
On n-contractive fuzzy logics

Rostislav Horč́ık
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Abstract

It is well known that MTL satisfies the finite embeddability property. Thus MTL
is complete w.r.t. the class of all finite MTL-chains. In order to reach a deeper under-
standing of the structure of this class, we consider the extensions of MTL by adding the
generalized contraction since each finite MTL-chain satisfies a form of this generalized con-
traction. Simultaneously, we also consider extensions of MTL by the generalized excluded
middle laws introduced in [9] and the axiom of weak cancellation defined in [30]. The
algebraic counterpart of these logics is studied characterizing the subdirectly irreducible,
the semisimple and the simple algebras. Finally, some important algebraic and logical
properties of the considered logics are discussed: local finiteness, finite embeddability
property, finite model property, decidability and standard completeness.

Keywords: Algebraic Logic, Fuzzy logics, Generalized contraction, Generalized ex-
cluded middle, Left-continuous t-norms, MTL-algebras, Non-classical logics, Residuated
lattices, Standard completeness, Substructural logics, Varieties, Weak cancellation.

1 Introduction

The research on formal systems for fuzzy logic has been growing rapidly during the last
years. The origin of this development can be traced back to Hájek’s works (see [19]) when he
defined the basic fuzzy logic BL in order to capture the common fragment of the three main
fuzzy logics known at that time:  Lukasiewicz logic, Product logic and Gödel logic. These
three logics were proved to be standard complete, i.e. complete with respect to the semantics
where the set of truth values is the real unit interval [0, 1], the conjunction is interpreted
by a continuous t-norm and the implication is interpreted by the residuum of the t-norm.
Namely these t-norms were respectively the  Lukasiewicz t-norm, the product t-norm and the
minimum t-norm, the three main continuous t-norms. In [11] it was proved that BL is, in
fact, complete with respect to the semantics given by all continuous t-norms and their residua.
Nevertheless, the necessary and sufficient condition for a t-norm to be residuated is not the
continuity, but only the left-continuity. For this reason it made perfect sense to consider
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a more general fuzzy logic system whose semantical completeness would be the class of all
left-continuous t-norm and their residua. This logic, MTL, was introduced by Esteva and
Godo in [14] and its standard completeness was proved in [24]. Therefore, if we understand
fuzzy logic systems as those that are complete with respect to some class of t-norms and
their residua, then MTL becomes the weakest fuzzy logic and the research on fuzzy logic
systems becomes research on extensions of MTL. Moreover, since it is an algebraizable logic
whose equivalent algebraic semantics is the variety of all MTL-algebras, there is a one-to-
one correspondence between axiomatic extensions of MTL and subvarieties of MTL-algebras.
Some of them are already known (see for instance [26, 16, 13, 17, 18, 31, 32, 34, 30, 20]) but
a general description of the structure of all these extensions is still far from being known.
In this paper we propose a new way to attack this challenging problem by considering some
very general varieties of MTL-algebras, namely the varieties of n-contractive MTL-algebras.
Some of them were already introduced in [9]. Another reason why to investigate the variety
of n-contractive MTL-algebras follows from the fact that MTL has the finite embeddability
property (as can proved from the results in [5]). This means that MTL is complete w.r.t. the
class of all finite MTL-algebras. Thus it is quite natural to study the structure and properties
of this class of algebras. One possible approach is to investigate the structure of n-contractive
MTL-algebras since each finite MTL-algebra is n-contractive for some n ∈ N.

After some necessary general preliminaries in Section 2 about axiomatic extensions of MTL
and their algebraization, we consider in Section 3 some equations introduced by Kowalski and
Ono in [27] to define n-contractive fuzzy logics. Section 4.1 deals with the algebraic counter-
part of these logics, the n-contractive MTL-algebras; subdirectly irreducible, semisimple and
simple algebras are characterized. In Section 4.2 we add some other logics to the hierarchy of
n-contractive fuzzy logics by means of the weak cancellation law and the Ω operator and we
show that all of them are finitely axiomatizable. Section 4.3 deals with several construction
methods with MTL-chains that we need in the sequel. Finally, Section 4.4 is a discussion of
some relevant logical and algebraic properties of the considered logics, namely local finiteness,
finite embeddability property, finite model property, decidability and standard completeness.1

2 Preliminaries

In [14] Esteva and Godo define MTL (Monoidal T-norm based Logic) as the sentential logic
in the language L = {&,→,∧, 0} of type 〈2, 2, 2, 0〉 given by a Hilbert-style calculus with
the inference rule of Modus Ponens and the following axioms (using implication as the least
binding connective):

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ&ψ → ϕ
(A3) ϕ&ψ → ψ&ϕ
(A4) ϕ ∧ ψ → ϕ
(A5) ϕ ∧ ψ → ψ ∧ ϕ
(A6) ϕ&(ϕ→ ψ)→ ϕ ∧ ψ
(A7a) (ϕ→ (ψ → χ))→ (ϕ&ψ → χ)
(A7b) (ϕ&ψ → χ)→ (ϕ→ (ψ → χ))
(A8) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A9) 0→ ϕ

1A preliminar presentation of some results included in this paper is available in [33].
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Other usual connectives are defined by:
ϕ ∨ ψ := ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ);
ϕ↔ ψ := (ϕ→ ψ)&(ψ → ϕ);
¬ϕ := ϕ→ 0;
1 := ¬0.
We denote by FmL the set of L-formulae (built from a countable set of variables). If

Γ ∪ {ϕ} ⊆ FmL, we write Γ `MTL ϕ if, and only if, ϕ is derivable from Γ in the given
calculus. We write `MTL ϕ instead of ∅ `MTL ϕ.

Definition 2.1. A bounded integral commutative residuated lattice is an algebra A =
〈
A,&A,→A,∧A,∨A, 0A, 1A

〉
of type 〈2, 2, 2, 2, 0, 0〉 such that:

1. 〈A,∧A,∨A, 0A, 1A〉 is a bounded lattice.

2. 〈A,&A, 1A〉 is a commutative monoid.

3. →A is the residuum of &A: for every a, b, c ∈ A, a&Ab ≤ c iff a ≤ b→A c.

We will often omit the supperscripts in the operations of the algebras when they are clear
from the context.

Definition 2.2 ([14]). An MTL-algebra is a bounded integral commutative residuated lattice
satisfying the prelinearity equation:

(x→ y) ∨ (y → x) ≈ 1

The negation operation is defined as ¬Aa = a→A 0A. If the lattice order is total we will
say that A is an MTL-chain. The MTL-chains defined over the real unit interval [0, 1] (with
the usual order) are those where &A is a left-continuous t-norm2 and they are called standard
MTL-chains. If ◦ is a left-continuous t-norm, [0, 1]◦ will denote the standard chain given by
◦.

It is well known that the class of all MTL-algebras is a variety. We will denote it as MTL.

Definition 2.3. Given a class K of MTL-algebras and a set of formulae Γ∪{ϕ} ⊆ FmL, we
define:

Γ |=K ϕ iff for all A ∈ K and for all evaluation v in A, v[Γ] ⊆ {1A} implies v(ϕ) = 1A.
If K = {A}, then we write Γ |=A ϕ instead of Γ |={A} ϕ.

Then, one can prove this theorem of strong completeness for MTL logic:

Theorem 2.4. If Γ ∪ {ϕ} ⊆ FmL, then Γ |=MTL ϕ iff Γ `MTL ϕ.

But in fact the relation between MTL and the variety MTL is much stronger since MTL
is an algebraizable logic in the sense of Blok and Pigozzi (see [4]) whose equivalent algebraic
semantics is the variety MTL. So all the axiomatic extensions of MTL are also algebraizable
in this sense and there is a dual order isomorphism between axiomatic extensions of MTL
and subvarieties of MTL, using a translation of formulae into equations and viceversa.

2A t-norm is a binary operation ◦ : [0, 1]2 → [0, 1] which is associative, commutative, isotonic and has 1 as
a neutral element (see [25]).
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Axiom schema Name
¬¬ϕ→ ϕ (Inv)

¬ϕ ∨ ((ϕ→ ϕ&ψ)→ ψ) (C)
¬(ϕ&ψ) ∨ ((ϕ→ ϕ&ψ)→ ψ) (WC)

ϕ→ ϕ&ϕ (C2)
ϕ ∧ ψ → ϕ&(ϕ→ ψ) (Div)

ϕ ∧ ¬ϕ→ 0 (PC)
(ϕ&ψ → 0) ∨ (ϕ ∧ ψ → ϕ&ψ) (WNM)

Table 1: Several axiom schemata used in the framework of fuzzy logics.

