
Optimizing Performance for Coalition Structure
Generation Problems’ IDP Algorithm

Francisco Cruz-Mencı́a
Computer Architecture Department.

Universitat Autònoma de Barcelona. Spain
Institut d’Investigació en
Intel·ligència Artificial

IIIA-CSIC. Spain

Jesús Cerquides
Institut d’Investigació en
Intel·ligència Artificial

IIIA-CSIC. Spain

Antonio Espinosa
Computer Architecture Department.
Universitat Autònoma de Barcelona.

Spain

Juan Carlos Moure
Computer Architecture Department.
Universitat Autònoma de Barcelona.

Spain

Juan Antonio Rodriguez-Aguilar
Institut d’Investigació en
Intel·ligència Artificial

IIIA-CSIC. Spain

Abstract—The Coalition Structure Generation (CSG) problem
is well-known in the area of Multi-Agent Systems. Its goal
is establishing coalitions between agents while maximizing the
global welfare. Between the existing different algorithms designed
to solve the CSG problem, DP and IDP are the ones with smaller
temporal complexity. After analyzing the performance of the
DP and IDP algorithms, we identify which is the most frequent
operation and propose an optimized method. Then, we analyze
the memory access pattern and find that its irregular behavior
represents a potential performance bottleneck. In addition, we
study and implement a method for dividing the work in different
threads. We show that selecting the best algorithmic options
can improve performance by 10x or more. Furthermore, the
execution in a dual-socket, six-core processor computer may
increase performance by an additional 5x-6x.

I. INTRODUCTION

In the multi-agent systems area, coalition formation is one
of the central types of collaboration. It involves the creation of
disjoint groups of autonomous agents that collaborate in order
to satisfy their individual or collective goals. One of the major
research challenges in the field is the search for an effective
set of coalitions that maximises the global satisfaction [1] of
the agents.

Coalition formation is applied to many actual-world prob-
lems such as distributed vehicle route planning [2], task
allocation [1], and airport slots allocation [3]. More recently,
it has been considered in the realm of social networks [4].

According to [2], the coalition formation process is divided
into three activities. In this paper we focus on the first
one, namely coalition structure generation (CSG). Notice that
finding the optimal coalition structure is NP-complete [2].
The search space handled by CSG is very large since the
number of possible coalition structures grows exponentially
with the number of agents.

Several algorithms in the literature tackle the CSG problem.
In particular, we distinguish three approaches: (i) optimal

algorithms based on dynamic programming (e.g. DP [5], IDP
[6]), which offer guaranteed run-times over arbitrary coalition
value distributions; their complexity is Θ(3n), where n is
the number of agents; (ii) optimal algorithms with anytime
properties whose convergence time to a solution largely de-
pends on the coalition value distribution, which present a
complexity Θ(nn); and (iii) heuristic approximate algorithms
(e.g. [1]), which aim at computing solutions faster than optimal
algorithms without offering quality guarantees. Unfortunately,
as widely noticed in the literature, the computational costs of
optimal algorithms are highly demanding even for a moderate
number of agents.

Against this background, in this paper we propose to
optimize the algorithms based on dynamic programing. The
implementation can be used as a building block for heuristic
algorithms as a means to explore complete subspaces in an
effective way.

As proposed in D-IP [7], where a distributed anytime algo-
rithm is presented, in this paper we present an algorithm able to
exploit the power of distribution but using a different paradigm.
Our proposal is building a IDP based algorithm able to run
in a shared memory scenario, which is common in nowadays
computers [8]. Using a shared memory paradigm simplifies the
communication between computation nodes, since there is no
need to send messages between them, but it requires a data
dependence study, because of possible synchronization.

As far as we are concerned, no reference implementation
neither of DP nor IDP algorithms has been published. When
studying and evaluating different implementation alternatives,
we have found, though, non-negligible issues on the algorith-
mic details that have a considerable impact on the overall per-
formance. The contributions of this work can be summarized
as:

• We analyze and evaluate fast methods for generating
splittings, the most critical operation, establishing that
a bad choice can degrade performance by 10x or more.

• We parallelize the generation of splittings and execute
the problem on a shared-memory, multi-core, multi-
thread and multi-processor system.

