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Abstract A main issue in cooperation in multi-agent systems is how an agent decides
in which situations is better to cooperate with other agents, and with which agents
does the agent cooperate. Specifically in this paper we focus on multi-agent systems
composed of learning agents, where the goal of the agents is to achieve a high accuracy
on predicting the correct solution of the problems they encounter. For that purpose,
when encountering a new problem each agent has to decide whether to solve it indi-
vidually or to ask other agents for collaboration. We will see that learning agents can
collaborate forming committees in order to improve performance. Moreover, in this
paper we will present a proactive learning approach that will allow the agents to learn
when to convene a committee and with which agents to invite to join the committee.
Our experiments show that learning results in smaller committees while maintaining
(and sometimes improving) the problem solving accuracy than forming committees
composed of all agents.

Keywords Multi-agent learning · Committees · Meta learning ·
Case based reasoning

1 Introduction

A main issue in cooperation in multi-agent systems is how an agent autonomously
decides in which situations is better to cooperate with other agents, and with which
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agents does the agent cooperate. Specifically in this paper we focus on multi-agent
systems composed of learning agents (each one in principle with a different back-
ground), where the goal of the agents is to achieve a high accuracy on predicting
the correct solution of the problems they encounter. For that purpose, when encoun-
tering a new problem each agent has to decide whether to solve it individually or
to ask other agents for collaboration. When taking those decisions, the agent has to
consider whether, for each specific problem, collaborating with other agents is likely
to improve the prediction accuracy.

This generic scenario can be exemplified in the domain of marine biology where
the difficult task of identifying marine sponges prompted us to address it as a multi-
agent system. The basic issue to be addressed is that no biologist expert in limnology
and benthology has complete knowledge of all forms and kinds of marine sponges.
In practice, biologists expert in marine sponges collect specimens on their own on
different parts of the world, developing a partial expertise depending on location and
species. Moreover, some species change according to the location they live. There-
fore, there will be no single biologist that is an expert in all kinds of sponges and
all kind of oceans: they refer this fact as people having different backgrounds. When
one of the biologists finds a new sponge, he needs to identify specific species of the
new sponge. However, since she is not an expert on all kinds of sponges, often she
will realize she has low confidence in determining the correct species of the new
sponge. In this context, the expert will likely ask other biologists for counsel on the
correct species of the new sponge. Notice that the biologist has to take two decisions:
(a) deciding when she better asks counsel to other biologists (i.e. when to collabo-
rate with other biologists), and (b) decide which of the other biologists he will ask
counsel to.

In this paper we propose a multi-agent system approach to deal with such sce-
narios. In our approach, we will consider that each biologist has a learning agent
that has access to all the marine sponges collected (and properly classified) by her.
Each learning agent is able to identify a new sponge based on previous experience.
However, if the agent cannot produce a prediction with high confidence, it can decide
to collaborate with other agents. Thus, (analogously to the biologist behavior) the
agent has to take two decisions: when to start collaboration with other agents, and
with which of the other agents to collaborate. Taking these two decisions properly is
crucial, since the correctness of the predictions made by the learning agent strongly
depends on them.

One of our goals is to show that, through collaboration, individual learning agents
and multi-agent systems can improve their performance. Both learning and collabo-
ration are ways in which an agent can improve individual performance. In fact, there
is a clear parallelism between learning a collaboration in multi-agent systems, since
they are ways in which an agent can deal with its shortcomings. Table 1 shows the
main motivations that an agent may have to learn or to collaborate.

Therefore, learning and collaboration are very related. In fact, with the exception
of motivation to collaborate in the fourth row of Table 1, they are two extremes
of a continuum of strategies to improve performance. An agent may choose to
increase performance by learning, by collaborating, or by finding an intermedi-
ate point that combines learning and collaboration in order to improve perfor-
mance. Specifically, we are interested in studying how an individual learning agent
can improve its performance by collaborating with other agents, and how can a
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Table 1 Motivations of an agent to learn and/or co–operate

Motivations to learn Motivations to collaborate

Increase quality of solutions Increase quality of solutions
Increase efficiency Increase efficiency
Increase the range of solvable problems Increase the range of solvable problems

Have access to resources that only other agents can use

learning agent decide whether it is better to work individually or to cooperate with
others.

Moreover, returning to the motivating example, we model the situation when a
group of biologists collaborate to identify a given marine sponge as the institution we
usually call committee. When a committee of human biologists is formed, the individ-
ual biologists have their own background and produce their individual predictions.
We consider a committee goes through two main phases: discussion and deliberation.
During discussion, different alternatives are presented and arguments justifying or
attacking alternatives are exchanged; during deliberation, one of the alternatives is
chosen by some voting system that determines the winner. Analogously, we use the
notion of electronic institutions [11] for a group of learning agents collaborating to
reach a join prediction, i.e. forming a committee of agents. In this paper we will focus
only on the deliberation phase, although current work on the argumentative phase is
published elsewhere [24].

Specifically, there are two core aspects we want to address in this paper, namely
when a committee is needed or not, and which agents should be invited to join a
committee. Notice that, in our biology scenario, a biologist often solves the sponge
identification task individually, while, some other times recourse to external counsel
(in our model, convenes a committee) because she estimates she is not competent with
respect to the problem at hand. Our approach to this issue is equipping the agents
with a competence self-model capable of estimating if the agent is competent (or to
which degree it estimates might be competent) to solve a specific problem. Moreover,
we will show how this competence self-model can be individually learnt by every agent
in the course of its regular process of solving problems and collaborating with other
agents.

Concerning the second issue, notice that when a biologist decides to consult some
other biologists, she does not call all the available sponge experts in the world, but
just a small sample, enough to correctly identify the new sponge. For a multi-agent
system this means that an agent convening a committee will not simply invite always
all agents in the system to join the committee. Thus, we distinguish two types of strat-
egies for convening committees: fixed committees and dynamic committees. An agent
convenes fixed committees when the agents invited to join the committee are always
the same regardless of the problem to be solved (an example of this strategy is the
basic one of always convening all the available agents to a committee). Moreover,
when an agent convenes a dynamic committee it has to select which agents to invite
in function of the problem to be solved. In this paper we propose to equip each indi-
vidual agent with competence models of the other agents; these competence models
assess the confidence of the convener agent in that some other agent is competent
to solve the problem at hand. Moreover, we will show how these competence models
can be individually learnt by every agent in the course of its regular process of solving
problems and collaborating with other agents (Sect. 3.1).
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1.1 Committees and machine learning

Committees allow us to study the application of machine learning techniques to multi-
agent systems, and the relation between collaboration and learning. From a machine
learning perspective, a committee may be considered an ensemble of agents, where
each agent plays the role of a predictor (trying to predict the correct solution for a
given problem). Ensembles of predictors are expected to have a higher performance
than individual predictors because of the ensemble effect [26]. The ensemble effect is
well known in machine learning, and states that, given that some preconditions are
met, the combination of predictions made by several individual predictors is likely to
be more accurate than the prediction made by the individual predictors. The precon-
ditions of the ensemble effect are simple: each individual predictor must be minimally
competent (i.e. have an error rate lower than 0.5) and the ensemble must be diverse
(i.e. the error correlation between the predictions of the individual classifiers must
be low).

In previous work [27], we have shown that committees of agents can also benefit
from the ensemble effect, as ensembles of predictors do. Thus, by properly defining
strategies to convene committees, agents can convene committees that allow them
to achieve higher performance than working individually. However, committees are
not the same as ensembles, in other words our goal is not to present new ensemble
learning methods. The fundamental differences between committees and ensembles
are, for instance, that autonomy and privacy are not an issue in ensemble learning,
but they are essential in multi-agent systems. Moreover, in an ensemble, the ensemble
learning algorithm is centralized and creates the individual predictors in such a way
that the ensemble works; however, in a committee, agents are not created by a central-
ized process, agents are in principle created or maintained by different organizations
in different places; therefore, in our multi-agent framework an agent has to convene a
committee that achieves the maximum performance by collaborating with the existing
agents, and having no control or access to the data they have stored locally. These
hypotheses of decentralized control and distributed data that our framework espouses
are not satisfied by ensemble learning methods that assume centralized control and
access to data. Therefore ensemble learning methods are not directly applicable to
committees, although committees can use the core ideas of the “ensemble effect” to
improve their performance [27].

1.2 An approach to learning to cooperate

The problem of convening dynamic committees is presented in this paper inside a
framework called Multi-agent Case Based Reasoning Systems (MAC) [27]. A MAC
system is composed of a set of CBR agents, where a CBR agent is an agent that uses
Case Based Reasoning (CBR) [1] to solve problems and learn from those problems.
The open and dynamic nature of multi-agent systems fits with open and dynamic
nature of lazy learning [2] used in CBR. This framework is quite general and has been
used to study different aspects concerning learning in multi-agent systems [19–23,
27, 28].

In this paper, however, we focus on presenting collaboration strategies that the
agents in a MAC system can use to convene committees in the phase of join deliber-
ation (and therefore excluding the argumentation phase). For this reason, we will use
a MAC system where agents learn to perform a classification tasks without lose of
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generality. In machine learning, a classification task is one where a learning system
predicts one item among a set alternatives (usually called classes). Since we are focus-
ing on the deliberation phase of committees, where one of the presented alternatives
has to be selected, this task is, from the point of view of the learning agent, a classi-
fication task. Notice our approach is general in the sense that the alternatives under
deliberation can be internally complex (e.g. a committee can deliberate on alternative
plans of action), but in the deliberation phase the individual agents have just to predict
(and learn to predict) the better alternative.