1. Γ ⊆ FmL, L = MTL+Γ. Then the equivalent algebraic semantics of L is the subvariety
of MTL axiomatized by the equations {ϕ ≈ 1 : ϕ ∈ Γ}. We denote this variety by L
and we call its members L-algebras.

2. L ⊆MTL subvariety axiomatized by a set of equations Σ. Then the logic associated to L
is the axiomatic extension L of MTL given by the axiom schemata {ϕ↔ ψ : ϕ ≈ ψ ∈ Σ}.

In the study of these subvarieties the chains play a crucial role due to the next results:

Theorem 2.5 ([14]). Each MTL-algebra is isomorphic to a subdirect product of MTL-chains.

Corollary 2.6 ([14]). For every Γ∪{ϕ} ⊆ FmL, Γ `MTL ϕ iff Γ |=A ϕ for every MTL-chain
A.

The same kind of result is true for every axiomatic extension of MTL. It is also possible
to restrict the semantics to the algebras defined in the real unit interval by a left-continuous
t-norm and its residuum, obtaining the so-called standard completeness results. If a logic L
is an axiomatic extension of MTL, we say that L enjoys (finite) strong standard completeness
if, and only if, for every (finite) set of formulae T ⊆ FmL and every formula ϕ, T `L ϕ iff
T |=A ϕ for every standard L-algebra A. We will call this property (F)SSC, for short. We
say that L enjoys the standard completeness (SC, for short) if, and only if, the equivalence is
true for T = ∅.

Tables 1 and 2 collect some axiom schemata and important axiomatic extensions of MTL
that are defined by adding them to the Hilbert-style calculus given above for MTL.

The 0-free subreducts of MTL-algebras are called prelinear semihoops and they are defined
as follows:

Definition 2.7 ([15]). An algebra A =
〈
A,&A,→A,∧A, 1A

〉
of type 〈2, 2, 2, 0〉 is a prelinear

semihoop3 iff:

• A =
〈
A,∧A, 1A

〉
is an inf-semilattice with upper bound.

•
〈
A,&A, 1A

〉
is a commutative monoid isotonic with respect to the inf-semilattice order.

• For every a, b ∈ A, a ≤ b iff a→A b = 1A.
3These algebras are sometimes also called MTLH-algebras (see for instance [12]).
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Logic Axiom schemata
SMTL (PC)

WCMTL (WC)
ΠMTL (C)
IMTL (Inv)
WNM (WNM)
NM (Inv) and (WNM)
BL (Div)
SBL (Div) and (PC)

 L (Div) and (Inv)
Π (Div) and (C)
G (C2)

Table 2: Some axiomatic extensions of MTL and their defining axioms.

• For every a, b, c ∈ A, a&Ab→A c = a→A (b→A c).

• For every a, b, c ∈ A, (a→A b)→A c ≤ ((b→A a)→A c)→A c.

An operation ∨A is defined as: a ∨A b = ((a →A b) →A b) ∧A ((b →A a) →A a). If in
addition it has a minimum element, then it is a bounded prelinear semihoop (i.e. an MTL-
algebra).

Definition 2.8 ([2]). Let 〈I,≤〉 be a totally ordered set. Let {Ai | i ∈ I} be a family of totally
ordered semihoops sharing the same top element, say 1, and such that for i 6= j, Ai∩Aj = {1}.
Then

⊕
i∈I Ai (the ordinal sum of the family) is the totally ordered semihoop whose universe

is
⋃

i∈I Ai and whose operations are:

x&y =


x&Aiy if x, y ∈ Ai,

y if x ∈ Ai and y ∈ Aj \ {1} with i > j,

x if x ∈ Ai \ {1} and y ∈ Aj with i < j.

x→ y =


x→Ai y if x, y ∈ Ai,

y if x ∈ Ai and y ∈ Aj with i > j,

1 if x ∈ Ai \ {1} and y ∈ Aj with i < j.

For every i ∈ I, Ai is called a component of the ordinal sum.
If in addition I has a minimum, say i0, and Ai0 is bounded, then the ordinal sum

⊕
i∈I Ai

forms an MTL-chain.

Definition 2.9. Let A be an MTL-chain or a totally ordered semihoop. We define a binary
relation ∼ on A by letting for every a, b ∈ A, a ∼ b if, and only if, there is n ≥ 1 such that
an ≤ b ≤ a or bn ≤ a ≤ b. It is easy to check that ∼ is an equivalence relation. Its equivalence
classes are called Archimedean classes. Given a ∈ A, its Archimedean class is denoted as
[a]∼.

Definition 2.10. A totally ordered semihoop is indecomposable if, and only if, it is not
isomorphic to any ordinal sum of two non-trivial totally ordered semihoops.
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Theorem 2.11 ([30]). For every MTL-chain A, there is the maximum decomposition as
ordinal sum of indecomposable totally ordered semihoops, with the first one bounded.

Corollary 2.12 ([30]). Let A be an MTL-chain. If the partition {[a]∼ : a ∈ A \ {1A}} given
by the Archimedean classes gives a decomposition as ordinal sum, then it is the maximum
one. In this case we say that A is totally decomposable.

Proposition 2.13. Let A be an MTL-chain. The following are equivalent:

• A is totally decomposable.

• If [a]∼ 6= [b]∼, then a&b = a ∧ b.

• For every a ∈ A, [a]∼ ∪ {1
A} is closed under →.

Proof. First, we will prove that the second and the third statement are equivalent. Suppose
that [a]∼ 6= [b]∼ implies a&b = a ∧ b and take any x, y ∈ [a]∼. If x ≤ y then x → y = 1 ∈
[a]∼ ∪ {1

A}. Assume x > y and x → y 6∈ [a]∼. Then x&(x → y) = x ∧ (x → y) = x by our
assumption. But x&(x→ y) ≤ y in any MTL-algebra (a contradiction).

Now assume that each [a]∼ ∪ {1
A} is closed under →. Take any x ∈ [a]∼ and y ∈ [b]∼

such that [a]∼ 6= [b]∼. Without any loss of generality suppose that x < y. Then x&y ∈ [a]∼.
Since x → x&y ≥ y and [a]∼ ∪ {1

A} is closed under →, we get x → x&y = 1A. Thus
x = x&y = x ∧ y.

Finally, it is clear that the second statement together with the third one are equivalent to
the claim that A is totally decomposable.

Now we recall the operator Ω (introduced in [30]) acting on varieties of MTL-algebras
which closes a given variety under ordinal sum of chains.

Definition 2.14. Let L be an axiomatic extension of MTL. We define Ω(L) as the variety
of MTL-algebras generated by all the ordinal sums of 0-free subreducts of L-chains with the
first bounded, and we denote by Ω(L) its corresponding logic.

Some well known subvarieties of MTL are closed under this operator, for instance:

• Ω(G) = G

• Ω(BL) = BL

• Ω(SBL) = SBL

• Ω(SMTL) = SMTL

• Ω(MTL) = MTL

In some other cases they are not closed but we obtain an already known variety:

• Ω(BA) = G (BA denotes the variety of Boolean algebras)

• Ω(MV) = BL (MV denotes the variety of MV-algebras)

A filter in an MTL-algebra A is any subset F ⊆ A such that:
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• 1A ∈ F

• If a ∈ F and a ≤ b, then b ∈ F

• If a, b ∈ F , then a&b ∈ F .

F (a) will denote the principal filter generated by the element a. It can be described as follows:
F (a) = {b : an ≤ b for some n ≥ 1}. There is the usual correspondence between filters and
congruences in MTL-algebras:

Proposition 2.15. Let A be an MTL-algebra. For every filter F ⊆ A we define Θ(F ) :=
{〈a, b〉 ∈ A2 : a ↔ b ∈ F}, and for every congruence θ of A we define Fi(θ) := {a ∈
A : 〈a, 1A〉 ∈ θ}. Then, Θ is an order isomorphism from the set of filters onto the set of
congruences and Fi is its inverse.

Given a filter F and an element a, [a]F will denote the equivalence class of a w.r.t. to the
congruence Θ(F ).

We also need to recall some relevant properties from Universal Algebra.

Definition 2.16. A class K of algebras is locally finite (LF, for short) if, and only if, for
every A ∈ K and for every finite set B ⊆ A, the subalgebra generated by B is also finite.