• We identify the main performance bottleneck: both the
sequential and parallel execution are limited by the
lack of temporal and spatial locality of the memory
access pattern, and by the weak support for irregular
and scattered accesses provided by current memory
hierarchies.

• We find out that the performance advantage of IDP
versus DP is only realized for large problems, when
reducing memory bandwidth requirements pay off.

• We make our code publicly available at the following
URL:
https://github.com/CoalitionStructureGeneration/DPIDP.

The paper is organized as follows. Section 2 introduces the
CSG problem and describes the state of the art on dynamic
programming techniques. Section 3 analyzes implementation
issues such as data representation, most frequent operations
and bottlenecks in a single core environment and proposes
solutions to reduce execution time. Section 4 studies how
to parallelize the IDP algorithm and Section 5 evaluates the
performance of single and multi-threaded implementations.
The paper ends summarizing the conclusions and presenting
future work in Section 6.

II. THE COALITION STRUCTURE GENERATION (CSG)
PROBLEM

In this section we describe what a Coalition Structure
Generation (CSG) problem is and how dynamic programming
algorithms have addressed it to find an optimal solution. To
do so, we will use the following terminology:

• Agent (ax): A single agent. E.g. Ann or Bob.

• Agent Set (A): The set of all available agents. A =
{a1, a2, . . . , an}.
E.g. A= {Ann, Bob, Chris, Dave}.

• Coalition (C): C ⊆ A. C is a subset of A that contains
the agents participating in a coalition.
E.g. C= {Ann, Chris, Dave}.

• Split : Is the operation performing a binary partition
of a coalition.
E.g. {Ann,Chris,Dave} → ({Ann},{Chris,Dave}).

• Splitting : Is the result of the split operation. A split-
ting is a 2-tuple represented by (C1, C2). C=C1 ∪C2

where |C1|,|C2| >0, C1 ∩ C2=∅.
E.g. ({Ann},{Chris,Dave}) or ({Ann,Chris},{Dave}).

• Coalition Structure (CS): Is a collection of disjoint
Coalitions such that their union constitute the Agent
Set.
E.g. ({Ann},{Bob},{Chris,Dave}).

Consider a group of n agents A={a1,a2,. . . , an}. Agents
can establish coalitions with other agents in order to perform
a task. Each agent has its own preferences, meaning that some
coalitions are preferred. These preferences are expressed by a
value assigned to each possible coalition, denoted value[C]. It

can be predefined or can be computed by every agent on the
basis of its view of the world. In any case, coalition values
are inputs known before solving the CSG problem. They can
be represented by a table of size 2n, one per coalition. Table
I shows an example of the input data for a CSG Problem of
size 4.

The goal of the CSG problem is to find the coalition
structure providing maximum global satisfaction. From Table
I one can notice that the coalition formed by {a2,a3} has
lower value than the sum of value[{a2}] and value[{a3}],
meaning that agents a2 and a3 prefer to work alone rather
than collaborate.

C value[C] C value[C] C value[C]

{a1} 33 {a1,a3} 87 {a1,a2,a3} 97
{a2} 39 {a1,a4} 70 {a1,a2,a4} 111
{a3} 13 {a2,a3} 36 {a1,a3,a4} 100
{a4} 40 {a2,a4} 52 {a2,a3,a4} 132
{a1,a2} 87 {a3,a4} 67 {a1,a2,a3,a4} 151

TABLE I: Coalition values for a CSG problem of size 4.

A. DP Algorithm

The DP[5] algorithm uses Dynamic Programming to find
the optimal solution of the problem. For a given input data,
DP first evaluates all the possible coalitions of size 2. For each
possible pair of agents ax and ay , DP evaluates if it is better to
form a coalition or not. This is done by comparing value[{ax
,ay}] with value[{ax}]+ value[{ay}]. The maximum value
represents the preferred formation and substitutes the previous
value[{ax, ay}].

After evaluating all coalitions of size 2, DP starts evaluating
all possible coalitions of size 3, saving the maximum between
value[{ax, ay , az}] and all its possible splittings. There
are three ways to split the coalition: {ax, ay}+{az}, {ax,
az}+{ay} and {ax}+{ay , az}. Note that all the splittings
for coalitions of size 3 have at most 2 elements. Since DP
evaluates the coalitions of size 3 after evaluating and finding
optimal values for coalitions of size 2, the new coalition values
computed for size 3 will also be optimal. This process is
repeated incrementing the size of the coalitions (m).

