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Abstract. Connecting soft arc consistency with distributed search in DCOP solv-
ing has been very beneficial for performance. However, including higher levels
of soft arc consistency breaks usual privacy requirements. To avoid this issue,
we propose to keep different representations of the same problem on each agent,
on which soft arc consistencies are enforced respecting privacy. Deletions caused
in one representation can be legally propagated to others. Experimentally, this
causes significant benefits.

1 Introduction

Recently, a number of methods for solving Distributed Constraint Optimization Prob-
lems (DCOP) have appeared [7–10] possibly as consequence of the raise of multiagent
technology. In this problems, variables are distributed into several agents and the task
of interest is to find a global optimal assignation in a distributed way.

Distributed search solves DCOP by exploring the search space using messages.
Lately, the BnB-ADOPT+ algorithm has been enhanced with some forms of soft arc
consistency maintenance (specifically, AC∗ and FDAC∗) [4], which have been shown
very beneficial for performance, saving an important number of exploratory messages.
Moving into the next soft arc consistency level, EDAC∗, we have found that its en-
forcement breaks the privacy requirements usually assumed in the distributed setting.
With the double aim of improving as much as possible distributed search performance
while respecting agent privacy, we present the following approach. To enforce FDAC∗

agents must be ordered. At each agent, we propose to keep several representations of
the other agents (each representation originally corresponds to a different order), from
which some values can be deleted. Interestingly, these deletions can be legally propa-
gated among representations. In some sense, this remembers the channeling constraints
idea [1], where different modelings of the same problem coexist in the solving process
and pruning in one model is propagated to other models by the channeling constraints.
Experimentally, our approach causes significant savings on two benchmarks.

This paper is organized as follows. After recalling basic concepts, we present the
idea of connecting BnB-ADOPT+ with soft arc consistency, showing that EDAC∗ con-
nection breaks privacy requirements. To avoid this issue, we propose maintainig multi-
ple representations. Experimentally, we obtain significant benefits on two benchmarks.



2 Preliminaries

COP. A binary Constraint Optimization Problem (COP) is defined by 〈X ,D, C〉, where
X = {x1, . . . , xn} is a set of variables, D = {D(x1), . . . , D(xn)} is a set of finite do-
mains (xi takes values in D(xi)), and C is a set of unary and binary cost functions; C ∈
C specifies the cost of every combination of values of var(C),C :

∏
xi∈var(C)D(xi) 7→

N ∪ {0,∞}. The cost of a complete tuple is the addition of all individual cost func-
tions evaluated on that particular tuple. An optimal solution is a complete tuple with
minimum cost. This definition assumes the weighted model of soft constraints [6].
Soft Arc Consistency. Two COP instances defined over the same set of variables are
equivalent if they define the same cost distribution on complete assignments. Consider-
ing a single COP: (i, a) means the value a of variable xi, > is the lowest unacceptable
cost, Cij is the binary cost function between xi and xj , Ci is the unary cost function
on xi values, Cφ is a zero-ary cost function that represents a necessary global cost of
any complete assignment. As [5, 2], we consider the following local consistencies for
the weighted model (variables connected by a cost function are ordered):

• Node Consistency*: (i, a) is node consistent* (NC∗) if Cφ+Ci(a) < >; xi is NC∗

if all its values are NC∗ and there is a ∈ Di such that Ci(a) = 0; a COP is NC∗ if
every variable is NC∗.
• Arc consistency*: (i, a) is arc consistency (AC) with respect to cost function Cij if

there is b ∈ Dj s.t. Cij(a, b) = 0; b is a simple support of a; xi is AC if all its values
are AC with respect to every binary cost function involving xi; a COP is AC∗ if
every variable is AC and NC∗.
• Directional arc consistency*: (i, a) is directional arc consistent (DAC) with respect

to cost function Cij , j > i, if there is b ∈ Dj such that Cij(a, b) + Cj(b) = 0; b is
a full support of a; xi is DAC if all its values are DAC with respect to every Cij ,
j > i; a COP is DAC∗ if every variable is DAC and NC∗.
• Full DAC*: a COP is FDAC∗ if it is DAC∗ and AC∗.
• Existential arc consistency*: Variable xi is existential arc consistent (EAC) if there

is at least one value a ∈ Di such that Ci(a) = 0 and it has a full support in every
cost function Cij ; a COP is EAC∗ if every variable is NC∗ and EAC.
• EDAC*: a COP is EDAC∗ if it is FDAC∗ and EAC∗.

