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Abstract. Embryo selection is a critical step in assisted reproduction (ART): a good
selection criteria is expected to increase the probability of inducing pregnancy. In
the past, machine learning methods have been used to predict implantation and to
rank the most promising embryos. Here, we study the use of a probabilistic graph-
ical model that assumes independence between embryos’ individual features and
cycles characteristics. It also accounts for a third source of uncertainty attributed to
unknown factors. We present an empirical validation and analysis of the behavior of
the model within real data. The dataset describes 604 consecutive ART cycles car-
ried out at Hospital Donostia (Spain), where embryo selection was performed fol-
lowing the Spanish Association for Reproduction Biology Studies (ASEBIR) pro-
tocol, based on morphological features. The performance of our model is evaluated
with different metrics and the predicted probability densities are examined to ob-
tain significant insights about the process. Special attention is given to the relation
between the model and the ASEBIR protocol. We validate our model by showing
that its predictions show correlation with the ASEBIR score when the score is not
provided as a feature. However, once the selection based on this protocol has taken
place, our model is unable to separate implanted and failed embryos when only em-
bryo individual features are used. From here, we can conclude that ASEBIR score
provides a good summary of morphological features.
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1. Introduction

Assisted reproductive technologies (ARTs) are a set of invasive medical techniques that
attempt to induce a pregnancy, used mainly to address infertility. Each trial of a repro-
duction treatment applying a suitable ART is known as a cycle. When a woman under-
goes a cycle, she follows a treatment of ovarian stimulation for several weeks. Then,
oocytes are retrieved and fertilized, and the resulting embryos are cultured for several
days. Afterwards, the most viable embryos are selected to transfer to the uterus. After
transference, the occurrence of embryo implantation determines the process of the cycle.
However, for a transfer, current techniques are able to determine the number of embryos
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that implanted, but unable to identify individually which ones implanted. The probability
of pregnancy could be increased by transferring a larger number of embryos [1], but this
leads to higher multiple-birth rates, which is considered risky for both mother and the de-
veloping fetuses [1, 2]. In fact, in many countries there are legal restrictions limiting the
number of embryos transferred (e.g., Spanish law limits it to 3). Therefore, the selection
of the most viable embryos is a critical step to optimize the probability of pregnancy.

Embryo selection is a complex and partially subjective task. The evaluation of em-
bryos is based mainly on their morphological features. Initially, the lack of consensus
in this assessment made it impossible to compare results across centres [3]. A unified
criteria was created to address this problem: the ASEBIR protocol [4]. This method clas-
sifies embryos into a categorical scale (A,B,C,D) using morphological criteria. In recent
years, machine learning techniques have been used to assist clinicians in embryo selec-
tion and pregnancy prediction [5, 6, 7, 8]. Most of them rely on supervised classification,
meaning that only the embryos whose outcome is known (all embryos in the cycles were
implanted or none were) are used for training. However, novel methods [7] try to benefit
from cycles with partial implantation (not all the transferred embryos were implanted).

The model considered in this paper also deals with cycles with partial implantation.
Our model accounts for the factors handled by clinicians in their standard practice as
possible determinants of the success of an ART cycle. It assumes independence between
embryos and cycles and takes into account a third source of uncertainty corresponding to
unknown factors. The main goal of this work is to validate the model using real data, and
to study the correlation with ASEBIR score. The paper is organized as follows. Next,
we describe the dataset. In Section 2, the model is presented as well as the learning
algorithm. In Section 3 the experimental setup is explained, introducing the different
probabilistic classifiers and metrics. Then, their results are shown and discussed. Finally,
in Section 5 conclusions are drawn and a few open lines for future work are presented.

1.1. Data

The database, originally studied in [7], was collected by the Unit of Assisted Reproduc-
tion of the Hospital Donostia (Spain) throughout 18 months (January 2013 - July 2014).
It contains 604 cycles of an ART treatment and 3125 associated embryos. Each cycle has
a certain number of embryos associated (between 1 and 18), only some of which will
actually be transferred (between 1 and 3). Cycles are described by 25 features, mainly
related to the female patient, the sperm donor and the stimulation procedure. Embryos
are described by 20 features, out of which 13 are morphological features.

Out of the 604 cycles, 192 resulted in a pregnancy with 253 embryos implanted. Of
these successful cycles, in 57 of them all the embryos were implanted (108 embryos). In
total, the outcome of 947 embryos is known (all embryos implanted in a cycle or none),
for 307 we have only the label proportions (in cycle with not all embryos implanted), and
for the rest, 1871 embryos, we do not have any information (not transferred embryos).

