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ABSTRACT

In this paper we introduce an agent architecture that is suit-
able for joint action plan negotiation among several agents
in complex environments and with negotiation time bounds.
The architecture is based on a graded BDI model to drive the
decisions that the agent makes [4]. The practical reasoning
explores the space of possible deals with the help of a genetic
algorithm that copes with the potentially sheer amount of
joint plans. Beliefs represent the agent’s view of the world.
Before starting negotiating the agent summarises all what
she knows into the five dimensions of the LOGIC negotia-
tion model [12]. This summary is used to decide what to
say next and whom to say it to in order to sign deals on
joint plans. This work does not yet include experimental re-
sults but it is going to be tested using the DipGame testbed
(http://www.dipgame.org).
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1. INTRODUCTION

As stated in [10], a lot of research work on automated
negotiations have appeared in recent years but very few of
them consider negotiations with humans. Most of the pa-
pers on automated negotiation focus on bilateral negotia-
tions where software agents compete using utility maximi-
sation strategies. These strategies may work well when ne-
gotiating with software agents but not necessarily against
humans that in many cases will not behave according to a
constructivist rationality principle [1]. For instance, human
agents’ decisions depend a lot on e.g. the relationships with
the other agents and on emotions. In this work we deal with
competitive environments with simultaneous bilateral nego-
tiation with repeated encounters. The other agents can be
human or software. And they are able to co-operate per-
forming joint plans to get a better outcome. Here, as we
will see, good does not exclusively means high utility but
also other desired features.

We assume that agents are negotiating over large spaces of
potential joint plans, in a limited amount of time and with
limited resources. These are the usual settings that humans
are faced with in their everyday life. Humans do not attempt
to find the optimal solution before starting negotiating with
others. They work well with uncertain environments and
do not doubt to negotiate a plan that is not optimal if they
think it is good enough. Usually, it is not possible to get the
optimal one because of time constraints and because of the
competitive simultaneous negotiation setting.

The architecture proposed in this paper is specially de-
signed for environments where several self-interested agents
compete performing actions periodically in specific time in-
stants. All the agents perform the actions at the same time.
Actions change the state of the world but not all the ac-
tions are successfully executed, i.e. there is uncertainty on
whether an action will be successful. Actions of all the
agents are executed concurrently, therefore conflicts arise
between actions and some of them will fail.

Before selecting what actions to perform, agents interact
with the aim of deciding joint plans, that is, to co-operate.
Agents are assumed to be competitive but they are also in-
terested in increasing their confidence on the other agents’
next actions. This is because knowing what the other agents
are going to do allows us to choose actions that avoid un-
desired conflicts. Getting from others this information and
deciding joint plans is possible thanks to negotiation. In the
environments we envisage an agent negotiates trying to con-
vince the others to perform the set of actions that it desires
them to perform. There would be few actions to execute but
a lot of negotiation to decide them.

Agents can observe the state of the world and the other
agents actions independently of whether those were success-
ful or not. On the other hand, negotiations are private. An
agent cannot even know who is negotiating with whom when
it is not involved. Also the personality and the beliefs, de-
sires and intentions of the other agents are unknown and
can only be guessed, somehow, from the agent’s behaviour.
For example, if someone assures us that she will perform
an action different to the one she finally performs, we can
assume that this agent was not trustful. She lied us or at
least she changed her mind without telling us. As agents ne-
gotiate repeatedly forming close groups of agents, they can
build models on the other agents’ personality and behaviour
based on previous experiences. These models will help a lot
to avoid agreeing on joint plans with untrustworthy agents.

This paper is ongoing work and there are not experimental
results yet but it is planned to test the architecture using the



DipGame testbed even against human players. DipGame
provides an environment complex enough for testing this
work. And through its site (http://www.dipgame.org), hu-
man players are able to negotiate with our agents and thus
test our work against humans.

In this work we first shortly introduce, as background ma-
terial, the g-BDI and LOGIC (Section 2) models that we
incorporate as components of our architecture. We describe
the architecture (Section 3) to later explain it in detail in
several sections: the communication (Section 4), the prac-
tical reasoning (Section 5), the negotiation (Section 6) and
the strategy (Section 7). Then we discuss the importance
of trust in this architecture (Section 8) and introduce the
DipGame testbed (Section 9). The paper ends with a dis-
cussion about future work (Section 10).

2. G-BDI AND LOGIC

Taking a look into the literature we see that one of the
most popular agent models is the BDI model [9, 11, 2]. BDI
architectures have Believes, Desires and Intentions as their
principal components. The BDI model has been used to
cope with complex, dynamic and uncertain environments.
This agent model is based on the theory of human practical
reasoning that deals with the deliberation on what actions
to perform.