AC∗/DAC∗ can be reached forcing simple/full supports to NC∗ values and pruning val-
ues not NC∗. Simple supports can be forced on every value by projecting the minimum
cost from its binary cost functions to its unary costs, and then projecting the minimum
unary cost into Cφ. Full supports can be forced in the same way, but first it is needed to
extend from the unary costs of neighbors to the binary cost functions the minimum cost
required to perform in the next step the projection over the value. The systematic ap-
plication of these operations (projection and extension) produces equivalent instances,
so they do not change the minimum cost nor the optimal solutions of the original in-
stance [5]. When we prune a value from xi to ensure AC∗/DAC∗, we need to recheck
AC∗/DAC∗ on every variable that xi is constrained with, since the deleted value could
be the simple/full support.
DCOP. A Distributed Constraint Optimization Problem (DCOP) is defined by a tuple
〈X ,D, C,A, α〉, where 〈X ,D, C〉 define a COP, A = {1, . . . , p} is a set of p agents,



and α : X → A maps each variable to one agent. We assume that each agent holds
exactly one variable (so the terms variables and agents can be used interchangeably)
and cost functions are unary and binary only. Agents communicate through messages,
which could be delayed but never lost, and they are delivered in the order they were
sent.
BnB-ADOPT / BnB-ADOPT+. BnB-ADOPT [10] is a reference algorithm for DCOP.
It is a depth-first version of ADOPT [7], showing a better performance. As ADOPT, it
arranges agents in a DFS tree (agent ancestors are its parent and pseudoparents, agent
descendants are its children and pseudochildren). Each agent holds a context, which is
a set of assignations involving the agent’s ancestors, and will be updated with message
exchange. BnB-ADOPT uses three message types: VALUE(i , j , val , th) – i informs
descendant j that i takes value val with threshold th– COST(k , j , context , lb, ub) –k
informs parent j that its bound are lb/ub in context– and TERMINATE(i, j) –i informs
child j that i terminates–. A BnB-ADOPT agent executes the following loop: it reads
and processes all incoming messages and takes value. Then, it sends a VALUE to each
child or pseudochild and a COST to its parent. Here, we assume that the reader has
some familiarity with BnB-ADOPT code.

BnB-ADOPT+ [3] is a version of BnB-ADOPT that saves most of redundant mes-
sages, causing substantial reductions in communication costs with respect to the orig-
inal algorithm. BnB-ADOPT+ keeps the optimality and termination of BnB-ADOPT.
Basically, it stores the last VALUE and COST messages sent to each destination, and it
checks if some VALUE or COST messages to be sent at the current iteration might be
redundant. If messages are found redundant, they are not sent in most of the cases.

3 Connecting Distributed Search with Soft Arc Consistency

Combining search with soft arc consistency brings substantial benefits to search perfor-
mance. Taking BnB-ADOPT+ as the distributed search algorithm, its combination with
AC∗ and FDAC∗ soft arc consistency levels [4] has provided very good results. The
resulting algorithms maintain BnB-ADOPT+ optimality and termination, improving
its performance: soft arc inconsistent values are removed from their domains, making
smaller the search space, which causes substantial reductions in the search effort.

Initially, the proposed level of soft arc consistency is assured in a preprocess step,
and during execution it is enforced every time soft arc consistency is broken. The
AC∗/FDAC∗ condition could be violated during execution if one of the following cases
occur: a value is deleted (a support could be lost), a new > is found, or Cφ increments.
AC∗/FDAC∗ is enforced implementing the projection and extension operators for the
distributed case. In the next two sections we summarize existing approaches to connect
BnB-ADOPT+ with AC∗ and FDAC∗ soft arc consistency levels [4]. In addition, we
discuss its combination with EDAC∗, the next soft arc consistency level.

3.1 Connecting BnB-ADOPT+ with AC∗

AC∗ requires that every value of every variable has a simple support on any other vari-
able it is constrained with. AC∗ maintenance involves projecting binary costs into unary
ones, and unary costs on Cφ.



