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Abstract. The Maximum Boolean Satisfiability Problem (also known
as the Max-SAT problem) is the problem of determining the maximum
number of disjunctive clauses that can be satisfied (i.e., made true) by an
assignment of truth values to the formula’s variables. This is a generaliza-
tion of the well-known Boolean Satisfiability Problem (also known as the
SAT problem), the first problem that was proven to be NP-complete.
With the proliferation of quantum computing, a current approach to
tackle this optimization problem is Quantum Annealing (QA). In this
work, we compare several gadgets that translate 3-SAT problems into
Quadratic Unconstrained Binary Optimization (QUBO) problems to be
able to solve them in a quantum annealer. We show the performance
superiority of the not-yet-considered gadgets in comparison to state-of-
the-art approaches when solving random instances in D-Wave’s quantum
annealer.

Keywords: Quantum Annealing · Satisfiability · Optimization.

1 Introduction

As the field of Quantum Computing (QC) continues to grow, researchers have
been seeking to use quantum properties, such as superposition and entanglement,
to help or even surpass the performance of classical computers [2]. One of the
main focuses of this field has been to tackle intractable problems that cannot
be solved by classical algorithms with running times that grow only polyno-
mially in relation to the input length [9], i.e., problems that are not (or have
not been proved to be) in P . A clear example is large number factorization,
a problem that Shor’s quantum algorithm has theoretically proven to solve in
polynomial time, something far away from achieving with classical computers
[17]. Another well-known example is the so-called Boolean Satisfiability Prob-
lem (SAT, for short). The SAT problem, and in particular, the 3-SAT problem,
⋆ These authors contributed equally to this work.
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is of paramount importance in computer science since it is the first problem
to be proven NP-complete, meaning that any other NP problem can be trans-
lated, i.e., mapped, into a 3-SAT problem [8]. This problem has been tackled
recently using Adiabatic Quantic Optimization (AQO) [14], which addresses it
by encoding the solution into the ground state of a Hamiltonian and letting
the system evolve, relying on the adiabatic theorem of quantum mechanics [9].
More specifically, these optimization tasks have been attended to solve using
Quantum Annealing (QA), a technique which can be understood as a heuristic
to adiabatic quantum computing [16]. In addition, experimental annealing such
as D-Wave experiments, performed in this paper, will not have provable scaling
as other algorithms do, and the best which could be shown is an empirically
observed scaling, which is unlikely to resolve complexity theory questions since
NP-hardness is a worst-case rather than typical-case statement. More on SAT,
3-SAT, and QA will be explained in detail in Section 2.

Our work focuses on implementing and comparing different translations,
hereinafter referred to as gadgets, to map random 3-SAT instances to Quadratic
Unconstrained Binary Optimization (QUBO) problems to be able to solve them
using a quantum computer.

The main contributions of our work are:

– We implement new gadgets for translating 3-SAT instances into QUBO for-
mulations and experimentally test them in D-Wave’s commercial quantum
annealer4.

– We analyze and compare the characteristics of each gadget, such as the
required number of logical and physical qubits, when implementing them in
D-Wave’s quantum annealer.

– We compare the performance of the new-implemented gadgets in a quantum
computer with state-of-the-art gadgets and show their superiority.

– We compare their performance against a classical SAT solver.

This paper is organized as follows. First, in Section 2, we introduce the main
concepts relevant to this work. In Section 3, we provide an overview of the rele-
vant research that has contributed to advancements in this domain, highlighting
the state-of-the-art gadgets that map 3-SAT to QUBO. Then, in Section 4, we
delve into a few gadgets that have been theoretically proposed but have not been
implemented yet. Later, in Section 5, we show, compare, and analyze the results
obtained from the conducted experiments. Finally, in Section 6, we provide con-
clusive remarks along with avenues for future exploration.

2 Fundamental Concepts

In this section, we introduce the concepts we will work with, namely the 3-SAT,
Max-3-SAT and QUBO problems, and we provide a brief introduction to QA.