Specifically, we will present a basic strategy called the Committee Collaboration
Strategy (CCS) that always convenes a committee using all the available agents in the
system. CCS is a strategy for fixed committees and is used for comparison purposes
since using all agents in a committee will (in principle) lead to more accurate predic-
tions. After that, we will present another strategy called Proactive Bounded Counsel
Collaboration Strategy (PB-CCS), that tries to achieve accurate predictions, but only
convening committees when required. Thus, PB-CCS is our proposal to address the
problem of deciding when to collaborate, and with which agents to collaborate. We
will present specific decision policies that agents may use to decide when to solve
problems individually and when to convene committees, and to select which agents
to invite to join a committee. Moreover, the key claim of this work is that agents can
learn to make those decisions (when to collaborate and with which agents to collabo-
rate). To support this claim, we present a proactive learning approach that gives the
agents the ability to learn how to take those decisions.

Since those decision policies are based on what we call competence models, we will
present two approaches: one where the competence models are predetermined (and
manually build by the agent designers) and another one where those competence
models are individually learnt by every agent in the systems using PB-CCS. We also
present experiments to compare the performance of fixed versus dynamic committees,
and that of learning competence models versus predetermined competence models.

The structure of the paper is as follows. First Sect. 2 presents the multi-agent frame-
work in which we have performed our experiments, and formally define the notion
of committee. Moreover, Sect. 2 presents the CCS. After that, Sect. 3 introduces the
notion of dynamic committees, and the PB-CCS, that will be presented a dynamic com-
mittee collaboration strategy. Then, Sect. 4 presents a proactive learning technique
with which agents will be able to learn a decision policy used to convene dynamic
committees. Sect. 5 formally presents the B-CCS for comparison purposes. Finally,
Sect. 6 presents an empirical evaluations of all the collaboration strategies in several
scenarios. The paper closes with related work and conclusions sections.

2 A multi-agent CBR approach

In this paper we focus on agents that use CBR to solve problems. CBR techniques are
suitable to multi-agent systems and give the agents the capability of autonomously
learn from experience by retaining new cases (problems with known solution). There-
fore, we will focus on Multi-agent CBR Systems (MAC).

Definition 2.1 A Multi-Agent Case-Based Reasoning System M = {(A1, C1), . . . , (An,
Cn)} is a multi-agent system composed of a set of agents A = {Ai, . . . , An} where each
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agent Ai ∈ A possesses an individual case base Ci, and each agent Ai uses CBR with
its case base Ci but has neither access nor control over other case bases.

A case base Ci = {c1, . . . , cm} is a collection of cases, and a case c = 〈P, S〉 is a tuple
containing a case description P ∈ P and a solution S ∈ S, where P is the problem
space and S is the solution space. In this paper, we assume that S = {S1, . . . , SK} is a
finite and known set of solutions. Notice that case descriptions are defined over the
problem space P . In the following, we will use the terms problem and case description
indistinctly. Therefore, we can say that a case consists of a case description plus a
solution, or that a case is a problem/solution pair. In the following, we will use the
dot notation to refer to elements inside a tuple. e.g. to refer to the solution of a case
c, we will write c.S. Moreover, we will also use the dot notation with sets, i.e. if C is
a set of problems, C.P refers to the set of problems contained in the cases in C, i.e.
C.P = {c.P|c ∈ C}.

In our framework, interaction among agents is realized by means of collaboration
strategies, that we define using the methodology of electronic institutions [11].

Definition 2.2 A collaboration strategy 〈I, D1, . . . , Dm〉 defines the way in which a
group of agents in a MAC collaborate in order to achieve a common goal and is com-
posed of two parts: an interaction protocol I, and a set of individual decision policies
{D1, . . . , Dm}.

The interaction protocol of a collaboration strategy defines a set of interaction states,
a set of agent roles, and the set of actions that each agent can perform in each interac-
tion state. The agents use their individual decision policies to decide which action to
perform, from the set of possible actions, in each interaction state. Each agent is free
to use its own decision policies. Moreover, we have used the ISLANDER formalism
[10] to specify the interaction protocols in our framework (Fig. 1).

Let us now define the notion of committees of agents that allows a group of agents
to collaborate in solving problems with the goal that the committee performance
improves with respect to that of solving problems individually. A Committee is a
group of agents that join together to predict the solution of a problem P. Each agent
individually predicts the solution of P and then all the individual predictions are
aggregated by means of a voting process.

The only requirement on the CBR method that an agent uses is that it must be able
to provide a collection containing the most relevant cases for the current problem,

Fig. 1 Illustration of a MAC
system where an agent Ac is
using CCS in order to convene
a committee to solve a
problem
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Fig. 2 Interaction protocol for
the CCS

that we will call the retrieval set. From this retrieval set, agents construct Solution
Endorsement Records (SERs). A SER is a tuple R = 〈S, E, P, A〉 where A is an
agent that has found E (where E > 0 is an integer) cases endorsing the solution S
as the correct solution for the problem P in the retrieval set. Intuitively, a SER is a
record that stores the result of the individual retrieval of cases. If the retrieved cases
belong to more than one solution then a different SER will be built for each solution.

Let us present now the CCS.

Definition 2.3 The Committee Collaboration Strategy (CCS) is a collaboration strat-
egy 〈IC, DV〉, where IC is the CCS interaction protocol shown in Fig. 2 and DV is a
decision policy based on the BWAV voting system, presented in Sect. 2.1.

The interaction protocol IC is described in Fig. 2 using the ISLANDER [10] for-
malism and applies to a set of agents Ac that have agreed to join a committee. The
protocol consists of five states and w0 is the initial state. When a user requests an
agent Ai to solve a problem P the protocol moves to state w1. Then, Ai broadcasts
the problem P to all the other agents in the system and the protocol moves to state
w2. Then, Ai waits for the SERs coming from the rest of agents while building its
own SERs; each agent sends its SERs to Ai in the message p3. When the SERs from
the last agent are received the protocol moves to w3. In w3, Ai will apply the voting
system defined in the individual decision policy DV (with all the SERs received from
other agents and the SERs built by itself) to aggregate a joint prediction. Finally, the
aggregate prediction S will be sent to the user in message p4 and the protocol will
move to the final state w4.

Notice that not all the agents in the MAC system may be willing to collaborate using
CCS. Therefore, the set Ac contains only those agents that are willing to collaborate,
as shown in Fig. 1.

Since all the agents in a MAC system are autonomous CBR agents, they will not
have the same problem solving experience. Therefore, the content of their case bases
will not be (in principle) the same. For that reason, not all the agents will be able to
correctly solve the same problems. In other words, the individual agents’ errors are
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(in principle) not correlated. Thus, using CCS, prediction accuracy can be improved
because the convened committee of agents satisfy the preconditions of the ensemble
effect.

2.1 Bounded weighted approval voting

Agents could in principle use any voting system to aggregate their predictions. How-
ever, in this paper we use a voting system called bounded weighted approval voting
(BWAV) specifically designed for committees of CBR agents. As we will see in Sect. 4,
agents will perform a learning process that will use as input the information provided
by the votes of the agents. Thus, the more informative are the votes, the better the
agents will be able to learn. For that reason, BWAV is more adequate than standard
majority voting (where each agent will simple vote for a single solution).

The principle behind BWAV is that agents vote for a solution depending on the
number of cases in the retrieval set that endorse that solution. Specifically, each agent
has one vote that can be assigned to a unique solution or fractionally assigned to a
number of classes depending on the number of endorsing cases for each solution.

Let Rc = {R1, . . . , Rm} be the set of SERs built by the n agents in Ac to solve a
problem P. Notice that each agent may submit one or more SERs. In fact, an agent
will submit as many SERs as different solutions are present in the retrieval set. Let
RAi = {R ∈ Rc|R.A = Ai} be the subset of SERs of R created by the agent Ai. The
vote of agent Ai for a solutionSk is the following:

Vote(Sk, P, Ai) =
{

R.E
c+N If ∃R ∈ RAi |R.S = Sk,
0 otherwise.

(1)

where c is a normalization constant that in our experiments is set to 1 and N =∑
R∈RAi

R.E is the size of the retrieval set of Ai. Notice that if an agent Ai has not
created a SER for a solution Sk, then the vote of Ai for Sk will be 0. However, if Ai
has created a SER for Sk, then the vote is proportional to the number of cases found
endorsing the solution Sk.

We can aggregate the votes of the agents in Ac for one solution Sk by computing the
ballot: Ballot(Sk, P, Ac) = ∑

Ai∈Ac Vote(Sk, P, Ai) and therefore, the winning solution
is the solution with more votes in total:

Sol(S, P, Ac) = arg max
Sk∈S

Ballot(Sk, P, Ac) (2)

BWAV can be seen as a variation of Approval Voting [3]. The main difference
between approval voting and BWAV is that in Approval Voting each agent votes for
all the candidates they consider as an acceptable outcome without giving weights to
the accepted options.

3 Dynamic committees

The CCS can effectively improve the problem solving performance of the agents in
a MAC system with respect to agents solving problems individually [25]. However,
when an agent uses CCS, no policy is used to select which agents are invited to join
the committee and all the agents in a MAC system are invited each time that an agent
wants to use CCS. Moreover, it is not obvious that forming a committee with all the
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available agents is the best option for all the problems: possibly smaller committees
have an accuracy comparable (or indistinguishable) to that of the complete commit-
tee. Furthermore, possibly some problems could be confidently solved by one agent
while others could need a large committee to be solved with confidence.

In this paper, we want to provide a collaboration strategy that is capable of: (a)
deciding when an individual agent can solve a problem individually and there is no
need to convene a committee, and (b) when a committee is needed, deciding which
agents should be invited to join the committee. A collaboration strategy that con-
venes a different committee in function of the current problem is called a Dynamic
Committee collaboration strategy. Moreover, as we have stated in Sect. 1, agents
require competence models in order to decide when to convene a committee and
which agents to invite.