2. Method

In this work we employ a probabilistic model originally presented in [9] that uses the
available information from both cycles and individual embryos, and considers a third
source of uncertainty related with unknown factors [10].
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Figure 1. Graphical description of the proposed model. Shadowed nodes represent observed variables. Double
line denotes a deterministic variable.

2.1. General probabilistic model

The main assumption of the model is that the probability of an embryo being willing
to implant given its own features is independent of the corresponding cycle’s features.
Similarly, the probability of a cycle being willing to let embryos implant given its own
features is independent of the embryos’ individual features. Hence embryos and cycles
are modeled independently. Moreover, the main novelty is that our model accounts for
unknown factors that affect ART success [10] which cannot be explained by the available
data. This third source of possible error is included in the model as a Bernoulli distribu-
tion with parameter θ1. The probability of implantation of a high-quality embryo within
a cycle willing to let embryos implant is θ1. If the available information were capable of
perfectly predicting the outcome of the process (i.e., no unknown factors), this parameter
would be θ1 = 1. If one of the components (embryo or cycle) is not deemed as good
enough to allow implantation then the probability of implantation is directly 0.

Let xc
e denote the characteristic features of embryo e included in cycle c. Denote by

wc
e a Boolean random variable that represents whether the embryo is willing to implant.

This variable wc
e is modeled by the probability distribution p(wc

e |xc
e;α), where α is the

hyperparameter of such distribution. Similarly, let vc denote the features of cycle c. De-
note by rc a Boolean random variable that represents whether cycle c is willing to let em-
bryos implant, modeled by the probability distribution p(rc |vc;β ), with hyperparameter
β . Both wc

e and rc are modeled using probabilistic classifiers.
Let sc

e denote an observed variable that tells whether embryo e is transferred in cycle
c. Denote by ice a Boolean random variable that represents whether embryo e implants in
cycle c, modeled by a Bernoulli distribution ice ∼ Bernoulli(θwc

e·rc·sc
e), given wc

e, rc and sc
e.

That is, θwc
e·rc·sc

e is only θ1 when all three variables are positive.
Finally, let yc denote an observed variable that tells the number of embryos im-

planted in a cycle. It is just the sum of the ice variables modeling embryo implantation
(deterministic), yc = ∑e∈Ec ice, where Ec is the set of embryos associated to cycle c.

Figure 1 shows the complete graphical representation of the model. The shadowed
variables are the observed ones (features and final number of implantations per cycle),
and θ ,α and β are the hyperparameters of the three probability distributions that we are
modeling. The other three white nodes wc

e, ice and rc represent latent variables, which
generally need to be inferred. In some cases the value of yc is enough to deduce the value
of these variables. For example, if yc > 0 then we know that this cycle is willing to let
embryos implant (rc = 1). However, if yc = 0 we do not know which was the actual cause
of failure: the embryo, the cycle or an unknown factor. The complete joint probability is

p(x,w,v,r,s, i,y;α,β ,θ) = p(w|x;α)p(x)p(r|v;β )p(v)p(s)p(y|i)p(i|w,r,s;θ) (1)
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The goal of the learning algorithm is to estimate the set of hyperparameters param-
eters θ ,α and β that maximize the conditional probability:

p(y|x,v,s;α,β ,θ) = ∑
r

p(r|v;β ) ∑
ĭ∈Is,y

∑
w

p(ĭ|w,r,s;θ)p(w|x;α) (2)

where Is,y is the set of vectors i compatible with the selections {sc
e} and the known

outcomes {yc}. E.g., in a cycle with 4 embryos, where only the first and third are selected
and only one of them was implanted, the possible vectors are [1,0,0,0] and [0,0,1,0].

2.2. EM Algorithm

In the presented model there are latent variables (wc
e, ice and rc) whose value is gener-

ally unknown. We use an Expectation-Maximization (EM) algorithm [11] to learn in
this scenario, combining the completion (expectation) of these latent variables with the
estimation of the hyperparameters θ ,α and β maximizing the log-likelihood.