4 https://www.dwavesys.com
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2.1 The 3-SAT and Max-3-SAT Problems

The Boolean Satisfiability Problem, also known as SAT for short, is a compu-
tational problem in which the goal is to verify if a propositional logic statement
formed by boolean variables can be satisfied.

In this work, we focus on 3-SAT, i.e., instances characterized by n boolean
variables {vi}ni=1 and a conjunction of m clauses, each one containing the dis-
junction of 3 literals:

F = (l1 ∨ l2 ∨ l3) ∧ (l4 ∨ l5 ∨ l6) ∧ ... ∧ (l3m−2 ∨ l3m−1 ∨ l3m), (1)

where every literal li refers to a variable vk or its negation ¬vk.
As stated in Section 1, 3-SAT is of utmost importance since it can provide

insights into inherent challenges and strategies involved in solving broader classes
of combinatorial optimization and decision problems [8].

On the other hand, Max-SAT (or Max-3-SAT, in our case) is an optimization
problem. In this case, the goal is not to verify if the problem is satisfiable but
to find an assignment for the variables that satisfy the maximum number of
clauses. For 3-SAT, there exists a ratio between the number of variables n and
the number of clauses m, m

n ≈ 4.2, where the generated instance is or is not
satisfiable with approximately the same probability. This inflection point is an
interesting scenario since, in this situation, the required computational time for
classical solvers increases exponentially as the number of variables grows [10].
This work focuses on the number of clauses that are solved for a given instance
and not if the instance is itself satisfiable, being the latter a special case of the
former. Moreover, we do not expect to get the optimal solution (exactly the
maximum number of satisfiable clauses), but a good approximation.5

2.2 The QUBO Problem and its Equivalence in Ising Models

In order to solve a SAT problem with a quantum computer, such as a quantum
annealer, it is common for the input problem to be formulated in terms of a
Binary Quadratic Model (BQM). A typical representation for BQMs are QUBO
models, which are characterized by an upper triangular matrix Q ∈ RK×K with
K binary variables that take values xi = {0, 1}, for i in 0, ...,K−1. The objective
of a QUBO problem is to optimize a function that has the following expression:

min
x∈{0,1}K

f(x), where f(x) =
∑

0≤i≤j<K

xiQijxj + C, (2)

Qij ∈ R are the values of the Q matrix, x = (x0, . . . , xK−1) refer to the variables
of the problem, and C is a constant that it is usually used to shift the optimal
output to 0.

5 Notice that 3-SAT, Max-3-SAT, and even Max-2-SAT are NP-complete problems.
Therefore, a bounded-error quantum polynomial-time algorithm for any of these
problems would result in a proof of NP ⊆ BQP , which, obviously, we do not have.
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Analogously to SAT, the solution will be an assignment of x that minimizes
the function f(x).

An equivalent representation of a QUBO problem can be written in terms of
an Ising model [11]:

min
z∈{−1,1}K

H(z), where H(z) = −
∑

0≤i<j<K

Jijzizj −
∑
i

hizi, (3)

Jij , hi ∈ R and zi = {−1, 1} for i in 0, ...,K − 1. This formulation plays a
prominent role in physics since the variables zi represent magnetic or quantum
spins of a physical system [14].

Via the linear transformation, xi = (1 + zi) /2 a QUBO problem can be easily
mapped to an Ising model, and vice-versa.

In this work, we will work mainly with QUBO problems. However, since the
two formulations are equivalent, it is important to recognize that, essentially, we
are discussing the same concept when referring to either formulation.

2.3 Quantum Annealing

QA is a quantum computational method to find the global minimum of an objec-
tive function. It is a process that occurs in a quantum computer, characterized
by a Quantum Processor Unit (QPU). Thus, it relies on quantum bits, commonly
referred to as qubits, which stand out for their ability to have their two possible
values in superposition, i.e., to be in the ground state (i.e., 0) with probability
p and in the excited state (i.e., 1) with probability 1− p.