3.1 Competence models

Competence models are used by agents to decide if a committee is needed and which
agents to invite to join a committee. A competence model is a function that estimates
the confidence on the prediction of an agent (or set of agents) for a specific problem
P, i.e. estimates the likelihood that the prediction is correct.

Competence models can be acquired by two different ways: (a) directly specified
by a human designer, (b) automatically learned from experience by the agents. In this
paper we will present a proactive learning process to allow agents to learn their own
competence models. Moreover, in the experimental results section we will compare
the learned competence models against handcrafted competence models.

Competence models will be used in the iterative process of convening dynamic
committees. Specifically, will be given three main uses: (a) competence models are
used to allow an agent to decide whether to convene a committee or not, (b) given that
committees are formed iteratively (i.e. agents are invited one by one), competence
models are specifically used to decide whether another agents is needed or not in the
current committee, and (c) finally, competence models are also used to decide which
is going to be the next agent to be invited to join the committee. Moreover, an agent
solving a problem individually will be seen as a committee formed of a single agent.

Assessing the confidence on of a committee on a problem P is tantamount to assess
how agents have responded to P, therefore competence models assess the compe-
tence of agents or groups of agents given a voting situation, i.e. a situation in which
committee has been convened and the agents have provided their individual predic-
tions for P. Notice that the collection of SERs RAc casted by the agent members of
a committee Ac completely characterizes a voting situation (since from RAc we can
obtain which agents are members of the committee and which have been their votes).
Therefore, we will define a voting situation RAc as the set of SERs for a problem P
sent by a committee of agents Ac to the convener agent (including the SERs of the
convener agent Ac).

For each voting situation we can define the candidate solution Sc = Sol(S, P, RAc)

of a voting situation as the solution that the committee will predict if no more agents
join the committee. Moreover, we can also define the individual candidate solution of
an agent Ai in a committee Sc

Ai
= Sol(S, P, RAi) as the solution that Ai individually

predicts for the problem.
The specific competence models required to convene dynamic committees for an

agent Ai member of a MAC system composed of n agents A = {A1, . . . , An} are the
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following: MAi = {Mc, MA1 , . . . , MAi−1 , MAi+1 , . . . , MAn}, where Mc is a Committee-
Competence Model and MAj are Agent-Competence Models.

A Committee-Competence Model Mc is a competence model that assesses the con-
fidence in the prediction of a committee Ac in a given voting situation R. Thus, Mc
is used to decide whether the current committee Ac is competent enough to solve
the problem P or not (and therefore it is better to invite more agents to join the
committee).

An Agent-Competence Model MAj is a competence model that assesses the confi-
dence in the prediction made by an agent Aj in a given voting situation R. MAj is useful
for the convener agent to select which agent Aj is the best candidate to be invited to
join the committee by selecting the agent Aj for which its competence model predicts
the highest confidence (i.e. the agent with the highest likelihood that its prediction is
correct) given the current voting situation R.

Notice that the convener agent Ai requires a self-competence model to decide
whether to solve a problem P individually or convene a committee. For this purpose
Ai solves the problem P using its own case base, and constructs the corresponding
SERs. A collection of SERs is precisely a voting situation, and therefore we can
consider that when Ai solves problems individually he is convening a committee of
one agent. For this reason, self confidence can be assessed just as before, using the
Committee-Competence Model Mc over the voting situation of this committee of one.
Therefore, Ai will also use Mc as the self-competence model.

3.2 Proactive bounded counsel collaboration strategy

The PB-CCS is designed to study if the decisions that have to be taken to convene
dynamic committees can be learnt. Specifically, agents using PB-CCS will engage in
a proactive process to acquire the information they need in order to learn the com-
petence models that allows them to decide when to convene or not a committee, and
which agents to invite to join each committee.

Before explaining the proactive learning process, we will first explain how a dynamic
committee is convened. For this purpose, we propose an iterative approach to deter-
mine the committee needed to solve a problem. The iterative approach works as fol-
lows: In the first round, only the convener agent individually predicts the solution of
the problem. Then, a competence model is used to determine whether there is enough
confidence on the individually predicted solution. It there is enough confidence, then
no committee is needed, and the prediction made by the agent is considered the final
solution. This first step implements the decision on whether or not a committee has
to be convened for the problem at hand. The Halting decision policy will be used to
take this decision. However, if there is not enough confidence, then a committee is
convened, and a new agent Aj is invited to join the committee.

Once a committee is established, at each round we the Halting decision policy to
decide whether there is enough confidence on the solution predicted by the current
committee or not. In the negative case, we use the he Agent Selection decision policy
to select a new agent to be invited. Figure 3 illustrates this process: from all the agents
in the MAC system that have agreed to collaborate, some of them have already joined
the committee, and some of them are candidates to be invited if the confidence in the
solution predicted by the current committee is not high enough. Moreover, notice that
some agents in the MAC system may be unwilling (for whatever reason) to participate
in PB-CCS, thus are not candidates to be invited to join the committee.
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Fig. 3 Illustration of PB-CCS
where 3 agents have already
been invited to join the
committee, forming a
committee of 4 agents

Fig. 4 Interaction protocol for
the Proactive Bounded
Counsel collaboration strategy

Definition 3.1 The Proactive Bounded Counsel Collaboration Strategy (PB-CCS) is
defined as a collaboration strategy 〈IB, DH , DAS, DV〉, consisting of an interaction pro-
tocol IB, shown in Figure 4, DH is the Proactive Bounded Counsel Halting decision
policy, DAS is the Proactive Bounded Counsel Agent Selection decision policy, and
DV is the voting decision policy based on BWAV (see Sect. 2.1).

PB-CCS is an iterative collaboration strategy consisting in a series of rounds. We
will use t to note the current round of the protocol; thus, Ac

t will be the subset of
agents of A that have joined the committee at round t and Ar

t the subset of agents
of A that have not yet been invited to join the committee at round t. Finally, we will
note RAc

t
the set of all the SERs submitted to the convener agent by all the agents in

Ac
t (included the SERs built by the convener agent Ac itself), i.e. RAc

t
represents the

voting situation at round t.
Figure 4 shows the formal specification of the IB interaction protocol. The protocol

consists of four states: w0 is the initial state, and, when a user requests an agent Ai to
solve a problem P, the protocol moves to state w1. The first time the protocol is in
state w1 the convener agent uses the DH decision policy to decide whether to convene
a committee or not.
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When a committee is convened, the DAS decision policy is used to choose an agent
Aj, and message p2 is sent to Aj containing the problem P. After that, the protocol
moves to state w2. Ai remains in state w2 until Aj sends back message p3 containing
its own prediction for the problem P, and the protocol moves back to state w1. In
state w1 the convener agent Ai assesses the confidence of the current voting situation
and uses the DH decision policy to decide whether another agent has to be invited
to join the committee or not. If Ai decides to invite more agents, then message p2
will be send to another agent (chosen using the DAS decision policy), repeating the
process of inviting a new agent; if Ai decides that no more agents need to be invited
to join the committee the voting system specified in DV will be used to aggregate a
joint prediction S. Finally, Ai will send the joint prediction to the user with message
p4, and the protocol will move to the final state w3.

3.3 Proactive bounded counsel decision policies

Using the competence models defines in Sect. 3.1, we can define the Proactive Bounded
Counsel Halting decision policy DH as a Boolean decision policy that decides whether
the convener agent can stop inviting agents to the committee at a round t; i.e. if
DH(RAc

t
) = true, no more agents will be invited to join the committee. Specifically

DH is defined as follows:

DH(RAi) =
(

Mc(RAc
t
) ≥ η1

)
∨

(
maxAj∈Ar

t
(MAj(RAc

t
)) < η2

)
where η1 and η2 are threshold parameters. The rationale of this policy is the following:
if the confidence in the solution predicted by the current committee is high enough
(Mc(RAc

t
) ≥ η1) there is no need to invite more agents since the current prediction

has a very high confidence. Moreover, if the confidence on an agent Aj ∈ Ar that is not
in the committee is very low (MAj(RAc

t
) < η2) inviting Aj to join the committee is not

advisable (since the prediction of that agent will very likely be incorrect and would
increase the chances that the committee prediction is incorrect). Therefore, if the
maximum confidence of every agent in Ar

t is very low, i.e. maxAj∈Ar
t
(MAj(RAc

t
)) < η2,

inviting any of these agents to join the committee is not advisable. This follows from
a preconditions of the ensemble effect (see Sect. 1), the one stating that individual
members of an ensemble have to be minimally competent.

The two threshold parameters η1 and η2 have the following interpretation: η1
represents the minimum confidence required for the committee’s prediction (candi-
date solution) of the current voting situation; η2 represents the minimum confidence
required in the prediction of an individual agent to allow that agent to join the
committee.

Notice that by varying η1 and η2, the behavior of PB-CCS can be changed. Assum-
ing that by adding more agents to the committee the confidence of the predicted
solution will tend to increase, if we set a high value for η1, the convener agent will
tend to convene larger committees; and if we set a low value for η1, the convener agent
will stop inviting agents earlier, since a lower confidence will be considered adequate
enough. Moreover, by setting a high value for η2, the convener agent will be very
selective with the agents allowed to join the committee (since only those agents with
a confidence higher than η2 will be allowed to join). On the other hand, a low value
of η2 will make the convener agent very permissive, and any agent could potentially
be invited to join the committee.
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Fig. 5 Relation among the
competence models and the
Proactive Bounded Counsel
decision policies

In fact, if η1 = 0.0, an agent will always solve problems individually, and if the
parameters are set to η1 = 1.0 and η2 = 0.0 the resulting collaboration strategy will
always convene all the available agents in the MAC system, and therefore achieve the
same results than CCS. Furthermore, by increasing η2 (leaving η1 = 1.0) we obtain a
collaboration strategy that invites to join the committee all those agents that have a
confidence level higher than η2. Therefore, η1 and η2 allow us to define a whole range
of different strategies to build committees.