We use a graded BDI model, g-BDI [4], in order to de-
scribe the mental state of the agent with degrees. We want
to build agents capable to interact with humans. And hu-
man agents are really good working in uncertain environ-
ments. We point out that this graded BDI model will be
very useful for dealing with complex environments where
the world is not perfectly observable as the ones we are fac-
ing with here (e.g. the performance of an action by an agent
is uncertain).

The other model that we base our work on is the LOGIC
negotiation model [12]. This work points out the information
that we need in order to be able to negotiate with humans in
repeated encounter scenarios. That information is organised
into five dimensions:

- Legitimacy. The relevant information that might be
useful to the other agent in the negotiation.

- Options. Deals that are acceptable.
- Goals. To achieve our desires.

- Independence. Outside options. What can we do if
the negotiation fails.

- Commitments. Previously signed deals, C.

We use this model but not exactly as it is described in [12].
The LOGIC dimensions are assumed to be prepared before
every single negotiation with an agent. Then the agents ne-
gotiate exchanging several proposals until a deal has been ac-
cepted or someone withdraws. We do this differently. We do
not select the negotiation partner beforehand. We maintain
the information on the five dimensions updated all the time
and negotiate with one or another depending only on the
deal we want to sign. In this way, the partnership selection
is implicit in the selection of the next option to negotiate.
This is because our architecture allows for multi-lateral ne-
gotiations while LOGIC was designed only for bilateral ones.
We are also interested in the way that LOGIC proposes to

evaluate the relationships between the different agents. Spe-
cially the classification of relationships as in need, in equal-
ity and equity are very useful in our architecture because it
models very well actual human relationships.

3. ARCHITECTURE

The negotiation architecture that we propose in this work
is based on a graded BDI. As we can observe in Figure 1,
the agents desires are the central part of all the architecture
because they allow to evaluate the agents satisfaction in a
certain state, either the current state or a simulated one.
The agent desires change along time and it is the strategy of
the negotiation that determines how. Each agent has its own
strategy that depends on its personality traits. For example,
if we have a very conservative agent, then her strategy will
change her desires smoothly.

All the negotiation is about is satisfying the desires of the
agent. The intentions are fed by the desires. The desires
provide decision functions concerning what to do, what to
say and when to do so.

The beliefs of an agent are a summary of the information
on past observations and interactions with other agents that
she has stored in the history. Every time a message or a
change in the environment is observed, it is stored in the
history. But to be able to update our beliefs we use an
interpreter that is a mechanism capable of inferring facts
based on the information that is stored in the history. These
facts with their corresponding degree are the beliefs of the
agent. The interpretation of the environment observations
(i.e. the perception) depends mostly on the agent itself. We
assume that an agent has a set of local rules to interpret
the dialogical actions. The rules determine updates in the
beliefs model of the agent. The schema of those rules is:

State(o) AND Message(n) THEN Update(B(p))

and the intended meaning of a rule is: from the current
environment and internal states and a perceived message
then update the beliefs model. Every negotiating agent will
then possess a theory consisting of a number of such rules
that will update the agent’s model on the behaviour of other
agents.

Our actions depend on our intentions, but also on what
is possible to do. The agent tries to identify a set of actions
that will lead to a good enough solution. From a set of plans
the negotiation options are formulated as deals to be signed
with other agents (or humans) in order to allow us to be
sure that our plans will succeed.

This architecture is been build to be used in complex and
very competitive environments as those introduced before.
In those environments, agents are not able to wait until the
optimal solution is found. They have to interact with other
agents from the beginning, and make proposals of deals on
joint plans while they decide which plans are the best ones.
Thus, the execution of an agent consists on several concur-
rent processes: one for message listening (to receive pro-
posals, rejections, or acceptances), another to observe the
changes in the environment (similar to the message listener),
another for practical reasoning (to generate joint plans), one
for negotiating (selecting proposals to make) and one more
for each process that updates the several boxes that appear
in the architecture.

The data in the boxes is constantly being updated as these
processes are running all the time. But the negotiation pro-
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Figure 1: Agent architecture. Boxes represent data
and arrows represent processes.

cess gets idle regularly when a proposal is sent to another
agent as we want to have only one proposal open at any-
time. This simplifying restriction will be removed in future
versions of the agent implementation. The idle time gets
over when an answer from the appropriate agent is received
or too much time has passed without any answer. See Al-
gorithm 1 for a multithreaded version of the agent. The
meaning of the different variables will become clear when
reading the subsequent sections.