As consequence of distributed search and AC∗ maintenance, some deletions may
occur. In distributed search, NC∗ property is relaxed to allow equality with >, Cφ +
Ci(a) ≤ > because otherwise it could be pruned an optimal solution. In the centralized
case this is not a problem, because each time a new solution is found it is stored. In the
distributed case, however, this is not possible since there is no special agent holding the
whole solution. So a value is pruned when its cost exceeds >.

To propagate value deletions, and inform of > and Cφ some information has to be
exchanged between agents: the subtree contribution of each agent to theCφ (subtreeContribution),
the global Cφ, and the global >. This information is included in the original BnB-
ADOPT+ messages: VALUE and COST. A new message type is added: DEL to notify
value deletions. The message structure appears in Figure 1.

It is assumed that cost functions are initially AC∗. If not, they are made AC∗ by the
preprocess that appears in Figure 2. The execution logic of the original BnB-ADOPT+

algorithm remains mostly the same, with the following minor changes:

1. When self receives a VALUE message, updates its local copy of > and Cφ. This
values are later used in the NC∗ pruning. When self sends VALUE messages, if
self = root, it calculates the global Cφ as the sum of contributions from all its
children pluds its own local contribution, and it is sent downwards.

2. When self receives a COST message from a child c, it records the contribution of
c to the global Cφ (subtreeContribution). Then, when self sends a COST mes-
sage, it calculates its own subtreeContribution as the contributions of its children
plus its own local contribution, and this is sent upwards.

3. After an agents reads and process all incoming messages, it checks if any of its
values can be unconditionally deleted. If so, the value is deleted and AC∗ is rein-
forced. A value can be deleted either because it is found not NC∗, or because its
lower bound exceeds the > of the problem (to assure unconditional deletions the
lower bound should aggregate only costs not involved with any higher agent).

In addition, in the current implementation:

• BnB-ADOPT+ works with the original cost functions, while AC∗ is enforced on a
copy of them. When a value is deleted, this is included in the original cost functions.

• There is a pre-preprocess to compute an initial> to pass to AC∗-preprocess(>).

BnB-ADOPT+:
VALUE(sender , destination, value, threshold)
COST(sender , destination, context [], lb, ub)
STOP(sender , destination)
BnB-ADOPT+ with AC∗ maintenance:
VALUE(sender , destination, value, threshold ,>,Cφ)
COST(sender , destination, context [], lb, ub, subtreeContribution)
STOP(sender , destination, emptydomain)
DEL(sender , destination, value)
BnB-ADOPT+ with FDAC∗ maintenance: BnB-ADOPT+with AC∗ maintenance plus
UCO(sender , destination, vectorOfExtensions)

Fig. 1. Messages of original BnB-ADOPT+ and BnB-ADOPT+ maintaining AC∗ and FDAC∗.



procedure AC∗-preprocess(>)
initialize;
AC∗-pre();
while ¬end ∧ ¬quiescence do

while input queue is not empty do
msg ← getMsg();
switch(msg.type)
DEL: ProcessDelete(msg);
STOP : ProcessStop(msg);

PruneDomainSelf();

procedure AC∗-pre()
for each i ∈ neighbors(self ) do

if i < self then
FromBinaryToUnary(self, i),
FromBinaryToUnary(i, self),

else
FromBinaryToUnary(i, self),
FromBinaryToUnary(self, i),

FromUnarySelfToCφ();

procedure FromBinaryToUnary(i, j)
for each a ∈ Di do
v ← argminb∈Dj

{Cij (a, b)}; α← Cij(a, v);
for each b ∈ Dj do Cij(a, b)← Cij(a, b)− α;
if i = self then Ci(a)← Ci(a) + α;

procedure FromUnarySelfToCφ()
v ← argmina∈Dself

{Cself (a)}; α← Cself (v);
myContribution ← myContribution + α;
for each a ∈ Dself do Cself (a)← Cself (a)− α;

procedure PruneDomainSelf()
for each a ∈ Dself do if Cself (a) + Cφ > > then DeleteValue(a);

procedure DeleteValue(a)
Dself ← Dself − {a};
if Dself = ∅ then

for each j ∈ neighbors(self ) do sendMsg:(STOP, self , j , true);
end ← true;

else
for each j ∈ neighbors(self ) do
sendMsg:(DEL, self , j , a);
FromBinaryToUnary(j, self);

FromUnarySelfToCφ();
if a = myValue then myValue ← argminv∈Dself

LB(v);

procedure ProcessDelete(msg)
Dsender ← Dsender − {msg.value};
FromBinaryToUnary(self,msg.sender),
FromUnarySelfToCφ(),

procedure ProcessStop(msg)
if (msg.emptyDomain = true) then

for each j ∈ neighbors(self ), j 6= sender do sendMsg(STOP, self , j , true);
end ← true;

Fig. 2. AC∗ preprocess.