The QPU of a QA has the capability to adjust both the biases of individual
qubits and the coupling factors between them, meaning that it can fine-tune
the behavior of each qubit and how they interact with one another in order to
solve an optimization task. Nevertheless, not all qubits are interconnected via
coupling factors; rather, the specific connections depend on the particular QPU
architecture.

The experiments conducted in this work are based on D-Wave’s Advantage
System 5.4 6, which uses the Pegasus architecture, containing 5000+ qubits and
35000+ coupling factors.

All in all, in order to solve a problem with QA, an objective function needs
to be submitted to the QPU, i.e., the values of the bias and coupling factors
have to be set. In our case, the diagonal and the upper-diagonal terms of the
QUBO matrix Q refer to the biases and coupling factors, respectively.

Once the equivalent physical system of the problem is prepared in the QPU,
has a temperature close to absolute zero and it is isolated from the surrounding
environment, the system is supposed to work adiabatically and can evolve in
time following the quantum mechanics. Consequently, all the amplitudes of the
different possible states (i.e., all potential solutions) that started equally will

6 https://www.dwavesys.com/solutions-and-products/systems/
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start to change time-dependently. As a result, the states with higher amplitudes
will be the most probable to be present in the system and, in turn, to obtain,
once the solution is returned.

As one can expect, the states with higher amplitudes will be those that min-
imize the objective function submitted to the system. However, as the method
is stochastic, i.e., not guaranteed to obtain the most optimum solution, we can
obtain either the global minimum of the problem equation or any other state.
The results depend on the efficiency of the adiabatic physical system, the defined
objective function, the value assignment for the characteristic parameters of the
quantum computer, and other errors that can occur during the process. At the
end of the QA process, the system will return as a solution the final set of qubits’
values and the energy of the system in that state, which ideally will correspond
to the solution that minimizes the problem.

3 Related Work

One of the first works that mention the use of gadgets to translate NP-complete
problems into Ising formulations is the one from A. Lucas [14]. In this article,
the author translates many known problems, such as the knapsack problem, the
traveling salesman problem, the graph coloring problem, and the SAT problem,
among others, driven by the motivation to solve them via adiabatic quantum
optimization algorithms, e.g., quantum annealing. Regarding the satisfiability
problem, the author exposes the reduction of 3-SAT to the Maximal Independent
Set (MIS) problem, proposed in [6], which is then translated to an Ising model
following the procedure in [7].

Nuesslein et al. [15] compare the two main existing translations of 3-SAT to
QUBO (i.e., [7] and [5]) and propose two novel approaches to solve instances
in the critical region examined by [10]. The authors show theoretically the ad-
vantages of their proposed gadgets and achieve better performance when testing
them in D-Wave’s quantum annealer.

The work of Bian et al. [4] presents a rigorous study on mapping and encoding
techniques to solve SAT problems in a quantum annealer and, more specifically,
using D-Wave’s Chimera architecture. However, their proposed translation from
3-SAT to Ising, summarised in Section 4.1, uses a large number of auxiliary
variables, being inefficient in our study case. Moreover, their study is not trivially
extended to Max-SAT instances.

Finally, Ansotegui & Levy [1] study and propose several new gadgets to tackle
the SAT problem using quantum annealers. However, the authors do not show
any experimental results nor compare the gadgets to the current state-of-the-art.

Thus, we build our work from [15], completing their comparison by including
the new gadgets from [1].

In the following subsections, we expose the gadgets from [15], reviewing the
current state-of-the-art and in Section 4, we present the intuition for the gadgets
found in [1]. For the sake of simplicity, we are not reporting the results for two of
the mappings from max-3-SAT compared in [15], namely the ones proposed in [7]



6 Rodríguez et al.

and [5], since they show significantly worse results than the ones presented here.
The interested reader can find the results for those methods in the experiments’
code repository.