Definition 2.17. Let A = 〈A, 〈fi : i ∈ I〉〉 be an algebra and let B ⊆ A be an non-empty set.
The partial subalgebra B of A with domain B is the partial algebra 〈B, 〈fi : i ∈ I〉〉, where for
every i ∈ I, fi n-ary, b1, . . . , bn ∈ B,

fBi (b1, . . . , bn) =
{
fAi (b1, . . . , bn) if fAi (b1, . . . , bn) ∈ B,
undefined otherwise.

Given a class K of algebras, Kfin will denote the class of its finite members.

Definition 2.18. A class K of algebras has the finite embeddability property (FEP, for short)
if, and only if, every finite partial subalgebra of some member of K can be embedded in some
algebra of Kfin.

Definition 2.19. A class K of algebras of the same type has the strong finite model property
(SFMP, for short) if, and only if, every quasiequation that fails to hold in K can be refuted
in some member of Kfin.

Definition 2.20. A class K of algebras of the same type has the finite model property (FMP,
for short) if, and only if, every equation that fails to hold in K can be refuted in some member
of Kfin.

A variety has the FMP if, and only if, it is generated by its finite members and a quasiva-
riety has the SFMP if, and only if, it is generated (as a quasivariety) by its finite members. In
[5] it is proved that for classes of algebras of finite type closed under finite products (hence, in
particular, for varieties of MTL-algebras) the FEP and the SFMP are equivalent. Moreover,
it is clear that for every class of algebras L which is the equivalent algebraic semantics of a
logic L, we have:

• If L is locally finite, then it has the FEP.
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LF FEP = SFMP FMP Decidable SC FSSC SSC
MTL No Yes Yes Yes Yes Yes Yes
IMTL No Yes Yes Yes Yes Yes Yes
SMTL No Yes Yes Yes Yes Yes Yes
ΠMTL No No No Yes Yes Yes No

BL No Yes Yes Yes Yes Yes No
SBL No Yes Yes Yes Yes Yes No

Π No No No Yes Yes Yes No
G Yes Yes Yes Yes Yes Yes Yes
 L No Yes Yes Yes Yes Yes No

WNM Yes Yes Yes Yes Yes Yes Yes
NM Yes Yes Yes Yes Yes Yes Yes
CPC Yes Yes Yes Yes No No No

Table 3: Algebraic and logical properties for some axiomatic extensions of MTL.

• If L has the FEP, then it has the FMP.

• If L has the FMP, then L is decidable.

None of these implications can be inverted in general. Nevertheless, in [5] the authors
prove that for varieties of finite type enjoying the EDPC property (equationally definable
principal congruences) the FEP and the FMP turn out to be equivalent.

The Table 3 shows which of the mentioned properties hold for the axiomatic extensions
of MTL in Table 2.

3 The n-contraction

In [27] Kowalski and Ono studied some varieties of bounded integral commutative residuated
lattices. In particular, they considered for every n ≥ 2 the varieties defined by the following
equations:

(En) xn ≈ xn−1

(EMn) x ∨ ¬xn−1 ≈ 1

(E2) corresponds, in fact, to the law of contraction, which defines the variety of Heyting
algebras. Therefore, for every n ≥ 3 the equation (En) corresponds to a weaker form of
contraction that we will call n-contraction. Notice that (EM2) is the algebraic form of the
excluded middle law, and for every n ≥ 3 (EMn) corresponds to a weaker form of this law.

In [9] Ciabattoni, Esteva and Godo brought the equations (En) to the framework of fuzzy
logics. Indeed, for each n ≥ 2, they defined the n-contraction axiom as:

ϕn−1 → ϕn (Cn)
and they called CnMTL (resp. CnIMTL) the extension of MTL (resp. IMTL) obtained

by adding this axiom.
Given n ≥ 2, the equivalent algebraic semantics of CnMTL (resp. CnIMTL) is the class of

n-contractive MTL-algebras (resp. IMTL-algebras), i.e. the subvariety of MTL (resp. IMTL)
defined by the equation:
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xn−1 ≈ xn

Strong standard completeness for these logics was also proved in [9]:

Theorem 3.1 ([9]). For every n ≥ 3, CnMTL and CnIMTL enjoy the SSC.

It is easy to see that C2MTL is Gödel logic and C2IMTL is the classical propositional
calculus. Moreover, for every n ≥ 3, WNM is a strict extension of CnMTL, NM is a strict
extension of CnIMTL, CnMTL is a strict extension of Cn+1MTL and CnIMTL is a strict
extension of Cn+1IMTL, as depicted in Figure 1.

MTL

IMTL

(Inv)

(Inv)

Cn+1MTL

Cn+1IMTLCnMTL

CnIMTLC4MTL

C4IMTLC3MTL

C3IMTL

NM
WNM

(WNM)

(WNM)

(C2)

(Inv)

(Inv)

C2MTL = G

C2IMTL = CPC

(C2)

(Cn)

(Cn)

Figure 1: Graphic of axiomatic extensions of MTL obtained by adding all combinations of the
schemata (Inv), (Cn) and (WNM). All the depicted inclusions are proper.

We say that an axiomatic extension L of MTL is n-contractive if `L (Cn). Of course,
given any L we can make it n-contractive by adding the schema (Cn). We call the resulting
logic CnL.

In [27] Kowalski and Ono prove the following result:

Proposition 3.2 (Prop 1.11, [27]). Let K be a variety of residuated lattices. Then, K has
the EDPC if, and only if, K |= (En), for some n ≥ 2.
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According to a bridge theorem of Abstract Algebraic Logic, an algebraizable logic has the
global deduction-detachment theorem if, and only if, its equivalent algebraic semantics has
the EDPC. Therefore, in our framework of fuzzy logics as axiomatic extensions of MTL, the
contractive logics are a good choice in the sense that they are the only finitary extensions of
MTL enjoying the global deduction-detachment theorem.

Theorem 3.3. If L is an n-contractive axiomatic extension of MTL, then for every Γ ∪
{ϕ,ψ} ⊆ FmL we have:

Γ, ϕ `L ψ if, and only if, Γ `L ϕ
n−1 → ψ.

We will consider also the axioms corresponding to (EMn):
ϕ ∨ ¬ϕn−1 (Sn)

Given any axiomatic extension L of MTL, SnL will be its extension with (Sn).
Using the completeness of MTL with respect to chains it becomes quite obvious that

(Sn) `MTL (Cn) for every n ≥ 2.

4 New results

4.1 n-contractive chains

In this section we will study some basic properties of the n-contractive chains. First, observe
that this is an important and big class of chains since it contains all the finite MTL-chains.

Proposition 4.1. All finite MTL-chains are n-contractive for some n.

Proof. Let A be a finite MTL-chain with n elements. Take an arbitrary a ∈ A \ {1A}. For
every i > 0, ai ≤ ai−1, thus necessarily an−1 = an.

Definition 4.2. Given an MTL-algebra A, a ∈ A is idempotent iff a2 = a. Id(A) will be the
set of all idempotent elements of A. Notice that 0A, 1A ∈ Id(A).

Proposition 4.3. Let A be an MTL-algebra and a ∈ Id(A). Then for every b, c ∈ A,

(1) If b, c ≥ a, then b&c ≥ a.

(2) If b ≥ a, then a&b = a.

Proof. If b, c ≥ a, then a = a&a ≤ b&c. If b ≥ a, then a = a&a ≤ a&b, and the other
inequality is always true.

The idempotent elements are easily described in n-contractive chains and, in addition,
their number can be expressed equationally as the following propositions show.

Proposition 4.4. Let A be an n-contractive MTL-algebra. Then, Id(A) = {an−1 : a ∈ A}.

Proof. If a ∈ A is idempotent, then a = a2 = . . . = an−1. Conversely, take any a ∈ A
and consider an−1. Then, an−1&an−1 = an&an−2 = an−1&an−2 = . . . = an−1, so an−1 ∈
Id(A).

Definition 4.5. For every n ≥ 3 and k ≥ 2, we define the next formula:
In
k (x0, . . . , xk) :=

∨
i<k(xn−1

i → xn−1
i+1 ).
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Proposition 4.6. For every n ≥ 3, every k ≥ 2 and every n-contractive MTL-chain A the
following are equivalent:

(1) A |= In
k (x0, . . . , xk) ≈ 1.

(2) | Id(A) |≤ k.

