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Abstract In this paper we focus on the application of similarity relations to for-
malise different kinds of graded approximate reasoning with gradual concepts. In
particular we extend a previous approach that studies properties of a kind of approxi-
mate consequence relations for gradual propositions based on the similarity between
both prototypes and counterexamples of the antecedent and the consequent. Here
we define a graded modal extension of Lukasiewicz’s three-valued logic £.3 and we
show how the above mentioned approximate consequences can be interpreted in this
modal framework, while preserving both prototypes and counterexamples.

1 Introduction

Indistinguishability relations, also known as fuzzy similarity relations, are suitable
graded generalisations of the classical notion of equivalence relation that go back to
Zadeh, Trillas and colleagues [39, 32, 33, 34].

Definition 1 Let W be a universe and let % be a t-norm. A binary fuzzy relation
S:W xW — [0,1] is called an indistinguishability relation with respect to * (or
an x-indistinguashability relation, or *-similarity relation) if, for any x,y,z € W, the
following properties hold:

e Reflexivity: S(x,x) =1,
e Symmetry: S(x,y) = S(y,x),
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e x-Transitivity: S(x,y) *S(y,z) < S(x,2).

Additionally, if the following property holds, then S is called a strict indistinguisha-
bility relation:

e Strictness: S(x,y) = 1l iffx =y,

Actually, this definition is a generalization of Zadeh’s concept of fuzzy similar-
ity relations introduced in [39], that corresponds to the particular case of min-
indistinguishability relations, that is, when one takes * = min above. Actually, min-
indistinguishability relations are a very particular class of fuzzy relations since all
the cuts of a min-similarity relation turn out to be classical equivalence relations,
and hence it defines a partition tree (a partition for each cut of the relation, and in
which the partition in one level is a refinement of the partition in the level above it).
This does not hold for a *-similarity with * % min.

Fuzzy similarity relations have been extensively studied from a mathematical
point of view, see for example [35, 27, 25, 28, 2, 11, 26, 15, 16] and its applications
cover many different topics like classification, analogical reasoning, preferences,
interpolation, morphology, etc. In this paper we are interested in the application of
similarity relations to formalise different kinds of graded approximate reasoning
with gradual concepts. This approach dates back to Ruspini [31] where he proposes
a semantics for fuzzy sets based on the idea of prototypes and similarity relations.
Along this line, there have been a number of contributions towards the logical for-
malisation of (graded) approximate inference patterns of the kind “if ¢ then approx-
imately y”, either as graded consequence relations and with unary or binary modal-
ities [18, 21, 22, 37, 38], but always dealing with classical propositions ¢ and y. In
a recent paper [20], this approach has been extended to cope with vague concepts
(or propositions) based on the similarity between both prototypes and counterexam-
ples of the antecedent and the consequent. This approach is a natural generalization
for Lukasiewicz’s three-valued logic L3 of the notion of logical consequence that
preserves truth-degrees (=5). In this paper, we define a graded modal extension of
Fukasiewicz’s three-valued logic k.3, where modalities ¢, ¢ stand for approximately
@ to the degree at least a, where a is a value in a finite scale G C [0, 1], and we show
how one can interpret in this modal framework the above mentioned approximate
consequences preserving both prototypes and counterexamples.

The paper is structured as follows. After this short introduction, Sections 2 and
Section 3 are devoted to briefly recall material from [20]. Namely, in Section 2 we
overview a logical approach to reason with vague concepts represented by exam-
ples and counterexamples based on the three-valued Lukasiewicz logic L3, while
in Section 3 we characterize three similarity-based graded notions of approximate
logical consequence among vague propositions. Finally, in Section 4 we formally
define a multi-modal extension of L3 to capture reasoning about the approximate
consequences, and prove its completeness. We end up with some conclusions.
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2 Prototypes, counter-examples and borderline cases:
a simple 3-valued model for gradual properties

2.1 A 3-valued approach

A vague property, in the sense of gradual, is characterized by the existence of border-
line cases; that is, objects or situations for which the property only partially applies.

In a recent paper [20], the authors investigate how a logic for vague concepts can
be defined starting from the most basic description of a vague property or concept
¢ in terms of two subsets of the set Q of situations: the set of examples —situations
where @ definitely applies— and the set of counterexamples —situations where ¢ does
not apply for sure—, denoted [@™] and [¢~] respectively.

