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ABSTRACT

Peer-to-peer ridesharing (P2P-RS) enables people to arrange one-

time rides with their own private cars, without the involvement of

professional drivers. It is a prominent collective intelligence appli-

cation producing significant benefits both for individuals (reduced

costs) and for the entire community (reduced pollution and traffic),

as we showed in a recent publicationwhere we proposed an online

approximate solution algorithm for large-scale P2P-RS.

In this paper we tackle the fundamental question of assessing

the benefit of predicting ridesharing requests in the context of P2P-

RS optimisation. Results on a public real-world show that, by em-

ploying a perfect predictor, the total reward can be improved by

5.27% with a forecast horizon of 1 minute. On the other hand, a

vanilla long short-term memory neural network cannot improve

upon a baseline predictor that simply replicates the previous day’s

requests, whilst achieving an almost-double accuracy.

KEYWORDS

Online P2P ridesharing; optimisation; prediction; deep-learning.

1 INTRODUCTION

With the growing popularity of the sharing economy, ridesharing

services are called to transform urban mobility. Shared mobility

is expected to have major environmental and economic impacts

by reducing pollution, traffic congestion, and energy consumption,

which could be further enhanced with the advent of electrical vehi-

cles. Moreover, ridesharing is set to become even more attractive

in a near-future world of self-driving cars, spurring a transition

from solo driving to mass transit. This major endeavour addresses

key topics in Sustainable Development Goals 11 (“sustainable cities

and communities”) and 7 (“affordable and clean energy”).

The concept of ridesharing has recently received increasing at-

tention, both in the transportation industry (e.g., UberPool, Lyft,

and Maramoja) and in academia. However, ridesharing may have

different interpretations that result in significant differences in the

computational models that can be used to represent and address

the problem. This problem has been addressed from a computa-

tional view point only very recently using various algorithms [1, 3,

and references therein]. Most of these approaches (e.g., [1]) focus

on maximising the benefits of the passengers considering mainly

the concept of quality of service (i.e., minimising the delay experi-

enced by the users). In a recent work [3] we proposed a different

perspective on the peer-to-peer ridesharing (P2P-RS) problem by
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considering not only the quality of service, but also the environ-

mental benefits resulting from ridesharing (e.g., CO2 and traffic

congestion reduction). This perspective address the trade-off be-

tween those two objectives when forming shared rides, looking at

ridesharing as a method to foster sustainable mobility for policy-

makers and not only as a profitable alternative for commuters.

On the one hand, despite tackling an inherently online problem

(i.e., ridesharing requests are not known in advance), the majority

of the works in the ridesharing optimisation literature do not em-

ploy predictions of forthcoming requests to improve the quality of

their online solutions.1 On the other hand, even though there exist

some works aiming at predictingmobility on demand requests (see,

e.g., [9]), such works only look at the accuracy of the predictions,

whereas their impact on the optimisation process remains unclear.

In this paper we tackle the fundamental question of assessing

the benefit of predictions in the context of P2P-RS optimisation.

Specifically, we present our preliminary study that aims at includ-

ing predictions in our P2P-RS solution technique [3], with the ob-

jective of improving the total reward of the computed solution. Re-

sults on a public real-world dataset [7] show that, by employing a

perfect predictor, the total reward can be improved by 5.27% (6.31%

during weekend days) with a forecast horizon of 1 minute. On the

other hand, a long short-term memory (LSTM) neural network [6]

cannot improve upon a predictor that simply replicates the previ-

ous day’s requests, whilst achieving an almost-double accuracy.