Proof. Suppose that | Id(A) |> k. Then we can take a0, . . . , ak ∈ Id(A) such that a0 >

a1 > . . . > ak. Then for every i, ai = an−1
i and ai+1 = an−1

i+1 , so an−1
i → an−1

i+1 6= 1A and
the equation is not satisfied. Conversely, suppose | Id(A) |≤ k and take arbitrary elements
a0, . . . , ak ∈ A. Since an−1

0 , . . . , an−1
k ∈ Id(A), there are i < j ≤ k such that an−1

i = an−1
j .

Hence there is an l < k such that an−1
l → an−1

l+1 = 1A.

In n-contractive chains we can also give a nice description of Archimedean classes:

Proposition 4.7. Let A be an n-contractive MTL-chain. Then, for every a, b ∈ A:

(i) a ∼ b if, and only if, an−1 = bn−1, and

(ii) an−1 = min[a]∼.

Proof. (i) One direction is obvious. For the other one, suppose that a ∼ b and, for instance,
a ≤ b. Then an−1 ≤ bn−1. Further, there is i ≥ 1 such that bi ≤ a ≤ b, hence by the
n-contraction law bn−1 ≤ a ≤ b. Since bn−1 is an idempotent smaller than a using
Proposition 4.3 we obtain bn−1 ≤ an−1.

(ii) It is clear that an−1 ∈ [a]∼. Take an arbitrary b ∈ [a]∼. By (i), an−1 = bn−1, hence
b ≥ bn−1 = an−1.

Corollary 4.8. Let A be an n-contractive MTL-chain and let a ∈ A. If [a]∼ has supremum,
then it is the maximum.

Proof. Assume that b is the supremum of [a]∼. Then, bn−1 = (sup{x ∈ A | xn−1 =
an−1})n−1 = sup{xn−1 ∈ A | xn−1 = an−1} = an−1, hence b ∈ [a]∼.

Therefore, Archimedean classes with supremum in n-contractive chains are always inter-
vals of the form [bn−1, b]. Moreover, this implies that given a standard n-contractive chain A,
in the set Id(A) none of the elements has neither predecessor nor successor. In particular, 1
is an accumulation point of idempotent elements.4

Next proposition characterizes the subdirectly irreducible n-contractive algebras.

Proposition 4.9. Let A be an n-contractive MTL-chain. Then:
A is subdirectly irreducible if, and only if, the set of idempotent elements has a coatom.

Proof. First suppose that A is subdirectly irreducible and let F be the minimum non-trivial
filter. Given any a ∈ F \{1A}, it is clear that an−1 is a coatom of Id(A). Conversely, suppose
a is the coatom in the set of idempotent elements. Then for every b such that a < b < 1A,
we have bn−1 = a, so [a, 1A] is the least non-trivial filter and A is subdirectly irreducible.

4These remarks on n-contractive left-continuous t-norms are already available in [29].
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Corollary 4.10. There are no subdirectly irreducible standard n-contractive MTL-chains.

Nevertheless, notice that this does not contradict the fact that the varieties CnMTL and
CnIMTL are generated by their standard chains.

An important subclass of subdirectly irreducible algebras is the class of simple algebras,
those without non-trivial congruences. They admit the following general characterization.

Proposition 4.11. Let A be an MTL-algebra. A is simple if, and only if, for every a ∈
A \ {1A}, there is k ≥ 1 such that ak = 0A.

The generalized excluded middle equations (EMn) describe exactly the simple n-contractive
chains.

Proposition 4.12. Let A be an MTL-chain. The following are equivalent:

(i) A |= (EMn).

(ii) A is n-contractive and simple.

Proof. (i) ⇒ (ii) : If A |= (EMn), then for every a ∈ A \ {1A}, an−1 = 0A. Therefore, for
every a ∈ A \ {1A}, an−1 = an and, by the last proposition, the chain is simple. (ii) ⇒ (i) :
If A is n-contractive and simple, then for a ∈ A, an−1 is idempotent. Therefore, if a 6= 1A,
then an−1 = 0A, and hence A |= (EMn).

Recall that an algebra is semisimple if, and only if, it is representable as a subdirect
product of simple algebras.

Corollary 4.13. For each n ≥ 2, the class of semisimple n-contractive MTL-algebras is the
variety SnMTL.

For MV-algebras those varieties are easy to describe. As usual, by  Ln we will denote the
finite MV-chain containing n elements.

Lemma 4.14. Let A be an MV-chain. The following are equivalent:

(i) A |= (En).

(ii) A ∈ I({ L1, . . . ,  Ln}).

(iii) A |= (EMn).

Corollary 4.15. For each n ≥ 2, SnMTL ∩MV = CnMTL ∩MV = V({ L1, . . . ,  Ln}).

However, in MTL and in IMTL the situation is not so easy. In the first level the varieties
corresponding to (En) and (EMn) are still easy to compute. Indeed, S2MTL = S2IMTL =
C2IMTL = BA and C2MTL = G. For n = 3, we have S3MTL ( WNM, in fact, the S3MTL-
chains are those where the product of two non-one elements is always zero, i. e. the so-called
drastic product. When n = 3, we also have S3IMTL = V( L3) = NM∩MV ( NM ⊆ C3IMTL.
Therefore for each n ≥ 3, SnIMTL ( CnIMTL and SnMTL ( CnMTL. The variety S4IMTL
and its lattice of subvarieties have been studied in [18] .

Now we will show that the varieties of semisimple n-contractive chains are discriminator
varieties.
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Definition 4.16. For every n ≥ 3 we define a term δn(x, y) := (x↔ y)n−1.

Notice that if a, b are elements in a simple n-contractive MTL-chain, then:

• a = b if, and only if, δn(a, b) = 1A.

• a 6= b if, and only if, δn(a, b) = 0A.

With this term we can define a discriminator just by considering t(x, y, z) := (δ(x, y) ∧
z)∨ (¬δ(x, y)∧x). It is clear that t(x, y, z) = x if x 6= y, and t(x, y, z) = z otherwise. In fact,
Kowalski has proved that the only discriminator varieties of bounded integral commutative
residuated lattice are those satisfying some of the (EMn) equations:

Theorem 4.17 ([28]). For every variety K of bounded integral commutative residuated lat-
tices, the following are equivalent:

(i) K |= (EMn) for some n ≥ 2;

(ii) K is semisimple;

(iii) K is a discriminator variety.

Using δ one can also give an equational definition of the class of algebras without negation
fixpoint:

Proposition 4.18. Let A be a simple n-contractive MTL-chain. Then, A has no negation
fixpoint if, and only if, A |= δn(x,¬x) ≈ 0.

Finally, we will study the existence of atoms and coatoms in n-contractive chains, improv-
ing Proposition 4.9.

Proposition 4.19. Let A be a non-trivial n-contractive MTL-chain. Then, A is subdirectly
irreducible if, and only if, it has a coatom.

Proof. One direction is true for every MTL-chain. Indeed, if a ∈ A is a coatom, then the
filter generated by a is the minimum non-trivial filter. Conversely, let F be the minimum
non-trivial filter in A. Then for all a ∈ F \{1A} we have an−1 = minF < 1A. Suppose A has
no coatom. Hence,

∨
a∈F a = 1A. But then minF =

∨
a∈F a

n−1 = (
∨

a∈F a)n−1 = 1A.

Corollary 4.20. For every subdirectly irreducible n-contractive non-trivial IMTL-chain A,
there is a ∈ A such that a = maxA \ {1A} and ¬a = minA \ {0A}.

Proof. By Proposition 4.19 A has a coatom a = maxA \ {1A}. Then ¬a = minA \ {0A}
because if 0A < b < ¬a then a < ¬b < 1A.

Proposition 4.19 also implies that the n-contractive MTL-chains defined by a left-continuous
t-norm are not simple, i. e. there are no standard SnMTL-chains, which we already knew
from the fact that there are even no subdirectly irreducible n-contractive standard chains.

13



4.2 Combining weakly cancellative and n-contractive fuzzy logics

In [30] the variety WCMTL of weakly cancellative MTL-algebras was defined to provide
examples of indecomposable MTL-chains. Besides, the Ω operator gave rise to the variety
Ω(WCMTL) which was a kind of analogue of BL in the sense that here all the chains were
also decomposable as ordinal sums of weakly cancellative semihoops. Now it seems natural
to consider the intersection of these varieties with the classes of n-contractive algebras (or
equivalently the supremum of the corresponding logics) in order to obtain some new kinds of
algebras with a nice and simpler structure. Therefore, we will consider for every n ≥ 2 the
logics SnWCMTL and CnWCMTL. Recall that WCMTL-chains satisfy the weak cancellation
law saying that x&z = y&z 6= 0 implies x = y. It correspons to the axiom (WC) in Table 1.