The second decision policy is the Proactive Bounded Counsel Agent Selection deci-
sion policy DAS(RAi , Ar

t ) = argmaxA∈Ar
t
(MA(RAc

t
)). That is to say, DAS takes as input

a voting situation RAi and a set of candidate agents to be invited to the committee and
determines which is the agent that has the highest confidence on finding the correct
solution for a given problem.

Figure 5 shows the relations among the competence models and the decision poli-
cies in PB-CCS. The figure shows that at each round, the current voting situation, RAc

t
,

is the input to the competence models. Then, the output of the competence models
are used as the inputs of the decision policies.

4 Proactive learning

This section presents a proactive learning technique with which an agent Ai in a MAC
system can learn its competence models MAi to be used in PB-CCS. In order to learn
these competence models, agents need to collect examples from where to learn. This
section presents the way in which an agent can proactively collect those examples and
how can competence models be learnt from them.

The proactive learning technique consists of several steps (shown in Fig. 6): first,
an agent Ai that wants to learn a competence model M obtains a set of cases (that
can be taken from its individual case base). Then, these cases are transformed to
problems (by removing their solutions) and are sent to other agents in order to obtain
their individual predictions for them. After that, with the predictions made by the
other agents for all the problems sent, Ai will construct a set of voting situations.
Finally, these voting situations will be the input of a learning algorithm from which
the competence models will be learnt.

In order to easily apply machine learning techniques, we need to characterize the
voting situations by defining a collection of attributes in order to express them as
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Fig. 6 Detailed graphical representation of the proactive learning technique to learn competence
models

attribute-value vectors. The characterization of a voting situation RAc
t

is a tuple with
the following attributes:

– The attributes A1, . . . , An are Boolean. Ai = 1 if Ai ∈ Ac
t (i.e. if Ai is a member of

the current committee), and Ai = 0 otherwise.
– Sc = Sol(S, P, RAc

t
) is the candidate solution.

– Vc = Ballot(Sc, Ac
t ) are the votes for the candidate solution.

– Vr = (
∑

Sk∈S Ballot(Sk, Ac
t )) − Vc is the sum of votes for all the other solutions.

– ρ = Vc

Vc+Vr is the ratio of votes supporting the candidate solution.

We will use υ = 〈A1, . . . , An, Sc, Vc, Vr, ρ〉 to note the characterization of a voting
situation. Moreover, an M-example m is a pair m = 〈υ, ω〉, where υ is the character-
ization of a voting situation RAc

t
and ω represents the “prediction correctness” of the

voting situation, such that ω = 1 if the candidate solution of the voting situation RAc
t

was the correct one and ω = 0 otherwise.

4.1 Acquisition of M-examples

Since an agent Ai needs to learn several competence models, a different training
set TM will be needed to learn each competence model M ∈ MAi . We will call
TAi = {TMc , TMA1

, . . . , TMAi−1
, TMAi+1

, . . . , TMAn
} to the collection of training sets

needed by an agent Ai to learn the competence models M ∈ MAi .
Specifically, an agent Ai that wants to obtain the collection of training sets needed

to learn the competence models proceeds as follows:

1. Ai chooses a subset of cases Bi ⊆ Ci from its individual case base.
2. For each case c ∈ Bi:

(a) Ai uses IC (the interaction protocol of CCS) to convene a committee of
agents Ac to solve the problem c.P. After this, Ai has obtained the SERs
built by all the rest of agents in Ac for problem c.P.
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(b) Ai solves c.P using a leave-one-out method1 and creates its own set of SERs
RAi .

(c) With the set RAc of SERs obtained in step (a) and (b), Ai builds a number of
voting situations from which to construct M-examples (as explained below).

Notice that Ai can build more than one voting situation from the collection RAc of
SERs in Step 2.(c). For instance, the set of SERs built by Ai, RAi ⊆ RAc corresponds
to a voting situation where only agent Ai has cast votes. The set of SERs built by Ai
and any other agent Aj, (RAi ∪ RAj) ⊆ RAc corresponds to a voting situation where
Ai and Aj have cast their votes. In the following, we will write RA′ to refer to the set
of SERs built by a set of agents A′.

A Valid Voting Situation RA′ for an agent Ai and a problem c.P is a voting situation
where Ai has casted its votes, i.e. a set of SERs built by a set of agents A′ that at least
contains Ai. Specifically, RA′ ⊆ RAc such that A′ ⊆ Ac and Ai ∈ A′. Intuitively, a valid
voting situation for an agent Ai is one in which Ai itself is a member of the committee.
Therefore, a valid voting situation can be built by selecting the set of SERs built by any
subset of agents A′ ⊆ Ac (such that Ai ∈ A′). We can define the set of all the possible
subsets of agents of A that contain at least Ai as A(Ai) = {A′ ∈ P(A)|A1 ∈ A′}, where
P(A) represents the parts of the set A (i.e. the set of all the possible subsets of A).
Now it is easy to define the set of all the possible Valid Voting Situations for an agent
Ai that can be constructed from RAc as follows:

The Set of Valid Voting Situations for an agent Ai is: V(Ai) = {RA′ |A′ ∈ A(Ai)},
where RA′ represents the set of SERs built by the set of agents A′. Using the previous
definitions, we can decompose Step 2.(c) above in three sub-steps:

1. Ai takes a sample of all the possible Valid Voting Situations that can be built:
V

′ ⊆ V(Ai) (see below).
2. For every voting situation R ∈ V

′, the agent Ai determines the characterization
of the voting situation 〈A1, . . . , An, Sc, Vc, Vr, ρ〉.

3. With this characterization Ai can build M-examples. Specifically, Ai will build one
M-example for each competence model M ∈ MAi .

Let us now focus on how M-examples are constructed for each specific competence
model M ∈ MAi :

– To build an Mc-example, Ai determines the candidate solution Sc = Sol(S, c.P, RA′)
obtained by applying the voting system to RA′ . If Sol(S, c.P, RA′) = c.S, then the
following Mc-example is built: m = 〈〈A1, . . . , An, Sc, Vc, Vr, ρ〉, 1〉 where ω = 1
because the M-example characterizes a voting situation where the predicted solu-
tion is correct. If Sc 
= c.S, then the following Mc-example is built: m = 〈〈A1, . . . ,
An, Sc, Vc, Vr, ρ〉, 0〉 where ω = 0 because the M-example characterizes a voting
situation where the prediction is not correct.

– To build an MAj -example, Ai determines the individual candidate solution yield
by Aj, i.e. Sc

Aj
= Sol(S, c.P, RAj). If Sc

Aj
= c.S (i.e. the prediction of Aj is correct),

then the following MAj -example is built: m = 〈〈A1, . . . , An, Sc, Vc, Vr, ρ〉, 1〉 and if
Sc

Aj

= c.S (i.e. the prediction of Aj is incorrect), then the following MAj -example

is built: m = 〈〈A1, . . . , An, Sc, Vc, Vr, ρ〉, 0〉.
1 The leave-one-out method works as follows: the agent Ai temporally removes the case c from its
case base; then it solves tries to solve the problem description c.P using the rest of cases.
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Notice that with each voting situation R ∈ V
′, an M-example can be constructed for

each different competence model in MAi . Therefore, the larger the size of V
′ ⊆ V(Ai),

the larger the number of M-examples that can be constructed. The size of V(Ai) (that
is equivalent to the size of A(Ai)) depends on the number of agents in the committee
convened to solve each of the problems c.P (where c ∈ Bi ⊆ Ci). In fact, the size of
V(Ai) grows exponentially with the size of the set of convened agents: there are 2n−1

different Valid Voting Situations for a MAC system with n agents. Therefore, building
all the M-examples (i.e. a “complete data set”) that can be derived from all possible
valid voting situations in V(Ai) may be unfeasible or impractical. For that reason, an
agent using the proactive learning technique to learn competence models will take a
sample V

′ ⊆ V(Ai) of the complete data set.
The number of M-examples that an agent builds for each competence model M is

about #(Bi) × #(V′) (where the #(A) notation represents the cardinality of A). The
number of M-examples that agents need to collect for learning appropriate compe-
tence models may vary in function of the application domain. In general, the more
M-examples collected, the better. However, collecting many M-examples will waste
resources of the agent, thus in function of the resources an agent is wiling to spend
in building competence models, the number of M-examples to collect must be deter-
mined. In our experiments we have imposed the limit of at most 2000 M-examples for
each competence model. Therefore, the agents in our experiments will take subsets
V

′ ⊆ V(Ai) to have at most 2000/#(Bi) voting situations. Moreover, in our experi-
ments, an agent Ai using the proactive learning technique uses all the case base Ci
as the set Bi (i.e. Bi = Ci) (in order to maximize the diversity in the set of voting
situations built), and therefore the size of V

′ will be at most 2000/#(Ci) (see [25] for a
more informed method to build the sample V

′ ⊆ V(Ai) than simply taking a random
sample).

4.2 Learning of competence models

Once an agent Ai has collected enough M-examples, competence models can be learnt.
In our experiments we have used an induction algorithm similar to decision trees [29]
that we call confidence trees.