For each cycle c we consider a pair of weights q(rc = r) associated to the two pos-
sible values of rc, r ∈ {0,1}. These weights are computed as the likelihood of obtaining
rc = r taking into account the whole model, not just the features of the cycle:

q(rc = r) ∝
(

∑
ic∈Isc

: ,yc

∏
e

∑
wc

e

p(ice|wc
e,rc = r,sc

e;θ)p(wc
e|xc

e;α)
)

p(rc = r|vc;β ). (3)

Similarly, for each embryo e in the cycle we compute the weights corresponding to
the two values of wc

e, w ∈ {0,1}:

q(wc
e = w) ∝ ∑

rc

(
∑

ic∈Isc
: ,yc

p(ice|w,rc,sc
e;θ)p(w|xc

e;α)·

∏
e′ �=e

∑
wc

e′
p(ice′ |wc

e′ ,rc,sc
e′ ;θ)p(wc

e′ |xc
e′ ;α)

)
p(rc|vc;β ) (4)

Finally, the weights associated to each possible combination (i ∈ Isc
: ,yc ) for ic are:

q(ic = i) ∝ ∑
rc

(
∏

e
∑
wc

e

p(ie|wc
e,rc,sc

e;θ)p(wc
e|xc

e;α)
)

p(rc|vc;β ) (5)

Our algorithm starts with the initialization, where the weights are randomly assigned
and normalized (to sum up to 1). If the real value of the variable is known, these values
are fixed (e.g., if yc > 0 then q(rc = 1) = 1 and q(rc = 0) = 0). Then, it repeats iteratively:

Expectation: The unfixed weights are updated with Equations 3, 4 and 5, using the
current fit of the model (α̂, β̂ , θ̂1).

Maximization: Hyperparameters (α,β ,θ1) are re-estimated. For α and β , we re-
train the probabilistic classifiers with the new weights obtained from the previous
E-step. For θ1, the maximum likelihood estimator is:
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θ̂1 =
∑c ∑ic

′ ∈Isc
: ,yc

∑e q(ic
′
)q(rc = 1)q(wc

e = 1)ice′

∑c ∑ic
′ ∈Isc

: ,yc
∑e q(ic′)q(rc = 1)q(wc

e = 1)
(6)

The method iterates until the stopping condition is met (maximum number of itera-
tions or convergence of weights). It is run multiple (10) times with different initialization
to mitigate the local-maximum problem of EM algorithms.

3. Experimental setup

The main goal of this project is to analyze the performance of the general probabilistic
model proposed in Section 2.1 and to compare the performance with different proba-
bilistic classifiers. Moreover, we study the effect in our model of the ASEBIR quality
score [4], and whether both our model and this score agree on the embryo selection.

Our model uses probabilistic classifiers to predict the probability that an embryo is
willing to implant, p(w|x;α), and that a cycle is willing to let embryos implant, p(r|v;β ).
Different classifiers may perform differently depending on the context. In order to make
a fair comparison between the various models we use three different probabilistic clas-
sifiers: (i) Extra-trees classifier (ETREES) (ii) Gradient Boosting (GBOOST) and (iii)
Logistic Regression (LR).

Because of the weakly supervised nature of the problem [12], the evaluation of the
models is not trivial and needs to be properly addressed in order to make a fair compari-
son. For instance, a large fraction of embryos in the dataset were not actually transferred;
hence they are not labeled as implanted or not. We use them in our EM learning algorithm
but they cannot be used to assess model performance. Moreover, a part of the transferred
embryos have no label: when only some of the embryos in their cycle were implanted.
However, for these, we do know the proportion of the embryos that were implanted. This
information should be used to take full advantage of the data.

Also the interpretation of the predictions needs proper consideration. For instance,
the full model gives the probability of implantation of an embryo in a certain cycle as-
suming independence between embryo and cycle. In fact, we can compute the probabil-
ity of both embryos and cycles of being appropriate for ART directly with the respective
probability classifier. This means that, if we only want to rank a set of embryos according
to their quality, we could use just the embryo classifier trained within the whole model.

To test the performance of the model and obtain relevant metrics and probability
densities, we use 5-fold cross validation. The resulting measures are averaged to obtain a
final evaluation metric. Most of the metrics used here need the probability of implantation
of an embryo in a cycle, which is given by:

p(ice = 1|xc
e,s

c
e,vc;α,β ,θ)= p(ice = 1|wc

e = 1,sc
e,rc = 1;θ)p(wc

e = 1|xc
e;α)p(rc = 1|vc;β ).