Algorithm 1 Pseudo-code of the DP Algorithm
1: for m = 2→ n do
2: for C ← coalitionsOfSize(m) do .

(
n
m

)
iterations

3: max value← value[C]
4: C1 ← getF irstSplit(C)
5: while (C1) do . 2n−1 − 1 iterations
6: C2 ← C − C1

7: if (max value < value[C1] + value[C2] then
8: max value← value[C1] + value[C2]
9: end if

10: C1 ← getNextSplit(C1)
11: end while
12: value[C]← max value
13: end for
14: end for

The DP algorithm (see Algorithm 1) is composed of three
nested loops: (i) the outer loop (line 1), where coalition size

(m) grows from 2 to the total number of agents (n), (ii) the
intermediate loop (line 2), where all coalitions of size m are
generated, a total of

(
n
m

)
, and (iii) the inner loop (line 5),

where each coalition is split and evaluated, a total of 2m−1−1
splittings. The temporal complexity of the DP algorithm is
determined by these three loops: Θ(3n).

B. IDP Algorithm

While DP generates all the possible splittings of each
coalition, IDP [6] introduces conditions to avoid the generation
and evaluation of a large amount of splittings. The performance
advantage of IDP is a reduction in the total number of
operations and memory accesses. Overall, IDP explores only
between 38% and 40% of the splittings explored by DP for
problems from 22 to 28 agents. Algorithm 2 presents the
pseudo-code of IDP, where the main changes are the filters
introduced on lines 4 and 6.

Algorithm 2 Pseudo-code of the IDP Algorithm
1: for m = 2→ n do
2: for C ← coalitionsOfSize(m) do .

(
n
m

)
iterations

3: max value← value[C]
4: (lower bound, high bound)← IDPBounds(n,m)
5: C1 ← getF irstSplit(C, lower bound)
6: while (sizeOf(C1) ≤ high bound do
7: C2 ← C − C1

8: if (max value < value[C1] + value[C2] then
9: max value← value[C1] + value[C2]

10: end if
11: C1 ← getNextSplit(C1, C)
12: end while
13: value[C]← max value
14: end for
15: end for

III. SINGLE-THREAD IMPLEMENTATION

In this section we analyze the operations of generating and
evaluating splittings inside the inner loop, which consumes ≈
99 % of the execution time. We compare two suitable options
and analyze their performance and the impact of the memory
access pattern.

A. Data representation

The coalitions and their associated values are stored in a
vector. A coalition is represented using an integer index where
the bit at position x of the index indicates that agent x is a
member of the coalition. The index determines the vector ele-
ment containing the coalition value. Using this representation,
the input of the CSG problem fits into a vector of 2n − 1
positions. With coalitions represented by 4-byte words, we can
run problems up to 32 agents.

B. Splitting generation

The splitting generation problem can be reduced to the
subset enumeration problem, since each coalition splitting is
composed by a subset, C1, and its complementary, C2. Gener-
ating all the subsets C1 from a coalition C and then calculating
the complementary C2 = C −C1, though, would produce the
same splitting twice: once for each of the splitting subsets.

Fig. 1: a) Banker’s sequence versus b) lexicographical order.

We remove one element from the coalition (the agent with the
highest rank) when performing the subset enumeration, so that
the removed element is never part of the enumerated subset
and always belongs to its complementary.

There exist several ways of enumerating subsets [9], like
banker’s sequence, lexicographical order, and gray codes. The
banker’s sequence seems a suitable option for IDP, since
it generates the splittings in growing order of |C1|, and
then simplifies the filtering of splittings by its size. Figure
1a shows a scheme of the banker’s sequence operation for
C={a1,a4,a5,a6,a7}, and assuming that only coalitions with
|C1|=2 need to be evaluated. Note that element a7 is always
assigned to the complementary subset (lighted colour). The
generation starts directly from the first splitting of size |C1| =
2, follows with the remaining

(
4
2

)
−1 subsets of the same size,

and stops before generating the first subset of size 3. The code
does not waste instructions generating useless subsets.

