LP formulation for regional-optimal bounds Technical Report TR-IIIA-2011-01

Meritxell Vinyals¹, Eric Shieh², Jesus Cerquides¹, Juan Antonio Rodriguez-Aguilar¹, Zhengyu Yin², Milind Tambe², and Emma Bowring³

 ¹ Artificial Intelligence Research Institute (IIIA, Bellaterra, Spain {meritxell, cerquide,jar}@iiia.csic.es
² University of Southern California, Los Angeles, CA 90089 {eshieh, zhengyuy,tambe}@usc.edu
³ University of the Pacific, Stockton, CA 95211 ebowring@pacific.edu

February 1, 2011

Abstract

This technical report is written as a support material for the reader in [1], detailing the transformations to simplify an initial program to compute a tight bound for a C-optimal assignment into a linear program (LP).

In this technical report we show how the initial program to compute a tight bound for a C-optimal assignment, can be transformed into a linear program. Our departure point is the following program.

Find \mathcal{R} , $x^{\mathcal{C}}$ and x^* that minimize $\frac{R(x^{\mathcal{C}})}{R(x^*)}$ subject to $x^{\mathcal{C}}$ being a \mathcal{C} -optimal for \mathcal{R}

We start by analyzing what exactly means saying that $x^{\mathcal{C}}$ is \mathcal{C} -optimal. The condition can be expressed as: for each x inside region \mathcal{C} of $x^{\mathcal{C}}$ we have that $R(x^{C}) \geq R(x)$. However, instead of considering all the assignments for which x^{C} is guaranteed to be optimal, we consider only the subset of assignments such that the set of variables that deviate with respect to x^{C} take the same value than in the optimal assignment. If we restrict to this subset of assignments, then each neighborhood covers a $2^{|C^{\alpha}|}$ assignments, one for each subset of variables in the neighborhood. Let $2^{C^{\alpha}}$ stand for the set of all subsets of the neighborhood C^{α} . Then for each $A^{k} \in 2^{C^{\alpha}}$ we can define an assignment $x^{\alpha_{k}}$ such that for every variable x_{i} in a relation completely covered by A^{k} we have that $x_{i}^{\alpha_{k}} = x_{i}^{*}$, and

for every variable x_i that is not covered at all by A^k we have that $x_i^{\alpha_k} = x_i^C$. Then, we can write the value of $x_i^{\alpha_k}$ as

$$R(x_k^{\alpha}) = \sum_{S \in T(A^k)} S(x_k^{\alpha}) + \sum_{S \in P(A^k)} S(x_k^{\alpha}) + \sum_{S \in N(A^k)} S(x_k^{\alpha})$$
(1)

Now, the definition of C-optimal can be expressed as $A^k \in \{2^{C^{\alpha_k}} | C^{\alpha_k} \in C\}$:

$$R(x^C) \ge R(x_k^{\alpha}) = \sum_{S \in T(A^k)} S(x_k^{\alpha}) + \sum_{S \in P(A^k)} S(x_k^{\alpha}) + \sum_{S \in N(A^k)} S(x_k^{\alpha})$$
(2)

that, by setting partially covered relations to the minimum possible reward (0 assuming non-negative rewards), results in:

$$R(x^{C}) \ge \sum_{S \in T(A^{k})} S(x_{k}^{\alpha}) + \sum_{S \in N(A^{k})} S(x_{k}^{\alpha}) \quad \forall A^{k} \in \{2^{C^{\alpha_{k}}} | C^{\alpha_{k}} \in \mathcal{C}\}$$
(3)

where $T(A^k)$ is the set of completely covered relations, $P(A^k)$ the set of partially covered relations and $N(A^k)$ the set of relations not covered at all.

Given the definition of C-optimality of equation 3, we can proceed on specifying the linear programming formulation of the initial problem. First, we assume that $x_{-}^{\mathcal{C}} = \langle 0, \ldots, 0 \rangle$ and $x^* = \langle 1, \ldots, 1 \rangle$ where 0 and 1 stand for the first and second value in each variable domain. This assumption can be made without loosing generality. Second, we create two real positive variables for each relation $S \in \mathcal{R}$, one representing $S(x^{\mathcal{C}})$, noted as x_S , and another one representing $S(x^*)$, noted as y_S . $x^{\mathcal{C}}$ in $\mathcal{C}^{\alpha} R(x^{\mathcal{C}}) \geq R(x^{\alpha})$ using a single equation, concretely the one that sets every variable in \mathcal{C}^{α} to 1.

Third, to obtain the LP we can normalize the rewards of our optimal to add up to one $(\sum_{S \in \mathcal{R}} y_S = 1)$. This is a common procedure for turning a linear fractional program into a linear program.

Fourth, we add all the constraints from equation 3, to guarantee the optimality of x^{C} .

The linear program resulting from these is as follows:

minimize $\sum_{S \in \mathcal{R}} x_S$ subject to $\sum_{S \in \mathcal{R}} y_S = 1$ and for each $A^k \in \{2^{C^{\alpha_k}} | C^{\alpha_k} \in \mathcal{C}\}$ also subject to $\sum_{S \in \mathcal{R}} x_S \ge \sum_{S \in T(A^k)} y_S + \sum_{S \in N(A^k)} x_S$

where

- x is a vector of positive real numbers representing the values for each relation of the C-optimal
- y is a vector of real numbers representing the values for each relation of the optimal of the problem
- $T(A^k)$ contains the relations completely covered by A^k , and
- $N(A^k)$ contains the relations that are not covered by C^{α} at all.

References

 M. Vinyals, E. Shieh, J. Cerquides, J. A. Rodriguez-Aguilar, Z. Yin, M. Tambe, and E. Bowring, *Quality guarantees for region optimal DCOP algorithms*, In: Proceedings of 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011) (to appear).