3.2 Connecting BnB-ADOPT+ with FDAC∗

In the same way as section 3.1, BnB-ADOPT+ is connected with FDAC∗. Given a vari-
able ordering, FDAC∗ implies that every value of every variable has a simple support



procedure FDAC∗-preprocess(>)
initialize;
AC∗-pre();
while ¬end ∧ ¬quiescence do

while input queue is not empty do
msg ← getMsg();
switch(msg.type)
DEL: ProcessDelete(msg);
UCO: ProcessUnaryCosts(msg);
STOP : ProcessStop(msg);

PruneDomainSelf();
DAC∗-pre();

procedure DAC∗-pre()
for each i ∈ neighbors(self ) do

if (self < i)
for each a ∈ Di do P [a]← minb∈Dself

{Ci,self (a, b) + Cself (b)};
for each b ∈ Dj do E [b]← maxa∈Di

{P [a]− Ci,self (a, b)};
ifE 6= [0,...,0] then
sendMsg(UCO, self , i,E);
FromUnarySelfToBinary(i,E);
FromBinaryToUnary(i, self );

procedure FromUnarySelfToBinary(i, vector)
for each b ∈ Dself do

for each a ∈ Di do Ci,self (a, b)← Ci,self (a, b) + vector [b];
Cself (b)← Cself (b)− vector [b];

procedure ProcessUnaryCosts(msg)
for each b ∈ Dsender do

for each a ∈ Dself do Cself ,sender (a, b)← Cself ,sender (a, b) + msg.vector(b); /* extension */
FromBinaryToUnary(self , sender);
FromUnarySelfToCφ();

Fig. 3. FDAC∗ preprocess. Missing procedures appear in Figure 2.

with higher variables in the ordering (AC∗) and a full support with lower variables in the
ordering (DAC∗). In addition to the projection operator, maintaining FDAC∗ requires
the extension operator, which extends unary costs into binary ones.

The full supports requirement causes a new message type, the UCO message, that
carries the unary costs that a lower variable is willing to offer to a higher variable. The
structure of this new message appears in Figure 1. We assume that initial cost functions
are FDAC∗ with respect to the ordering used. If not, they can be made FDAC∗ with
the preprocess that appears in Figure 3, where first all cost functions are made AC∗

(both ways), and second they are made DAC∗ (one way: from the higher to the lower
agent, the ordering is considered the same as the DFS tree). The order in which soft
arc consistencies is done is relevant, because DAC∗ enforcing is prepared to respect
previous AC∗ enforcing [5].

3.3 Maintaining EDAC∗

In the distributed case, it is usually assumed that each agents knows its variable and
the cost functions that it has with other agents. This second assumption implies that it
knows the domain of the variables it is constrained with. To enforce soft arc consisten-
cies higher than NC∗, it is required that if agent i is constrained with agent j by Cij , i



has to represent locally Dj . For privacy reasons, we assume that the unary costs of the
values of an agent are held by itself, who knows them and updates them accordingly.
An agent neither can know nor update unary costs of other agents.

Maintaining AC∗/FDAC∗ during distributed search requires each agent to know the
binary cost functions in which it is involved and the unary costs of its values. These
requirements are in agreement with the privacy requirements not permitting an agent to
know the unary costs of values of other agents. However when moving to EDAC∗ (the
next soft arc consistency level) this privacy requirement is broken. EDAC∗ maintenance
requires that at each variable there is a value with unary cost 0 which is fully supported
in both directions (cost functions linking higher agents with self , cost functions linking
self with lower agents).

Let us consider two agents i, j, i < j that share a cost function Cij . To assure that
j has a value fully supported by i, i has to extend some of its unary costs into the
binary ones, which will be projected on the unary costs of j values. However, i will
only extend its unary costs to j if it is sure that from this operation Cφ will increase
(otherwise termination is not guaranteed). But this condition can only be assured if
i knows the unary costs of j1. Therefore, aiming at EDAC∗ maintenance breaks the
natural privacy requirements explained above, which represents a serious drawback in
the distributed environment.