The algorithm consists on initially spawning all the pro-
cesses including practical reasoning. And then, repeat a
sequence of: a number of negotiation rounds (modelled as
a function) up to the time limit, a selection of actions from
the set of agreed upon joint plans and their execution.

Algorithm 1 function init(¢mae)

Require: shared P! {current plans}
Require: shared § = L {current proposed deal}
Require: shared response = L {received response to ¢}
Require: shared patience = default {patience}
spawn pri...pry, {processes associated to the architecture diagram
arrows}
spawn practical Reasoner()
while T do
tiimit < tnow t+ tmaaw
while t,0w < tiimit do
negotiation()
end while
Actions « selectActions(P")
perform(Actions)
end while
return

The negotiation function starts waiting. The practical
reasoning thread needs some time to get enough plans to
feed with options the negotiation process and time must be
also given to other agents to analyse our proposals after
sending them. When new messages arrive, we check if it is
a proposal. If it is, the message is stored in the set of pro-
posals. This set is shared with the negotiating function that
periodically checks this set to select a subset of proposals
that can be jointly acceptable. The rest of proposals are re-
jected. If none of the proposals is good enough, a new deal
is selected and the negotiation round is finished.

L1 ::= propose(a, 3, deal) | accept(a, 3, deal) |
reject(a, 8, deal) | withdraw(a, 3)

deal ::= Commit(a, 8, )" | Agree(3, )

¢ := predicate | Do(a, action) | ¢ A ¢ | mp
Bi=at

(672034

agent

Figure 2: £, language definition.

Every proposal is stored in § until an answer is received
or a timeout fires. The negotiation function, Algorithm 2,
waits for this answer. When it arrives, it stores it in the
variable response and the negotiation function resumes its
execution by processing the answer.

Algorithm 2 function negotiation()

wattuntil(tnow = patience or response # 1)

if 0 # L then
if response = 1 then
sendWithdraw(d)
6— L
else

if response = accept(§) then
Commitments «— Commitments U {5}
response,d «— L
end if
end if
end if
Proposals’ «— Proposals
Proposals «— Proposals \ Proposals’
Deals « getProposalsToAccept(Proposals’)
for §' € Deals do
sendAccept(d”)
end for
for 6’ € Proposals’ \ Deals do
sendReject(8)
end for
if Deals = () then
§ «— selectNextDeal(Plans)
if 5 # L then
sendProposal(d)
patience «— tnow + ffn(g;
end if
end if

return

In the subsequent sections we explain every component of
the architecture and provide the equations for the functions
that appear in the already introduced algorithms.

4. COMMUNICATION

Agents interact with the environment (performing actions)
and also with other agents (sending and receiving messages).
Actions and messages need to be understood by all the par-
ticipants of the communication. The communication mod-
ule provides a language useful for formulating actions and
also proposing deals. We assume that a common language is
shared. We use the £; language that is the first level of the
language tower proposed in [8]. It allows agents to interact
exchanging proposals as defined in Figure 2. For a correct
understanding of the dialogues that we can generate with
this language it is necessary also to share a protocol like the
one represented in Figure 3. The protocol regulates the in-
teraction between agents letting the agents make proposals,
accept or reject them.

This protocol enforces that every proposal message will be
answered by either an accept or a reject. When no answer is



propose(a, 3, deal)

withdraw(o, ), [tmaz) withdraw(a, B), [tmaz)

Figure 3: Communication Protocol for £;.

obtained in a certain interval of time, ¢4z, the negotiation
is over and a withdraw message is sent.

5. PRACTICAL REASONING

Practical reasoning concerns the deliberation that pre-
cedes a decision making on what actions to perform. This
deliberation in our architecture provides a set of action plans
that can include actions to be performed by other agents.
Those plans that involve actions for more than one agent
are joint plans and require the collaboration among agents.

Plans can be composed by other plans forming a hierarchy.
A basic plan is a tuple («,a,t) formed by an agent «, an
action a and an instant of time ¢ meaning that the agent «
would perform action a at time t. A plan is ultimately a set
of such basic plans: the leaves of the plan tree. The set of
possible hierarchical plans is denoted by P. The set of basic
plans is denoted as B and the space of possible plans is then
P = 2B, The empty set meaning inaction. We denote the
set of basic plans of a plan p as basic(p) C B.