2 THE P2P RIDESHARING PROBLEM

We consider the P2P-RS problem as defined in [3], i.e., as an on-

line stochastic scheduling problem [8] over a discrete time horizon

H = [1,h]. Our problem takes place in an area divided in n zones,

i.e., Z = {1, . . . ,n}. At each step t ∈ H , the system receives a

(possibly empty) set of requests Rt . Each request r ∈ Rt is a tuple

〈i, j,d,δ 〉 characterised by a starting zone i ∈ Z and a destination

zone j ∈ Z , a Boolean value d ∈ B indicating whether the corre-

sponding commuter has a car or not (i.e., whether it is a driver or

not), and themaximum time δ ∈ H the commuter is willing to wait

to be assigned to a car. Formally, r ∈ R = Z × Z × B × H . Hence,

〈R1, . . . ,Rt , . . . ,Rh〉 represents the input of the problem. We mea-

sure the performance of a given set S of requests (i.e., a car) both

in terms of environmental benefits and quality of service (QoS). For-

mally, we define V : 2R → R as the total reward (i.e., considering

environmental benefits and the quality of service) associated to a

given car S as

V (S) = ρCO2
· ECO2

(S) + ρnoise · Enoise(S)+

ρtraffic · Etraffic(S) + ρQoS ·Q(S), (1)

1In [3] we propose a look-ahead mechanism that filters out immediately profitable cars
whose formation could hinder the formation of even better cars in the near future.

http://arxiv.org/abs/2009.02997v1
https://doi.org/doi


AAMAS’20, May 2020, Auckland, New Zealand Filippo Bistaffa, Juan A. Rodríguez-Aguilar, and Jesús Cerquides

where ρCO2
, ρnoise, and ρtraffic measure the importance of the cor-

responding environmental benefit and ρQoS that of the QoS. We

refer the interested reader to [3] for further technical details.

In our previous work [3], we definedQ : 2R → R≤0, namely the

quality of service associated to a given car S , asQ(S) = −
∑
r ∈S

tr−t
∗
r

tr
,

where tr and t∗r are the travel times associated to request r with

and without ridesharing, respectively. Since t∗r is the optimal travel

time associated to r = 〈i, j,d,δ 〉 (i.e., obtained by driving through

the shortest path from zone i to zone j), then 0 ≤
tr−t

∗
r

tr
≤ 1.

In this paper we extend such a definition by considering a more

realistic QoSmeasure that also takes into account the to-be-assigned

(TBA) delay, i.e., the delay from the time tr of arrival of a request r

and the time of its assignment to a car S . Notice that, given a car S ,

the assignment time of any request r ∈ S to S corresponds to the

time when S is actually formed, i.e., when the the latest request

r ∈ S has entered the system. Formally,

Q(S) = −
∑

r ∈S

tr − t∗r
tr

−
∑

r ∈S

maxr ′∈S tr ′ − tr

δr
. (2)

Notice that, in order to be consistent with our previous definition

of Q(·), we normalise each TBA delay by dividing it by the maxi-

mum assignment time, hence ensuring that 0 ≤
maxr ′∈S tr ′−tr

δr
≤ 1.

Intuitively, the P2P-RS problem aims at arranging, at each time

step t , a (possibly empty) setSt of non-overlapping cars among the

current set of active requests, with the objective of maximising the

sum of the associated rewards over the entire time horizon H . The

formal definition of the P2P-RS problem can be found in [3].

2.1 Solving the P2P-RS Problem

We tackle the P2P-RS problem by solving a sequence of offline prob-

lems by means of our approximate offline approach [3]. Our ap-

proximate offline approach employs a well-known technique for

approximately solving time-constrained large-scale combinatorial

optimisation problems modelled as integer linear programs (ILP),

which consists in (1) removing those variables from the model that,

a priori, do not seem to help for the generation of good solutions,

and (2) passing the reduced ILP to a solver in order to get the best

solution possible in the available computation time.

In the specific case of our approximate offline approach, we it-

eratively apply a probabilistic greedy heuristic to generate feasible

cars that represent “good candidates” for the final optimisation so-

lution.We then formulate and solve an ILP (specifically, a weighted

set packing problem) whose decision variables correspond only to

the cars in the above-mentioned set of good candidates, rather than

to the set of all possible cars (whose enumeration would be infea-

sible in the time budget we consider for the P2P-RS scenario, i.e.,

1 minute for solving the offline problems corresponding to each

time step). Finally, the set of cars resulting from the solution of the

above-discussed reduced ILP is filtered by means of a look-ahead

mechanism that discards immediately profitable cars whose for-

mation could hinder the formation of even better cars in the near

future. Notice that, even though such a technique allows us to put

each offline solution in the context of the overall online problem,

it does not represent a predictive technique, since it does not take

into account the history of requests, and, more importantly, it is

applied after the optimisation, and not before.