A possible way to partially avoid this issue, while enforcing some soft arc consis-
tency that prunes more than FDAC∗, comes from the following fact. Observe that the
first variable in a FDAC∗ ordering satisfies the EDAC∗ property: for FDAC∗ each value
has a simple/full support and there is a value with cost 0 (for NC∗); since it is the first
variable in the ordering, these supports have to be full supports. This suggests us an
alternative way for the distributed setting: instead of having a single ordering of agents,
we may have several orderings. On each ordering we enforce FDAC∗, and the first
variable of every ordering satisfies EDAC∗. Next we show that having different repre-
sentations and propagating deletions among them is legal and does not compromise the
correctness of this idea.

4 Multiple Representations

It is known that with different variable orderings FDAC∗ maintenance may cause prun-
ing different values (see the example at the end of the section). This fact motivates the
present approach. It is unclear how to determine the best ordering, in the sense of the
ordering that prunes most. Instead of looking for that ordering, we consider as alterna-
tive to keep multiple orderings O1, ..., Or at each agent, on which FDAC∗ is separately
enforced. Maintaining FDAC∗ inOp may cause the deletion of value a of variable i: this
deletion is propagated to all other orderings O1, ..., Op−1, Op+1, Or. Propagating value
deletions among different orderings is legal as proved in the following proposition.

1 This can be clearly seen in line 1 of function FindExistentialSupport of [2]. The expression
of α involves Ci(a) and Cj(b), unary costs of values of xi and xj . While this causes no
difficulties in a centralized approach, it becomes a real issue in a distributed setting.



Proposition 1. Let us assume that enforcing FDAC∗ on the ordering O1 causes to
delete value (i, a), while enforcing FDAC∗ on the ordering O2 causes to delete value
(j, b). Then, both values can be deleted without losing any optimal solution.

Proof. If enforcing FDAC∗ using ordering O1 we delete value (i, a), this means that
value a for variable i will not appear in any optimal solution of the problem. This fact
derives directly from soft arc consistency, and it is independent of the ordering used.
The same situation happens with ordering O2 and value (j, b). Therefore, it is legal to
remove both values independently of the ordering used. 2

Since cost functions evolve depending on the ordering used, we prefer to talk about
different representations instead of different orderings (clearly, each ordering defines
a representation). Propagating value deletions between equivalent representations pro-
duce new equivalent representations, as proved next.

Proposition 2. Let us assume that we have two equivalent representations R1 and R2

of the same problem, and enforcing FDAC∗ on R1 causes to remove (i, a) producing a
new representation R′1. Removing (i, a) from R2 we obtain a new representation R′2.
Then, R′1 and R′2 are equivalent.

Proof. Let us call A the set of complete tuples with value a for variable i, and CT (R)
the set of complete tuples generated by representation R. Then, we have

CT (R′1) = CT (R1) \A

CT (R′2) = CT (R2) \A
Since R1 and R2 are equivalent representations, they have the same cost distributions
on complete tuples. Therefore, it is direct to see that R′1 and R′2 are equivalent repre-
sentations. 2

In the distributed case, the idea of multiple representations can be included in BnB-
ADOPT+ producing the new BnB-ADOPT+-FDAC∗-MR algorithm. For single order
FDAC∗ enforcing, we maintain a single copy of the cost functions in which we en-
force FDAC∗, following the order in which agents appear in the DFS tree branches.
Implementing r representations requires each agent holding a set of cost functions
{C1, C2...Cr}. On all r cost functions agents enforce FDAC∗. The direction of the
arc consistency enforcement will be defined by the set of partial orders {O1, O2, ..Or}.

Orders are generated in the following way. Initially r different agents are selected,
each of them will be the first agent in one of the r orders. Each agent chooses randomly
a neighbor and sends a message containing the order (at this moment the order only
contains the sender agent as the first agent). When this message arrive, if the receiver is
not already in the order and the order is not complete, the receiver selects if it wants to be
the next agent in the order. After this, the receiver chooses another neighbor randomly
and sends the order. When the order is complete, it is informed to all agents in the DFS
tree.