A plan is part of another plan if and only if every ba-
sic plan in the first is a basic plan of the second, that is:
p part_of p’ <= basic(p) C basic(p’). A plan is unfeasible
if it has two or more incompatible actions. The incompat-
ibility of actions depends on the application domain, e.g.
in the Diplomacy game we cannot move the same unit to
two different regions at the same time. Two feasible plans
p,p’ € P are incompatible if basic(p) Ubasic(p’) is an unfea-
sible plan.

We evaluate single plans based on the utility that they
provide. We assume that there is a utility function U :
P x W — [0,1] for each plan and world state, and a confi-
dence measuring the probability that the whole plan would
be executed, C' : P — [0, 1]. Note that as some actions may
depend on other agents we may be uncertain about them
being actually performed.

DEFINITION 1. Given a plan p € P, the value of plan p
in world state w, V(p,w), is defined as the expected utility of
the plan given the probability (confidence) of the plan being
executed:

V(p,w) = EU(p, w)] = U(p,w) - C(p) (1)

The evaluation of the confidence and the utility depend
a lot on the application domain and on the beliefs of the
agent. We measure the confidence as the probability that
we have on all agents involved in the plan performing the
actions that the plan requires them to perform. That is, as
our degree of belief on it (see [4] for details on the modelling

of beliefs). If an agent thinks that it is not possible for a plan
to be performed because the other agents are not going to do
what we want to, then it will not take it into consideration
and will not engage in negotiations over it, the agent will
just look for another option.

The confidence level of a plan is usually in line with the
trust on other agents and on the time horizon set by the
latest basic plan in the plan. The more agents the plan
depends upon, the lower the probability of success and the
latter the basic plan to be completed the more improbable
the plan is as the probability of the environment changing
(and thus making the actions unfeasible) in the meantime
will be higher.

The utility of a plan is calculated based on the utility of
the states of the world that we can get executing it and the
probability on each of those states being reached.

DEFINITION 2. Given a plan p € P, the utility of exe-
cuting it in the current world state w, U(p,w), is defined
as the expected utility of the world states that we can reach
performing p:

Ulp,w) = Plwjlp,w) x U(w;) (2)

Both, the utility and the probability of reaching a world
state (U(w;) and P(w;|p, w)) depend on the application do-
main. In domains where the world is not perfectly observ-
able and thus we are not sure about the current state nor
about the state transition probabilities, we could use Par-
tially Observable Markov Decision Processes (POMDPs).
However, a wealth of data would be necessary to model it
accurately.

Even when the world is perfectly observable, we have to
deal with uncertainty because we do not know what the
other agents are going to do. And their actions will affect
the world as well.

The utility takes into account the uncertainty on the world.
Contrarily, the confidence measures to what extend we are
sure that the plan will be executed.

DEFINITION 3. Given a plan p € P, the confidence of
exzecuting it, C(p), is defined as the degree of belief on all its
basic plans b € basic(p) being executed:

cp= [ = ®3)
beEbasic(p)
B(b,ry)

Before starting a negotiation process, our belief on a basic
plan being executed can be low. An agent can negotiate
to increase its confidence on it. This is done by signing
deals that provide commitments on other agents actions.
When an agent commits to the execution of a basic plan, this
commitment is added to the set of current commitments, C'
and our belief on this basic plan being executed is the trust
that we have on it [5]. But to decide whether to negotiate or
not a deal on a basic plan, we can estimate the confidence
that we would obtain after negotiating it.

DEFINITION 4. Given a basic plan b = {(«, a,t), the esti-
mation of belief on its future execution B(b,ry) if we engage
in a negotiation, is defined as:

b = P(b|=p) X P(=p) + T (8, a, ) X P(p) (4)

where ¢ = Commit(a, 8, Do(a, (a,t))), and T(B,a,p) is
the trust that B has on a honouring the commitment.



The search space for plans is exponential in the number
of possible actions and the evaluation function changes so
much due to changes in the environment that we have to
work with good enough plans instead of waiting for an op-
timal solution. In the kind of environments we are working
on, we assume optimality is never achievable in practical
terms. Therefore, the usual planning techniques do not pro-
vide good results. What we need is a practical reasoning
engine that would provide a set of feasible plans at any time
taking into account the dynamics of our beliefs. It is im-
portant to have a rich set of solutions instead of just one
because it makes the negotiation more robust providing sev-
eral options for negotiation.

We would like that the set of plans satisfy a trade-off be-
tween coherence and diversity. That is, we want the plans
to be different —not all depending on the same set of basic
plans, that is we want high diversity, but also to be related
—+to have some basic plans in common with other plans,
that is to have some coherence in the set of plans. We thus
define the similarity of two plans as the proportion of basic
plans that they have in common.