When generating splittings in lexicographical order (see
Fig. 1b), some filtering code is required to check that the
size of the splitting ranges between a given pair of bounds.
Execution resources are wasted to generate splittings that are
then discarded, and to perform the filter check. In Fig. 1, only
6 out of 14 splittings are actually needed (note the check and
discard crossed signs).

Both methods were implemented using recurrent functions
that calculate the next splitting from the previous one. The
lexicographical order was implemented with a few number of
very simple operations: C1 ← (C1 + C∗∗) AND C, where
C∗∗ is the two’s complement of C, that can be precalculated
for all the splittings of a given coalition. The whole splitting
code requires only 7 machine code instructions in a current
x86 ISA. On the other hand, our implementation of banker’s
sequence, an improved version of the algorithm published in
[9], required, on average, 6 times more instructions. More

details about the implementation, like the usage of a special
population count instruction for computing |C1|, can be found
in the published code.

C. Memory accesses

All memory accesses correspond to reads from the vector
of coalition values performed in the inner loop of the algo-
rithm, and a few writes on the intermediate loop. The total
number of data read operations done by the DP algorithm
is around 2×3n. As explained above, IDP evaluates only a
subset of the splittings, corresponding to 38%-40% of the read
operations performed by DP.

The memory-level parallelism of the algorithm is moderate.
The inner loop recurrence can generate multiple independent
read requests, without having to wait for data, subject to
storage availability for pending requests and for the window
of instructions blocked on those data.

The data-reuse degree of the algorithm is high. There are
2n elements in the value vector, and so the average number
of reads to the same data item is ≈ 2×(3/2)n (≈100, 000 for
n = 27). However, accesses to the same item are scattered
in time, specially when the algorithm analyzes medium- or
large-size coalitions. The combinatorial nature of the problem
involves a pseudo-random read access pattern, where reads that
are consecutive in time refer to data from distant positions in
memory.

The bad performance behavior of the memory access
pattern arises for vectors that do not fit into the processor’s
cache. The vector size is 2n+2 bytes, which is 16 MBytes for
n=22. For larger n’s an important amount of vector accesses
will miss the cache and will request a full 64-Byte cache block
to DRAM. This creates both latency and bandwidth problems.
The moderate memory-level parallelism helps hiding part of
the DRAM latency but, as we will show later, an important
amount of this latency is exposed in the execution time. Also,
given the lack of spatial locality, most of the 64-Byte block
read from DRAM will be unused. In the worst situation, only
4 Bytes out of 64 will be used, giving a bandwidth efficiency
of 1/16= 0.0625.

IV. MULTI-THREAD IMPLEMENTATION

This section analyzes the algorithm’s data workflow in
order to find its potential thread-level parallelism (TLP). Ex-
ploiting concurrency efficiently is not straightforward, and a
new method to generate coalitions is devised. Finally, potential
performance problems are described.

A. Identifying sources of TLP

The simplest and most efficient approach is always to paral-
lelize the outer loop of a program. DP and IDP, though, exhibit
loop-carried dependencies on the outer loop: the optimal values
for coalitions of size m must be generated before using them
for generating the optimal values for coalitions of size m+ 1.

The intermediate loop generates all the coalitions of a
given size, and for each coalition it analyzes all the split-
tings of certain sizes. Tasks corresponding to coalitions are
independent: they only modify the value associated to the
coalition, and only read values corresponding to coalitions

of lower size. Therefore, there cannot exist read-after-write
(RAW) dependencies nor any other false data dependence
among the tasks. However, the single-thread code was designed
to accelerate coalition generation by using an inherently se-
quential algorithm that uses the previous coalition to generate
the next one in lexicographical order. The next subsection
describes a method for breaking this artificial dependence.

B. Speeding up Work distribution among threads

Assume we have t threads and we want each thread to
evaluate a disjoint set of coalitions. We must distribute work
to assure good load balance, and do it in a fast and efficient
way. Table II illustrates the generation of all the possible
coalitions of size m=3 from a set of n=6 agents. The single-
thread code implements a sequential algorithm to generate
in lexicographical order all

(
6
3

)
=20 coalitions, represented as

bitmaps in the binary encoding columns of Table II. In practice,
we must calculate cnt=

(
n
m

)
and then assign cnt/t coalitions to

each thread. Once a thread obtains its starting position in the
coalition series, say k, it can generate the whole range with
the fast sequential method. But we need an efficient strategy
to generate the kth coalition without having to compute all the
previous coalitions from the beginning.