We will show in Section 5, that the gadgets implemented in this work achieve
better results compared to the current state-of-the-art.

3.1 Nuesslein2n+m

The first reduction from 3-SAT to QUBO presented in [15], while not optimal,
offers valuable insights into some concepts. Following the authors’ notation, we
will refer to this gadget as Nuesslein1 from now on.

This gadget requires 2n+m qubits, as it allocates two logical qubits for each
variable in the problem: one representing the variable and another represent-
ing its negation. In addition, it uses a logical qubit for each clause. Note that
we explicitly differentiate between logical and physical qubits. The first ones
represent the boolean variables of the QUBO problem, and the physical qubits
represent the total number of qubits needed to embed the QUBO problem into
the machine’s particular architecture.

Using 3 auxiliary variables is a useful strategy because the main character-
istic of this transcription is to count how many times each variable appears
negated or not, along with the relation between variables in each clause. In
this way, the importance and weight of each auxiliary variable are easily deter-
mined. In summary, with this method, the gadget implicitly assigns the best
value {True, False} to each variable to satisfy the most number of clauses.

For example, if the variable xj appears more times negated than not negated,
the logical qubit representing the negated variable will have a higher weight than
the logical qubit representing the non-negated variable. In this way, the algorithm
will try to assign the value False to that particular variable.

However, as the authors point out, because of the necessity of using 2n+m
logical qubits, the number of physical qubits needed to embed the problem is
large, making it difficult to obtain optimal results.

3.2 Nuessleinn+m

The second approach presented in [15] is a reduction from 3-SAT to QUBO using
only n+m logical variables, i.e., it uses a logical qubit per variable and another
logical qubit per clause. Following the authors’ notation, we will refer to this
gadget as Nuesslein2 from now on.

The idea behind this gadget is to update the QUBO matrix by recursively
scanning each clause individually. In essence, the algorithm first sorts all clauses
depending on the number of negated literals appearing in each one, obtaining
an expression similar to the following:

(a ∨ b ∨ c), (a ∨ b ∨ ¬c), (a ∨ ¬b ∨ ¬c), (¬a ∨ ¬b ∨ ¬c). (4)
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The goal is to construct matrices that depict the relationships between literals
and their existing connections, aiming to determine how each clause pattern
influences the QUBO matrix.

The usefulness of determining relations among literals and other associations
allows the gadget to identify patterns and, when possible, merge two clauses into
one.

For instance, if we are presented with the following pair of clauses: (v1 ∨ v2 ∨
v3), (v1 ∨ v2 ∨ v4) the gadget can spot that the relation (v1 ∨ v2) is repeated,
merging the two clauses into only one: (v4 ∨ (v1 ∨ v2) ∨ v3). As a result, and as
opposed to the previous gadget, one auxiliary logic qubit is no longer needed.

4 New Approaches

In this section, we expose two additional transcriptions to reduce 3-SAT to
QUBO, extracted from [1].

Both approaches require n+m logical qubits. That is, they require a logical
variable xi, for each variable vi, for i = 1, . . . n, and another logical variable bj , for
each clause cj , for j = 1, . . .m. Despite using the same number of logical variables
than Nuesslein2, superior experimental results will be shown in Section 5.

4.1 CJ1n+m

In [4], a "divide-and-conquer" approach is presented for transforming a SAT
formula into an Ising problem. The general procedure, detailed in [4], follows
three steps:

1. Factorize the input formula rewriting every conjunct that is not small enough
to be easily mapped to Ising. Each of these large conjuncts should be trans-
formed, by means of Tseitin transformation [18], into an equivalently-satisfiable
formula where each conjunct can be easily mapped to Ising. As a result of this
step, our formula will be a conjunction of subformulas, with each subformula
easily mapped to Ising.

2. Independently map each of the subformulas to Ising. This means that new
variable replicas should be created for each subformula.

