 * 3.33
Dolphins 15 0.0 15 0.0 15 * 0
Football 70 0.0 68 0.0 63 * 7.93

Jazz 82 0.0 81 0.0 79 * 2.53

Avg 3637.65 0.014 3616.59 0.017 3552.88 2.53

The experimental results allow us to make the following observations. IGA-PIDS
is able to obtain the best solution for 15 out of 17 problem instances. In contrast, all
competitors together only return the best solution in 7 out of 17 cases. In addition, we
can observe that both Pan’s greedy and IGA-PIDS are significantly faster than the other
three competitors (approximately two orders of magnitude). Furthermore, IGA-PIDS
is only marginally slower than Pan’s greedy, which means that the improved solution
quality obtained by IGA-PIDS is not achieved at the expense of a significantly increased
computation time. Moreover, without taking our greedy approach into consideration, it is
worth to note that Pan’s greedy outperforms the other greedy algorithms both in term of
solution quality and computational efficiency. Finally, while the performance of each of the
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four greedy algorithms starts to degrade in the context of the largest problem instances,
this is not the case for IGA-PIDS.

In order to study the effect of the proposed function to eliminate redundant vertices
—see function Reduce(·) described in Section 4.2—Table 6 reports the performance of our
greedy algorithm before (IGA-PIDS) and after (IGA-PIDS−) removing redundant vertices.
From these results it can be concluded that most solutions suffer from the existence of
redundant vertices. Thus, removing them can provide more accurate results which comes,
however, at the cost of additional computation time. Having said that, the increase of the
average computation time is very moderate: from 0.014 s to only 0.017 s. In Table 6, we
additionally present the results obtained from the ILP solver CPLEX. The obtained results
show that the newest CPLEX version (12.10) is very efficient for the MPIDS problem. In fact,
only in two cases (social networks socfb-nips-ego and Dolphins) our greedy algorithm is
able to match the results of CPLEX. Moreover, CPLEX provides provenly optimal solutions
in 11 out of 17 cases (within 2 h of computation time). Provenly optimal results are marked
by an asterisk. Nevertheless, the results provided by IGA-PIDS are, on average, only 2.53%
worse than those of CPLEX (see last table column labeled Gap (%)).

Finally, the results for the large-scale SNAP networks are presented in Table 7, in the
same format as outlined above. The results of CPLEX are also included. Moreover, note
that no result is provided in those cases in which the computation time of the respective
algorithm exceeded 7200 s (two hours). The results on these larger networks confirm
our findings from the first two benchmark sets. However, the differences between the
algorithms are now even more pronounced. Observe, for example, that—on average—IGA-PIDS
produces solutions with more than 2000 vertices less per instance when compared to Pan’s
greedy. Moreover, the limits of CPLEX are clearly reached in the application to problem
instances of the size and the complexity found in the Amazon* instances and cit-Patents.
The results provided by CPLEX in these cases are far worse than those of IGA-PIDS, as
indicated by the gaps. In fact, the results of IGA-PIDS improve by approx. 55% over
the results of CPLEX in these cases. Therefore, IGA-PIDS is overall the best algorithm,
even outperforming CPLEX with an average gap of approx. 42% between the IGA-PIDS
solutions and the CPLEX solutions.

Finally, we decided to provide a statistical assessment of the obtained results by means
of critical difference (CD) plots [31]. In order to produce the average rank of each greedy
algorithm considering the complete set of 39 problem instances, the scmamp R package [31]
first applies the Friedman test to compare the five approaches simultaneously. In this way,
the hypothesis that the five techniques perform equally was rejected. Then, the package
performs pairwise comparisons using the Nemenyi post-hoc test [32]. As mentioned above,
the results are shown graphically by means of CD plots. Note that, in such a plot, each
considered algorithm is placed on the horizontal axis according to its average ranking.
The performances of those algorithms that are below the critical difference threshold
(computed with a significance level of 0.05) are considered as statistically equivalent. This
is indicated by bold horizontal bars joining the markers of the respective algorithm variants.
Figure 2 shows two CD plots. The first one (Figure 2a) concerns the obtained solution
quality. IGA-PIDS is clearly the best-performing algorithm, with statistical significance.
Concerning computation times (Figure 2b) it can be observed that Pan’s greedy is slightly
faster than IGA-PIDS. However, no statistical difference can be detected between the
running times of Pan’s algorithm and those of IGA-PIDS.
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Table 7. Numerical results for the SNAP networks. Red color indicates those cases in which CPLEX fails to find good solutions.