The consistency condition [@T]N[@~] = 0 is assumed to hold. Further, the re-
maining set of situations [@~] = Q\ ([pT]U[@~]) are assumed to be those where @
only partially applies, that is, the set of borderline cases. In such a scenario, one is
led to a three-valued framework, where for each situation w € Q, either w € [(p*],
we[porwe [p~]t

To define a logic to deal with these 3-valued concepts, a first question is how to
define the prototypes and counter-examples of compound concepts from their basic
constituents. Let us consider a language with four connectives: conjunction (A),
disjunction (V), negation (—) and implication (—). The rules for A, V and — seem
clear to be given as follows:

(eAw) ] =[eIN[y"], [(@Ay) = U[y ],
(evy) I=[eTUly™], [(eVvy) ]=[p N[yl
[(=9)"]=[o7], [(—9)7]=[¢7].

The case for — is not as straightforward as for the previous connectives since sev-
eral choices can be considered. For instance, if w is a borderline case for both ¢ and
v then it can be considered as an example for ¢ — y rather than a borderline case
of @ — y. The former choice leads to the well-known three-valued Lukasiewicz
logic, while the latter would lead to Kleene’s three-valued logic (see e.g. [14] for
a relevant discussion on three-valued logical representations of imperfect informa-
tion). In this paper, we follow [20] and will use the three-valued Lukasiewicz logic
L3 as base logic to reason with vague concepts, we will thus stick to the following
rule for —:

(o =) l=lo Uy Tu(le~]IN[¥™]), [(@—=w) ]=[e*]N[y].

! It is worth noticing that in this 3-valued model, the set [@"] is not meant to represent the situations
the agent does not know whether ¢ applies or not; rather it is meant to represent the situations
where the concept only partially applies, or equivalently, the situation that are borderline cases for
the concept ¢ (see [17] for a discussion on this topic).
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2.2 A refresher on 3-valued Lukasiewicz logic ¥.;

Let us briefly recall the formal logical framework of the 3-valued Lukasiewicz logic
L3, see e.g. [13, 24]. Let Var denote a (finite) set of atomic concepts, or proposi-
tional variables, from which compound concepts (or formulas) are built using the
connectives A, V, — and —. We will denote the set of formulas by #3(Var), or
simply by .43 in case of no doubt. Further, we identify the set of all possible sit-
uations Q with the set of all evaluations w of atomic concepts Var into the truth
set {0,1/2,1}, that is, Q = {0,1/2,1}"%", with the following intended meaning: for
every o € Var, w(a) = 1 means that w is an example of o (resp. w is a model of
o in logical terms), w(a) = 0 means that w is a counterexample of & (resp. w is a
counter-model of @), and w(a) = 1/2 means that w is borderline situation for o,
i.e. it is neither an example nor a counterexample. According to the previous discus-
sion, truth-evaluations w will be extended to compound concepts according to the
semantics of .3, defined by the following truth-functions:? for all x,y € {0,1/2,1},

xAy=min(x,y), xVy=max(x,y), x—y=min(l,1—-x+y), -x=1-x

In L3, strong conjunction and disjunction connectives can be defined from —
and - as follows: forall 9,y € %5, @@y := (¢ — ~y) and QDY 1=~ — Y.}
Actually, for each concept ¢ € %3, three related Boolean concepts can be defined
using the connective ®:

T =00, ¢ =(-0)2(—)=(-0)", @~ :=-0"A-0",

with the following semantics:

w(et)=1 if w(p)=1, w(p")=0 otherwise;
w(@~)=1 if w(@)=1/2, w(¢~)=0 otherwise;
w(e™)=1 if w(@)=0, w(@~)=0 otherwise.

Therefore, if for x € {+, —,~} we let [¢*] = {w € Q| w(¢*) = 1}, then [@*], [0~ ], [¢™]
capture respectively the (classical) sets of examples, counterexamples and border-
line cases of ¢.

The usual notion of logical consequence in 3-valued Lukasiewicz logic is defined
as follows: for any set of formulas TU{¢},

I' = ¢ if, forany evaluation w, w(y) =1 for all y € T, then w(¢) = 1.