Proposition 4.21. For every n ≥ 2, {(WC), (Cn)} `MTL (Sn).

Proof. Let A be an MTL-chain satisfying (WC) and (Cn). We will prove that it is simple.
Take an arbitrary a ∈ A \ {1A}. Then, an−1 is an idempotent element, hence an−1&an−1 =
an−1&1A = an−1. Since the chain is weakly cancellative, this implies an−1 = 0A. Therefore,
A is simple, i.e. satisfies (Sn).

Corollary 4.22. Given any axiomatic extension L of WCMTL and n ≥ 2, the extensions
obtained by (Sn) and (Cn) coincide. In particular, SnWCMTL = CnWCMTL.

It is straightforward to prove that the Ω operator and the schemata (Cn) commute:

Proposition 4.23. Let L be an axiomatic extension of MTL. For every n ≥ 2, Ω(CnL) =
CnΩ(L).

Therefore, we have CnΩ(WCMTL) = Ω(CnWCMTL) = Ω(SnWCMTL).
Finally, we will consider for every n ≥ 2 the logic Ω(SnMTL) and we will show that it is

also finitely axiomatizable.

Proposition 4.24. Let A be an n-contractive MTL-chain. The following are equivalent:

(i) A is totally decomposable.

(ii) A is an ordinal sum of simple n-contractive MTL-chains.

(iii) A |= (yn−1 → x) ∨ (x→ x&y) ≈ 1.

Proof. (i)⇒ (ii): If A is decomposable as the ordinal sum of its Archimedean classes, then,
by Proposition 4.7, it is decomposable as ordinal sum of simple chains.
(ii) ⇒ (iii): Take arbitrary elements a, b ∈ A. If b ≤ a, then bn−1 ≤ a, so they satisfy
the equation. Suppose a < b. If they are in different components of the ordinal sum, then
a→ a&b = 1A. If they are in the same component, then, by simplicity, bn−1 ≤ a.
(iii)⇒ (i): Suppose that A satisfies the equation. Take a, b ∈ A \ {1A} such that a < b and
they belong to different Archimedean classes. Then bn−1 → a 6= 1A, so a → a&b = 1A, i. e.
a&b = a. Therefore, A is the ordinal sum of its Archimedean classes by Proposition 2.13.

Corollary 4.25. Ω(SnMTL) is the variety generated by the totally decomposable n-contractive
chains, and it is axiomatized by (yn−1 → x) ∨ (x→ x&y) ≈ 1 and xn ≈ xn−1.

14



4.3 Methods for constructing MTL-chains

In this section we discuss three construction methods with MTL-chains and totaly ordered
semihoops. These methods will be useful later. First, we recall an already known method
(see [3]) and then we introduce two new ones.

Let A = 〈A,&,→,∧, 1〉 be a totally ordered semihoop and a ∈ A. Then the truncation of
A w.r.t. a is an MTL-chain Aa = 〈[a, 1],&a,→a,∧,∨, a, 1〉, where x&ay = (x&y)∨ a and →a

is the restriction of → on the interval [a, 1].

First new method

Let A = 〈A,&,→,∧, 1〉 be a totally ordered semihoop and a ∈ A. We define a new totally
ordered semihoop Aa = 〈A \ (a, 1),&a,→a,∧, 1〉 where &a is just the restriction of & on
A \ (a, 1), and →a is defined as follows:

x→a y =

{
x→ y if x→ y ∈ A \ (a, 1) ,
a if x→ y ∈ (a, 1) .

Clearly, Aa is a submonoid of A. It is also not difficult to see that →a is the residuum
corresponding to &a.

Notice that if the monoidal reduct of the original algebra is cancellative, then the monoidal
reduct of the resulting algebra is cancellative as well.

Second new method

Let A = 〈A,&,→,∧,∨, 0, 1〉 be an IMTL-chain and a ∈ A such that a ≥ ¬a. We define a
new IMTL-chain Aa

¬a = 〈{0} ∪ [¬a, a] ∪ {1},&a
¬a,→a

¬a,∧,∨, 0, 1〉 as follows:

x&a
¬ay =

{
x&y if x&y ∈ {0} ∪ [¬a, a] ∪ {1} ,
¬a if x&y ∈ (0,¬a) .

x→a
¬a y =

{
x→ y if x→ y ∈ {0} ∪ [¬a, a] ∪ {1} ,
a if x→ y ∈ (a, 1) .

Lemma 4.26. The algebra Aa
¬a is an IMTL-chain.

Proof. Let B be the domain of Aa
¬a. We have to show that &a

¬a is commutative, associative,
isotone, and 1 is the neutral element. The fact that 1 is neutral element and the commutativity
are obvious. We will show that &a

¬a is isotone, i.e. x ≤ y implies x&a
¬az ≤ y&a

¬az. There are
several cases:

1. x&z, y&z ∈ B: then x&a
¬az = x&z ≤ y&z = y&a

¬az.

2. x&z, y&z ∈ (0,¬a): then x&a
¬az = ¬a = y&a

¬az.

3. x&z ∈ (0,¬a) and y&z ∈ B: then x&a
¬az = ¬a ≤ y&z = y&a

¬az.

4. x&z ∈ B and y&z ∈ (0,¬a): then x&a
¬az = x&z = 0 ≤ y&a

¬az.

Now we will prove that &a
¬a is associative. We can assume that x, y, z < 1 (i.e. x, y, z ≤ a)

otherwise it is obvious. We will check several cases:
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1. x&y, y&z, x&y&z ∈ B: then (x&a
¬ay)&a

¬az = (x&y)&a
¬az = x&y&z = x&a

¬a(y&z) =
x&a
¬a(y&a

¬az).

2. x&y, y&z ∈ B and x&y&z ∈ (0,¬a): then (x&a
¬ay)&a

¬az = (x&y)&a
¬az = ¬a =

x&a
¬a(y&z) = x&a

¬a(y&a
¬az).

3. x&y ∈ (0,¬a) and y&z, x&y&z ∈ B: then x&y&z = 0 since x&y&z ≤ x&y. Observe
that z ≤ a since we assume z < 1. Thus z&¬a = 0. Consequently,

(x&a
¬ay)&a

¬az = ¬a&a
¬az = 0 = x&y&z = x&a

¬a(y&z) = x&a
¬a(y&a

¬az) .

4. The case y&z ∈ (0,¬a) and x&z, x&y&z ∈ B can be proved by commutativity and the
previous case:

(x&a
¬ay)&a

¬az = z&a
¬a(y&a

¬ax) = (z&a
¬ay)&a

¬ax = x&a
¬a(y&a

¬az) .

5. x&y, y&z ∈ (0,¬a): then (x&a
¬ay)&a

¬az = ¬a&a
¬az = 0 = x&a

¬a¬a = x&a
¬a(y&a

¬az)
since x, z ≤ a.

6. y&z ∈ B and x&y, x&y&z ∈ (0,¬a): this case is not possible since we assume that
z < 1. Indeed, x&y ∈ (0,¬a) implies x&y < ¬a. Thus x&y&z = 0 ∈ B which is a
contradiction.

7. The case x&y ∈ B and y&z, x&y&z ∈ (0,¬a) is also not possible as the previous one.

Now we have to show that &a
¬a is a residuated map. Observe that x→ y ∈ (0,¬a) is not

possible provided x, y ∈ B. Indeed, x → y ∈ (0,¬a) implies y = 0. Thus ¬x < ¬a. Since ¬
is involutive, we get a < x = 1. Hence x→ y = ¬1 = 0 ∈ B (a contradiction).

Finally we have to prove that x&a
¬ay ≤ z iff x ≤ y →a

¬a z.

1. If y ≤ z then y →a
¬a z = y → z = 1 and x&a

¬ay ≤ y ≤ z. Thus x&a
¬ay ≤ z and

x ≤ 1 = y →a
¬a z hold simultaneously.

2. Let y > z and x&y = 0. Then y > 0 and ¬y < 1. Further, observe that y →a
¬a z =

a ∧ (y → z) for y > z. Suppose that x&a
¬ay ≤ z. Then x&a

¬ay = x&y = 0 is equivalent
to x ≤ ¬y. Since ¬y < 1, we get x ≤ a. Moreover, ¬y = y → 0 ≤ y → z. Thus x ≤ ¬y
implies x ≤ a ∧ (y → z) = y →a

¬a z. Now suppose that x ≤ y →a
¬a z = a ∧ (y → z).

Since x&a
¬ay = x&y = 0 ≤ z for any z, we are done.