Having different orders produces different flows of costs and as result, some values
may be found node-inconsistent in some representation. Then these values are deleted
from all the representations. Every time there is a deletion, the agent will need to rein-
force FDAC∗ over the r representations. For this agents will need to store:



1. One partial order for every representation r
2. One copy of the binary and unary cost functions for every representation r
3. One Cφ value for every representation r. Since different projections and extensions

are performed on every representation, different Cφ values are obtained
4. All children subtreeContribution to Cφ for every representation r. Since differ-

ent projections and extensions are performed on every representation, agents will
contribute to the Cφ differently on every one of them

The following changes in messages are needed to maintain the previous structures:

• VALUE: a vector Cφ[] is sent containing the Cφ values for every representation
• COST: a vector subtreeContribution[] is sent containing the subtree contribution

to the Cφ for every representation
• UCO: a vector vectorOfExtensions[][] is sent containing the extensions for ev-

ery representation

4.1 Example

Consider the problem in Figure 4 with > = 4. If FDAC* is enforced with the order
{x0, x1, x2}, we get cost function C01 as displayed in Figure 5 (b). On the other hand,
if FDAC* is enforced following the order {x1, x0, x2} value (1, a) is found node in-
consistent, it is deleted and we get cost function C01 as displayed in Figure 5 (c) and
(d). Initially we do not know which is the best order to maintain FDAC*, but if we work
with both orders maintaining two representations we will be able to prune inconsistent
values in any of them.

For this problem, BnB-ADOPT+ maintaining FDAC∗ with order {x0, x1, x2} re-
quires 23 messages, while maintaining FDAC∗ with both orders {x0, x1, x2} and {x1, x0, x2}
requieres 21 messages. We present a reduced execution trace of BnB-ADOPT++-FDAC*
(Table 1, left) with order {x0, x1, x2} and BnB-ADOPT++-FDAC*-MR (Table 1, right)
with both orders {x0, x1, x2} and {x1, x0, x2}.

A short description of the execution follows. From lines 1 to 5 of Table 1 both
algorithms behave in the same way: x0 assigns value a and sends a VALUE message to
x1. Knowing that x0 = a, x1 assigns value b (best value with current information) and
sends a VALUE message to x2. Then, x2 informs the cost of the current assignation
to x1, and finally x1 sends a COST message to x0. When this COST arrives to x0, a
complete solution has been found and> = 4. x0 changes value to b and sends a VALUE

C01 C12 

x0 x1 x2 

{a,b} {a,b} {a,b} 

C01 :
x1 = a x1 = b

x0 = a 5 1
x0 = b 5 3

C02 :
x2 = a x2 = b

x1 = a 1 2
x1 = b 3 3

C0(a) = C1(a) = C2(a) = 0
C0(b) = C1(b) = C2(b) = 0

Cφ = 0

Fig. 4. Simple example with three variables and its initial binary, unary and zeroary cost functions.
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Fig. 5. Enforcing FDAC* on cost function C01: (a) original instance (b) FDAC∗ with order
{x0, x1, x2} (c) node inconsistent value with order {x1, x0, x2} (d) FDAC* in the same order.

message to x1 that contains>. Some other concurrent messages are sent, but we do not
comment them because they are not relevant for the example.

From lines 6 to 9 algorithms behave differently. In BnB-ADOPT+-FDAC*-MR
(right), when x0 VALUE message arrives, x1 is able to delete value a with > = 4,
since this value is not node consistent in the order {x1, x0, x2}. In lines 6-8 this value is
deleted and neighbors are informed (notice that this deletion is not performed on BnB-
ADOPT+-FDAC* until lines 16-17). Now, x1 can only take value b since value a has
been deleted. In BnB-ADOPT+-FDAC* (left), in line 9, agent x1 takes value a since it

BnB-ADOPT+-FDAC* BnB-ADOPT+-FDAC*-MR
(1) x1 received VALUE: x0 = a x1 received VALUE: x0 = a
(2) x2 received VALUE: x1 = b x2 received VALUE: x1 = b
(3) x1 received COST: sender=x2, UB=3 LB=3 x1 received COST: sender=x2, UB=3, LB=3
(4) x0 received COST: sender=x1, UB=4 LB=4 x0 received COST: sender=x1, UB=4, LB=4
(5) x1 received VALUE: x0 = b x1 received VALUE: x0 = b