It is well known that this consequence relation can be axiomatized by the following
axioms and rule (see e.g. [13]):

(ED) o= (v — 0)
E2) (9= y) = (y—x) = (0—2))

2 We use the same symbols of connectives to denote their corresponding truth-functions.
3 One could take — and — as the only primitive connectives since A and V can be defined from —

and~aswel: QAY =R (¢ > y)and @V Yy = (¢ = y) — .
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(£3) (=@ = =y) = (v — )
(£4) (pVy) = (yV o)

LS) e o0

(MP) The rule of modus ponens: LN dndl 4

This axiomatic system, denoted L3, is strongly complete with respect to the above
semantics; that is, for a set of formulas TU{¢}, " = @ iff T’ ¢, where I, the notion
of proof for L3, is defined from the above axioms and rule in the usual way.

Remark: In the sequel we will restrict ourselves on considerations about logical
consequences from a finite set of premises. In such a case, if [ = {¢y,..., @,} then
I'E yiff o A...A @, = v, and hence it will be enough to consider premises
consisting of a single formula.

2.3 Dealing with both prototypes and counter-examples: the logic Lf

It is evident that, for any formulas @, y, ¢ |= y can be equivalently expressed as
[@"] C [w"]. This makes clear that = is indeed the consequence relation that pre-
serves the examples of concepts. Similarly one can also consider the consequence
relation that preserves counterexamples [20]. Namely, one can contrapositively de-
fine a falsity-preserving consequence as:

o ECy if -y =, thatis,
if  for any evaluation w, w(y) = 0 implies w(¢@) = 0.

Unlike classical logic, in 3-valued Lukasiewicz logic it is not the case that @ = y iff
-y = —@. As we have seen that the former amounts to require [@*] C [y'], while
the latter, as shown next, amounts to require [y~ ] C [@~]. Clearly these conditions,
in general, are not equivalent, except when @ and ¥ do not have borderline cases,
that is, when [@T]U [ | = [y Uy ] = Q.

Equivalently, ¢ =€ v holds iff [y~] C [@~], and iff for any evaluation v € Q,
v(@) > 1/2 implies v(y) > 1/2, or in other words, [@T]U[¢@~] C [yT]U[y™~]. Now
we define the consequence relation that preserves both examples and counterexam-
ples in the natural way.

Definition 2 ¢ =< yif ¢ =y and ¢ =€ y, thatis, if [¢"] C [y ] and [y ] C [~ ].

Note that ¢ =S y iff, for any w € Q, w(@) < w(y), that justifies the use of
the superscript < in the symbol of consequence relation. Indeed, the consequence
relation == is known in the literature as the degree-preserving companion of |=, as
opposed to the truth-preserving consequence |=, that preserves the truth-value ‘1’ ,
see e.g. [3].

=S can also be axiomatized by taking as axioms those of k.3 and the following
two inference rules:
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NP Y ¢, Fo—y
Adj): —— rMP) : —MM
(aajy: $X )

The resulting logic is denoted by LS, and its notion of proof is denoted by <.
Notice that (rMP) is a weakened version of modus ponens, called restricted modus
ponens, since @ — V¥ has to be a theorem of L3 for the rule to be applicable.

Therefore, L§ (and its semantical counterpart =<) appears as a more natural
logical framework to reason about concepts described by examples and counterex-
amples than the usual three-valued Lukasiewicz logic L3.

3 A similarity-based refined framework

In the previous section we have discussed a logic for reasoning about vague concepts
described in fact as 3-valued fuzzy sets. A more fine grained representation, moving
from 3-valued to [0, 1]-valued fuzzy sets, can be introduced by assuming the avail-
ability of a (fuzzy) similarity relation S : Q x Q — [0, 1] among situations. Indeed,
for instance, assume that all examples of ¢ are examples of y, but some counterex-
amples of y are not counterexamples of ¢@. Hence, we cannot derive that y follows
from ¢ according to |=<. However, if these counterexamples of y greatly resemble
to counterexamples of ¢, it seems reasonable to claim that y follows approximately
from ¢.

Actually, starting from Ruspini’s seminal work [31], a similar approach has al-
ready been investigated in the literature in order to extend the notion of entailment
in classical logic in different frameworks and using formalisms, see e.g. [22]. Fol-
lowing this line, here we recall from [20] a graded generalization of the =< in the
presence of similarity relation S on the set of 3-valued Lukasiewicz interpretations
Q, that allows to draw approximate conclusions.