Order Encoding Coalitions Order Encoding Coalitions
(k) Bin Dec (k) Bin Dec

1 ...111 7 {a1, a2, a3} 11 ..111. 14 {a2, a3, a4}
2 ..1.11 11 {a1, a2, a4} 12 .1.11. 22 {a2, a3, a5}
3 .1..11 19 {a1, a2, a5} 13 1..11. 38 {a2, a3, a6}
4 1...11 35 {a1, a2, a6} 14 .11.1. 26 {a2, a4, a5}
5 ..11.1 13 {a1, a3, a4} 15 1.1.1. 42 {a2, a4, a6}
6 .1.1.1 21 {a1, a3, a5} 16 11..1. 50 {a2, a5, a6}
7 1..1.1 37 {a1, a3, a6} 17 .111.. 28 {a3, a4, a5}
8 .11..1 25 {a1, a4, a5} 18 1.11.. 44 {a3, a4, a6}
9 1.1..1 41 {a1, a4, a6} 19 11.1.. 52 {a3, a5, a6}
10 11...1 49 {a1, a5, a6} 20 111... 56 {a4, a5, a6}

TABLE II: Coalitions generated using lexicographical order.

Algorithm 3 describes getCoalition(n,m, k), a function
that generates the kth coalition in lexicographical order of
m elements from a set of n. The description is done recur-
sively to help understand how it works, although the actual
implementation is iterative in order to improve its performance.
The coalition is created recursively, bit by bit, starting from
the least significant bit and considering

(
n
m

)
possibilities. The

first half of the possible coalitions have the less significant bit
set to 1. If the requested rank, k, is lower than or equal to
h=1/2×

(
n
m

)
, then the bit is set to 1, and m is decremented by

one. Otherwise, the bit is set to zero, and the rank k is reduced
to k−h. Each recursive call decrements the number of bits to
consider to (n− 1).

C. Potential Parallel Performance Hazards

The first and last iterations of the outer loop exhibit few
TLP, compromising the efficiency of the parallel execution.
We tuned the implementation so that threads are launched
in parallel only for iterations that have a minimum amount
of work. A minor problem is the need for a few number
of synchronization barriers at the end of every iteration of
the outer loop. They can be neglected, except for very small
problem sizes.

Algorithm 3 pseudocode of getCoalition(n,m, k)

1: if ((m == 0) OR (k == 0)) then
2: return 0
3: end if
4: h←

(
n− 1

m− 1

)
5: if (k ≤ h) then
6: return 1 + 2×getCoalition(n− 1,m− 1, k)
7: end if
8: return 2×getCoalition(n− 1,m, k − h)

An important performance issue is the occurrence of false
cache sharing misses. They occur when different threads
update different positions in the vector of values that happen
to be mapped to the same cache line.

Finally, there is also the issue of true cache sharing.
Threads generate values for coalitions of size m that are stored
into local caches. When all the threads need to access those
values for handling larger coalitions, data has to be moved
from local storage to all the execution cores.

V. EXPERIMENTAL RESULTS

The computer system used in our experiments is a dual-
socket Intel Xeon E5645, each socket containing 6 Westmere
cores at 2.4 GHz, and each core executing up to 2 H/W threads
using hyperthreading (it can simultaneously execute up to 24
threads by H/W). The Last Level Cache (LLC) provides 12
MiB of shared storage for all the cores in the same socket. 96
GiB of 1333-MHz DDR3 RAM is shared by the 2 sockets,
providing a total bandwidth of 2×32 GB/sec. The Quickpath
interconnection (QPI) between the two sockets provides a peak
bandwidth of 11.72 GB/sec per link direction.

Input data was created using a uniform distribution as
described by [10] for problem sizes n = 18 . . . 27.

A. Single-thread Execution

DP and IDP were executed using both the banker’s and
lexicographical splitting generation methods. Figure 2a plots
the execution time in logarithmic scale for the four algorithmic
variants. Lexicographic order is around 7x to 11x faster than
banker’s and, therefore, in the remaining of the paper we will
use the first splitting method.