(6) x1 delete value a
(7) x2 received DEL x1 = a
(8) x0 received DEL x1 = a

(9) x2 received VALUE: x1 = a x2 received VALUE: x1 = b

(10) x0 received COST: sender=x1, UB=6 LB=5 x0 received COST: sender=x1, UB=6, LB=6
(11) x0 delete value b x0 delete value b

(12) x1 received COST: sender=x2, UB=1 LB=1

(13) x1 received DEL x0 = b x1 received DEL x0 = b
(14) x1 received VALUE: x0 = a x1 received VALUE x0 = a
(15) x1 received STOP x1 received STOP

(16) x1 delete value a
(17) x2 received DEL x1 = a
(1 8) x2 received VALUE: x1 = b

(19) x2 received STOP x2 received STOP

No more messages... No more messages...
23 total messages 21 total messages
9 VALUE msg , 5 COST msg, 3 DEL msg 8 VALUE msg, 4 COST msg, 3 DEL msg
5 cycles 4 cycles
TOTAL cost: 4 TOTAL cost: 4
OPT. SOLUTION: x0 = a; x1 = b; x2 = a OPT. SOLUTION: x0 = a; x1 = b; x2 = a

Table 1. Summary of BnB-ADOPT+-FDAC* and BnB-ADOPT+-FDAC*-MR execution on the
example of Figure 4.



is the one that minimize the LB for the current context (LB(a) = 5 and LB(b) = 6).
This VALUE message will generate the corresponding COST message of line 12.

In lines 10-11 of both algorithms, x0 receives a COST message that inform the cost
of the assignation x0 = b and decides to delete its value b. The only possible value
for x0 is now a, so x0 assigns it and terminates. From line 13 to 15, x1 receives DEL,
VALUE and STOP messages from x0. From line 16 to 18 of BnB-ADOPT+-FDAC*
(left) x1 deletes value a and assigns value b. Finally on line 19 of both algorithms, x2
receives a STOP message and execution is concluded.

Notice that, by detecting a deletion sooner (lines 6-8 for BnB-ADOPT+-FDAC*-
MR, and lines 16-18 in BnB-ADOPT+-FDAC*) it is possible to end the execution with
2 messages less and 1 cycle less. This 2 messages saved are the ones represented in
lines 9 and 12 for BnB-ADOPT+-FDAC* (left).

5 Experimental Results

We evaluate the efficiency of BnB-ADOPT+-FDAC*-MR (multiple representations)
with respect to BnB-ADOPT+-FDAC* (single representation) on unstructured instances
with binary random DCOPs, and on structured distributed meeting scheduling.

Binary random DCOP are characterized by 〈n, d, p1〉, where n is the number of
variables, d is the domain size and p1 is the network connectivity. We have generated
random DCOP instances: 〈n = 10, d = 10, p1 = 0.3, 0.4, 0.5, 0.6〉. Costs are selected
from an uniform cost distribution. Two types of binary cost functions are used, small
and large. Small cost functions extract costs from the set {0, . . . , 10} while large ones
extract costs from the set {0, . . . , 1000}. The proportion of large cost functions is 1/4
of the total cost functions (this is done to introduce some variability among tuple costs).

On the meeting scheduling formulation, variables represent meetings, domain rep-
resent time slot assigned for each meeting, and there are constraints between meetings
that share participants. We present 4 cases obtained from the DCOP repository [11]
with different hierarchical scenarios and domain 10: case A (8 variables), case B (10
variables), case C (12 variables) and case D (12 variables).

Figure 6 (a) and (b) shows experimental results for meeting scheduling and random
problems averaged over 30 and 50 instances respectively, with a number of represen-
tations from 2 to 8. For an easy comparison, BnB-ADOPT+-FDAC∗ results are drawn
as an horizontal line. On random DCOPs, BnB-ADOPT+-FDAC∗-MR showed clear
benefits on communication costs with respect to BnB-ADOPT+-FDAC∗. Maintaining
from 4 to 6 representations, the number of exchanged messages is divided by a factor
of at least 2. Also, the number of cycles required to reach the solution is divided by a
factor from 2 to 3. For meeting scheduling instances we also observe a decrement in
the number of cycles and messages exchanged, although to a smaller extent. In Figure
6 we observe that benefits in communication are unevenly distributed: the #saved mes-
sages/#representations ratio is higher in the left-half of the plots. This suggests that n/2
could be a good number of representations. More work is needed to substantiate this
conjecture. Table 2 shows the details of the experiments maintaining 6 representations.