Since, by definition ¢ =< y if both ¢ = v and ¢ =€ y, that is, if [pT] C [y™]
and [y~ ] C [@7], it seems natural to define that y is an approximate consequence
of ¢ to some degree a € [0, 1] when every example of @ is similar (at least to the
degree a) to some example of Y, as well as every counterexample of y is similar (to
at least to the degree a) to some counterexample of ¢. In other words, this means
that to relax =S we propose to relax both = and |=C. This idea is formalized next,
where we assume that a *-similarity relation S : Q x Q — [0, 1] is given. Moreover,
for any subset A C Q and value a € [0, 1] we define its a-neighborhood as

= {w € Q| there exists w’' € A such that S(w,w’) > a}.

Definition 3 For any pair of formulas ¢, y and for each degree a € [0, 1], we define
the graded consequence relations |=,, = and =5 as follows:

) ¢ Fawif (7] C[y"]”
(i) @ S wif [y] C [ )¢
(iii) @ =5 yif both [p*] C [y*]% and [y~ ] C [@~]".



A similarity-based three-valued modal logic 7

Taking into account that for any formula } we have [(—x)*] =[x~ ], it is clear
that both |=$ and |=5 can be expressed in terms of |=%. Namely, ¢ = v iff =y =,
—¢ and ¢ =5 yiff ¢ =, y and —y =, 9.

The consequence relations |=,’s are very similar to the so-called approximate
graded entailment relations defined in [18] and further studied in [22]. The main
difference is that in [18] the authors consider classical propositions while here we
consider three-valued Lukasiewicz propositions. Nevertheless, as shown in [20], one
can prove very similar characterizing properties for the |=*’s. In the following theo-
rem we assume the language is built from a finite set of propositional variables Var,
and for each evaluation w € Q, w denotes the following proposition:

w=( A pOHAC AN IAC AN P

pEVar: w(p)=1 pEVar: w(p)=1/2 pEVar: w(p)=0

So, wis a (Boolean) formula which encapsulates the complete description provided
by w. Moreover, for every w' € Q, w'(w) = 1 if w' = w and w'(w) = 0 otherwise.

Theorem 1 ([20]) The following properties hold for the family {Fa}acio,1) of
graded entailment relations on &5 induced by a *-similarity relation S on €.

(i) Nestedness: if ¢ =4 W and b < a, then ¢ =p Y
(ii) =1 coincides with |=, while |= C =4 if a < 1. Moreover, if W l= L, then ¢ |=o ¥
for any .
(iii) Positive-preservation: ¢ =, W iff T =4 W
(iv) *-Transitivity: if ¢ =, W and ¥ |=p X then @ Euup X
(v) Left-OR: VW = X iff @ Fa X and Y F=a X
(vi) Restricted Right-OR: forallw € Q, W=, @V Y iff W, @ orw =, ¥
(vii) Restricted symmetry: for all wyw' € Q, W =, W iff W =, W
(viii) Consistency preservation: if ¢ = 1 then ¢ =, L only ifa=0
(ix) Continuity from below: If ¢ |=, W for all a < b, then ¢ = ¥

Conversely, for any family of graded entailment relations {I—a}ae[w] on 2 satisfy-
ing the above properties, there exists a *-similarity relation S such that -, coincides
with =, for each a € [0,1].

Actually, the above properties also indirectly characterize |=5 since, in the finite
setting, |=, (and thus =5 as well) can be derived from =y in the following sense:
@ =, v holds iff for every w € Q such that w(¢@) = 1 there exists w' € Q such that
w(y)=1andw =5 w.

However, a nicer characterization of =5 can be obtained if we extend the lan-
guage of L3 with the truth-constant %

Lemma 1 ([20]) For any formulas in the expanded language, the following condi-
tions hold:

o Olaviffolswvi
e OESVifONs S W
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As a consequence, we have that ¢ =5 W iff ¢ =S wV % and @ A % =S

From this, one can get the following representation for the =5 consequence re-
lations.

Theorem 2 ([20]) Let {Ff YacG be a set of consequence relations on the expanded
language satisfying the following conditions:

° O ViffyhE - i

o QL VIfQrs WV sand AT Y

e The set of relations {4 }acG, where @ o W is defined as ¢ =5 y\V 3, satisfy the
conditions (i)-(ix) of Theorem 1.

Then, there exists a similarity relation S : Q x Q — G such that 5 = =5, for any
acG.