DEFINITION 5. The similarity between two plans p,q € P,
is defined as the proportion of common basic plans:

_ basic(p) Nbasic(q)

()

sim =

(pq) basic(p) U basic(q)

To define a degree of trade-off between coherence and di-

versity we use the Gini mean difference as a measure of dis-

persion that compares pairs of elements, in our case plans,
of a set.

DEFINITION 6. Given a set of plans P we define the sta-
tistical dispersion of P*, A(P"), as the Gini measure of the
plans similarity.

¢ 1 .
A(P)ZW Z sim(p, q)

p,ge Pt

Thus the higher the gini value, the higher the dispersion
and the lower the gini the higher the coherence. The problem
is that gini compares pairs of plans, not sets of them. Then
it could happen that a set of plans with high dispersion could
have a single basic plan appearing in all the plans of the set.
This is not desirable because all the plans would depend on
that single basic plan. This is a problem that could be solved
applying a measure of dispersion not only to pairs but also
to subsets of three, four or more plans. But the complexity
of the resulting measure would be too high. Instead of this
we use a measure of the popularity of the basic plans that
we combine with the Gini dispersion measure. Then, the
lower the maximum popularity of basic plans, the better.

DEFINITION 7. The popularity of a basic plan b € B
within a set of plans P is the proportion of plans in P?
that contain it:

~ |{p € P": b€ basic(p)}|

pop(b, P') = Y (6)

The relevance of having a set of plans coherent and diverse
will be better understood when introducing the concept of
deals in the next section. In addition to looking for diversity
of basic plans we could also look for diversity of negotiation

partners (the agents involved in the basic plans), of the ac-
tions or of the time. Or whatever other dimension of a basic
plan if they were defined with more dimensions.

We use genetic algorithms (GA) to look for those plans.
Genetic algorithms are a potential technology to explore
large spaces. They produce successive populations of so-
lutions that are increasingly better adapted to the environ-
ment even when it is dynamically changing along time. For
us, each single solution, a chromosome in the GA, represents
a feasible plan. The GA will then work with a population of
feasible plans. This population is updated generation after
generation by the crossover, mutation and selection opera-
tors. Crossover and mutation must guarantee the feasibility
of the generated plans.

We look for a set of plans being coherent and diverse, as
explained before. Therefore, we use an elitist selection over
some individuals that will survive to the next generation.
Elitism should be applied to the subset of the population
that better satisfies a combination of factors: being coher-
ent, diverse, having a minimum number of basic plans, and
having substantial utility and confidence. To facilitate the
coverage of the whole search space, also other individuals
survive but with a probability of survival proportional to
the value of their fitness. Finally, the rest of the members of
the new population are generated with the crossover mech-
anism. A certain probability of mutation allows to explore
plans containing basic plans that were not included in the
initial population.

As explained before, the environment is constantly chang-
ing and thus the beliefs of the agent. As the confidence and
utility measures depend on it, the individual evaluation of
the plans can change drastically and thus provoke an ap-
parently incoherent behaviour of the agent. Like proposing
to do the opposite that was proposed seconds ago. If we
guarantee that a set of coherent plans survive to the next
generation, the changes in the plans that are available for
negotiation is not so drastic and therefore the behaviour of
the agent will not be too erratic. On the other hand, a
certain degree of diversity allows the search to explore the
whole space of plans. This permits the agent to be prepared
for any changes in the environment when they happen. Just
in the same way as diversity acts in nature. Adjusting the
level of coherence and diversity is thus crucial to have a good
set of plans available at any time.

The specific design including the codification of plans into
chromosomes as well as the way to build the first population,
and how to apply crossover and mutation depend, obviously,
on the application domain.

5.1 Select actions to perform

The practical reasoning module maintains at any time a
set of diverse and coherent plans. We will negotiate using
the available plans by proposing deals based on them. But
at the end of the negotiation time, the surviving plans (that
have not failed in the negotiations) will be used to select the
actions to perform as already mentioned in algorithm 1.

When the time for negotiating is over, the agents exe-
cute their actions concurrently. We could check the set of
remaining plans, choose the plan with highest value and ex-
ecute those basic actions of the plan that correspond to us.
However, other information can also be taken into account:
the previous commitments with other agents, or the kind of
relationship we would like to build up with the other agents.