3. For each different variable, link their variable replicas by means of a chain
of equivalences.

However, this approach requires a large number of logical variables. In par-
ticular, it requires n + 2m logical variables plus those needed to fulfill the last
step of the algorithm (i.e., to link each variable’s replicas).

As an alternative, Ansotsegui & Levy theoretically develop a similar approach
in [1], which benefits from the Tseitin encoding but requires only n+m logical
variables. We label this gadget as CJ1.

The intuition behind this method is to transcript each clause independently,
modifying iteratively the values of the QUBO matrix Q ∈ RK×K . Since each
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clause is translated independently, we will only refer to the j’th 3-SAT clause as
a reference to this explanation.

The reduction from 3-SAT starts by implementing the Tseitin encoding in
[18], obtaining the following expressions:

l1 ∨ l2 ∨ l3 →

{
l1 ∨ l2 ↔ bj

bj ∨ l3,
(5)

where li represents the variable in the i’th literal of the clause, and bj represents
the auxiliary variable added in the j’th clause.

The QUBO matrix can now be computed directly by expressing (5) in terms
of the contribution to the objective function (2).

As explained in [1], each of the expressions in 5 contributes to an Ising model
in the following way:

l1∨l2 ↔ bj ⇔ H1(x’,b’) =
5

2
+

1

2
x′
1 +

1

2
x′
2 − b′j +

1

2
x′
1x

′
2 − x′

1b
′
j − x′

2b
′
j (6)

bj ∨ l3 ⇔ H2(x’,b’) =
1

2
− 1

2
b′j −

1

2
x′
3 +

1

2
x′
3b

′
j (7)

where x′
i = siσi, being si = −1 (+1) the (not) negation of the literal li, and

σi = {−1, 1} the value assigned to that literal. The final contribution for the
entire gadget will be the sum of both terms.

As stated in Section 2, an Ising model can be easily mapped to a QUBO
problem. Using a variable transformation such that σi = 2xi−1 and b′j = 2bj−1,
the final expression that contributes to the QUBO objective function is:

f(x,b) =(3s1 − s1s2)x1 + (3s2 − s1s2)x2 − 2s3x3 − (3 + 2s1 + 2s2 − s3)bj

+ 2s1s2x1x2 − 4s1x1bj − 4s2x2bj + 2s3x3bj + C,
(8)

where C is a constant.
The values that contribute to each term of the matrix Q ∈ RL×L are the

coefficients of 8. For instance, Ql1l1 = 3s1 − s1s2, and Ql3bj = 2s3. Thus, all
contributions for each clause will be summed into the matrix.

This approach stands out for the couple between the two first literals in the
clause, while the third literal only couples with the auxiliary variable. This is
important when working in a QPU, in which the architecture and the available
connections between qubits are determining factors in the results obtained.

4.2 CJ2n+m

The second approach presented in [1] follows a similar implementation, also
focusing on transcribing each clause individually. However, this gadget’s first
reduction is from 3-SAT to Max-2-SAT, that is, to a conjunction of clauses
involving only 2 variables.
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Analogously to what is done in Section 4.1, the expression obtained for the
j’th clause using this gadget is:

l1 ∨ l2 ∨ l3 →


l1 ∨ l3,¬l1 ∨ ¬l3
l1 ∨ ¬bj ,¬l1 ∨ bj

l3 ∨ ¬bj ,¬l3 ∨ bj

l2 ∨ bj

(9)

As before, the authors show the intuition to express 9 into contributions to
an Ising model:

H(x’,b’) =
1

2
(−x′

2 − b′j + x′
1x

′
3 − x′

1b
′
j − x′

3b
′
j + x′

2b
′
j) (10)

Applying the same transformation as in the previous section, we obtain that
the contribution to the QUBO objective function is:

f(x,b) =(s1 − s1s3)x1 − 2s2x2 + (s3 − s1s3)x3 − (1− s1 + s2s3)bj

+ (2s1s3)x1x3 − 2s1x1bj + 2s2x2bj − 2s3x3bj + C,
(11)

where C is a constant.
The values for QLiLi

of the QUBO matrix will be the sum of all the coeffi-
cients in 11 for each variable xi and bj .