(7)
where p(ice = 1|wc

e = 1,sc
e,rc = 1;θ) = θ1 · sc

e. Remember that if sc
e = 0, p(ice = 1|wc

e,s
c
e =

0,rc;θ) = 0. That is why the evaluation is only performed with embryos which were
transferred (sc

e = 1). The other two terms in Eq. 7 are given by the probabilistic classifiers.
Performance is assessed in terms of different metrics. To test the ability to predict

embryo implantation, we use only the embryos whose fate is known (i.e., those belonging
to completely implanted cycles or failed cycles) and measure the AUC-ROC [13].
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Table 1. Metrics and control measures obtained using 5-fold cross validation

Classifier AUC-ROC LP-loss loglikelihood AUC-ROC LP-loss loglikelihood

ETREES 0.64±0.07 0.54±0.05 1.45±1.59 0.64±0.05 0.54±0.05 1.27±1.57
GBOOST 0.71±0.04 0.72±0.03 0.45±0.05 0.73±0.07 0.73±0.07 0.43±0.06

LR 0.63±0.08 0.60±0.05 0.51±0.10 0.62±0.08 0.64±0.07 0.52±0.10

Full model Full Model, hidden quality

To account also for the partially implanted cycles, we use the label proportion loss
(LP-loss) and the negative log-likelihood. LP-loss measures how close the real and pre-
dicted label proportions are. For each cycle, the difference between the number of em-
bryos predicted as implanted and the actual number of implanted embryos is taken in
absolute value. The LP loss is the mean value of these differences. Similarly, we might
want to consider how confident is the model in predicting each of these labels. For that
matter, we use the negative log-likelihood. As most of the embryos do not have a true la-
bel to compare with, we compute this measure cycle by cycle, calculating the likelihood
of the real number of implanted embryos within the learnt model. Let Nc be the number
of transferred embryos in cycle c, and yc the number of implanted ones. The negative
log-likelihood is

L (Y;α,β ,θ) =− 1
B ∑

c

Nc

∑
j=0

�[yc = j] log p(yc), (8)

where B is the total number of cycles and p(yc), the probability of cycle c having yc
implanted embryos, is,

p(yc) = ∑
ic∈Iyc

∏
e
[ice p(ice = 1)+(1− ice)p(icc = 0)] (9)

where p(ic) is given by Eq. 7 and Iyc consists of the possible joint assignment of value
(vector) to all the {ice}e∈Ec , as explained in the context of Eq. 2.

4. Results and discussion

A relevant point is whether our model agrees with the ASEBIR score. In our dataset,
we have this score as a feature, as well as all the factors used to compute it. To study
the agreement, we trained the model in two different ways: with and without this quality
score included as a feature of embryos. In Table 1 we show the metrics obtained for each
probabilistic classifier and for both models (with and without ASEBIR score feature).
Observe that there are no significant differences between the two different models. The
model seems not to be directly using the feature as a discriminant for implantation. It
must be gathering that information from the other features in the dataset which are, in
fact, the ones used in their protocol [4].

In terms of performance, GBOOST seems to be the best one according to AUC-ROC
and negative log-likelihood. ETREES and LR classifiers are both similar regarding AUC-
ROC but their log-likelihood values are rather different. A critical difference between
these two measures is that they use a different set of embryos for evaluation. AUC-ROC
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Table 2. Estimated parameter θ1 for the three different classifiers.

Model Classifier θ1 Model Classifier θ1

Full Model
ETREES 0.60±0.04

Full Model
(Hidden quality)

ETREES 0.58±0.04
GBOOST 0.49±0.00 GBOOST 0.49±0.01
LR 0.52±0.01 LR 0.51±0.00

is calculated using only embryos whose outcome is known, whereas log-likelihood uses
all transferred embryos, evaluating cycle by cycle the proportion of implanted embryos.
Thus, ETREES performs relatively well in a pure classification task (implantation or
not), but it fails on estimating the probability of more uncertain cases.

Table 2 shows the mean estimation of the parameter θ1 obtained with each classifier
and model, over the different CV folds. The standard deviation is quite low for all the
classifiers, implying a consistent estimation. This parameter is the probability that a good
embryo will actually get implanted in a good cycle. It represents the third source of
failure for implantation of our model, and accounts for all unknown factors.

For the GBOOST and LR classifiers, the mean value of θ1 is close to 0.5. This
means that these models, even when the classifiers consider that both embryo and cycle
are promising, expect that only half of these pairs will succeed. The ETREES classi-
fier estimates a noticeably higher θ1 = 0.58. This might suggest that this model has a
higher confidence on the judgement of its embryo and cycle classifiers. Unfortunately,
this confidence does not translate into better results (see Table 1).