3 PREDICTIONS FOR P2P RIDESHARING

As previously discussed, none of the recent works on rideshar-

ing optimisation [1, 3, and references therein] employs prediction

to improve the quality of the solution in terms of total reward.

Indeed, rather than employing a predictive approach, the major-

ity of the works embrace reactive techniques that aim at taking

into account the requests in the optimisation process once they

already materialised inside the system (including our own look-

ahead method [3]). As a possible notable exception, Bicocchi et

al. [2] proposed a systems for recommending ridesharing matches

based on the historical data provided by a large Italian telecom op-

erator.

To the best of our knowledge, themajority of theworks focusing

on predictingmobility on demand requests are usually interested in

measuring and maximising the accuracy of predicting the number

of requests (e.g., [9]). On the other hand, the actual impact of such

predictions on the optimisation process remains unclear.

Here we tackle the following fundamental questions: are predic-

tions beneficial wrt to reactive techniques in the context of P2P-RS

optimisation? If so, which is the best forecast horizon f ? Which is

the maximum improvement in terms of total reward that one can

expect by employing predictions? How do predictions impact on

the solution quality of our approximate offline approach, which re-

ceives a larger amount of input requests in the same time budget?

To address the above questions, we incorporate 3 different types

of predictors in our P2P-RS online solution algorithm: (1) a perfect

predictor with 100% accuracy, (2) a predictor that replicates the

requests of the previous day (as also considered in [9]), and (3) a

vanilla LSTM neural network [6], comprised of a LSTM layer with

a hidden vectorh of sizeZ×Z (i.e., the number of different possible

requests), a fully connected layer, and a ReLU layer.

4 EXPERIMENTAL EVALUATION

4.1 Experimental Methodology

Our experimental evaluation has the following objectives:

(1) determine the maximum improvement in terms of total re-

ward when employing a perfect predictor,

(2) determine the best forecast horizon f for predictions,

(3) compare a vanilla LSTM predictor with a perfect predictor,

a yesterday predictor, and our look-ahead approach [3].

If not otherwise specified, our experimental evaluation follows the

same methodology adopted in our previous work [3]. We employ

the same publicly available real-world dataset of taxi trips in Man-

hattan, New York City [7], considering the most recent data avail-

able at the time of writing (i.e., June 2019). As previously men-

tioned, in all our experiments we consider a more realistic mea-

sure for QoS wrt [3], i.e., one that also takes into account the to-be-

assigned delay (Equation 2). In all our experiments we consider a

maximum assignment time δ = 5 and a time horizon h = 1 day.

Following [9], we employ the symmetric mean absolute percent-

age error (SMAPE) [5] to measure the accuracy of all predictors:

SMAPE =
1

n

n∑

t=1

|Pt −Gt |

(Pt +Gt )/2
,

where Pt andGt are the prediction and the ground truth at time t .
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Figure 1: Total reward percentage improvement wrt no predictions (best viewed in colour).
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Figure 2: Average number of requests (including predictions) in the pool (best viewed in colour).

Our LSTM predictor has been trained on a machine with a 12-

cores 3.70GHz CPU, 32GB of RAM, and two GeForce RTX 2080

Ti GPUs. All optimisation experiments have been run on a cluster

whose computing nodes have two 4-cores 2.26GHzCPUs and 32GB

of RAM, using CPLEX 12.7 as ILP solver.2

4.2 Perfect Predictor

First, we aim at determining the maximum improvement in terms

of total reward by employing a perfect predictor when considering

a forecast horizon f up to the considered maximum assignment

time δ = 5, i.e., f ∈ {1, 2, 3, 4, 5}. Notice that, since the behaviour

and the performance of our online optimisation algorithm depends

on the parameters γ , drate, and lsize (namely, the solution time bud-

get, the determinism rate, and the candidate list size), following

[3] we determined the values of such parameters for each f using

the irace package. Figure 1 shows the total reward percentage

improvement when using a perfect predictor as well as our look-

ahead approach [3], compared with the case with no prediction

(i.e., f = 0). Results clearly show two interesting behaviours.