Network
Wang’s Greedy Raei’s Greedy Fei’s Greedy Pan’s Greedy IGA-PIDS CPLEX

Val Time (s) Val Time (s) Val Time (s) Val Time (s) Val Time (s) Val Gap (%)

Amazon0302 136,448 1680.11 136,177 1565.20 135,502 1619.34 136,723 0.19 134,569 0.23 262,111 −48.66
Amazon0312 186,772 5862.28 188,194 5676.23 186,009 5777.75 183,108 0.56 180,853 0.67 400,727 −54.87
Amazon0505 189,392 6152.06 - - - - 185,307 0.56 183,114 0.64 410,236 −55.63
Amazon0601 184,892 6833.42 186,126 6077.13 - - 182,291 0.63 179,964 0.66 403,394 −55.39

Cit-HepPh 13,340 47.08 13,394 39.11 13,316 37.40 13,340 0.078 13,111 0.08 12,350 6.16
Cit-HepTh 11,549 24.81 11,671 25.31 11,531 25.77 11,544 0.078 11,399 0.08 10,740 6.14

Email-EuAll 106,178 521.58 105,691 676.42 105,815 1038.92 106,220 0.89 105,906 1.25 105,659 * 0.23
p2p-Gnutella04 4310 1.41 4297 1.42 4294 1.68 4243 0.0 4170 0.0 3995 4.38
p2p-Gnutella24 8812 6.61 8794 6.63 8776 6.84 8750 0.015 8665 0.015 8457 2.46
p2p-Gnutella25 7682 4.69 7653 4.70 7659 4.86 7635 0.016 7555 0.0 7370 2.51
p2p-Gnutella30 12,321 16.41 12,314 16.27 12,285 17.19 12,254 0.016 12,125 0.015 11,859 2.24
p2p-Gnutella31 20,614 61.08 20,604 60.42 20,541 63.56 20,448 0.032 20,268 0.016 19,876 * 1.97

Slashdot0811 19,115 98.34 19,567 101.80 19,126 137.48 18,571 0.047 18,515 0.032 18,419 * 0.52
Slashdot0902 21,417 107.20 21,856 78.92 21,403 85.19 20,857 0.063 20,782 0.031 20,629 * 0.74
soc-Epinions1 21,227 52.86 21,494 88.59 21,241 82.89 21,015 0.046 20,986 0.031 20,960 * 0.12

Wiki-Vote 1570 0.75 1593 0.77 1564 0.83 1506 0.016 1499 0.015 1461 * 2.60
web-NotreDame 144,654 1172.89 144,696 1223.31 144,391 1366.73 145,564 0.55 144,385 0.84 143,742 0.45

web-Stanford 139,970 2944.28 140,577 3635.30 139,812 3405.31 140,630 114.64 139,346 139.45 137,175 1.58
Wiki-Talk - - - - - - 499,392 46.125 490,133 42.13 480,063 * 2.10

web-BerkStan - - - - - - 339,452 209.27 337,388 259.81 335,493 0.56
web-Google - - - - - - 396,836 3.49 394,806 3.67 389,079 1.47
cit-Patents - - - - - - 1,599,417 6.0 1,576,091 5.73 3,774,768 −57.63

Avg - - - - - - 184,322.86 17.42 182,074.09 20.70 317,207.41 −42.60
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Figure 2. Critical difference plots.

6. Conclusions

In this paper, we have studied an APX-hard combinatorial optimization problem in
graphs and networks, the so-called minimum positive influence dominating set (MPIDS)
problem. For tackling this problem, we present a simple and a fast improved greedy
algorithm (IGA-PIDS) which is based on an effective exploitation of information provided
by problem specific knowledge. The performance of IGA-PIDS is evaluated on 17 social
networks of different sizes, ranging from 34 to 23,628 vertices. Moreover, we have applied
our own greedy algorithm, as well as the competitors from the literature, to large-scale
complex networks from the SNAP data set. The previously existing greedy heuristics
for the MPIDS problem were re-implemented by ourselves for this purpose. Numerical
results show that our greedy algorithm is able to outperform the other greedy algorithms
from the literature, providing solutions with a significantly higher quality, especially in the
context of the larger SNAP networks. We were also able to show that CPLEX, even though
performing very strongly on small and medium-sized problem instances, reaches its limits
when tackling large-scale complex networks.

Concerning limitations of this work, it would certainly be interesting to relate network
characteristics with problem difficulty. That is, in the future it would be very interesting to
identify those network characteristics that make the problem difficult, both for CPLEX and
for our greedy algorithm. Note that such characteristics are not necessarily the same for
the two types of algorithms. Furthermore, the design of well-working metaheuristics for
this problem seems very challenging. Considering the results of CPLEX from this work, it
is clear that the two existing metaheuristics for the MPIDS problem can not compete with
CPLEX for most of the 17 social networks that were tackled in earlier works. The design
of novel metaheuristics for the MPIDS problem will benefit from our improved greedy
heuristic. Moreover, given the results of CPLEX, it might be a good idea to develop hybrid
algorithms that combine metaheuristic elements with those of exact solvers such as CPLEX.
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