4 A multi-modal approach to reason about the similarity-based
graded entailments

As we have seen in Section 3, the three kinds of similarity-based graded entailments
Fa, =S and [=5 are based on an idea of neighbourhood of a set of interpretations
(see Def. 3) . Indeed, for instance, given a *-similarity relation S on the set of in-
terpretations Q, the idea of a graded entailment ¢ |=, ¥ is to replace the classical
constraint that the set [¢ ] of models (prototypes) of @ have to be included in the
set [y] of models (prototypes of ¥, to a more relaxed condition in the sense that
[@™] needs only to be included in the neighbourhood of [y of radius a (i.e. each
model of ¢ has to be at least a-similar to some model of ). Similarly with the other
graded entailments =< and |=5.

In the framework of relational semantics for modal logic, such neighbourhoods
can be nicely captured by a certain class of generalized Kriple frames of the form
(W,S), where W is a set of possible worlds and S a *-similarity relation on W. Then
S induces a nested set of binary accessibility relations on W: for each value a, we
can define the accessibility relation S, among interpretations (or worlds in the modal
logic terminology) in the natural way: (w,w’) € S, if S(w,w’) > a, that is, S, is the
a-cut of S. In fact, for each value a, (W,S,) is a classical Kripke frame, and the
semantics of a corresponding possibility modal formula ¢, exactly corresponds to
the notion of a-neighbourhood of (the set of models of) ¢ (see for instance [21] for
the case of dealing with classical propositions.)*

4 Note that this is not to be confused with the so-called neighbourhood semantics (also known as
Scott-Montague semantics) for modal logics (see e.g. [12]), a more general semantics that, instead
of using relational frames (W, R) consisting of a set W of worlds and an accessibility relation R,
it is based on neighborhood frames (W,N), where N is a neighborhood function N : W — 22"
assigning to each possible world of W a set of subsets of W.
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In this section we will define a multi-modal logic over 3-valued Lukasiewicz
logic L3 expanded with the truth-constant %, and we will see how the above notions
of graded entailment can be faithfully captured in this logic. Actually, this 3-valued
modal logic is a richer framework with a more expressive power. To avoid unnec-
essary complications, we will make the following assumptions: all x-similarity re-
lations S will take values in a finite set G C [0, 1], containing 0 and 1, and * will
be a finite t-norm operation on G, that is, (G,*,<,1,0) will be a finite totally or-
dered semi-group. In this way, we keep our language finitary and will avoid the use
of an infinitary inference rule to cope with Property (ix) of Theorem 1. Then, we
will expand the propositional language of £.3 with the (finite) set of modal operators
{0, : a € G} (O, will be used as abbreviations of —[J,—) by means of the usual
rules. We will denote the modal language by 41;.

For a given finite t-norm (G,*,1,0) as above, the semantics will be given
by *-similarity Kripke frames (W,S), where W is a set of possible worlds and
S:W xW — Gis astrict x-similarity relation. A 3-valued *-similarity Kripke model
is a structure M = (W, S, e), where (W,S) is as above and e : W x Var — {0,1/2,1}
is a 3-valued evaluation of propositional variables for each possible world. An eval-
uation e(w, -) is extended to arbitrary formulas using the truth-functions of £.3 with
the following special stipulations:

e e(w,1/2)=1/2

o e(w,0o@) =min{e(w', @) | (w,w') € Sa}

o e(w,0a9) = max{e(w, @) [ (w,w') € Sa}

where, as already mentioned, S, = {(w,w') | w,w’ € W,S(w,w') > a}. The corre-
sponding notions of satisfiability, validity and consequence are respectively as fol-
lows:

o« (M) @ife(mg)=1.
e ME=oif (M,w) = ¢ foreverywe W.

Given a similarity scale (G, *, 1,0), we will denote by SK(G) the class of similarity
Kripke models M = (W, S, e) where S is a G-valued *-strict similarity relation on W.
Then, we can finally define the notion of consequence relative to SK(G): for any set
of formulas TU{¢},

o I' sk @ if, for every model M = (W,S,e) € SK(G) and world w € W,
(M,w) = v for every y € T implies (M,w) = ¢.