3. Finally, let y > z and x&y > 0. Observe that in this case we have y →a
¬a z = a∧(y → z)

and x&a
¬ay = ¬a ∨ (x&y). Thus it is sufficient to prove that ¬a ∨ (x&y) ≤ z iff

x ≤ a ∧ (y → z). Suppose that ¬a ∨ (x&y) ≤ z. Then x&y ≤ z implies x ≤ y → z.
Since y → z < 1, we get x ≤ a. Thus x ≤ a ∧ (y → z). Conversely, assume that
x ≤ a ∧ (y → z). Then x ≤ y → z implies x&y ≤ z. Since x&y > 0, we get ¬a ≤ z.
Thus ¬a ∨ (x&y) ≤ z.

4.4 Some properties of n-contractive fuzzy logics

In this section we will study some logical and algebraic properties of the considered logics.
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4.4.1 Local finiteness

First we focus our attention on local finiteness. The n-contractivity is a necessary condition
for local finiteness:

Proposition 4.27 ([30]). Let K ⊆ MTL be a variety. If K is locally finite, then there exists
some n ≥ 2 such that K |= xn ≈ xn−1.

However, we will see that this condition is only necessary. Therefore for each variety
of n-contractive MTL-algebras we have to discuss whether it is locally finite or not. It is
straightforward to show that G is locally finite. The property has been proved true also for
NM in [17], and it has been generalized to WNM in [34].

Theorem 4.28. Ω(S3MTL) is locally finite.

Proof. It can be proved analogously to the case of WNM.

Finally, S4IMTL is also proved to be locally finite in [18]. Now we will present counterex-
amples showing that all the remaining varieties considered here fail to be locally finite.

Let Z denote the set of integers. Let Z2
lex be the lexicographic product of two copies of

the additive group of integers. Consider its negative cone A = {〈x, y〉 ∈ Z2
lex | 〈x, y〉 ≤ 〈0, 0〉},

and take the algebra A = 〈A,+,→,∧,∨, 〈0, 0〉〉, where 〈x1, y1〉 → 〈x2, y2〉 = 〈x2 − x1, y2 −
y1〉 ∧ 〈0, 0〉. The algebra A forms a cancellative totally ordered semihoop. Then A〈−1,0〉 is
also a cancellative totally ordered semihoop.

Now consider (A〈−1,0〉)〈−3,0〉, i.e. the truncation of A〈−1,0〉 w.r.t. 〈−3, 0〉. Then it is an
S4MTL-chain since 〈−3, 0〉 = 〈−1, 0〉3.

Proposition 4.29. The subalgebra C of (A〈−1,0〉)〈−3,0〉 generated by {〈−1, 0〉, 〈−1,−1〉} is
infinite.

Proof. We will prove by induction that 〈−1,−n〉 ∈ C for each n ∈ N. For n = 0 it is obvious
since 〈−1, 0〉 is one of the generators. Assume that 〈−1,−n〉 ∈ C. Then

〈−1,−n− 1〉 = 〈−1, 0〉 → (〈−1,−1〉&〈−1,−n〉) .

Theorem 4.30. The varieties CnMTL, SnMTL, Ω(SnMTL), SnWCMTL and Ω(SnWCMTL)
for each n ≥ 4 are not locally finite.

Proof. The fact for CnMTL and SnMTL follows from the previous proposition. Then, since
the statement holds for SnMTL, it must hold also for the variety Ω(SnMTL). As the coun-
terexample arose from the truncation of a cancellative totally ordered semihoop, it must satisfy
the weak cancellation property. Thus it belongs, in fact, to S4WCMTL. Hence SnWCMTL
and Ω(SnWCMTL) are not locally finite as well.

We give now a counterexample for the involutive cases. Take A as before and consider its
truncation B = A〈−4,0〉, which is an IMTL-chain (in fact, it is an MV-chain). We will apply the

second construction to this algebra obtaining B〈−1,0〉
¬〈−1,0〉. Then the algebra B〈−1,0〉

¬〈−1,0〉 is an IMTL-
chain and moreover, it is an S5IMTL-chain since 〈−1, 0〉4 = 〈−4, 0〉. Besides, the subalgebra
generated by {〈−1, 0〉, 〈−1,−1〉} is infinite. The proof is same as of Proposition 4.29.
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Theorem 4.31. The varieties CnIMTL and SnIMTL are not locally finite for each n ≥ 5.

Finally, we will deal with the remaining cases C3MTL, C3IMTL and C4IMTL. A totally
ordered commutative semigroup S = 〈S,&,≤〉 is a commutative semigroup satisfying:

1. 〈S,≤〉 is a chain,

2. x ≤ y implies x&z ≤ y&z for all x, y, z ∈ S.

Moreover, if x&y ≤ y holds for all x, y ∈ S then S is said to be negative.
Let Z−∞ be the set of non-positive integers together with −∞ and Ai, i = 1, 2, 3 be the three

disjoint copies of Z−∞. We will denote an integer x from Ai by xi. Now let S = A1 ∪A2 ∪A3.
We introduce an order on S by xi ≤ yj if either i > j or (i = j and x ≤ y). Let us define a
binary operation & on S as follows:

xi&yj =


−∞1 if i = j = 1 ,
(x+ y)3 if i+ j = 3 ,
−∞3 otherwise.

Lemma 4.32. The algebra S = 〈S,&,≤〉 is a totally ordered negative commutative semigroup.

Proof. The operation & is clearly commutative. We have to check that it is associative, i.e.,
(xi&yj)&zk = xi&(yj&zk). There are several cases:

1. If i = j = k = 1 then both sides equal −∞1.

2. If min{i, j, k} = 3 then both sides equal −∞3.

3. If at least two of {i, j, k} equal 2 then both sides equal −∞3.

4. If i = j = 1 and k = 2 then we get

(x1&y1)&z2 = −∞1&z2 = (−∞+ z)3 = −∞3 = x1&(y + z)3 = x1&(y1&z2) .

5. The case i = 2 and j = k = 1 can be obtained by commutativity and the previous case.

6. If i = k = 1 and j = 2 then we get

(x1&y2)&z1 = (x+ y)3&z1 = −∞3 = x1&(y + z)3 = x1&(y2&z1) .

Finally we have to check that & is isotone. Let xi ≤ yj and zk ∈ S. If i+k > 3 then xi&zk =
−∞3 ≤ yj&zk. Suppose that i + k = 2. Then xi&zk = −∞1 = yj&zk since i ≥ j. Finally
assume that i+ k = 3. Then xi&zk = (x+ z)3. If j + k < 3 then yj&zk = −∞1 ≥ (x+ z)3.
If j + k = 3 then i = j and x ≤ y. Thus (x+ z)3 ≤ (y + z)3. The fact that S is negative can
be easily checked.

It is known that each totally ordered negative commutative semigroup without a neutral
element can be extended to a totally ordered commutative monoid. Let M = S ∪ {e} and
define x&e = x, x ≤ e for all x ∈ M . Thus M = 〈M,&,≤, e〉 becomes an integral totally
ordered commutative monoid. Moreover, M is clearly inversely well-ordered. Thus each
nonempty subset of M has a maximum and we can introduce a residuum →. Consequently,
the algebra M = 〈M,&,→,≤,−∞3, e〉 is an MTL-chain. It is not difficult to see that M is
even a C3MTL-chain.
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Lemma 4.33. The subalgebra A of M generated by {01, 02,−13} is infinite.

Proof. We will prove that there is an infinite decreasing sequence inM . Let x3 is inA. There is
at least one such element since −13 is one of the generators. We will show that there is y3 < x3.
Take a = 01 → x3 = x2 and b = 02 → x3 = x1. Then y3 = a&b = x2&x1 = (2x)3 < x3.

Theorem 4.34. The varieties C3MTL, C3IMTL and C4IMTL are not locally finite.

Proof. For the first part take the above-mentioned C3MTL-chainM whose finitely generated
subalgebra is infinite. The other statements can be proved by taking the disconnected ro-
tation5 of M which is a C3IMTL-chain. Since its subalgebra generated by {01, 02,−13} is
infinite as well, we are done.

4.4.2 Finite embeddability property, finite model property and decidability

We turn now to the finite embeddability property. It was proved for the variety of bounded
commutative integral residuated lattices by Blok and Van Alten in [5], and by using the same
construction Ono6 proved the FEP also for MTL, IMTL, SMTL, CnMTL and CnIMTL, for
every n ≥ 2. The proof has been improved in [10].