To fully grasp the behaviour of the models, we also analyze the different predicted
probability densities output by them. Figure 2 displays the densities, separated for suc-
cessful and failed cycles, of (i) whether the embryo is willing to implant, (ii) whether
the cycle is willing to accept embryos, and (iii) whether the ART treatment is leading
to a pregnancy (whole model). The ideal classifier would separate clearly the curves of
each class for the third case (right column). The results of all classifiers are quite similar:
Although intersection between both densities is considerable, the mode of the density for
successful treatments (pregnancy) is clearly to the right regarding that of the failed treat-
ments. This means that, on average, the models predict the actual implanted embryos as
more likely to implant than the failed ones.

In the first column of Figure 2, the probability of deeming an embryo as willing to
implant is practically the same for successful and failed treatments. At a first sight, one
could think that embryos are not relevant to predict a pregnancy. Nevertheless, it is note-
worthy that the embryos employed in this study are only the ones that were transferred.
And, transferred embryos are usually the best embryos as selected by the embryologists,
that is, all the embryos that we observed were considered as good-quality ones by the
specialists. Instead, most of the predictive power seems to come from the cycle. In the
middle column of Figure 2, it can be observed that the classifier gives a higher probabil-
ity of being a cycle willing to be implanted to those treatments that induced a pregnancy.
All this could mean that the protocol followed by the embryologists performs well in se-
lecting the best embryos based on the morphological features. Our model is not able to
further discriminate the embryos based on this data (the same they used) alone.

Figure 3 displays, in a similar way, different probability densities separating on the
ASEBIR score of the involved embryo. For this experiment, we hide the ASEBIR score
feature from the model. Under the independence hypothesis, the quality of an embryo
should not affect the probability that a cycle is in good conditions and, for the most part
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Figure 2. Density of the predicted probabilities for an embryo to be willing to implant, for a cycle to be
willing to let embryos implant and for the pair embryo-cycle to actually induce pregnancy. The figure shows
the different probability densities depending on the true outcome of each embryo-cycle pair (induce pregnancy
or not). Each row corresponds to a different probabilistic classifier (ETREES, GBOOST and LR).

of it, we observe that the embryo information has not leaked into the cycle classifier.
However, with ETREES there is a slight disparity in favor of treatments using embryos of
good quality. Embryo quality has the highest impact on the probability of considering an
embryo as willing to implant. All classifiers separate quite well the best (A) and worst (D)
quality embryos. ETREES and GBOOST seem not to differentiate embryos of medium
quality (B and C) completely, while LR does separate them slightly. For all classifiers the
embryo quality does translate well into the final prediction of implantation. Note that this
does not validate the model regarding implantation, but it implies that the model mostly
agrees with the ASEBIR score in the selection of the most promising embryos based on
this set of features.

5. Conclusions

In this paper, we address embryo selection for ARTs using a probabilistic model that
assumes independence between embryos and cycles. Using morphological data for each
individual embryo and characteristics about the cycle, the model is able to predict im-
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Figure 3. Density of the predicted probabilities for an embryo to be willing to implant, for a cycle to be
willing to let embryos implant and for the pair embryo-cycle to actually implant. The figure shows the different
probability densities depending on the ASEBIR quality score given to the embryo (A, B, C or D). Each row
corresponds to a different probabilistic classifier (ETREES, GBOOST and LR).

plantation. The performance of the model is tested using different classifiers which eval-
uate the goodness of the embryos and cycles. The Gradient Boosting classifier showed
the best results both in terms of AUC-ROC and negative log-likelihood.

The probability densities obtained from the predictions provided helpful insights
to understand the behaviour of the model. We studied the effect of the ASEBIR em-
bryo quality score within our model. We have not observed differences between models
learnt with and without the ASEBIR score directly as a feature. The probability densi-
ties grouped by this quality feature show a clear separation between groups (especially
between the best and worst grades), using both models. We have observed that, once
embryologists made their selection, the model does not provide more information about
individual embryos. This might indicate that the protocol followed by the embryologists
is already extracting most of the value out of the morphological data.

There are different research lines open after this exploration of the behaviour of the
model in relation to the ASEBIR protocol. We plan to enlarge our experimental setup to
obtain a deeper understanding of the intricacies of the model. Another direction would
be to conceive new, maybe simpler, models to test the assumptions of our current model
(independence between embryos and cycles, awareness of a third source of error, etc.).
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