Figure 2b represents the execution time of DP and IDP
divided by 3n (algorithmic complexity). This metric evaluates
the average time taken by the program to execute a basic algo-
rithmic operation, in this case a splitting evaluation. It is similar
to the CPI (Cycles Per Instruction) metric, but at a higher
level. The metric helps identifying performance problems at
the architecture level. Figure 2b shows two different problem
size regions: those that fit into the LLC (n<22), and those that
do not. A small problem size determines a computation-bound
scenario, where DP slightly outperforms IDP, even when it
executes around 20% more instructions. The reason is that IDP
is penalized by a moderate number of branch mispredictions.

Large problem sizes determine a memory-bound scenario,
where IDP amortizes its effort on saving expensive memory

0.1

1.0

10.0

100.0

1000.0

10000.0

100000.0

1000000.0

18 19 20 21 22 23 24 25 26 27

ti
m
e	

(s
)	
 l
og
	

Problem	
 size	
 (n)	

BAN+DP	

BAN+IDP	

LEX+DP	

LEX+IDP	

(a) Execution time (log).

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

18 19 20 21 22 23 24 25 26 27

ti
m
e	

(n
s)
	
 /
3n

	

Problem	
 size	
 (n)	

LEX+DP	

LEX+IDP	

(b) Time / Complexity Θ(3n).

accesses to outperform DP by 40-50%. Figure 2c shows the ef-
fective memory bandwidth consumption seen by the programs.
The shape of the curves can be deduced from Figure 2b, but
we are interested on the actual values. The effective bandwith
ranges between 0.5 and 1.0 GB/sec. A small fraction of this
bandwidth comes from the LLC and lower-level caches, and
the remaining fraction comes from DRAM. Even considering
the worst case described in section 3.3, that only 4 bytes out of
the 64-Byte cache block are effectively used, it is still a very
small value compared to the peak 32 GB/sec. The conclusion is
that DRAM latency is the primary performance limiter. Results
on the next subsection corroborate this conclusion.

B. Multi-thread Execution

We focus our multi-thread analysis on IDP, which outper-
forms DP for interesting problem sizes. We run IDP using
t= 6, 12, and 24 threads. The case t=6 corresponds with
using a single processor socket. The case t=12 uses only one
socket but also exploits its hyperthreading capability. Finally,
t= 24 is an scenario where all 2 sockets have their 6 cores
running 2 threads each, using hyperthreading. Figure 3 shows

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

18 19 20 21 22 23 24 25 26 27

GB
/s
	

Problem	
 size	
 (n)	

LEX+DP	

LEX+IDP	

(c) Effective Memory Bandwidth (GB/s).

Fig. 2: Experimental data (BAN: Banker’s sequence; LEX:
Lexicographical order).

the speedup compared to the single-thread execution. Again,
distinguishing between small and big problem sizes is useful.

0

1

2

3

4

5

6

7

8

9

18 19 20 21 22 23 24 25 26 27

Sp
ee

du
p

Problem size (n)

6	
 threads	

12	
 threads	

24	
 threads	

Fig. 3: Single-thread IDP versus 6-, 12- and 24-thread IDP
execution

The t=6 configuration provides a speedup of 5 for small
problems, and lower than 4 for large problems. The t=12
configuration further increases performance around 60% for
small problems, and 30% for bigger problems. The fact that
executing two threads per core do improves performance
corroborates previous latency limitations, since hyperthreading
is a latency-hiding mechanism. It also indicates that 6 threads
do not generate enough LLC and DRAM requests to fully
exploit the available LLC and DRAM bandwidth.

The effective memory bandwidth achieved with 12 threads
is around 2.5 GB/sec for the bigger problem sizes, or around

13 times lower than the peak achievable bandwidth. Given the
lack of spatial locality of DRAM accesses, we are probably
reaching the maximum bandwidth available for the pseudo-
random memory access pattern of the problem.

The t=24 configuration checks the benefit of using a second
socket. Performance is highly penalized for small problems,
due to the overhead of communication traffic along the QPI
links for both false and true cache sharing coherence. On
average, half of the data accessed by a thread is fetched
from the other socket. Compared to the single-socket scenario,
where all data is provided from local caches, performance
drops up to 7 times for very small problems.