Since competence models predict confidence values (i.e. real numbers in the inter-
val [0, 1]), decision trees cannot be directly used to obtain confidence values (since
they predict class labels). For that reason, we are going to define confidence trees, a
structure consisting on two types of nodes: decision nodes and leaf nodes. Decision
nodes contain conditions, and leaf nodes contain three real numbers: p−

l , pl, and p+
l

(such that p−
l ≤ pl ≤ p+

l ); where pl is the expected confidence in that a voting situation
that is classified in a leaf l will yield a correct candidate solution, and p−

l and p+
l are

respectively, the pessimistic and optimistic estimations of that confidence.
The technique to learn confidence trees is like that of building decision trees [29],

but with the following considerations:

1. Numerical attributes are discretized. Each numeric attribute a is discretized to
have just two possible values. The discretization is performed by computing a
threshold κ . Left branch of the decision node will have the M-examples with
value(a) ≤ κ and in the right branch all the M-examples which value(a) > κ .

2. Error-based pruning [5] of the tree is used to avoid overfitting (i.e. for not learning
a too specific decision tree that overfits the particularities of the training set).
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Fig. 7 (a) Tree where each leaf contains the number of M-examples with ω = 1 and ω = 0. (b) Final
confidence tree learnt as the competence model Mc in a MAC system composed of 5 agents. AS, AS
and HA are the possible solution classes in S

3. For every leaf node we will store the number of examples of each solution that
fall in that leaf. Figure 7(a) shows a tree such that in each leaf l, the number of
M-examples with ω = 1 and with ω = 0 is shown. For instance, let us consider the
right-most leaf in the tree, a node that contains all examples satisfying ρ > 0.70;
the figure shows that there are 457 examples with ρ > 0.70 and ω = 1, and 29
examples with ρ > 0.70 and ω = 0.

4. Finally, the leaf nodes of the confidence tree are computed as follows: let al be the
number of M-examples with ω = 1 and bl the number of M-examples with ω = 0
in a given leaf l of the tree. Then, the values corresponding to the leaf l take the
following values:

– pl = (1/(al + bl))∗ (1∗al +0∗bl) is the expected confidence of an M-example
classified in leaf l.

– p−
l : the pessimistic estimation of the confidence of the confidence of an

M-example classified in that leaf l (see below).
– p+

l : the optimistic estimation of the confidence of the confidence of an
M-example classified in that leaf l (see below).

Figure 7(b) shows an example of a confidence tree where on each leaf l the three
values p−

l , pl, and p+
l are shown. Since pl is just an estimation of the confidence, if

the number of M-examples in the leaf node l is small then pl may be a poor estimator
of the confidence of the candidate solution of voting situations classified on the leaf
l. The greater the number of M-examples in leaf l, the better the estimation of the
confidence. To solve this problem, instead of estimating the confidence as a single
value, the agents will compute an interval, [p−

l , p+
l ], that ensures with 66% certainty

that the real confidence value is in that interval. This interval depends on the num-
ber of examples in leaf l: the greater the number of M-examples, the narrower the
interval will be (those intervals can easily computed numerically using basic bayesian
probabilistic computations). In Figure 7(b), p−

l and p+
l are shown above and below pl

respectively. For instance, if we look at the right most leaf in Fig. 7 (the one with 457
M-examples with confidence 1 and 29 M-examples with confidence 0), we can see that
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the estimated pl is 0.94 and the interval is [0.93, 0.95], a very narrow interval since the
number of M-examples to estimate the confidence is high.

For the purposes that competence models will have in the dynamic CCS, pessimistic
estimation is safer than any other estimation (expected pl or optimistic p+

l ). Using
pessimistic estimations the worst that can happen is that the committee convened to
solve a problem is larger than in could be. However, if we make a more optimistic
estimation of the confidence, (using the expected pl or optimistic p+

l estimations) the
convener agent may stop inviting agents too early, thus failing to correctly solve a
problem more often. Therefore, since confidence trees will be used as competence
models, p−

l will be used as the output of the competence model, i.e. the output of a
competence model M for a voting situation RAc is M(RAc) = p−

l , where l is the leaf
of the confidence tree in which the voting situation RAc has been classified.

5 Bounded counsel collaboration strategy

In this section we are going to define a non-learning approach to form dynamic com-
mittees, the B-CCS. B-CCS works basically in the same way than PB-CCS, but uses
predefined competence models instead of learnt ones. Thus B-CCS is only presented
with the goal of comparing it with PB-CCS. The B-CCS is composed by an interaction
protocol and two decision policies:

Definition 5.1 The Bounded Counsel Committee Collaboration Strategy (B-CCS) is
a collaboration strategy 〈IB, DH , DV〉, where IB is the B-CCS interaction protocol
shown in Fig. 4, DH is the Bounded Counsel Halting decision policy (used to decide
when to stop inviting agents to join the committee), and DV is the voting decision
policy based on BWAV (see Sect. 2.1).

B-CCS uses IB, the same protocol as PB-CCS. Moreover, when a new agent is
invited to join the committee in B-CCS, a random agent Aj is selected from the set
of agents that do not belong to the committee. Thus, B-CCS requires only an indi-
vidual decision policy: the Bounded Counsel Halting decision policy DH , that decides
whether inviting more agents to join the committee is needed.

The DH decision policy uses the C-Competence model that measures the confidence
in a solution predicted by a committee to be correct.

C-Competence(Rc) =
{

1
M Ballot(Sol(S, Ac), Ac) If N > 1,
min(Ballot(Sol(S, Ac), Ac), 1) If N = 1.

where M =
∑

Sk∈S Ballot(Sk, Ac), is the sum of all the votes casted by the agents and
N = #({Sk ∈ S|Ballot(Sk, Ac) 
= 0}), is the number of different classes for which the
agents have voted for.

That is to say, if the agents in Ac have built SERs for a single solution (N = 1),
the Committee-Competence model will return the ballot for that solution. Moreover,
notice that the ballot for a solution when there are more than one agent in Ac can be
greater than 1. Therefore we take the minimum between the ballot and 1 to ensure
that the competence models output confidence values within the interval [0, 1]. The
intuition is that the higher the ballot, the larger the number of cases retrieved by the
agents endorsing the predicted solution, and therefore the higher the confidence on
having predicted the correct solution. Moreover, if the agents in Ac have built SERs
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for more than one solution (and therefore N > 1), the C-Competence model will
return the fraction of votes that are given to the most voted solution Sol(S, {Ai}). The
larger fraction of votes for the predicted solution, the larger the number of agents
that have voted for the predicted solution or the larger the number of cases that each
individual agent has retrieved endorsing the predicted solution, and therefore the
higher the confidence on having predicted the correct solution.

The Halting decision policy DH is defined using the same competence model:
DH(Rc) = (C-Competence(Rc) ≥ η), where η is a threshold parameter. This pol-
icy determines that the convener agents stops inviting agents when DH(Rc) = true.
The intuition behind the DH decision policy is that if the confidence on the solu-
tion predicted by the current committee is high enough, there is no need for inviting
more agents to join the committee. Notice that when Ai is alone (and can be con-
sidered as a committee of 1) this decision is equivalent to choose between solving
the problem individually or convening a committee. In our experiments we have set
η = 0.75.

6 Experimental evaluation

This section presents the experimental evaluation of the performance of PB-CCS.
To evaluate the behavior of PB-CCS using the learnt competence models we have
compared it against the CCS and the B-CCS. We have made experiments with MAC
systems composed of 3, 5, 7, 9, 11, 13, and 15 agents. Moreover, the agents use a
standard 3-Nearest Neighbor (k-NN) [7]; in our experiments k = 3, that is to say the
retrieval set of a CBR agent will consists of three cases. Since PB-CCS only requires
that the CBR agents provide a retrieval, any other CBR technique that complies
could have been used in the experiments, or a different value of k could be used. The
only difference on using one CBR technique or parameter over another is the aver-
age prediction accuracy of individual agents; however, for the purpose of evaluating
PB-CCS, any one of the compliant CBR techniques is suitable, since we will focus
on the accuracy improvement over the accuracy provided to the individual agents by
whatever CBR technique is being used in the experiments.

We have designed an experimental suite with a case base of 280 marine sponges
pertaining to three different orders of the Demospongiae class (Astrophorida, Ha-
dromerida and Axinellida). In an experimental run, training cases are randomly dis-
tributed among the agents. In the testing stage unseen problems arrive randomly
to one of the agents. The goal of the agent receiving a problem is to identify the
correct biological order given the description of a new sponge. Moreover, all the
results presented here are the result of the average of five 10-fold cross validation
runs.

Moreover, in order to investigate whether the proactive learning technique used
in PB-CCS learns adequate competence models under different circumstances, we
have performed experiments in three different scenarios: the uniform scenario, the
redundancy scenario, and the untruthful agents scenario.

Uniform: In this scenario each individual agent receives a random sample of the
training set without replication of cases (i.e. the case bases of the agents are disjoint).

Redundancy: In this scenario each agent receives a random sample with replication
of cases (i.e. two agents may own the same case). To measure the degree of redundancy
introduced, we will define the redundancy R as follows:
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R =
(∑

i=1···n #(Ci)
) − N

N ∗ (n − 1)

where n is the number of agents, N = #(∪i=1···nCi) is the total number of different
cases in the system, and Ci is the individual case base of the agent Ai.

When the individual case bases of the agents are disjoint there is no redundancy
(R = 0) since the numerator is zero because N = #(∪i=1···nCi) = ∑

i=1···n #(Ci). More-
over, when all the individual case bases of the agents are identical (all the agents own
the same cases) the redundancy is maximal, and thus R = 1, since if all the case bases
are identical, then ∀j ∪i=1···n Ci = Cj, and thus #(Cj) = N.