Next, we aim at providing a complete aximatization for this 3-valued modal
logic. We start by observing that each modality [, is interpreted in a Kripke model
M = (W,S,e) by the a-cut S, of the similarity relation, i.e. each graded modality has
associated a crisp accessibility relation S,. Thus, we have to look at what properties
these crisp relations S, have. It is clear that S, is a reflexive and symmetric rela-
tion for every a € G. Moreover, due to the *-transitivity property of S, the following
transitivity-like inclusions hold for any a,b € G: S; 0 S, C S,4p, Where o denotes
usual composition of relations. Hence, if a * a = a, the relation S, is also transitive.
Therefore, each operator U, is a sort of 3-valued KTB modality, as the following
well-known axioms are valid in every Kripke model for all a € G:
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(Ka) Oa(@ — v) = (Lo — Oay)
(T) O.0— @
By ¢ = 0,040

while the following generalized form of Axiom 4 is also valid for every a,b € G:

(4a,b) Oasp @ — Db(Da(P), or equivalently <>a(<>b(p) — <>a*b(P-

Thus, if axa = a (e.g. fora =0 or a = 1 at least), then [J, can be considered as
3-valued S5 modality as it satisfies many-valued versions of Axioms K, T, B and 4
axioms.

Moreover, since the S,’s relations form a nested set, in the sense that S, C S, if
a 2 b, then any Kripke model validates the following axiom:

(Nap) Opo — Uy, if a > b.

Finally, let us observe the boundary properties of the relations S, (when a = 0 or
a=1), namely: So =W x W and S| = {(w,w) |[w € W}.

These properties and existing results for many-valued modal logics in general
[4] and for some modal extensions of finite-valued Lukasiewicz logics L, [1] lead
to the definition of the following axiomatic system.

Definition 4 Given a finite similarity scale (G, *, 1,0), the axiomatic system £5'(G)
consists of the following groups of axioms and rules, where the subindices a,b run
over G:

(k3) axioms of L3,

(bk) =(1/2) <> 1/2

Ko) Ua(@ = y) = (Lo — Lay),
(AD) (Oap ADLY) — Ou(@ A Y)
(A Ta(1/2 = @) < (1/2 = Ta0),
(AY) (Oue@0,0) < Ou(@d @),

(To) Uap — @
Ba) @ — Ui0u 0,
(4a,b) Da*bq) — Db(‘:laq))

(Nap) Opo — 00, if b < a
(&) o — |:|1§D

(MP) from ¢ and ¢ — y derive y
(Nec) from ¢ derive [, ¢

We will denote by }_LE' @) the notion of proof in LE(G) defined as usual from the
above axioms and rules.

The first group of axioms (£3)-(AP) corresponds to the axiomatization of each
0, for the minimal modal logic over L3 with the truth constant 17/2 with respect
to the semantics with crisp accessibility relations, see [4]. The second group aims
at capturing the three characteristic properties of the relations S, above mentioned,



A similarity-based three-valued modal logic 11

namely reflexivity, symmetry and x-transitivity, see e.g. [1]. Finally, (N, ;) captures
the nestedness of the graded operators, while (C;) aims at capturing the particular
behaviour of the modal operator for the extremal value a = 1: [J; ¢ collapses with
@ itself since for any strict similarity S(w,w') = 1 iff w = w'.

Now we can prove that the axiomatic system L3D(G) is indeed complete with re-
spect to the intended semantics, that is, the class of similarity Kripke models SK(G).

Theorem 3 L3D(G) is complete w.r.t. the class of models SK(G), that is, for any set
of formulas TU{@}, I Esk(c) ¢ iff T }—L3g<G) 0.

Proof (Sketch) We have to prove that if T’ VL?(G) ¢ there is a model M € SK(G)

and a world w € W such that (M, w) = v for every y € T, but (M,w) i .

Actually, we will make the proof in two steps. In the first step we will build a
canonical model M¢ = (W¢,S¢, ), where S is a (non-necessarily strict) *-similarity
relation on W€, and a world v € W€ such that (M¢,v) = y for every y € I, but
(M€, v) £ ¢. For this, we basically use the results and proofs of [1] where the authors
define KD45 and S5-like modal logics over a k-valued Lukasiewicz logic L.

Consider for each modal formula ¢ its propositional counterpart ¢* by treat-
ing subformulas of the form [,y for some a € G as new propositional variables.
So formally, we can consider a propositional language -#23(Var*) built from the ex-
tended set of variables Var* = VarU{(O,y)* | w € £(Var),a € G}, and let Q* the
set of £.3-evaluations over the fomulas from %3 (Var*). Then, the canonical model
M€ = (W€, 5 ¢°) is defined as follows:

o Wei={weQ*|Vo*ecA:w(p*)=1}withA ={0* |, ¢};

o S¢={(wi,wm) € Q" xQ" Vo e L(Var): if w((E.0)*) =1 then wa(@*) =
1};

o S°(wi,wp) =max{a € G| (wy,w;) € S}, for all wi,wp € W€

o ¢“(w,p) = w(p) for each variable p € Var.