Proposition 4.35. MTL =
∨

n≥2 CnMTL and IMTL =
∨

n≥2 CnIMTL.

Proof. MTL and IMTL have the FEP, therefore they are generated by their finite chains.
Since all finite MTL-chains are n-contractive for some n, we obtain that MTL is generated by
the n-contractive MTL-chains and IMTL is generated by the n-contractive IMTL-chains.

Theorem 4.36. For every n ≥ 2, the following varieties have the FEP:

• SnMTL

• SnIMTL

• Ω(SnMTL)

• SnWCMTL

• Ω(SnWCMTL)

Proof. Let L be any variety from the class {SnMTL,Ω(SnMTL), SnWCMTL,Ω(SnWCMTL) |
n ≥ 2}. Let A be an arbitrary L-chain and B ⊆ A be a finite subset of its carrier. Consider
the monoid M generated by B ∪ {0A, 1A}, i. e. the submonoid of 〈A,&A, 1A〉 obtained
by closing B ∪ {0A, 1A} under &A. By the simplicity of A, M is finite, so it is residuated.
Expanding M with the residuum it becomes an MTL-chain. Observe that, in fact, M is an
L-chain, since the required properties are preserved when we generate the monoid. Finally,
it can be proved that the identity mapping id : B → M is the embbeding of B into M (the
proof is same as the proof of [22, Lemma 3.3]). Thus L has the FEP.

As regards to SnIMTL, we follow the method given in [10] to prove the FEP of IMTL.
Let A be an SnIMTL-chain and B be a finite partial subalgebra of A. Without any loss of

5The disconnected rotation is a construction method how to produce from a totally ordered semihoop an
IMTL-chain, for details see [31].

6Private communication.
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generality we can assume that 0A, 1A ∈ B and B is closed under ¬A. Consider the submonoid
M of 〈A,&A, 1A〉 generated by B. Then again the monoidM can be enriched by a residuum
so it forms an MTL-chain 〈M,&M,→M,∧M,∨M, 0M, 1M〉 in which B can be embedded by
the identity mapping. Now let us define the following subset of M :

M →M B = {m→M b : m ∈M, b ∈ B} .

In [10] it is proved that M →M B forms a finite IMTL-chain in which B can be embedded.
Moreover, it is proved that M →M B is the &-free subreduct of M. Since the (Sn) schema
can be equivalently rewritten in terms of →, ∨ and 0: ϕ ∨ (ϕ→ (ϕ→ · · · (ϕ→ 0) · · · )), this
schema is still satisfied in M →M B. Thus it must be an SnIMTL-chain.

4.4.3 Standard completeness properties

Finally, we consider the standard completeness properties for n-contractive fuzzy logics. As
mentioned above, the SSC was proved by Ciabattoni, Esteva and Godo in [9] for CnMTL and
CnIMTL for every n ≥ 2.

Theorem 4.37. For every n ≥ 2, we have:

(a) SnMTL, SnIMTL and SnWCMTL do not enjoy SC because there are no standard alge-
bras in the corresponding variety.

(b) Ω(SnMTL) enjoys the SSC.

Proof. (a): It follows from Proposition 4.19.
(b): We will prove it by using the embedding method of Jenei and Montagna (see [24]). Let
A be a countable Ω(SnMTL)-chain. Consider the following set:

X := {〈s, q〉 : s ∈ A, s 6= 0A, q ∈ Q ∩ (0, 1]} ∪ {〈0A, 1〉}, endowed with the lexicographical
order and the operation

〈s, q〉 ◦ 〈s′, q′〉 :=
{

min{〈s, q〉, 〈s′, q′〉} if s&As′ = min{s, s′}
〈s&As′, 1〉 otherwise.

It was shown in [24] that X together with ◦ forms a countable MTL-chain which is order-
isomorphic to Q ∩ [0, 1]. Thus it is sufficient to prove that it is an Ω(SnMTL)-chain as
well. By Corollary 4.25 we have to check that the identity (yn−1 → x) ∨ (x → x&y) ≈ 1
is valid in X. Let 〈s, q〉, 〈s′, q′〉 ∈ X be such that 〈s, q〉 < 〈s′, q′〉n−1. We must prove that
〈s, q〉 ◦ 〈s′, q′〉 = 〈s, q〉.

We have:

〈s′, q′〉n−1 =
{
〈s′, q′〉 if (s′)2 = s′

〈(s′)n−1, 1〉 otherwise.

In both cases the first component of 〈s′, q′〉n−1 equals (s′)n−1. Therefore, s ≤ (s′)n−1.
Since A is totally decomposable n-contractive MTL-chain, we have s&s′ = s = min{s, s′}.
Thus 〈s, q〉 ◦ 〈s′, q′〉 = 〈s, q〉. It can be also easily seen that ◦ satisfies the n-contraction law.

The final step in the proof of standard completeness theorem from [24] is the extension of
the operation ◦ in X (viewed as an algebra over Q∩[0, 1]) to the whole interval [0, 1]. Consider
the completion of ◦ in [0, 1]: for every a, b ∈ [0, 1], define a⊗b := sup{q◦p : q ≤ a, p ≤ b, q, p ∈
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Q}. It was shown in [24] that [0, 1] together with ⊗ forms a standard MTL-chain. Thus it is
again sufficient to prove that it is also Ω(SnMTL)-chain. By Corollary 4.25 we have to check
the validity of the identity (yn−1 → x) ∨ (x → x&y) ≈ 1 (the validity of the n-contractivity
needs not to be checked since in [9] it has been already proved that this construction preserves
it). Let a, b ∈ [0, 1] be such that a < bn−1. We must prove that a ⊗ b = a. Obviously, it is
sufficient to prove a ≤ a⊗ b. Since ⊗ is left-continuous, we have

bn−1 = (sup{p ∈ Q : p ≤ b})n−1 = sup{pn−1 ∈ Q : p ≤ b} .

Thus there exists an element z ∈ Q such that z ≤ b and a < zn−1. Then we have

a⊗ b = sup{q ◦ p : q ≤ a, p ≤ b, q, p ∈ Q} =
= sup{q ◦ p : q ≤ a, z ≤ p ≤ b, q, p ∈ Q} ≥
≥ sup{q ◦ z : q ≤ a, q ∈ Q} =
= sup{q : q ≤ a, q ∈ Q} = a .

Finally, we will prove that the logic of ordinal sums of n-contractive WCMTL-chains
enjoys the FSSC but not the SSC.

Theorem 4.38. Ω(SnWCMTL) enjoys the FSSC.

Proof. The first part of the proof follows the proof of the standard completeness theorem
published in [21, Section 4]. Take a finite set T ∪ {ϕ} ⊆ FmL such that T 6`Ω(SnWCMTL) ϕ.
Then, there is an Ω(SnWCMTL)-chain A and an evaluation e : FmL → A such that e[T ] ⊆
{1A} and e(ϕ) 6= 1A. Consider the set G := {e(ψ) : ψ is a subformula of some formula of
T ∪{ϕ}}. G is finite because T is. Let A′ be the→-free reduct of A and S be the subalgebra
of A′ generated by G. It was shown in [21] that S = 〈S,&,→,∧,∨, 0S , 1S〉 forms a countable
inversely well-ordered MTL-chain (with a finite number of Archimedean classes) and T 6|=S ϕ.

The fact that & is just the restriction of the monoidal operation of A has several con-
sequences. First, since A is totally decomposable by Proposition 4.24, it follows by Propo-
sition 2.13 that S is totally decomposable as well. Secondly, S is also n-contractive as A
is. Thus, by Proposition 4.24, S is an ordinal sum of simple n-contractive MTL-chains.
Thirdly, each component in the ordinal sum also remains weakly cancellative. Thus S is an
Ω(SnWCMTL)-chain. Since S has finitely many Archimedean classes, this ordinal sum must
have a finite number of components, say S =

⊕
i<k Ci for some natural number k.

Now we extend S, so that it becomes order-isomorphic to [0, 1]. We start with the par-
ticular components Ci.

Lemma 4.39. Each Ci can be extended into an SnWCMTL-chain which is order-isomorphic
to the subset of reals [0, a] ∪ {1} for any a ∈ (0, 1).

Proof. Since each Ci forms an SnWCMTL-chain, each Ci has a coatom ci by Proposition 4.19.
Now we use the same method as in [30, Theorem 46] and define a new chain over the set

X := {〈s, r〉 : s ∈ Ci \ {0
Ci}, r ∈ (0, 1]} ∪ {〈0Ci , 1〉} ,

with the lexicographical order ≤lex and the following operations:
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〈a, x〉 ◦ 〈b, y〉 =

{
〈0Ci , 1〉 if a&Cib = 0Ci ,
〈a&Cib, xy〉 otherwise.