First, for every considered prediction technique, the improve-

ment obtained by employing predictions follows a pattern that

clearly repeats every week, reaching the maximum improvement

2Source code: https://github.com/filippobistaffa/P2P-RS/tree/OptLearnMAS.

during the weekend (days marked in red). Second, results clearly

show that the reward improvement decreases when increasing the

forecast horizon f , providing a tangible benefit only up to f = 2.

Although the explanation of these results is not straightforward,

by looking at the average number of requests in the pool in the

corresponding days (Figure 2) we get some interesting insights.

Indeed, we notice a correlation between the behaviour in Figure

1 and 2, suggesting that a slightly larger amount of requests dur-

ing theweekend allows for a larger reward improvement due to the

employment of predictions. These observations seem related to our

previous findings, as in [3]we noticed that the quality of our online

approach wrt the offline approach progressively increased as the

problem size increased. Nonetheless, it seems that once the num-

ber of requests in the pool grows excessively due to the longer fore-

cast horizon (the average pool size for f = 5 is more than double

wrt the case without predictions, i.e., when using the look-ahead

approach), our approximate offline approach cannot produce a so-

lution of the same quality in the same time budget (i.e., 1 minute).

We will further investigate these aspects in our future work.

Our main conclusion is that our online optimisation algorithm

clearly benefits from perfect predictions only when using a fore-

cast horizon f ∈ {1, 2}, reaching an average improvement of 5.27%

(6.31% during weekend days) with f = 1. In comparison, our look-

ahead approach achieves an average improvement of 2%.

https://github.com/filippobistaffa/P2P-RS/tree/OptLearnMAS


AAMAS’20, May 2020, Auckland, New Zealand Filippo Bistaffa, Juan A. Rodríguez-Aguilar, and Jesús Cerquides

1

S

2

S

3

M

4

T

5

W

6

T

7

F

8

S

9

S

10

M

11

T

12

W

13

T

14

F

15

S

16

S

17

M

18

T

19

W

20

T

21

F

22

S

23

S

24

M

25

T

26

W

27

T

28

F

0
2
4
6
8
10
12
14
16

Day of June 2019

SM
A
P
E
(%
)

Vanilla LSTM (f = 1) Yesterday (f = 1)

Figure 3: SMAPE for LSTM and yesterday predictors (best viewed in colour).
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Figure 4: Total reward percentage improvement wrt no predictions (best viewed in colour).

4.3 LSTM and Yesterday Predictors

In our second set of experiments we aim at evaluating two base-

line predictors, a vanilla LSTM predictor and a yesterday predictor,

which simply replicates the request of the previous day. We mea-

sure the performance both in terms of accuracy (SMAPE) and total

reward improvement. Given the above-discussed results, we con-

sider a forecast horizon of 1 time step for both these predictors.

Figure 3 shows that the vanilla LSTM significantly outperforms

the yesterday predictor in terms of accuracy, achieving an average

SMAPE of 6.27 vs 11.18. Nonetheless, these results are not reflected

when measuring the improvement in terms of total reward (Fig-

ure 4), as the vanilla LSTM is actually performing worse than the

counterpart (+0.71% vs +1.89%). Note that our previous look-ahead

approach (+2%) slightly outperforms both baseline predictors.

5 CONCLUSIONS

In this preliminary study concerning the integration of predictions

in our online approximate algorithm for large-scale P2P-RS opti-

misation, we showed that, in our experiments, predicting future

requests is beneficial, in the best case, only for up to 2 time steps of

forecast horizon, and that a vanilla LSTMpredictor cannot improve

upon a yesterday predictor in terms of total reward improvement,

whilst achieving an almost-double accuracy. Thus, we decisively

conclude that accuracy alone cannot be taken as a sole perfor-

mance measure for predictions, especially in the context of solving

an online optimisation process. Nonetheless, given our sometimes

counter-intuitive findings, we will further investigate the impact

of predictions on the optimisation process. Furthermore, we aim

at evaluating different and more advanced predictors, e.g., CNN-

LSTM [4], which are specifically designed for prediction problems

on inputs with spatial dependencies, like the P2P-RS problem.
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