In this scenario we have used a degree of redundancy of R = 0.1. The data set
that is distributed among the agents has 280 cases (as we perform a 10-fold cross val-
idation, there training set to distribute among the agents at each fold has 254 cases).
To better understand what R = 0.1 represents, consider this: in a 5 agents scenario
with R = 0.0 each agent will receive, on average, 50.4 cases (since the 280 cases in
the data set are divided in a training set of 252 cases and a test set of 28 cases during
the 10-fold cross validation, and 252/5 = 50.4). Moreover, with R = 0.1 each agent
will receive, on average, 70.54 cases since some of the training cases will be replicated
among the agents case bases (if R = 1.0 each agent will receive the 252 training cases).
In a 9 agents scenario, with R = 0.0 each agent will receive about 28.00 cases, and
with R = 0.1 each agent will receive 50.4 cases in average.

Untruthful Agents: In this scenario some of the agents in the committee are untruth-
ful, i.e. when an agent asks them for help, they will sometimes answer a solution
different from their true individual prediction (i.e. they will lie). Nevertheless, those
agents answer the truthful solution when they are in the role of the convener agent.

The goal of performing experiments in these scenarios is to test whether the indi-
vidually learnt competence models are useful to decide when to stop inviting agents to
join the committee and which agents to invite under different conditions. The uniform
scenario is the basic scenario, where each individual agent has a different sample of
the training set. In the redundancy scenario, since each agent has more cases than in
the uniform scenario, it is expected that each individual agent will achieve a greater
individual accuracy. Therefore, we expect that the number of times PB-CCS solves a
problem individually without need to convene a committee increases in the redun-
dancy scenario. Moreover, the average number of agents needed to solve a problem
should decrease for the same reason. However, only if the proactive learning captures
the properties of this scenario will these tendencies be apparent on the experimental
results.

Finally, the untruthful agents scenario models a situation in which not all the agents
of the system can be trusted. We have designed this scenario to test whether the learnt
competence models can detect which agents in the system can be trusted and which
cannot. In this scenario, we expect that the performance of CCS decreases with respect
to the uniform scenario (since individual prediction accuracy on average will dimin-
ish). However, using competence models, PB-CCS should be able to detect untruthful
agents and very seldom invite them to join the committee. Consequently we expect
that PB-CCS performance will not decrease as much as CCS, proving that untruthful
agents have been adequately detected by the learnt competence models.

These three scenarios are evaluated on a single data set. Using several data sets
would not add any more meaningful information; the only real difference between
several data sets is the degree in which the ensemble effect increases the committee
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accuracy. However, this is not a primary concern here, since our goal is evaluating
the performance of the dynamic committees with respect to convening always the full
committee in a given data set. An evaluation of the ensemble effect of fixed agent
committees over different data sets can be found in [25].

6.1 PB-CCS evaluation in the uniform scenario

Figure 8 shows the results for the uniform scenario. Specifically, Fig. 8a shows the
committee accuracy and Figure 8b shows the average committee size. MAC systems
with 3, 5, 7, 9, 11, 13 and 15 agents are tested. For each MAC system results for agents
using CCS, B-CCS, and PB-CCS are presented. Moreover, two different parameter
settings have been evaluated for PB-CCS: the first one with η1 = 0.9 and η2 = .5
and the second one with η1 = 0.95 and η2 = 0.5. In the first parameter settings the
convener agent will request a confidence of at least .9 in order to stop inviting agents
to join the committee, and in the second parameter settings, the convener agent will
request a confidence of at least .95. Therefore, the expected behavior is that in the
second parameter settings both the convened committees size and the accuracy will
be larger. Moreover, both parameter settings request that all invited agents have at
least a confidence of .5 of predicting the correct solution for the current problem.

Before analyzing the results shown in Fig. 8, notice that as the number of agents
increases, each agent receives a smaller case base. Thus, the accuracy of each individual
agent is lower in the experiments with many agents. The effect of this is that the accu-
racy of all the collaboration strategies diminishes as the number of agents increases.
However, it is important to note that this is not due to the number of agents, but to
the way in which experiments have been performed, since in our experiments a larger
number of agents implies smaller case bases (since the training set is divided among all
the agents in the system and therefore, the more agents, the less cases that each agent
receives). Therefore, MACs with large number of agents are used to model situations
where data is very distributed and the agents have more incentive to cooperate.

Figure 8 shows that the accuracy of PB-CCS is very close to that of CCS. In fact,
with η1 = 0.95 the difference in accuracy between PB-CCS and CCS is not statistically
significant. Moreover, the accuracy of PB-CCS (both with η1 = 0.9 and η1 = 0.95) is

Fig. 8 Committee accuracy and average committee size for agents using CCS, B-CCS, and PB-CCS
in the sponges data set and using 3-NN in the uniform scenario
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higher than the accuracy of B-CCS in all of the MAC systems except in the 9 agents
system (where the difference is not statistically significant).

Figure 8b shows the average size of the committees convened by PB-CCS and
B-CCS expressed as the percentage of the agents in the MAC system convened in
average (we do not show the size of the committees convened by CCS that is always
100%). The figure shows that the average size of the committees convened by PB-CCS
is smaller than the committees convened by CCS, specially in MAC systems with a
large number of agents. The figure also shows that the average size of the committees
convened by PB-CCS is larger than in B-CCS. This proves that PB-CCS invites more
agents to join the committee precisely when they are needed to improve performance
(since PB-CCS has a higher accuracy than B-CCS). Moreover, the threshold parame-
ter η1 affects the average size of the committee: if η1 = 0.95 the size of the committees
tends to be larger than with η1 = 0.9, as expected.

PB-CCS achieves a good tradeoff of accuracy and committee size since the accuracy
achieved by PB-CCS with η1 = 0.95 is undistinguishable of the accuracy of CCS while
the average size of a committee convened by PB-CCS is much smaller than 100% (the
size of a committee convened by CCS). B-CCS also achieves a good tradeoff since
the accuracy values are only a bit lower than that of CCS, and the committee size is
much smaller than that of CCS. Notice that the only difference between PB-CCS
and B-CCS is that in PB-CCS agents learn their own competence models, and
in B-CCS competence models have to be predefined. The competence models used
by B-CCS in these experiments have been hand-tuned for the uniform scenario, and
thus B-CCS performs quite well.

Figure 9 shows the percentage of times that the convener agent has convened com-
mittees of different sizes with η1 = 0.9. An horizontal bar is shown for each MAC
system. Each bar is divided in several intervals: the leftmost interval represents the
percentage of times that the convener agent has solved the problem individually; the
second interval represents the percentage of times that a committee of 2 agents has
been convened, and so on. The right most interval represents the percentage of times
that a committee containing all the agents in the system has been convened. Figure 9

Fig. 9 Percentage of times that the convener agent has convened committees of different sizes in the
uniform scenario using PB-CCS with η1 = 0.9
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shows that in the 3 agents system, about 40% of the times the convener agent solves
the problem individually without the need of convening a committee. Clearly, this
percentage is reduced in the MAC systems with more agents because individual case
bases are smaller and the individual accuracy is lower. Concerning the average size of
the committees convened, PB-CCS is able to convene smaller committees than CCS
without compromising accuracy. For instance, in the 11 agents MAC 50% of times
convenes committees of 3 or less agents. Thus, these results show that the proactive
learning is able to learn adequate competence models.

Summarizing, we have shown that using PB-CCS a reasonable number of times
problems can be solved individually by an agent without recourse to a committee while
maintaining the average accuracy. Moreover, when committees are needed, they are
convened, but with a smaller size than the 100% committee of CCS. Consequently
the proactive learning process is acquiring adequate competence models (since they
exhibit the expected behavior). Moreover, we have seen that varying parameters η1
and η2 have the expected result in the behavior of PB-CCS since η1 = 0.95 achieves
a higher accuracy (and slightly larger committees) than η1 = 0.9.

6.2 PB-CCS evaluation in the redundancy scenario

In the redundancy scenario the case bases of the individual agents are not disjoint
as in the uniform scenario, but have some overlapping, i.e. there are cases that are
present in more than one agents’ case base. Moreover, we have used η1 = 0.9 and
η2 = 0.5 for all the experiments in the redundancy scenario.

Figure 10 shows the results for the redundancy scenario. Figure 10a shows that the
accuracy of PB-CCS, B-CCS, and CCS are very similar, and their accuracy values are
higher than those achieved in the uniform scenario, as expected for the presence of
redundancy. In fact, the difference in accuracy is only statistically significant in the 11,
13, and 15 agents systems where B-CCS achieves a lower accuracy than PB-CCS and
CCS. Therefore, PB-CCS is as proficient as CCS.

In terms of committee size, PB-CCS convenes much smaller committees than the
100% committee of CCS as Fig. 10b shows. Again, this is specially noticeable in MAC
systems with a large number of agents. For instance, in a MAC system with 13 agents,
less than the 30% of the agents are convened in average, while CCS always convenes

Fig. 10 Committee accuracy and average committee size for agents using CCS, B-CCS, and PB-CCS
in the sponges data set and using 3-NN in the redundancy scenario
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the 100% of the agents. Comparing the behavior of B-CCS and PB-CCS in the redun-
dancy scenario with their behavior in the uniform scenario, it would be expected that
they convene smaller committees in the redundancy scenario since individual agents
have higher accuracy. PB-CCS shows exactly this behavior, i.e. it convenes smaller
committees in the redundancy scenario while maintaining the accuracy. However,
B-CCS convenes larger committees in the redundancy scenario than in the uniform
scenario. This happens because the competence models used by B-CCS are prede-
fined, and do not change from one scenario to the other. This shows that learning
competence models, as PB-CCS does, is a clear advantage.