Similar to the previous gadget, this approach only adds one auxiliary variable
for each clause, obtaining a total of n+m logical variables.

5 Experimental Results

Following the procedure used in [15], we have generated random 3-SAT instances
in the critical region, i.e., where the ratio of the number of clauses to the number
of variables approaches m

n ≈ 4.2 [10]. In particular, we have generated 20 random
instances for 5 different scenarios: n = 5 and m = 21, n = 10 and m = 42, n = 12
and m = 50, n = 20 and m = 84 and for n = 50 and m = 210.

We let D-Wave find an appropriate embedding automatically for each in-
stance and generated 100 shots, i.e., the algorithm returned 100 possible solu-
tions. Moreover, we set 100 µs as the annealing time in each solution, and we
used the parameter reduce_intersample_correlation to reduce sample-to-sample
correlations. The values for the number of shots and the annealing time have
been chosen according to the results in [12], where they benchmark these two
parameters for different sizes of QUBO problems using D-Wave’s architecture.

Analogously to [15], we present in Fig.1 the number of non-zero elements
existent in the corresponding QUBO matrices. Although the Nuesslein1, CJ1,
and CJ2 approaches utilize the same number of logical variables, the assignment
of each coupling factor (Qij , i < j) differs from one another. Thus, it can be seen
how this results in a slight enhancement in the number of non-zero couplings for
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Fig. 1: Number of non-zero couplings in the QUBO matrix for 20 different 3-SAT
instances varying the number of variables (N). Variance is negligibly discernible
to the naked eye.

the CJ1 and CJ2 gadgets. In other words, these gadgets are able to construct
the QUBO matrix with fewer elements.

On the other hand, the number of physical qubits depending on the instance’s
number of variables is essentially equivalent for Nuesslein2, CJ1, and CJ2. As
mentioned in [15], Nuesslein1 exhibits poorer results in this experiment. For a
detailed comparison, readers are directed to consult Table 2 in Appendix A.

In Table 1, we present the mean number of satisfied clauses achieved with
the best-found variable assignment for each scenario and each gadget. The last
row of Table 1 displays the outcomes obtained by the MaxSatZ exact solver [13],
which finds always the optimal solution.

We can see from Table 1 that we recover the results presented in [15]; that is,
Nuesslein’s second gadget performs better than their first gadget. Nevertheless,
the two gadgets reviewed in this work perform better than Nuesslein’s second
gadget in all scenarios. For those problems with fewer variables, the CJ1 gadget
performs slightly better, while for bigger problems, the CJ2 gadget exhibits the
best performance.

Although the trait of non-zero couplings present in the QUBO matrix could
suggest that the CJ1 and the CJ2 approaches may scale and demonstrate su-
perior performance as the problem size expands, we think that the difference
depicted in Fig.1 is not sufficient to account for the enhanced performance ob-
served in the newly implemented gadgets.
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Table 1: Experimental results obtained i) by using the analyzed gadgets and
D-Wave’s quantum annealer (rows 1-4) and ii) an exact SAT solver (row 5). The
numbers quoted represent the means of satisfied clauses for all different instances
in each scenario.

n=5, m=21 n=10, m=42 n=12, m=50 n=20, m=84 n=50, m=210
Nuesslein1 18.35 37.3 43.95 73.2 183.4
Nuesslein2 20.65 41.4 49.3 82.6 204.55
CJ1 20.7 41.7 49.7 83.05 204.25
CJ2 20.7 41.65 49.65 83.25 207.0
MaxSatZ 20.7 41.75 49.8 83.6 209.65

Moreover, since the number of logical qubits is the same for the three top-
performing gadgets (i.e., Nuesslein2, CJ1 and CJ2 ), and there is no notable
difference in the use of physical qubits when embedding the problems into the
QPU, we conclude that some other inner characteristic of the gadgets must play a
crucial role. In this sense, we strongly believe that the energy gap of each gadget,
i.e., the energy difference between the ground state of the system and the first
excited state, or in other words, the difference between the optimal output value
and the subsequent suboptimal output value, must be of paramount importance.