Assuming that processing each message type requires approximately the same time,
a decrement in cycles combined with a decrement in the number of messages per cycle
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Fig. 6. Exchanged messages (y axis) when solving random instances (left) and meeting schedul-
ing (right) with an increasing number of representations (x axis).

is an improvement indicator. Since agents need to process less information coming from
their neighbors on each iteration, and they perform less iterations to reach the optimum,
this combined reduction is beneficial for agent performance.

Notice that maintaining FDAC* on multiple representations has produced only a
few extra DEL and UCO messages. In the case of DEL messages, this slight increment
is because more deletions have been produced. In the case of UCO messages, the in-
crement is because UCO messages are only sent if their costOfExtension vector is
different from zero. As we are maintaining several representations with different or-
ders, is more probable that the extensions will be different from zero in any of the 6
representations.

The number of NCCCs increases since more projection and extensions are needed
to maintain FDAC* on all representations. However, observe that this increment is not
linear with respect to the number of representations maintained, it is smoothed by the
fact that less messages are generated and more deletions are performed. So there are
messages on the BnB-ADOPT+-FDAC* algorithm that will not be needed to process
with multiple representations, and also there are values that will not be needed to assign
or to check for node consistency.

In general, by including few DEL and UCO messages and performing extra local
computation to enforce FDAC* on multiple representations, BnB-ADOPT+-FDAC*-
MR is able to obtain important savings in communication. We assume the usual case
where communication time is higher than computation time, then the total elapsed time
is dominated by communication time. The flows of costs from one agent to another,
implemented by UCO messages, allows an agent to pass some of their unitary costs to
higher agents following different orders. This accumulations of costs on higher agents
following different orders brings more pruning opportunities. In general, it is expected
that the combination of multiple enforcements will be able to extend the inference ben-
efits.



(a) Random DCOPs
p1 #Msgs #VALUE #COST #DEL #UCO #Cycles #NCCC #Deletions

6,128 2,795 3,047 230 28 1,039 519,112 80
3,068 1,335 1,391 245 69 480 1,778,525 86

110,696 48,281 62046 288 53 17,937 9,910,897 78
0.4 41,147 19,309 21,357 311 142 5,561 22,063,034 85

510,411 225,155 284,781 366 82 85,710 121,453,697 78
0.5 198,474 91,506 106,299 397 244 30,659 318,565,730 85

1196935 475,416 720,975 408 108 199,971 470,462,443 74
0.6 524,406 209,150 314,454 459 314 87,357 1,217,511,858 84

(b) Distributed Meeting Scheduling
#Msgs #VALUE #COST #DEL #UCO #Cycles #NCCC #Deletions
2,524 1,056 1,240 200 5 462 382,676 49

A 2,001 820 921 216 9 329 1,762,278 53
5,405 2,323 2,863 184 7 1,080 659,314 53

B 3,556 1,513 1,7821 210 23 650 2,487,359 61
1,467 697 505 225 6 125 71,439 80

C 1,156 509 353 238 21 83 352,795 85
1,251 526 448 234 8 132 56,447 83

D 1,067 423 345 241 24 98 327,749 85

Table 2. Experimental results of BnB-ADOPT+-FDAC* (first row) compared to BnB-ADOPT+-
FDAC*-MR (second row) maintaining 6 representations.

6 Conclusion

Maintaining soft arc consistency during distributed search has proved to be beneficial
for performance with AC∗ and FDAC∗ levels. To assure FDAC∗ and EDAC∗, a partial
order among variable is needed. In this paper we discuss connecting BnB-ADOPT+

with the next soft arc consistency level EDAC∗. It turns out that to maintain EDAC∗ an
agent needs to know the unary cost of neighboring agents, which violates usual privacy
requirements.

To avoid this issue, we propose to maintain multiple orders among variables, and the
same number of cost functions on wich we enforce FDAC∗ following the corresponding
order. It is known that with different orderings FDAC∗ maintenance may detect different
node inconsistent values, however if we maintain several orders we are able to detect
the node inconsistent values on every order and delete them, propagating this deletions
to other orders. Propagating deletions among different orders is legal and furthermore,
maintaining FDAC∗ on multiple representations assures EDAC∗ on the first variable of
the order. Experimental results have shown benefits in terms of number of cycles and
messages exchanged.
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