Then, using the same techniques in [1], we can show that the fundamental Truth
Lemma for the canonical model M€, namely, for any modal formula ¢ and any
w € W¢, it holds that

e“(w, @) =w(e").

Moreover, following [1] one can show that, so defined, S€ is reflexive, symmetric and
*-transitive, and that S¢(w,w’) = 1 iff w = w’' thanks to Axiom (C1).’> However, even
if §§ turns out to be an equivalence relation, we cannot guarantee that §g = W¢ x W¢
and hence we do not know whether M¢ € SK(G).

To remedy this problem, we need a further step. For this we need a previous
lemma that shows that deductions in LSD (G) can be reduced to propositional deduc-
tions in k3.

5 By definition, (w,w’) € S§ iff for all @, w(C); @) = 1 implies w'(¢) = 1, equivalent to the con-
dition: for all @, w(O; @) < w/(¢). But by definition of W¢, w(0; @) = w(@), thus (w,w') € S§
iff for all @, w(@) < w/(@). Since S is symmetric, then (w,w’) € S iff for all @, w(@) =w'(¢),
therefore, iff w = w'.
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Lemma. For any set of modal formulas TU{@}, T’ FLQ(G) Qiff T"UA g, 0*

where I is defined as above. The proof is rather standard and it is omitted.
Continuing with the main proof, assume I" |7‘LSD<G) ¢. Then by the above lemma

and propositional completeness of £, there is a E.3-evaluation v such that v(T™) =
v(A) =1 and v(¢*) < 1. By definition, v € W¢, and thus we can consider its equiv-
alence class w.r.t. S5, i.e. WO = {w e W¢| (v,w) € S5}. Then, an easy computa-
tion shows that M° = (WO,So,eO), where SO = §¢ and ¢° = ¢¢, belongs to the class
SK(G), and by the Truth Lemma it preserves the evaluations. In particular, we have
(v, ¥) = v(y*) = 1 for each y € T, while ¢(v, ) = v(¢*) < 1. In other words,
we have shown that I' [g ) @. This finishes the proof. t

Finally, we can show that the graded entailments defined by similarity reason-
ing over L3 can be faithfully captured in the multi-modal logic L3D(G). Intuitively,
consider an instance of a graded entailment like “@ =, y”, whose intended mean-
ing is “for all w € Q, if w = ¢ then there exists w’ such that S(w,w) > a and
w E y”. To encode this condition in the modal framework, we use the universal
modality Oy to model the “for all w € Q”, while the rest of condition “if w |= @ then
there exists w’ such that S(w,w) > a and w' |= W” can be naturally encoded by the
formula “@ — O,y”. Therefore, we can encode “@ =, ¥ by the £5(G)-formula
Oo(@ — Oqv). In summary, the translations are as follows:

Graded consequences L5(G)-formulas
PEY Oo(@ — OaW)
0ES v Oo(=¢ — Oqmy), or Oo(Cay — )
oS Y Oo((@ = Qa¥) A Loy — @)

5 Conclusions and dedication

In this paper we have first recalled an approach towards considering graded approx-
imate entailments between vague concepts (or propositions) based on the similarity
between both prototypes and counterexamples of the antecedent and the consequent,
presented in [20]. This approach is a natural generalization for Lukasiewicz’s three-
valued logic L3 of the notion consequence that preserves truth-degrees. Then, we
have provided a modal logic formalisation, by defining a similarity-based graded
modal extension of L3, and have shown how this modal framework is expressive
enough to accommodate reasoning about instances of the above approximate entail-
ments.

This small paper on similarity-based reasoning is our humble tribute to Bernadette
Bouchon-Meunier for her dedication to the field of approximate reasoning. Similar-
ity relations have been one of the many nuclear research topics for Bernadette, as
it is witnessed by her numerous and relevant contributions on this subject; here we
cite only some representative works of hers relating together the notion of fuzzy
similarity with analogical reasoning [10, 7, 6], similarity measures [5, 29, 30], and



A similarity-based three-valued modal logic 13

interpolation of fuzzy rules [9, 23, 8]. Her own remarkable studies and her relentless
efforts to bring the computational intelligence and approximate reasoning commu-
nity together have substantially deepened our knowledge and will continue to impact
generations of computer scientists to come.
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