Large problems benefit very little from a second socket,
with improvements near to 10%. The advantage of the 2-
socket configuration is that the available DRAM bandwidth
is duplicated, and the overhead due to coherence traffic is not
so important, given that most of the data is obtained from
DRAM. Anyway, the small performance gain does not justify
using a second socket. Again, the symmetric, scattered memory
access pattern does not fit well with the NUMA hierarchy. We
are currently working on a way to partition data that reduces
communication between sockets.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an optimized implementation of the
DP and IDP algorithm and a novel contribution describing the
first parallel version of DP and IDP.

Our implementations clearly outperform the results found
in the literature. According to [11], they need 2.5 days to solve
a CSG problem with 27 agents, in some unspecified computer,
and using a code implementation that is not provided. Our
best single-thread implementation solves a same sized CSG
problem in 5.8 hours. The multi-core implementation reduces
execution time to 1.2 hours. Therefore, we claim that our
implementation is the fast implementation of IDP published
so far. We have made available to the community our source
code.

We have analyzed the bottlenecks of DP and IDP. The
pseudo-random memory access pattern lacks locality, and
exploits the memory system capabilities very inefficiently.
The latency tolerance ability of multi-threading improves per-
formance on a multi-core processor. However, a dual-socket
NUMA system is not appropriate for solving neither small nor
big problems. The use of GPUs or accelerators with massive
thread parallelism will be analyzed in the future.

We also want to study alternatives for coalition indexing
and storage that provide higher locality, even at the expense
of increasing instruction count, which is not a performance
limiter for large problems.

ACKNOWLEDGMENT

This research has been supported by MICINN-Spain un-
der contracts TIN2011-28689-C02-01, TIN2012-38876-C02-
01 and the Generalitat of Catalunya (2009-SGR-1434).

REFERENCES

[1] O. Shehory and S. Kraus, “Methods for task allocation via agent
coalition formation,” Artif. Intell., vol. 101, no. 1-2, pp. 165–200, 1998.

[2] T. W. Sandholm and V. R. Lesser, “Coalitions among computationally
bounded agents,” Artificial Intelligence, vol. 94, pp. 99–137, 1997.

[3] S. Rassenti, V. Smith, and R. Bulfin, “A combinatorial auction mecha-
nism for airport time slot allocation,” The Bell Journal of Economics,
pp. 402–417, 1982.

[4] T. Voice, S. D. Ramchurn, and N. R. Jennings, “On coalition formation
with sparse synergies,” in AAMAS, 2012, pp. 223–230.

[5] D. Yun Yeh, “A dynamic programming approach to the complete
set partitioning problem,” BIT Numerical Mathematics, vol. 26,
pp. 467–474, 1986, 10.1007/BF01935053. [Online]. Available:
http://dx.doi.org/10.1007/BF01935053

[6] T. Rahwan and N. R. Jennings, “An improved dynamic programming
algorithm for coalition structure generation,” in AAMAS (3), 2008, pp.
1417–1420.

[7] T. Michalak, J. Sroka, T. Rahwan, M. Wooldridge, P. McBurney, and
N. Jennings, “A distributed algorithm for anytime coalition structure
generation,” in Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: volume 1-Volume 1. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
2010, pp. 1007–1014.

[8] H. Sutter, “The free lunch is over: A fundamental turn toward concur-
rency in software,” Dr. Dobb’s Journal, vol. 30, no. 3, pp. 202–210,
2005.

[9] J. Loughry, J. van Hemert, and L. Schoofs, “Efficiently enumerating
the subsets of a set,” http://www.applied-math.org/subset.pdf, 2000.
[Online]. Available: http://www.applied-math.org/subset.pdf

[10] K. S. Larson and T. W. Sandholm, “Anytime coalition structure genera-
tion: an average case study,” J. of Experimental & Theoretical Artificial
Intelligence, vol. 12, no. 1, pp. 23–42, 2000. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/095281300146290

[11] T. Rahwan, S. D. Ramchurn, V. D. Dang, A. Giovannucci, and N. R.
Jennings, “Anytime optimal coalition structure generation,” in AAAI,
2007, pp. 1184–1190.