For example, if we do not care about the relationship with
someone, then we will not care about not honouring previous
deals with that agent. This information is part of the inten-
tions. If we have the intention on non respecting a given
deal, the commitments that emerge from that deal will not
be taken into account when selecting the actions to perform.
In repeated negotiation encounter scenarios, agents form
an image on the other agents based on their behaviour. They
analyse what the others do and try to discover what the
others know in order to be able to predict their actions.
To avoid a deterministic behaviour of the agent that would
make us vulnerable in front of disloyal attacks, it is better to
select the plan with a random method giving more chances
to the plans that are better. For example, the plan with the
highest value would have more chances to be selected.

6. NEGOTIATION

Agents’ plans of action usually contain basic plans with
actions assigned to other agents. Those plans are considered
joint plans. Plans and joint plans are formulated by the
practical reasoning module but the other agents involved in
those plans do not know about them. Or, at least, do not
know about our interest on them. Thus, the confidence that
we have a priori on those plans is not good at all. We would
like that the other agents commit to the performance of the
actions associated to them in the highest utilitarian plans
because the commitments increase the confidence in their
eventual execution.

The first thing we need to do is to check which are our
options for negotiation. Then, we evaluate them taking into
account our goal in the negotiation, the previous commit-
ments that we have and the independence!. In the following
we describe in more depth those dimensions, their usage in
the model and how to formulate the negotiation options.

The options in a negotiation are the deals that we can
accept [12]. A deal is in fact a plan. The signature of a deal
obliges? the agents accepting the deal to perform the actions
that the plan assigns to them. The practical reasoning mod-
ule provides us a set of plans that would be able to be used as
deals. But it is sometimes necessary to split those plans into
several deals as they need to be negotiated separately with
different agents. Thus, from the plans we produce deals that
have actions assigned to our agent and just another agent
per deal. We denote the set of deals produced by a plan p
as a set of plans: deals(p) C 2P.

When a deal has been accepted, the negotiating agents
commit to perform the actions in the basic plans that are
assigned to them. Commitments being honoured up restrict
the behaviour of agents. Achieving commitments from other
agents is essential as their behaviour get restricted and then
the confidence for our plans increases®. At the same time,
our commitments restrict our behaviour making us more
predictable and thus vulnerable from being exploited. After
signing a deal, some of the previous possible plans get incom-
patible with the current commitments (the set of commit-
ments is in fact a plan). Unfeasible plans are not considered
when computing deals.

The independence of an agent is measured as the current
number of plans available to the agent.

2 Although we do not assume a normative environment with
sanctions for commitment violation.

3 As the success of the execution of our actions depend on
the actions that other agents perform.

A deal is good if it provides satisfaction to the agent. We
thus evaluate a deal as the estimated satisfaction of the agent
desires when adding this deal to the set of commitments,
sucCt.

Agents want to get the best possible set of commitments,
that is, the set that is compatible with the plans that have
the highest utility. At the same time, the confidence in those
plans has to be high as to guarantee their execution. And
also the set of available plans, i.e. independence, has to be
kept as large as possible to allow for further improvement of
the current set of commitments. Therefore, the satisfaction
of an agent is defined as an aggregation operator over three
criteria: utility, confidence and independence. This aggrega-
tion operator may change along time. For instance, we may
initially want as much utility as possible over a confidence
threshold but later we are more interested on keeping some
independence. Agents would desire to have a significant de-
gree of independence to be able to improve the outcome
of a concrete negotiation round via negotiations with other
agents or just to avoid showing a predictable behaviour (i.e.
not showing the others that the agent has no alternative
plan to the one being negotiated).

DEFINITION 8. Given a set of plans P' and a set of com-
mitments C*, the satisfaction of an agent is defined as an
aggregation of three different criteria: utility, confidence and
independence.

sat(P*,C") = f*(vu,ve,vr) (7)
where:
- f' is an aggregation operator. See for instance [3].
- vy 1s the OWA average utility of the plans in P*.
- v 1s the average confidence of the plans in P*.

- vz 1s the percentage of plans in P* compatible with C*.

The coherence and diversity that we were looking for when
searching for plans is crucial to be able to obtain an inter-
esting set of deals. If the coherence of the plans is high, we
will have options that do not restrict a lot our independence.
When we sign a deal that is incompatible with a plan, we
lose the opportunity to achieve it. And thus, the opportu-
nity to use the deals that are only provided by those plans
that are now incompatible. In this way, if we are not capa-
ble of convincing someone on accepting to perform one of
the basic actions of our preferred plan, then we will still be
able to use the already signed deals coming from this plan
to satisfy other plans that are good as well.