Concerning the behavior of B-CCS, Fig. 10 shows an interesting fact. As we pre-
viously said, B-CCS uses predefined competence models that in these experiments
where hand-tuned to perform well in the uniform scenario. Figure 10 clearly shows
that the behavior of B-CCS degrades as the number of agents increase (i.e. B-CCS
achieves lower accuracy compared with PB-CCS or CCS and convenes larger com-
mittees than PB-CCS as the number of agents increase). This effect can be explained
by the fact that in the redundancy scenario experiments we have fixed a redundancy
of R = 0.1; however R = 0.1 does not represent the same amount of redundancy in
the 3 agents system than in the 15 agents system. In fact, a redundancy of R = 0.1 in a
15 agents system is a huge degree of redundancy. Therefore, the larger the number of
agents in the redundancy scenario, the further away we are from the uniform scenario,
and thus the further we are from the scenario for which the competence model of
B-CCS was designed (and thus, the worse B-CCS performs). Therefore, we can see
that learning is better because acquires competence models adapted to the current
scenario, while predetermined competence models would require hand-tuning for
each scenario.

Finally, Fig. 11 shows the percentage of times that the convener agent has con-
vened committees of different sizes in the redundancy scenario. Fig. 11 shows that
in the redundancy scenario, agents using PB-CCS solve problems individually more
often than in the uniform scenario (shown in Fig. 9). Therefore the proactive learn-
ing process has acquired good competence models, since the behavior of PB-CCS is
the expected one, i.e. convenes smaller committees in the redundancy scenario since

Fig. 11 Percentage of times that the convener agent has convened committees of different sizes in
the redundancy scenario using PB-CCS with η1 = 0.9
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since if the individual accuracy is higher, the agents will individually solve problems
correctly more often, and therefore, a committee has to be convened less often. For
instance, in MAC systems composed of 9 agents or less, agents solve problems indi-
vidually between a 40% and a 50% of the times. Moreover, if there is need to convene
a committee, PB-CCS convenes smaller size committees than in the uniform scenario;
for instance, in the 11 agents MAC, the 46.66% of the times the committee size is one
or two agents.

Summarizing, we have seen that proactive learning of competence models gives
PB-CCS an adaptive behavior (that B-CCS lacks, since uses predefined competence
models). Moreover, we have also seen that PB-CCS has effectively detected (thanks
to proactive learning) that in the redundancy scenario an agent can solve problems
individually without recourse to a committee more often than in the uniform sce-
nario. Similarly, PB-CCS is able to convene smaller committees because the acquired
competence models capture the fact that individual predictions are more accurate.

6.3 PB-CCS evaluation in the untruthful agents scenario

The untruthful agents scenario has two goals: the first one is to evaluate the robust-
ness of PB-CCS in the presence of malicious agents (that is equivalent to evaluate the
robustness of PB-CCS to noise); the second goal is to evaluate whether the proactive
learning process produces adequate competence models, i.e. competence models that
can detect that some agents have a very low confidence (the untruthful agents).

Specifically, these untruthful agents will lie about their predictions 50% of the times
to other conveners, but will not lie to themselves when they are themselves convener
agents. Specifically, there will be 1–7 untruthful agents in the 3, 5, 7, 9, 11, 13 and 15
agents systems respectively. Moreover, in this scenario we expect that the Proactive
Bounded Counsel Agent Selection decision policy, DAS, is able to effectively decide
which agents have a high confidence and which ones have a low confidence, so that
untruthful agents are very seldom invited to join a committee. Finally, the accuracy of
all the collaboration strategies is expected to be lower than in the uniform or redun-
dancy scenarios since there are less agents with high confidence in the system that can
be invited to join the committee.

Figure 12 shows the results for the untruthful agents scenario, with threshold param-
eters η1 = 0.9 and η2 = .5. Fig. 12a shows that in this scenario the accuracy achieved
by CCS and B-CCS is lower than the accuracy achieved by PB-CCS. The accuracy
of CCS is lower than that of B-CCS since CCS always invites the untruthful agents
to join the committee, while B-CCS does not. Moreover, the accuracy of the three
collaboration strategies in this untruthful agents scenario is lower than that of the
uniform scenario (Fig. 8). This reduction in accuracy is expected, since the pres-
ence of untruthful agents leaves less truthful agents to form committees with , and
thus the maximum accuracy that can be reached by virtue of the ensemble effect is
lower.

Since CCS does not perform any agent selection, all the untruthful agents are con-
vened and CCS accuracy drops from 81.71% to 66.80% in the 15 agents scenario.
Thus, we can conclude that CCS is not robust when there are agents that cannot be
trusted. B-CCS is also not robust, because it does not select agents, only decides when
to halt inviting agents to the committee. Consequently, depending on the members
of an existing committee, on some occasions they will all be truthful (and B-CCS will
stop as it would do in the uniform scenario) while on other occasions the committee
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Fig. 12 Committee accuracy and average committee size for agents using CCS, B-CCS, and PB-CCS
in the sponges data set and using 3-NN in the untruthful agents scenario

will have one or more untruthful agents that will decrease the committee confidence,
causing B-CCS to invite more agents than in the uniform scenario.

PB-CCS uses an agent selection policy, and as Fig. 12a shows, the accuracy of
PB-CCS is much higher than that of B-CCS and CCS. Therefore PB-CCS is much
more robust since the untruthful agents are much less often invited to join the com-
mittee. However, the accuracy of PB-CCS decreases with respect to the uniform
scenario because there are less agents to convene committees with (since untruthful
are avoided), and not because of a bad agent selection policy, as we will later show.

Figure 12b shows the average committee sizes, and shows that PB-CCS convenes
smaller committees than B-CCS. Moreover, as the number of agents increases, the
difference in size of the committees convened by B-CCS and PB-CCS increases. The
explanation is that PB-CCS learns adequate competence models for the DAS decision
policy, since it selects truthful agents to join the committee and very seldom invites
untruthful agents. For instance, in the 13 agents MAC, PB-CCS all convened commit-
tees have 10 agents or less, and 75% of times only 4 or less agents are convened.

Figure 13 shows the percentage of times that committees of different sizes have
been convened in the untruthful agents scenario. Specifically, PB-CCS tends to con-
vene smaller committees than in the uniform scenario (Fig, 9); the reason is that there
are less agents with a high confidence that can be invited to join the committee. Notice
that often agents are able to individually solve problems in this scenario (in fact, with
the same frequency as in the uniform scenario). Therefore, the capability of an agent
to determine when it can solve problems individually is clearly beneficial, since it
lowers the negative effects due to the presence of untruthful agents.

For the purpose of assessing the degree in which the Proactive Bounded Agent
Selection decision policy DAS is able to detect the untruthful agents, the number of
times that each agent has been invited to join a committee has been counted, summa-
rized in Table 2. For each MAC system, two values are shown: the average number
of times that a truthful agent has been convened to a committee and the average
number of times that an untruthful agent has been convened to a committee. For
instance, in the 3 agents MAC system, each one of the two truthful agents is invited
to join a committee a 47.57% of the times while the only untruthful agent is only
invited to join a committee 5.07% of the times. This clearly shows that DAS selects a
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Fig. 13 Percentage of times that the convener agent has convened committees of different sizes in
the untruthful scenario using PB-CCS with η1 = 0.9

truthful agent much more often. In fact, the degree to which DAS is able to detect the
untruthful agents depends of the threshold parameter η2. In these experiments we
have set η2 = .5, but if we set a higher value (e.g. η2 = .75) untruthful agents would be
invited even less often. Notice that η2 ≥ .5 in order to preserve one the preconditions
of the ensemble effect, namely that the individual error of the individual classifiers
must be lower than .5.

Summarizing, this scenario also shows that the proactive learning of competence
models gives PB-CCS an adaptive behavior. As we said before, this scenario was
designed to validate whether the learnt competence models would able to detect
untruthful agents. The experimental results show (a) that the decision to solve a prob-
lem individually without recourse to a committee is not affected by untruthful agents,
and (b) that the untruthful agents are effectively detected because they are very
seldom invited to join committees. Notice that an untruthful agent is only rejected
if their estimated confidence is lower than η2 = .5. However, competence models
are learnt from a finite set of examples, and this involves some degree of error: the
estimated value might be sometimes slightly above .5 and some other times slightly
below. The effect of this approximate value is that in the first situation untruthful
agents will be invited to join the committee. Thus, the number of times an untruthful
agent joins a committee (shown in the third row of Table 2) is a measure of that
error. This error increases with the number of agents in the MAC; this is as expected,
since the higher the number of agents the smaller size of individual cases bases, which
implies a smaller set of cases Bi used to acquire M-examples (Sect. 4.1).

Table 2 Average number of times that truthful and untruthful agents are invited to join a
committee

Agents 3 5 7 9 11 13 15

Truthful 47.57% 44.14% 43.63% 31.0% 32.0% 32.75% 31.8%
Untruthful 5.07% 9.03% 6.82% 7.14% 9.14% 11.57% 11.08%
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6.4 Proactive bounded counsel cost

Proactive learning of competence models has a computational cost for the agents.
Specifically, the agents send a set of problems to the other agents (in order to evalu-
ate their predictions), and also solve individually another set of problems. However,
notice that if proactive learning is not used, the cost of acquiring the competence
models does not disappear, but it is merely shifted to a previous phase where a good
competence model (or any other policy to decide how to form committees) is built
by hand (as exemplified in Sect. 5). Moreover, since a predetermined model is not
valid for all scenarios, either a static scenario has to be assumed or a range of pre-
determined models would be needed. The adaptive nature of proactively learning
competence models is thus reducing cost in practice.

Moreover, in a real system, the cost of acquiring competence models can be greatly
reduced by interleaving proactive learning with the regular process of solving prob-
lems. Imagine that a specific agent wants to learn a competence model; the agent
can solve the problems that arrive from users convening committees using any other
collaboration strategy (such as CCS), and store the predictions that the other agents
during the regular solution of problems. Once the agent has collected those prob-
lems, it can construct the M-examples in the same way as explained in Sect. 4.1 and
then learn the corresponding competence models. In other words, it is not necessary
for an agent to collect all the required M-example in one step as we have made in
these experiments for the sake of presentation clarity, but they can be automatically
acquired during the regular process of solving problems.