〈a, x〉 ⇒ 〈b, y〉 =
{
〈a→Ci b, 1〉 if a&Ci(a→Ci b) < b,
〈a→Ci b,min{1, y/x}〉 otherwise.

Then X = 〈X, ◦,⇒,≤lex, 〈0
Ci , 1〉, 〈1Ci , 1〉〉 is a WCMTL-chain as it was shown in the proof

of [30, Theorem 46].
Now we apply one of the construction methods introduced in Section 4.3 on X in order

to obtain an SnWCMTL-chain. We claim that X 〈ci,1〉 is an SnWCMTL-chain. Clearly, it is a
WCMTL-chain. Moreover, it is simple and n-contractive since 〈ci, 1〉n−1 = 〈cn−1

i , 1〉 = 〈0Ci , 1〉.
Futher, it is easy to prove that the mapping f : Ci → X〈ci,1〉 defined by f(s) = 〈s, 1〉 is an
embedding of Ci into X 〈ci,1〉.

Finally, we have to show that X〈ci,1〉 is order-isomorphic to [0, a] ∪ {1} for any a ∈ (0, 1).
Clearly it is sufficient to prove that X〈ci,1〉 \ {〈1Ci , 1〉} is order-isomorphic to [0, a]. It is
well-known from the set theory that a totally ordered set W is order-isomorphic to [0, a]
if it is complete, contains a minimum and a maximum, and has a countable subset which
is dense in it. Clearly, 〈0Ci , 1〉 (resp. 〈ci, 1〉) is the minimum (resp. maximum). The set
{〈s, r〉 ∈ X〈ci,1〉 \{〈1Ci , 1〉} : r ∈ Q} is obviously a countable dense subset in X〈ci,1〉 \{〈1Ci , 1〉}
since Ci is countable. Recall that each Ci is inversely well-ordered because S is. Now, let
∅ 6= Z ⊆ X〈ci,1〉 \ {〈1Ci , 1〉}. Then supπ1(Z) exists since Ci is inversely well-ordered. Let
us denote it by z. Then supZ = 〈z, α〉 where α = sup{x ∈ (0, 1] : 〈z, x〉 ∈ Z}. Thus
X〈ci,1〉 \ {〈1Ci , 1〉} is complete.

Now we finish the proof of Theorem 4.38. Let Gi = 〈(0, 1],min,→,min, 1〉, for each
0 ≤ i < k be the totally ordered semihoop in which the monoidal operation is the minimum
operation. The extended version of each Ci from Lemma 4.39 will be denoted by C′i. Then we
take the following ordinal sum:

B = C′0 ⊕ G0 ⊕ · · · ⊕ C′k−1 ⊕ Gk−1 .

Then B is an Ω(SnWCMTL)-chain since each Ci is an SnWCMTL-chain and each Gi can be
viewed as an infinite ordinal sum of two element Boolean algebras. It is straightforward to
check that S =

⊕
i<k Ci can be embedded in B and B is order-isomorphic to [0, 1].

Although Ω(SnWCMTL) enjoys the FSSC, it does not enjoy the SSC as it is shown in
the rest of this section. Let p, q, and ri, i ∈ N, be propositional variables. We define the
following set of formulae:

Γ = {p→ q, r0 ↔ q2} ∪ {ri → p, ri+1 ↔ (p→ ri&q), ri+1&p↔ ri&q | i ∈ N} .

Lemma 4.40. For each standard Ω(WCMTL)-chain A we have Γ |=A r2 → r1.

Proof. Let e be an evaluation on A such that e[Γ] ⊆ {1A}. We set x = e(p), y = e(q), and
ai = e(ri), i ∈ N. Then clearly x ≤ y since p → q ∈ Γ. Thus we have ai&x ≤ ai&y which
is equivalent to ai ≤ x → ai&y = ai+1. Hence the sequence {ai}i∈N is non-decreasing. The
order of evaluations of all considered variables has to be the following:

y2 = a0 ≤ a1 ≤ a2 ≤ · · · ≤ ai ≤ · · · ≤ x ≤ y .
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The first equality holds since r0 ↔ q2 ∈ Γ. It is obvious that x, y, ai belong to the same
Archimedean class. Hence also to the same component in the ordinal sum, say Ak. The
algebra Ak is a weakly cancellative totally ordered semihoop. If it has a bottom element then
we denote it by 0k.

As A is complete, all suprema exist. Let a =
∨
ai. From the fact that ri+1&p↔ ri&q ∈ Γ

for each i ∈ N, we get ai+1&x = ai&y for each i ∈ N. Consequently,
∨

(ai+1&x) =
∨

(ai&y).
Since & distributes over the joins, we obtain a&x = a&y. Now, suppose that a&y 6= 0k.
Then we can use the weak cancellation law and get x = y. Thus a2&y = a2&x = a1&y
since ri+1&p ↔ ri&q ∈ Γ. If a2&y 6= 0k then a2 = a1 by the weak cancellation law, i.e.
e(r2 → r1) = 1A. If a2&y = 0k then a1&y = 0k, and a0&y = 0k since ai&y ≤ aj&y for i ≤ j.
For ri+1 ↔ (p→ ri&q) ∈ Γ, we get a1 = x→ a0&y = x→ 0k = x→ a1&y = a2.

Similarly, if a&y = 0k then all ai&y = 0k and we can use the same argument as before.

Lemma 4.41. There is an S4WCMTL-chain B such that Γ 6|=B a2 → a1, i.e. Γ 6`S4WCMTL

a2 → a1.

Proof. Consider the lexicographic product of two copies of the additive group of integers. Let
A denote its negative cone. Then A = 〈A,&,→,≤, 〈0, 0〉〉 forms an integral commutative
cancellative residuated chain. We have 〈x1, y1〉&〈x2, y2〉 = 〈x1 + x2, y1 + y2〉. Now consider
an algebra B = (A〈−1,0〉)〈−3,0〉 arising from A by cutting off the open interval (〈−1, 0〉, 〈0, 0〉)
and then truncated at 〈−3, 0〉. The resulting algebra B is an S4WCMTL-chain. Let e be an
evaluation such that e(p) = 〈−1,−1〉, e(q) = 〈−1, 0〉, and e(ri) = 〈−2, i〉, i ∈ N. Then clearly
e(p) ≤ e(q), e(r0) = e(q2), and e(ri) ≤ e(p) for all i ∈ N. Further, we have

e(p→ ri&q) = 〈−1,−1〉 → 〈−2, i〉&〈−1, 0〉 =
= 〈−1,−1〉 → 〈−3, i〉 = 〈−2, i+ 1〉 = e(ri+1) .

Finally,

e(ri+1&p) = 〈−2, i+ 1〉&〈−1,−1〉 = 〈−3, i〉 = 〈−2, i〉&〈−1, 0〉 = e(ri&q) .

Thus e[Γ] ⊆ {1B} but e(a2) = 〈−2, 2〉 > 〈−2, 1〉 = e(a1). Thus Γ 6|=B a2 → a1.

Theorem 4.42. Any logic between Ω(WCMTL) and S4WCMTL does not enjoy the SSC.

5 Conclusions

A new hierarchy of fuzzy logics has been defined in this paper by using the axioms of n-
contraction, the generalized excluded middle axioms, the weak cancellation axioms and the
Ω operator. We have studied some of their logical and algebraic properties. The obtained
results are gathered in the Table 4.
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LF FEP = FMP Decidable SC FSSC SSC
G Yes Yes Yes Yes Yes Yes

WNM Yes Yes Yes Yes Yes Yes
NM Yes Yes Yes Yes Yes Yes

CnMTL, n ≥ 3 No Yes Yes Yes Yes Yes
CnIMTL, n ≥ 3 No Yes Yes Yes Yes Yes
SnMTL, n ≥ 4 No Yes Yes No No No

S4IMTL Yes Yes Yes No No No
SnIMTL, n ≥ 5 No Yes Yes No No No

Ω(S3MTL) Yes Yes Yes Yes Yes Yes
Ω(SnMTL), n ≥ 4 No Yes Yes Yes Yes Yes
SnWCMTL, n ≥ 4 No Yes Yes No No No

Ω(SnWCMTL), n ≥ 4 No Yes Yes Yes Yes No

Table 4: Algebraic and logical properties of n-contractive fuzzy logics.
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