The commitments are just the union of all the deals that
are already accepted. Those deals can be jointly incompat-
ible. This would mean that someone will deceit. Trust will
be useful to estimate who will deceit and to decide if we
should honour or not a deal.

Finally, legitimacy is not explained here because we focus
on the exchange of deals and not other types of informa-
tion. In future work we will use upper language levels in the
tower [8] that allow for information exchange and then the
legitimacy dimension will become important.

7. NEGOTIATION STRATEGY

The agent desires drive all the negotiation process because
the deals are evaluated as the satisfaction that the agent



would experiment if she signs the deal. Then the strategy
of the agent is modelled in our architecture as rules on how
the desires of the agent should change. For example, we
usually want as much utility, confidence and independence
as possible. But while we aspirate to increase the utility
and confidence during the negotiations, we know that the
independence will decrease as time goes by. As the negoti-
ation process arrives to the end, the number of signed deals
increases and thus the number of commitments. And those
commitments that are going to be honoured up restrict the
behaviour of the agent reducing her independence.

The desires of the agent change along time in accordance
to the strategy. Thus, the satisfaction of an agent changes
even when the plans P’ and the commitments C* remain
temporally constant. The personality of the agent deter-
mines the strategy to use. For example, a paranoid agent
will always give a lot of relevance to the independence be-
cause it is incapable to feel confident when other agents know
what she is going to do. Contrarily, someone obsessed with
taking as much utility as possible will ignore the indepen-
dence criteria and will focus on maximising the utility. The
more cautious the agent is, the more relevance it will put
on the confidence thus it will ensure the correct execution of
the plans. We point out that the best strategy is to balance
this trade-off conveniently. We need independence, but we
also need confidence in the most utilitarian plans.

The way to make this process operational is by means
of the satisfaction aspiration that defines a threshold for
a deal being considered acceptable during a time-bounded
simultaneous negotiation process with several agents.

DEFINITION 9. Given a set of feasible plans P*, and a set
of commitments C*, the satisfaction aspiration of an agent
at time t, noted A(t), is defined as

tiimit —t)

A(t) = min(t) + (%) - (maz(t) — min(t))
limit

where min(t) = sat(P',C") is the current satisfaction of

the agent, maz(t) = mazpepsat(P',C*Up) is the mazimum

achievable satisfaction, tiimae is the time limit, and T € [0, 1]

is the aspiration decay rate.

The negotiation strategy manages the negotiation goals
of the agent and decides which deals are acceptable based
on the current satisfaction aspiration level. The aspiration
level of an agent at a given time depends on the satisfac-
tion obtained from the currently signed deals and on the
maximum potentially achievable satisfaction, which is the
one obtained from the combination of the signed deals and
the best available plan. What we aspire to obtain is always
higher than what we have, but we are less optimistic as the
negotiation gets closer to the end.

When a proposal arrives, we decide to accept it or not
depending on whether it is acceptable —has an estimated
satisfaction higher than A(t), or not. Also, for selecting
deals to propose we choose just one randomly between the
set of deals that are acceptable, i.e. over A(t).

8. TRUST

When people talk, negotiate and sign agreements, they
sometimes lie with the aim of getting a better immediate
outcome. By committing ourselves to do some actions we
can convince the other agents to accept deals that would

not be accepted otherwise. We have always the option of
non respecting the previously signed deals. But we have to
be careful because disloyal behaviour cause that the other
agents would form a non trustful image of us and they would
reject negotiating with us any more.

Trust is crucial for any negotiation to happen. The aim
of a negotiation is to obtain the commitment of another
agent on performing a given action. But, if we do not trust
the other agent and thus we think that she is not going to
honour up her commitments, then it has no sense to start
negotiating with her. The same happens if we think that the
other agent is not capable of doing what we are proposing
her to do. In this way, we model trust as an expectation
on the execution of a commitment as was proposed in [5]
and applied to partnership selection in [6]. It is based on
entropic measures applied over the history of interactions.

In repeated negotiation encounter scenarios, the agents in-
teract often and build relationships among them. The trust
in those environments is usually high because of the exis-
tence of an interest in the continuity of the relationships.
This interest makes it worth it to be trustful. If the rela-
tionship has not an apparent ending, then it seems that is
better to obtain few outcome now but a lot of times of it
than to get a large outcome now but just once. We have to
take also into account that agents could later on retaliate.