Fig.2 provides a new insight for assessing the efficiency of the analyzed gad-
gets. Each bar in the histogram represents the percentage of shots, i.e., the
percentage of sample solutions that found the optimal or subsequent suboptimal
solutions for each gadget and problem scenario. Thus, the x-axis comprises three
labels: "0", "1", and "2", which denote whether the solution found by a given
shot was the optimal, the first suboptimal, or the subsequent second suboptimal,
compared to the exact solver.

For instance, from Fig.2a, it can be inferred that when using the CJ2 gadget
within the instances composed of n = 5 variables, the optimal solution was
found approximately 80% of the time. In other words, around 1600 shots found
the optimal solution out of a total of 20 · 100 = 2000 shots. In addition, the
subsequent suboptimal, that is, the solution that satisfied the most clauses but
not as many as in the optimal case, was found around 20% of the time. As
opposed to this, one can also infer that the CJ1 gadget obtained less optimal
solutions within this context. Note that Nuesslein2 does not practically appear
in the plots, being the worst approach in this case. Based on the number of
samples and the results in Fig. 2 we believe that the results are statistically
significant.

From Fig.2, it can be concluded that CJ2 seems to be the best approach
when solving (Max-)3-SAT instances in D-Wave’s quantum computer since it is
the gadget that more frequently finds the optimal solution. Moreover, it can also
be inferred that CJ2 exhibits superior scalability relative to its counterparts,
making it the best option for dealing with this type of problem.



12 Rodríguez et al.

(a) Instances with n=5 and m=21. (b) Instances with n=10 and m=42.

(c) Instances with n=12 and m=50. (d) Instances with n=20 and m=84.

(e) Instances with n=50 and m=210.

Fig. 2: Histogram representing the percentage of shots that find the optimal or
subsequent suboptimal solutions for each gadget and problem scenario. The x-
axis indicates the quality of the solution found, i.e., 0 indicates the optimal
solution, 1 indicates the next suboptimal solution, and so on and so forth. Each
triplet of bars in each subfigure depicts, from left to right, the CJ2, CJ1, and
Nuesslein2 approach.
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A repository with all the analyses and experiments can be found in
https://github.com/IIIA-ML/QuantumSAT.git .

6 Conclusion and Future Work

Motivated to solve NP problems using quantum computers and constructing
our work completing Nuesslein et al.’s prior research [15], we have implemented
new gadgets to reduce 3-SAT instances to QUBO formulations. We have em-
pirically tested the performance using D-Wave’s quantum annealer and have
outperformed the current state-of-the-art approaches.

The immediate subsequent task should entail comprehending the reasons
behind the superior performance of these results compared to the state-of-the-
art approaches. In [3] it is mentioned that, in general, larger energy gaps lead to
higher success rates in the QA process. A theoretical examination of the energy
gap among the gadgets could be conducted under the same parameter conditions
(e.g. the range of the QUBO values when developing the gadget), ensuring a fair
and equitable comparison. It is, however, non-trivial to normalize all research in
a unique family of topology parameters.

It also remains a future challenge to deal with the embedding of bigger prob-
lems into the current architecture to further test the scalability and robustness
of our methods and benchmark the capabilities of the current QPUs. Further-
more, we seek to extend our investigations into real-world applications by ex-
ploring industrial instances or those sourced from SAT competitions, enhancing
the practical relevance of our findings.

Along these lines, it would also be promising to delve into more complex prob-
lem domains, such as k-SAT with k > 3, broadening the scope of our research
to encompass a wider range of challenges.
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