6.5 Conclusions from the experiments

Finally, we would like to provide a summary of the conclusions we can draw from
all the experiments presented in this section (including all the three scenarios). First
of all, we have seen that agents can individually solve problems often without com-
promising accuracy, and PB-CCS is a strategy that allows them to do that. Second,
depending on the scenario, the conditions under which an agent can solve problems
individually may vary; the advantage of learning is that it is adaptive to these changes.
Indeed, in the redundancy scenario (where individual accuracy is higher) PB-CCS
accurately determines that a problem can be solved individually without recourse to a
committee more often. Third, also depending on the scenario, the size of a committee
that achieves high accuracy varies; we have seen that PB-CCS is able to detect that
and convene adequate committees for each scenario. Finally, we have also seen that
deciding which agents to collaborate with is an important issue, and proactive leaning
has proven to be adaptive enough to adequately select which agents to collaborate
with. As a global conclusion, the experiments show that proactive learning allows the
agents to learn when and with which agents to collaborate, and increases the degree
of autonomy of agents in the sense they do not require a human to design specific
competence models for them.

7 Related work

The main areas related to our work are ensemble learning, distributed CBR, and
agent team formation.
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Concerning ensemble learning, the “ensemble effect” is a general result on multiple
model learning [15] (already introduced in Sect. 1.1). The BEM (Basic Ensemble
Method) is presented in [26] as a basic way to combine continuous estimators, and
since then many other methods have been proposed: Stacking generalization [30],
Cascade generalization [13], Bagging [4] or Boosting [12] are some examples. How-
ever, ensemble methods assume a centralized control of all the data while this is
not true in our approach. Ensemble methods assume that all data is available to a
centralized algorithm that constructs the individual predictors that form the ensem-
ble. In our approach, each agent is the owner of its individual data (each individual
agent has only access to the data contained in its own case base, and has no access
to the data in other agents’ case bases), and the distribution of data among agents
cannot be modified by a centralized algorithm since this will violate the autonomy
of the agents. The control in MAC systems is decentralized, that is to say, the global
effect is achieved by the individual decisions taken by each agent, while in ensem-
ble learning all the decisions are made by a central agency (the ensemble learning
method).

Meta-learning [6] is the more similar of the ensemble learning methods to our
approach. The meta-learning approach assumes a scenario where control is central-
ized, the base predictors have access to disjoint data sets, and the meta learner has
access to all data. The goal is to learn a meta-classifier whose training data is the
outcomes of the base predictors; in order to do so, they require access to the whole
data set. Thus, this approach is not directly applicable to our scenario because this
assumption does not hold in a system where agents are autonomous. The final result
is an arbitrator tree, a centralized method whose goal is to improve accuracy; in our
approach, each agent learns a collection of confidence trees as competence models
used to take a variety of decisions.

In general, the main difference between ensemble learning and our approach con-
cerns the goals and assumptions of each approach. The goal of ensemble learning is
to maximize accuracy by complex algorithms that have the freedom to manipulate
all data using intelligent and informed techniques; for this purpose they assume a
centralized control and access over all data. Our goal is to develop techniques capable
of exploiting the ensemble effect assuming that control is decentralized and data is
distributed.

Another related area is that of distributed CBR systems. McGinty and Smyth [18]
present collaborative case-based reasoning (CCBR) as a framework where experience
is distributed among multiple CBR agents. Their individual agents are only capable of
solving problems that fall within their area of expertise. When an agent cannot solve
a problem, it broadcasts the problem to the rest of agents, and if there is some agent
capable of that problem, that agent will return the retrieved cases to the initial agent.
This approach differs from ours in that they only perform case retrieval in a distributed
way. The initiating agent receives, for a particular problem, the cases in the retrieval
sets of the rest of the agents, and then it solves the problem individually using those
newly acquired cases. In our approach, an agent can only work with its individual case
base since no agent has access to the cases owned by another agent. Thus, while the
CCBR approach can be seen as a distributed-retrieval approach, our approach can be
seen as a distributed-reuse approach (i.e. in our approach, collaboration takes place
when reusing the retrieved cases to decide a joint prediction).

Another related approach is multi-case-base reasoning (MCBR) [16, 17], deals with
distributed systems where there are several case bases available for the same task.
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Moreover, each case base may not correspond to exactly the same task domain, or
may reflect some different user preferences, etc. Therefore cases must be adapted to
be transferred from one case base to another. Moreover, the main difference between
our approach and MCBR is again that they focus on distributed retrieval.

Concerning agent team formation, the main difference between the team forma-
tion literature and our work is the difference between teams and committees. On the
one hand, in committees we assume that all participant agents have different back-
grounds but they are all capable of achieving the overall goals of the task at hand; thus
committees are formed to improve the quality of the joint solution to be adopted. On
the other hand, in teams we assume that individual agents have different capabilities,
but none of them individually is able to achieve the overall goals. For instance, the
ORCAS framework [14] uses CBR to configure teams of agents in such a way that
they achieve the overall goals for a particular problem.

Another approach to team formation is the Cooperative Problem Solving (CPS)
framework [8, 31]. Four stages are clearly identified in CPS: (1) potential recognition
(finding which agents can perform certain tasks), (2) team formation, (3) plan forma-
tion, and (4) plan execution. This framework is certainly a general way to deal with
team formation, however it focuses on finding a plan (or protocol) that the individual
agents can follow to collaborative solve a given problem by combining their capabili-
ties, and usually assumes that if two different agents are able to perform a task, it does
not matter which of both is selected. In our framework, we deal with a more specific
form of collaboration (committees), where all the agents are capable of predicting
solutions, but the selection of the specific members of the committee is crucial for
improving the performance of the committee.

Also relevant is work on learning to form coalitions of agents by Sarathi and Sen
[9], where they propose a framework for agents that learn who are the best agents to
collaborate with in the form of stable coalitions. However, they focus on the assign-
ment of tasks to individual agents that can perform them in a more efficient way,
rather than aggregating individual predictions as we do.

8 Conclusions and future work

We have presented a framework for collaborative multi-agent CBR systems called
MAC. The framework is collaborative in the sense that the agents collaborate with
other agents if this can report some improvement in performance. This article ad-
dresses two main issues on collaboration: when to collaborate, and with whom to
collaborate. We have presented the idea of committees to study these issues, and spe-
cifically we presented a collaboration strategy called PB-CCS that allows the agents
to learn when to convene committees, and which agents to invite to each committee.
We have also presented a proactive learning technique that allows an agent to learn
its individual competence models, that are required by PB-CCS.

The empirical evaluation we performed supports the proactive learning approach
we have taken: first, learning competence models (PB-CCS) is more robust than pre-
determined component models (B-CCS) and fixed committees (CCS), since PB-CCS
achieves higher accuracy values in a wider range of scenarios than CCS or B-CCS.
The robustness of PB-CCS is achieved by the capability to adapt to the properties
of different scenarios provided by the proactive learning of competence models. Pre-
defined models are not adaptive to the different scenarios, and require a process
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of hand-tuning for each foreseeable scenario. Learning, however, increases agent
autonomy in that they are capable of acquiring the specific competence models ade-
quate for the scenario they have to deal with.

Second, PB-CCS increases the agents autonomy by providing the ability to decide
when they can solve problems individually and when they are better off convening a
committee. Moreover, the proactive learning process allows the agents to take these
decisions adequately in a range of scenarios. The frequency in which an agent can
solve problems individually depends on its individual accuracy; for instance, in the
redundancy scenario, where individual accuracy is higher, agents are capable to adapt
to this circumstance and individually solve problems more often.

Third, PB-CCS learns to convene committees with a size that is not larger than
what is needed to maintain the committee accuracy. For instance, in the redundancy
scenario, where individual accuracy is higher, PB-CCS is capable of convening, on
average, smaller size committees. Moreover, in the untruthful scenario PB-CCS con-
venes smaller size committees because it learns that certain agents are unreliable.
And fourth, the proactive learning process acquires adequate competence models
since PB-CCS behaves as expected in all the three scenarios.

Moreover, given the experimental results, we can say that PB-CCS will perform
well (i.e. having a high accuracy) if (a) the agents have a reasonable number of cases
(needed to collect M-examples), (b) the agents do not change their behavior radi-
cally (otherwise the competence models wouldn’t predict well their behavior), and
(c) there are at least some competent and truthful agents in the system (otherwise no
collaboration strategy can perform well).

As future work, we plan to perform incremental learning, where the competence
models should be updated as time passes. In this scenario, the competence models
should be able to adapt if more agents enter or leave in the MAC system, and to reflect
changes in the types of problems that the system is solving. If a convener agents store
the SERs received from the other agents, the competence models could be updated
by learning new trees reflecting the changes in the behaviors of the other agents. To
detect when a competence model has to be updated, an agent could compare the
behavior of another agent with the predicted behavior from the learned competence
model for that agent. When the learned competence model does not predict well the
behavior of that agent anymore, it has to be updated.

We also intend to enrich our view of committees as an electronic institution. As
we mentioned in the introduction, committees have the discussion and deliberation
phases, and we have now focused on the second one, where voting among alternatives
is performed. The first phase involves the presentation, justification and argumenta-
tion of those alternatives. We think this phase can be modelled as an argumentation
process among agents (amenable to be specified using the methodology of elec-
tronic institutions and ISLANDER) where the alternatives are justified, criticized
and modified. As a first step in this direction, we have proposed a framework where
the alternatives can be criticized by counterarguments and counterexamples and the
agents are able to modify the alternatives they present using the information argued
by other agent [24].
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