9. DIPGAME

DipGame is a multiagent systems’ testbed developed at
the ITTA-CSIC. It is based on Diplomacy, a popular strat-
egy board game in which seven players negotiate in order
to decide joint plans. The goal of the game is to conquer
Europe. To better progress in the game you need to per-
form actions that are supported by other players. Joint plans
then usually contain supporting actions between the players.
Therefore, although players compete to win they sometimes
co-operate. Deciding when to co-operate and persuading the
others to support what you want to do, are the most impor-
tant skills that a player needs to have in order to win the
game. All the players’ actions are executed concurrently,
there are no turns. There are also no dices, cards or any
other random element in the game. The negotiation, the co-
operative/competitive nature of the game and the absense
of randomness make this game a very intertesting domain
for testing MAS negotiation research. And make it a perfect
target for our negotiation model.

The DipGame testbed facilitates the creation of player
agents (bots) by providing a framework for bot development.
It also provides the infrastructure and some software compo-
nents that allow researchers to check and analyse the correct
behaviour of their agents and an interface to chat with other
players using the language £1. Detailed information about
the testbed can be found in [8].

Multiagent systems’ researchers can build negotiating agents
with the DipGame framework and execute experiments with
them using the available infrastructure, [7]. But what makes
the testbed even more interesting is that also humans can
play against DipGame bots throught the testbed website:
http://wuw.dipgame.org. There is a huge community of
Diplomacy players on Internet that meet around the http:
//diplom.org website. They publish a magazine, use soft-
ware tools to study the games (like chess players do), write
in fora available in several languages and participate in many
regional and also international face-to-face competitions of



Diplomacy. Therefore, it is not difficult to find human play-
ers available for playing against our bots.

[8] discusses the complexity of the game and its adequacy
to MAS research. There is a rather big community of bot de-
velopers, DAIDE, (over 200 members) and that build bots
that are not capable of negotiation*. They share a com-
mon communication protocol and language that DipGame
respects so bots build with the DipGame testbed will be
able to compete against bots of the DAIDE community. The
part of the communication in which DipGame departs from
DAIDE is in the negotiation language and protocol®.

10. DISCUSSION AND FUTURE WORK

In this paper we have outlined the basic components of
a negotiation architecture. It is tailored to build agents ca-
pable to interact with humans in competitive environments.
One of the main characteristics of the environments we en-
visage is that agents and humans can occasionally co-operate
through joint plans in order to get a better outcome. Those
plans are possible thanks to the negotiation processes end-
ing successfully by signing deals where agents commit to
perform actions.

Our main contributions are: first, the interleaving of on
the fly generation of plans and options for the negotiation
and the negotiation process itself; second, the use of a no-
tion of coherence and diversity to better explore huge search
spaces that allow for a more compact process of negotiation
without erratic moves. We also advance the state of the art
in the modelling of graded BDI [4] by better integrating BDI
reasoning and planning.

We will build a DipGame agent using this architecture and
test it playing against humans at the DipGame site. Our
aim in these experiments is to empirically show that the ar-
chitecture has the right components to be able to negotiate
against humans in complex environments like the DipGame
one: multialateral negotiations, repeated encounter scenar-
ios, time fixed negotiation rounds, join tplans, uncertainty,
... Also, there are a number of extensions of the architecture
that seem important when the interaction language among
agents will be more complex. In this respect, our next step
will be to extend the architecture allowing for the exchange
of explicit information, using for instance language L2 [8].

Hypothetical reasoning in the sense of assuming dialogical
moves and analysing their consequences might be included.
It seems important that agents perform a forward thinking
on the potential consequences of dialogical moves in order
to plan the strategy ahead. Here we consider only one dia-
logical move ahead, and therefore the use of this reasoning
will also be useful in future work.

The emotional dimension should be incorporated to the
architecture as we want to interact with humans and they
behave in a non totally rational way. They are deeply influ-
enced by their emotions. Thus understanding the emotional
state of the agents can help a lot in predicting their actions.

We evaluate a deal based on its value, that is, the expected
utility of the plan. However, other measures could also be
taken into account, e.g. social relationship building [12].

4At least not about joint plans.

SDAIDE has defined a language for negotiation that we con-
sider inappropriate. See [8] for a complete description on the
reasons that made us define our own language (tower) for
DipGame.

We think that the experiments that we will perform with
humans will point us to the relevant measures. Learning
techniques will be required to perform this task.

Finally, a very challenging aspect to look into is how to
model trustful image recovery after a deceitful behaviour.
That is, what strategy can we follow to be ‘preceived as
trustful again after performing a disloyal behaviour in which
we did not honour a commitment. Agents lie and deceit to
obtain a higher outcome. But we need to know, as human
do, how to combine deceits with honour in a way that allows
us to negotiate properly in the future.
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